blob: 46dfb044a236aa574d1d18c0c98b2bdce633c916 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_ARCH_ARM)
#include "vm/assembler.h"
#include "vm/code_generator.h"
#include "vm/compiler.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/heap.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#define __ assembler->
namespace dart {
DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects.");
DEFINE_FLAG(bool, use_slow_path, false,
"Set to true for debugging & verifying the slow paths.");
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, trace_optimized_ic_calls);
// Input parameters:
// LR : return address.
// SP : address of last argument in argument array.
// SP + 4*R4 - 4 : address of first argument in argument array.
// SP + 4*R4 : address of return value.
// R5 : address of the runtime function to call.
// R4 : number of arguments to the call.
void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) {
const intptr_t isolate_offset = NativeArguments::isolate_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ EnterStubFrame();
// Load current Isolate pointer from Context structure into R0.
__ ldr(R0, FieldAddress(CTX, Context::isolate_offset()));
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ StoreToOffset(kWord, SP, R0, Isolate::top_exit_frame_info_offset());
// Save current Context pointer into Isolate structure.
__ StoreToOffset(kWord, CTX, R0, Isolate::top_context_offset());
// Cache Isolate pointer into CTX while executing runtime code.
__ mov(CTX, ShifterOperand(R0));
// Reserve space for arguments and align frame before entering C++ world.
// NativeArguments are passed in registers.
ASSERT(sizeof(NativeArguments) == 4 * kWordSize);
__ ReserveAlignedFrameSpace(0);
// Pass NativeArguments structure by value and call runtime.
// Registers R0, R1, R2, and R3 are used.
ASSERT(isolate_offset == 0 * kWordSize);
// Set isolate in NativeArgs: R0 already contains CTX.
// There are no runtime calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
ASSERT(argc_tag_offset == 1 * kWordSize);
__ mov(R1, ShifterOperand(R4)); // Set argc in NativeArguments.
ASSERT(argv_offset == 2 * kWordSize);
__ add(R2, FP, ShifterOperand(R4, LSL, 2)); // Compute argv.
// Set argv in NativeArguments.
__ AddImmediate(R2, kParamEndSlotFromFp * kWordSize);
ASSERT(retval_offset == 3 * kWordSize);
__ add(R3, R2, ShifterOperand(kWordSize)); // Retval is next to 1st argument.
// Call runtime or redirection via simulator.
__ blx(R5);
// Reset exit frame information in Isolate structure.
__ LoadImmediate(R2, 0);
__ StoreToOffset(kWord, R2, CTX, Isolate::top_exit_frame_info_offset());
// Load Context pointer from Isolate structure into R2.
__ LoadFromOffset(kWord, R2, CTX, Isolate::top_context_offset());
// Reset Context pointer in Isolate structure.
__ LoadImmediate(R3, reinterpret_cast<intptr_t>(Object::null()));
__ StoreToOffset(kWord, R3, CTX, Isolate::top_context_offset());
// Cache Context pointer into CTX while executing Dart code.
__ mov(CTX, ShifterOperand(R2));
__ LeaveStubFrame();
__ Ret();
}
// Print the stop message.
DEFINE_LEAF_RUNTIME_ENTRY(void, PrintStopMessage, 1, const char* message) {
OS::Print("Stop message: %s\n", message);
}
END_LEAF_RUNTIME_ENTRY
// Input parameters:
// R0 : stop message (const char*).
// Must preserve all registers.
void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) {
__ EnterCallRuntimeFrame(0);
// Call the runtime leaf function. R0 already contains the parameter.
__ CallRuntime(kPrintStopMessageRuntimeEntry, 1);
__ LeaveCallRuntimeFrame();
__ Ret();
}
// Input parameters:
// LR : return address.
// SP : address of return value.
// R5 : address of the native function to call.
// R2 : address of first argument in argument array.
// R1 : argc_tag including number of arguments and function kind.
void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) {
const intptr_t isolate_offset = NativeArguments::isolate_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ EnterFrame((1 << FP) | (1 << LR), 0);
// Load current Isolate pointer from Context structure into R0.
__ ldr(R0, FieldAddress(CTX, Context::isolate_offset()));
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ StoreToOffset(kWord, SP, R0, Isolate::top_exit_frame_info_offset());
// Save current Context pointer into Isolate structure.
__ StoreToOffset(kWord, CTX, R0, Isolate::top_context_offset());
// Cache Isolate pointer into CTX while executing native code.
__ mov(CTX, ShifterOperand(R0));
// Reserve space for the native arguments structure passed on the stack (the
// outgoing pointer parameter to the native arguments structure is passed in
// R0) and align frame before entering the C++ world.
__ ReserveAlignedFrameSpace(sizeof(NativeArguments));
// Initialize NativeArguments structure and call native function.
// Registers R0, R1, R2, and R3 are used.
ASSERT(isolate_offset == 0 * kWordSize);
// Set isolate in NativeArgs: R0 already contains CTX.
// There are no native calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
ASSERT(argc_tag_offset == 1 * kWordSize);
// Set argc in NativeArguments: R1 already contains argc.
ASSERT(argv_offset == 2 * kWordSize);
// Set argv in NativeArguments: R2 already contains argv.
ASSERT(retval_offset == 3 * kWordSize);
__ add(R3, FP, ShifterOperand(2 * kWordSize)); // Set retval in NativeArgs.
// TODO(regis): Should we pass the structure by value as in runtime calls?
// It would require changing Dart API for native functions.
// For now, space is reserved on the stack and we pass a pointer to it.
__ stm(IA, SP, (1 << R0) | (1 << R1) | (1 << R2) | (1 << R3));
__ mov(R0, ShifterOperand(SP)); // Pass the pointer to the NativeArguments.
__ mov(R1, ShifterOperand(R5)); // Pass the function entrypoint to call.
// Call native function invocation wrapper or redirection via simulator.
#if defined(USING_SIMULATOR)
uword entry = reinterpret_cast<uword>(NativeEntry::NativeCallWrapper);
entry = Simulator::RedirectExternalReference(
entry, Simulator::kNativeCall, NativeEntry::kNumCallWrapperArguments);
__ LoadImmediate(R2, entry);
__ blx(R2);
#else
__ BranchLink(&NativeEntry::NativeCallWrapperLabel());
#endif
// Reset exit frame information in Isolate structure.
__ LoadImmediate(R2, 0);
__ StoreToOffset(kWord, R2, CTX, Isolate::top_exit_frame_info_offset());
// Load Context pointer from Isolate structure into R2.
__ LoadFromOffset(kWord, R2, CTX, Isolate::top_context_offset());
// Reset Context pointer in Isolate structure.
__ LoadImmediate(R3, reinterpret_cast<intptr_t>(Object::null()));
__ StoreToOffset(kWord, R3, CTX, Isolate::top_context_offset());
// Cache Context pointer into CTX while executing Dart code.
__ mov(CTX, ShifterOperand(R2));
__ LeaveFrame((1 << FP) | (1 << LR));
__ Ret();
}
// Input parameters:
// LR : return address.
// SP : address of return value.
// R5 : address of the native function to call.
// R2 : address of first argument in argument array.
// R1 : argc_tag including number of arguments and function kind.
void StubCode::GenerateCallBootstrapCFunctionStub(Assembler* assembler) {
const intptr_t isolate_offset = NativeArguments::isolate_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ EnterFrame((1 << FP) | (1 << LR), 0);
// Load current Isolate pointer from Context structure into R0.
__ ldr(R0, FieldAddress(CTX, Context::isolate_offset()));
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ StoreToOffset(kWord, SP, R0, Isolate::top_exit_frame_info_offset());
// Save current Context pointer into Isolate structure.
__ StoreToOffset(kWord, CTX, R0, Isolate::top_context_offset());
// Cache Isolate pointer into CTX while executing native code.
__ mov(CTX, ShifterOperand(R0));
// Reserve space for the native arguments structure passed on the stack (the
// outgoing pointer parameter to the native arguments structure is passed in
// R0) and align frame before entering the C++ world.
__ ReserveAlignedFrameSpace(sizeof(NativeArguments));
// Initialize NativeArguments structure and call native function.
// Registers R0, R1, R2, and R3 are used.
ASSERT(isolate_offset == 0 * kWordSize);
// Set isolate in NativeArgs: R0 already contains CTX.
// There are no native calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
ASSERT(argc_tag_offset == 1 * kWordSize);
// Set argc in NativeArguments: R1 already contains argc.
ASSERT(argv_offset == 2 * kWordSize);
// Set argv in NativeArguments: R2 already contains argv.
ASSERT(retval_offset == 3 * kWordSize);
__ add(R3, FP, ShifterOperand(2 * kWordSize)); // Set retval in NativeArgs.
// TODO(regis): Should we pass the structure by value as in runtime calls?
// It would require changing Dart API for native functions.
// For now, space is reserved on the stack and we pass a pointer to it.
__ stm(IA, SP, (1 << R0) | (1 << R1) | (1 << R2) | (1 << R3));
__ mov(R0, ShifterOperand(SP)); // Pass the pointer to the NativeArguments.
// Call native function or redirection via simulator.
__ blx(R5);
// Reset exit frame information in Isolate structure.
__ LoadImmediate(R2, 0);
__ StoreToOffset(kWord, R2, CTX, Isolate::top_exit_frame_info_offset());
// Load Context pointer from Isolate structure into R2.
__ LoadFromOffset(kWord, R2, CTX, Isolate::top_context_offset());
// Reset Context pointer in Isolate structure.
__ LoadImmediate(R3, reinterpret_cast<intptr_t>(Object::null()));
__ StoreToOffset(kWord, R3, CTX, Isolate::top_context_offset());
// Cache Context pointer into CTX while executing Dart code.
__ mov(CTX, ShifterOperand(R2));
__ LeaveFrame((1 << FP) | (1 << LR));
__ Ret();
}
// Input parameters:
// R4: arguments descriptor array.
void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) {
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value and preserve arguments descriptor.
__ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
__ PushList((1 << R0) | (1 << R4));
__ CallRuntime(kPatchStaticCallRuntimeEntry, 0);
// Get Code object result and restore arguments descriptor array.
__ PopList((1 << R0) | (1 << R4));
// Remove the stub frame.
__ LeaveStubFrame();
// Jump to the dart function.
__ ldr(R0, FieldAddress(R0, Code::instructions_offset()));
__ AddImmediate(R0, R0, Instructions::HeaderSize() - kHeapObjectTag);
__ bx(R0);
}
// Called from a static call only when an invalid code has been entered
// (invalid because its function was optimized or deoptimized).
// R4: arguments descriptor array.
void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) {
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value and preserve arguments descriptor.
__ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
__ PushList((1 << R0) | (1 << R4));
__ CallRuntime(kFixCallersTargetRuntimeEntry, 0);
// Get Code object result and restore arguments descriptor array.
__ PopList((1 << R0) | (1 << R4));
// Remove the stub frame.
__ LeaveStubFrame();
// Jump to the dart function.
__ ldr(R0, FieldAddress(R0, Code::instructions_offset()));
__ AddImmediate(R0, R0, Instructions::HeaderSize() - kHeapObjectTag);
__ bx(R0);
}
// Input parameters:
// R2: smi-tagged argument count, may be zero.
// FP[kParamEndSlotFromFp + 1]: last argument.
static void PushArgumentsArray(Assembler* assembler) {
// Allocate array to store arguments of caller.
__ LoadImmediate(R1, reinterpret_cast<intptr_t>(Object::null()));
// R1: null element type for raw Array.
// R2: smi-tagged argument count, may be zero.
__ BranchLink(&StubCode::AllocateArrayLabel());
// R0: newly allocated array.
// R2: smi-tagged argument count, may be zero (was preserved by the stub).
__ Push(R0); // Array is in R0 and on top of stack.
__ add(R1, FP, ShifterOperand(R2, LSL, 1));
__ AddImmediate(R1, kParamEndSlotFromFp * kWordSize);
__ AddImmediate(R3, R0, Array::data_offset() - kHeapObjectTag);
// R1: address of first argument on stack.
// R3: address of first argument in array.
Label loop;
__ Bind(&loop);
__ subs(R2, R2, ShifterOperand(Smi::RawValue(1))); // R2 is Smi.
__ ldr(IP, Address(R1, 0), PL);
__ str(IP, Address(R3, 0), PL);
__ AddImmediate(R1, -kWordSize, PL);
__ AddImmediate(R3, kWordSize, PL);
__ b(&loop, PL);
}
// Input parameters:
// R5: ic-data.
// R4: arguments descriptor array.
// Note: The receiver object is the first argument to the function being
// called, the stub accesses the receiver from this location directly
// when trying to resolve the call.
void StubCode::GenerateInstanceFunctionLookupStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ ldr(R2, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ add(IP, FP, ShifterOperand(R2, LSL, 1)); // R2 is Smi.
__ ldr(R6, Address(IP, kParamEndSlotFromFp * kWordSize));
// Push space for the return value.
// Push the receiver.
// Push IC data object.
// Push arguments descriptor array.
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
__ PushList((1 << R4) | (1 << R5) | (1 << R6) | (1 << IP));
// R2: Smi-tagged arguments array length.
PushArgumentsArray(assembler);
__ CallRuntime(kInstanceFunctionLookupRuntimeEntry, 4);
// Remove arguments.
__ Drop(4);
__ Pop(R0); // Get result into R0.
__ LeaveStubFrame();
__ Ret();
}
DECLARE_LEAF_RUNTIME_ENTRY(intptr_t, DeoptimizeCopyFrame,
intptr_t deopt_reason,
uword saved_registers_address);
DECLARE_LEAF_RUNTIME_ENTRY(void, DeoptimizeFillFrame, uword last_fp);
// Used by eager and lazy deoptimization. Preserve result in R0 if necessary.
// This stub translates optimized frame into unoptimized frame. The optimized
// frame can contain values in registers and on stack, the unoptimized
// frame contains all values on stack.
// Deoptimization occurs in following steps:
// - Push all registers that can contain values.
// - Call C routine to copy the stack and saved registers into temporary buffer.
// - Adjust caller's frame to correct unoptimized frame size.
// - Fill the unoptimized frame.
// - Materialize objects that require allocation (e.g. Double instances).
// GC can occur only after frame is fully rewritten.
// Stack after EnterFrame(...) below:
// +------------------+
// | Saved PP | <- TOS
// +------------------+
// | Saved FP | <- FP of stub
// +------------------+
// | Saved LR | (deoptimization point)
// +------------------+
// | PC marker |
// +------------------+
// | ... | <- SP of optimized frame
//
// Parts of the code cannot GC, part of the code can GC.
static void GenerateDeoptimizationSequence(Assembler* assembler,
bool preserve_result) {
// DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ mov(IP, ShifterOperand(LR));
__ mov(LR, ShifterOperand(0));
__ EnterFrame((1 << PP) | (1 << FP) | (1 << IP) | (1 << LR), 0);
// The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry
// and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls.
const intptr_t saved_result_slot_from_fp =
kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - R0);
// Result in R0 is preserved as part of pushing all registers below.
// TODO(regis): Should we align the stack before pushing the fpu registers?
// If we do, saved_r0_offset_from_fp is not constant anymore.
// Push registers in their enumeration order: lowest register number at
// lowest address.
__ PushList(kAllCpuRegistersList);
ASSERT(kFpuRegisterSize == 4 * kWordSize);
if (kNumberOfDRegisters > 16) {
__ vstmd(DB_W, SP, D16, kNumberOfDRegisters - 16);
__ vstmd(DB_W, SP, D0, 16);
} else {
__ vstmd(DB_W, SP, D0, kNumberOfDRegisters);
}
__ mov(R0, ShifterOperand(SP)); // Pass address of saved registers block.
__ ReserveAlignedFrameSpace(0);
__ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 1);
// Result (R0) is stack-size (FP - SP) in bytes.
if (preserve_result) {
// Restore result into R1 temporarily.
__ ldr(R1, Address(FP, saved_result_slot_from_fp * kWordSize));
}
__ LeaveDartFrame();
__ sub(SP, FP, ShifterOperand(R0));
// DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ mov(IP, ShifterOperand(LR));
__ mov(LR, ShifterOperand(0));
__ EnterFrame((1 << PP) | (1 << FP) | (1 << IP) | (1 << LR), 0);
__ mov(R0, ShifterOperand(FP)); // Get last FP address.
if (preserve_result) {
__ Push(R1); // Preserve result as first local.
}
__ ReserveAlignedFrameSpace(0);
__ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); // Pass last FP in R0.
if (preserve_result) {
// Restore result into R1.
__ ldr(R1, Address(FP, kFirstLocalSlotFromFp * kWordSize));
}
// Code above cannot cause GC.
__ LeaveDartFrame();
// Frame is fully rewritten at this point and it is safe to perform a GC.
// Materialize any objects that were deferred by FillFrame because they
// require allocation.
__ EnterStubFrame();
if (preserve_result) {
__ Push(R1); // Preserve result, it will be GC-d here.
}
__ PushObject(Smi::ZoneHandle()); // Space for the result.
__ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0);
// Result tells stub how many bytes to remove from the expression stack
// of the bottom-most frame. They were used as materialization arguments.
__ Pop(R1);
if (preserve_result) {
__ Pop(R0); // Restore result.
}
__ LeaveStubFrame();
// Remove materialization arguments.
__ add(SP, SP, ShifterOperand(R1, ASR, kSmiTagSize));
__ Ret();
}
void StubCode::GenerateDeoptimizeLazyStub(Assembler* assembler) {
// Correct return address to point just after the call that is being
// deoptimized.
__ AddImmediate(LR, -CallPattern::kFixedLengthInBytes);
GenerateDeoptimizationSequence(assembler, true); // Preserve R0.
}
void StubCode::GenerateDeoptimizeStub(Assembler* assembler) {
GenerateDeoptimizationSequence(assembler, false); // Don't preserve R0.
}
void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ ldr(R2, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ add(IP, FP, ShifterOperand(R2, LSL, 1)); // R2 is Smi.
__ ldr(R6, Address(IP, kParamEndSlotFromFp * kWordSize));
// Preserve IC data and arguments descriptor.
__ PushList((1 << R4) | (1 << R5));
// Push space for the return value.
// Push the receiver.
// Push IC data object.
// Push arguments descriptor array.
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
__ PushList((1 << R4) | (1 << R5) | (1 << R6) | (1 << IP));
__ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry, 3);
// Remove arguments.
__ Drop(3);
__ Pop(R0); // Get result into R0.
// Restore IC data and arguments descriptor.
__ PopList((1 << R4) | (1 << R5));
__ LeaveStubFrame();
__ CompareImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
__ Branch(&StubCode::InstanceFunctionLookupLabel(), EQ);
__ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag);
__ bx(R0);
}
// Called for inline allocation of arrays.
// Input parameters:
// LR: return address.
// R2: array length as Smi.
// R1: array element type (either NULL or an instantiated type).
// NOTE: R2 cannot be clobbered here as the caller relies on it being saved.
// The newly allocated object is returned in R0.
void StubCode::GenerateAllocateArrayStub(Assembler* assembler) {
Label slow_case;
if (FLAG_inline_alloc) {
// Compute the size to be allocated, it is based on the array length
// and is computed as:
// RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)).
// Assert that length is a Smi.
__ tst(R2, ShifterOperand(kSmiTagMask));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ b(&slow_case, NE);
}
__ ldr(R8, FieldAddress(CTX, Context::isolate_offset()));
__ LoadFromOffset(kWord, R8, R8, Isolate::heap_offset());
__ LoadFromOffset(kWord, R8, R8, Heap::new_space_offset());
// Calculate and align allocation size.
// Load new object start and calculate next object start.
// R1: array element type.
// R2: array length as Smi.
// R8: points to new space object.
__ LoadFromOffset(kWord, R0, R8, Scavenger::top_offset());
intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1;
__ LoadImmediate(R3, fixed_size);
__ add(R3, R3, ShifterOperand(R2, LSL, 1)); // R2 is Smi.
ASSERT(kSmiTagShift == 1);
__ bic(R3, R3, ShifterOperand(kObjectAlignment - 1));
__ add(R7, R3, ShifterOperand(R0));
// Check if the allocation fits into the remaining space.
// R0: potential new object start.
// R1: array element type.
// R2: array length as Smi.
// R3: array size.
// R7: potential next object start.
// R8: points to new space object.
__ LoadFromOffset(kWord, IP, R8, Scavenger::end_offset());
__ cmp(R7, ShifterOperand(IP));
__ b(&slow_case, CS); // Branch if unsigned higher or equal.
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
// R0: potential new object start.
// R7: potential next object start.
// R8: Points to new space object.
__ StoreToOffset(kWord, R7, R8, Scavenger::top_offset());
__ add(R0, R0, ShifterOperand(kHeapObjectTag));
// R0: new object start as a tagged pointer.
// R1: array element type.
// R2: array length as Smi.
// R3: array size.
// R7: new object end address.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(
R0,
FieldAddress(R0, Array::type_arguments_offset()),
R1);
// Set the length field.
__ StoreIntoObjectNoBarrier(
R0,
FieldAddress(R0, Array::length_offset()),
R2);
// Calculate the size tag.
// R0: new object start as a tagged pointer.
// R2: array length as Smi.
// R3: array size.
// R7: new object end address.
const intptr_t shift = RawObject::kSizeTagBit - kObjectAlignmentLog2;
__ CompareImmediate(R3, RawObject::SizeTag::kMaxSizeTag);
// If no size tag overflow, shift R1 left, else set R1 to zero.
__ mov(R1, ShifterOperand(R3, LSL, shift), LS);
__ mov(R1, ShifterOperand(0), HI);
// Get the class index and insert it into the tags.
__ LoadImmediate(IP, RawObject::ClassIdTag::encode(kArrayCid));
__ orr(R1, R1, ShifterOperand(IP));
__ str(R1, FieldAddress(R0, Array::tags_offset()));
// Initialize all array elements to raw_null.
// R0: new object start as a tagged pointer.
// R7: new object end address.
// R2: array length as Smi.
__ AddImmediate(R1, R0, Array::data_offset() - kHeapObjectTag);
// R1: iterator which initially points to the start of the variable
// data area to be initialized.
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
Label loop;
__ Bind(&loop);
// TODO(cshapiro): StoreIntoObjectNoBarrier
__ cmp(R1, ShifterOperand(R7));
__ str(IP, Address(R1, 0), CC); // Store if unsigned lower.
__ AddImmediate(R1, kWordSize, CC);
__ b(&loop, CC); // Loop until R1 == R7.
// Done allocating and initializing the array.
// R0: new object.
// R2: array length as Smi (preserved for the caller.)
__ Ret();
}
// Unable to allocate the array using the fast inline code, just call
// into the runtime.
__ Bind(&slow_case);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
// Setup space on stack for return value.
// Push array length as Smi and element type.
__ PushList((1 << R1) | (1 << R2) | (1 << IP));
__ CallRuntime(kAllocateArrayRuntimeEntry, 2);
// Pop arguments; result is popped in IP.
__ PopList((1 << R1) | (1 << R2) | (1 << IP)); // R2 is restored.
__ mov(R0, ShifterOperand(IP));
__ LeaveStubFrame();
__ Ret();
}
// Input parameters:
// LR: return address.
// SP: address of last argument.
// R4: arguments descriptor array.
// Note: The closure object is the first argument to the function being
// called, the stub accesses the closure from this location directly
// when trying to resolve the call.
void StubCode::GenerateCallClosureFunctionStub(Assembler* assembler) {
// Load num_args.
__ ldr(R0, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ sub(R0, R0, ShifterOperand(Smi::RawValue(1)));
// Load closure object in R1.
__ ldr(R1, Address(SP, R0, LSL, 1)); // R0 (num_args - 1) is a Smi.
// Verify that R1 is a closure by checking its class.
Label not_closure;
__ LoadImmediate(R8, reinterpret_cast<intptr_t>(Object::null()));
__ cmp(R1, ShifterOperand(R8));
// Not a closure, but null object.
__ b(&not_closure, EQ);
__ tst(R1, ShifterOperand(kSmiTagMask));
__ b(&not_closure, EQ); // Not a closure, but a smi.
// Verify that the class of the object is a closure class by checking that
// class.signature_function() is not null.
__ LoadClass(R0, R1, R2);
__ ldr(R0, FieldAddress(R0, Class::signature_function_offset()));
__ cmp(R0, ShifterOperand(R8)); // R8 is raw null.
// Actual class is not a closure class.
__ b(&not_closure, EQ);
// R0 is just the signature function. Load the actual closure function.
__ ldr(R2, FieldAddress(R1, Closure::function_offset()));
// Load closure context in CTX; note that CTX has already been preserved.
__ ldr(CTX, FieldAddress(R1, Closure::context_offset()));
// Load closure function code in R0.
__ ldr(R0, FieldAddress(R2, Function::code_offset()));
__ cmp(R0, ShifterOperand(R8)); // R8 is raw null.
Label function_compiled;
__ b(&function_compiled, NE);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Preserve arguments descriptor array and read-only function object argument.
__ PushList((1 << R2) | (1 << R4));
__ CallRuntime(kCompileFunctionRuntimeEntry, 1);
// Restore arguments descriptor array and read-only function object argument.
__ PopList((1 << R2) | (1 << R4));
// Restore R0.
__ ldr(R0, FieldAddress(R2, Function::code_offset()));
// Remove the stub frame as we are about to jump to the closure function.
__ LeaveStubFrame();
__ Bind(&function_compiled);
// R0: code.
// R4: arguments descriptor array.
__ ldr(R0, FieldAddress(R0, Code::instructions_offset()));
__ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag);
__ bx(R0);
__ Bind(&not_closure);
// Call runtime to attempt to resolve and invoke a call method on a
// non-closure object, passing the non-closure object and its arguments array,
// returning here.
// If no call method exists, throw a NoSuchMethodError.
// R1: non-closure object.
// R4: arguments descriptor array.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for result from error reporting.
__ PushList((1 << R4) | (1 << R8)); // Arguments descriptor and raw null.
// Load smi-tagged arguments array length, including the non-closure.
__ ldr(R2, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
PushArgumentsArray(assembler);
__ CallRuntime(kInvokeNonClosureRuntimeEntry, 2);
// Remove arguments.
__ Drop(2);
__ Pop(R0); // Get result into R0.
// Remove the stub frame as we are about to return.
__ LeaveStubFrame();
__ Ret();
}
// Called when invoking Dart code from C++ (VM code).
// Input parameters:
// LR : points to return address.
// R0 : entrypoint of the Dart function to call.
// R1 : arguments descriptor array.
// R2 : arguments array.
// R3 : new context containing the current isolate pointer.
void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) {
// Save frame pointer coming in.
__ EnterStubFrame();
// Save new context and C++ ABI callee-saved registers.
const intptr_t kNewContextOffsetFromFp =
-(1 + kAbiPreservedCpuRegCount) * kWordSize;
__ PushList((1 << R3) | kAbiPreservedCpuRegs);
const DRegister firstd = EvenDRegisterOf(kAbiFirstPreservedFpuReg);
ASSERT(2 * kAbiPreservedFpuRegCount < 16);
// Save FPU registers. 2 D registers per Q register.
__ vstmd(DB_W, SP, firstd, 2 * kAbiPreservedFpuRegCount);
// The new Context structure contains a pointer to the current Isolate
// structure. Cache the Context pointer in the CTX register so that it is
// available in generated code and calls to Isolate::Current() need not be
// done. The assumption is that this register will never be clobbered by
// compiled or runtime stub code.
// Cache the new Context pointer into CTX while executing Dart code.
__ ldr(CTX, Address(R3, VMHandles::kOffsetOfRawPtrInHandle));
// Load Isolate pointer from Context structure into temporary register R8.
__ ldr(R8, FieldAddress(CTX, Context::isolate_offset()));
// Save the top exit frame info. Use R5 as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
__ LoadFromOffset(kWord, R5, R8, Isolate::top_exit_frame_info_offset());
__ LoadImmediate(R6, 0);
__ StoreToOffset(kWord, R6, R8, Isolate::top_exit_frame_info_offset());
// Save the old Context pointer. Use R4 as a temporary register.
// Note that VisitObjectPointers will find this saved Context pointer during
// GC marking, since it traverses any information between SP and
// FP - kExitLinkSlotFromEntryFp.
// EntryFrame::SavedContext reads the context saved in this frame.
__ LoadFromOffset(kWord, R4, R8, Isolate::top_context_offset());
// The constants kSavedContextSlotFromEntryFp and
// kExitLinkSlotFromEntryFp must be kept in sync with the code below.
ASSERT(kExitLinkSlotFromEntryFp == -25);
ASSERT(kSavedContextSlotFromEntryFp == -26);
__ PushList((1 << R4) | (1 << R5));
// Load arguments descriptor array into R4, which is passed to Dart code.
__ ldr(R4, Address(R1, VMHandles::kOffsetOfRawPtrInHandle));
// Load number of arguments into R5.
__ ldr(R5, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ SmiUntag(R5);
// Compute address of 'arguments array' data area into R2.
__ ldr(R2, Address(R2, VMHandles::kOffsetOfRawPtrInHandle));
__ AddImmediate(R2, R2, Array::data_offset() - kHeapObjectTag);
// Set up arguments for the Dart call.
Label push_arguments;
Label done_push_arguments;
__ CompareImmediate(R5, 0); // check if there are arguments.
__ b(&done_push_arguments, EQ);
__ LoadImmediate(R1, 0);
__ Bind(&push_arguments);
__ ldr(R3, Address(R2));
__ Push(R3);
__ AddImmediate(R2, kWordSize);
__ AddImmediate(R1, 1);
__ cmp(R1, ShifterOperand(R5));
__ b(&push_arguments, LT);
__ Bind(&done_push_arguments);
// Call the Dart code entrypoint.
__ blx(R0); // R4 is the arguments descriptor array.
// Read the saved new Context pointer.
__ ldr(CTX, Address(FP, kNewContextOffsetFromFp));
__ ldr(CTX, Address(CTX, VMHandles::kOffsetOfRawPtrInHandle));
// Get rid of arguments pushed on the stack.
__ AddImmediate(SP, FP, kSavedContextSlotFromEntryFp * kWordSize);
// Load Isolate pointer from Context structure into CTX. Drop Context.
__ ldr(CTX, FieldAddress(CTX, Context::isolate_offset()));
// Restore the saved Context pointer into the Isolate structure.
// Uses R4 as a temporary register for this.
// Restore the saved top exit frame info back into the Isolate structure.
// Uses R5 as a temporary register for this.
__ PopList((1 << R4) | (1 << R5));
__ StoreToOffset(kWord, R4, CTX, Isolate::top_context_offset());
__ StoreToOffset(kWord, R5, CTX, Isolate::top_exit_frame_info_offset());
// Restore C++ ABI callee-saved registers.
// Restore FPU registers. 2 D registers per Q register.
__ vldmd(IA_W, SP, firstd, 2 * kAbiPreservedFpuRegCount);
// Restore CPU registers.
__ PopList((1 << R3) | kAbiPreservedCpuRegs); // Ignore restored R3.
// Restore the frame pointer and return.
__ LeaveStubFrame();
__ Ret();
}
// Called for inline allocation of contexts.
// Input:
// R1: number of context variables.
// Output:
// R0: new allocated RawContext object.
void StubCode::GenerateAllocateContextStub(Assembler* assembler) {
if (FLAG_inline_alloc) {
const Class& context_class = Class::ZoneHandle(Object::context_class());
Label slow_case;
Heap* heap = Isolate::Current()->heap();
// First compute the rounded instance size.
// R1: number of context variables.
intptr_t fixed_size = sizeof(RawContext) + kObjectAlignment - 1;
__ LoadImmediate(R2, fixed_size);
__ add(R2, R2, ShifterOperand(R1, LSL, 2));
ASSERT(kSmiTagShift == 1);
__ bic(R2, R2, ShifterOperand(kObjectAlignment - 1));
// Now allocate the object.
// R1: number of context variables.
// R2: object size.
__ LoadImmediate(R5, heap->TopAddress());
__ ldr(R0, Address(R5, 0));
__ add(R3, R2, ShifterOperand(R0));
// Check if the allocation fits into the remaining space.
// R0: potential new object.
// R1: number of context variables.
// R2: object size.
// R3: potential next object start.
__ LoadImmediate(IP, heap->EndAddress());
__ ldr(IP, Address(IP, 0));
__ cmp(R3, ShifterOperand(IP));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ b(&slow_case, CS); // Branch if unsigned higher or equal.
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
// R0: new object.
// R1: number of context variables.
// R2: object size.
// R3: next object start.
__ str(R3, Address(R5, 0));
__ add(R0, R0, ShifterOperand(kHeapObjectTag));
// Calculate the size tag.
// R0: new object.
// R1: number of context variables.
// R2: object size.
const intptr_t shift = RawObject::kSizeTagBit - kObjectAlignmentLog2;
__ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag);
// If no size tag overflow, shift R2 left, else set R2 to zero.
__ mov(R2, ShifterOperand(R2, LSL, shift), LS);
__ mov(R2, ShifterOperand(0), HI);
// Get the class index and insert it into the tags.
// R2: size and bit tags.
__ LoadImmediate(IP, RawObject::ClassIdTag::encode(context_class.id()));
__ orr(R2, R2, ShifterOperand(IP));
__ str(R2, FieldAddress(R0, Context::tags_offset()));
// Setup up number of context variables field.
// R0: new object.
// R1: number of context variables as integer value (not object).
__ str(R1, FieldAddress(R0, Context::num_variables_offset()));
// Setup isolate field.
// Load Isolate pointer from Context structure into R2.
// R0: new object.
// R1: number of context variables.
__ ldr(R2, FieldAddress(CTX, Context::isolate_offset()));
// R2: isolate, not an object.
__ str(R2, FieldAddress(R0, Context::isolate_offset()));
// Setup the parent field.
// R0: new object.
// R1: number of context variables.
__ LoadImmediate(R2, reinterpret_cast<intptr_t>(Object::null()));
__ str(R2, FieldAddress(R0, Context::parent_offset()));
// Initialize the context variables.
// R0: new object.
// R1: number of context variables.
// R2: raw null.
Label loop;
__ AddImmediate(R3, R0, Context::variable_offset(0) - kHeapObjectTag);
__ Bind(&loop);
__ subs(R1, R1, ShifterOperand(1));
__ str(R2, Address(R3, R1, LSL, 2), PL); // Store if R1 positive or zero.
__ b(&loop, NE); // Loop if R1 not zero.
// Done allocating and initializing the context.
// R0: new object.
__ Ret();
__ Bind(&slow_case);
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value.
__ LoadImmediate(R2, reinterpret_cast<intptr_t>(Object::null()));
__ SmiTag(R1);
__ PushList((1 << R1) | (1 << R2));
__ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context.
__ Drop(1); // Pop number of context variables argument.
__ Pop(R0); // Pop the new context object.
// R0: new object
// Restore the frame pointer.
__ LeaveStubFrame();
__ Ret();
}
DECLARE_LEAF_RUNTIME_ENTRY(void, StoreBufferBlockProcess, Isolate* isolate);
// Helper stub to implement Assembler::StoreIntoObject.
// Input parameters:
// R0: address (i.e. object) being stored into.
void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) {
// Save values being destroyed.
__ PushList((1 << R1) | (1 << R2) | (1 << R3));
Label add_to_buffer;
// Check whether this object has already been remembered. Skip adding to the
// store buffer if the object is in the store buffer already.
// Spilled: R1, R2, R3
// R0: Address being stored
__ ldr(R2, FieldAddress(R0, Object::tags_offset()));
__ tst(R2, ShifterOperand(1 << RawObject::kRememberedBit));
__ b(&add_to_buffer, EQ);
__ PopList((1 << R1) | (1 << R2) | (1 << R3));
__ Ret();
__ Bind(&add_to_buffer);
__ orr(R2, R2, ShifterOperand(1 << RawObject::kRememberedBit));
__ str(R2, FieldAddress(R0, Object::tags_offset()));
// Load the isolate out of the context.
// Spilled: R1, R2, R3.
// R0: address being stored.
__ ldr(R1, FieldAddress(CTX, Context::isolate_offset()));
// Load the StoreBuffer block out of the isolate. Then load top_ out of the
// StoreBufferBlock and add the address to the pointers_.
// R1: isolate.
__ ldr(R1, Address(R1, Isolate::store_buffer_offset()));
__ ldr(R2, Address(R1, StoreBufferBlock::top_offset()));
__ add(R3, R1, ShifterOperand(R2, LSL, 2));
__ str(R0, Address(R3, StoreBufferBlock::pointers_offset()));
// Increment top_ and check for overflow.
// R2: top_.
// R1: StoreBufferBlock.
Label L;
__ add(R2, R2, ShifterOperand(1));
__ str(R2, Address(R1, StoreBufferBlock::top_offset()));
__ CompareImmediate(R2, StoreBufferBlock::kSize);
// Restore values.
__ PopList((1 << R1) | (1 << R2) | (1 << R3));
__ b(&L, EQ);
__ Ret();
// Handle overflow: Call the runtime leaf function.
__ Bind(&L);
// Setup frame, push callee-saved registers.
__ EnterCallRuntimeFrame(0 * kWordSize);
__ ldr(R0, FieldAddress(CTX, Context::isolate_offset()));
__ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1);
// Restore callee-saved registers, tear down frame.
__ LeaveCallRuntimeFrame();
__ Ret();
}
// Called for inline allocation of objects.
// Input parameters:
// LR : return address.
// SP + 4 : type arguments object (only if class is parameterized).
// SP + 0 : type arguments of instantiator (only if class is parameterized).
void StubCode::GenerateAllocationStubForClass(Assembler* assembler,
const Class& cls) {
// The generated code is different if the class is parameterized.
const bool is_cls_parameterized = cls.NumTypeArguments() > 0;
ASSERT(!is_cls_parameterized ||
(cls.type_arguments_field_offset() != Class::kNoTypeArguments));
// kInlineInstanceSize is a constant used as a threshold for determining
// when the object initialization should be done as a loop or as
// straight line code.
const int kInlineInstanceSize = 12;
const intptr_t instance_size = cls.instance_size();
ASSERT(instance_size > 0);
const intptr_t type_args_size = InstantiatedTypeArguments::InstanceSize();
if (FLAG_inline_alloc &&
Heap::IsAllocatableInNewSpace(instance_size + type_args_size)) {
Label slow_case;
Heap* heap = Isolate::Current()->heap();
__ LoadImmediate(R5, heap->TopAddress());
__ ldr(R2, Address(R5, 0));
__ AddImmediate(R3, R2, instance_size);
if (is_cls_parameterized) {
__ ldm(IA, SP, (1 << R0) | (1 << R1));
__ mov(R4, ShifterOperand(R3));
// A new InstantiatedTypeArguments object only needs to be allocated if
// the instantiator is provided (not kNoInstantiator, but may be null).
__ CompareImmediate(R0, Smi::RawValue(StubCode::kNoInstantiator));
__ AddImmediate(R3, type_args_size, NE);
// R4: potential new object end and, if R4 != R3, potential new
// InstantiatedTypeArguments object start.
}
// Check if the allocation fits into the remaining space.
// R2: potential new object start.
// R3: potential next object start.
__ LoadImmediate(IP, heap->EndAddress());
__ ldr(IP, Address(IP, 0));
__ cmp(R3, ShifterOperand(IP));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ b(&slow_case, CS); // Branch if unsigned higher or equal.
}
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ str(R3, Address(R5, 0));
if (is_cls_parameterized) {
// Initialize the type arguments field in the object.
// R2: new object start.
// R4: potential new object end and, if R4 != R3, potential new
// InstantiatedTypeArguments object start.
// R3: next object start.
Label type_arguments_ready;
__ cmp(R4, ShifterOperand(R3));
__ b(&type_arguments_ready, EQ);
// Initialize InstantiatedTypeArguments object at R4.
__ str(R1, Address(R4,
InstantiatedTypeArguments::uninstantiated_type_arguments_offset()));
__ str(R0, Address(R4,
InstantiatedTypeArguments::instantiator_type_arguments_offset()));
const Class& ita_cls =
Class::ZoneHandle(Object::instantiated_type_arguments_class());
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(type_args_size, tags);
tags = RawObject::ClassIdTag::update(ita_cls.id(), tags);
__ LoadImmediate(R0, tags);
__ str(R0, Address(R4, Instance::tags_offset()));
// Set the new InstantiatedTypeArguments object (R4) as the type
// arguments (R1) of the new object (R2).
__ add(R1, R4, ShifterOperand(kHeapObjectTag));
// Set R3 to new object end.
__ mov(R3, ShifterOperand(R4));
__ Bind(&type_arguments_ready);
// R2: new object.
// R1: new object type arguments.
}
// R2: new object start.
// R3: next object start.
// R1: new object type arguments (if is_cls_parameterized).
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(instance_size, tags);
ASSERT(cls.id() != kIllegalCid);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ LoadImmediate(R0, tags);
__ str(R0, Address(R2, Instance::tags_offset()));
// Initialize the remaining words of the object.
__ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
// R0: raw null.
// R2: new object start.
// R3: next object start.
// R1: new object type arguments (if is_cls_parameterized).
// First try inlining the initialization without a loop.
if (instance_size < (kInlineInstanceSize * kWordSize)) {
// Check if the object contains any non-header fields.
// Small objects are initialized using a consecutive set of writes.
for (intptr_t current_offset = Instance::NextFieldOffset();
current_offset < instance_size;
current_offset += kWordSize) {
__ StoreToOffset(kWord, R0, R2, current_offset);
}
} else {
__ add(R4, R2, ShifterOperand(Instance::NextFieldOffset()));
// Loop until the whole object is initialized.
// R0: raw null.
// R2: new object.
// R3: next object start.
// R4: next word to be initialized.
// R1: new object type arguments (if is_cls_parameterized).
Label init_loop;
Label done;
__ Bind(&init_loop);
__ cmp(R4, ShifterOperand(R3));
__ b(&done, CS);
__ str(R0, Address(R4, 0));
__ AddImmediate(R4, kWordSize);
__ b(&init_loop);
__ Bind(&done);
}
if (is_cls_parameterized) {
// R1: new object type arguments.
// Set the type arguments in the new object.
__ StoreToOffset(kWord, R1, R2, cls.type_arguments_field_offset());
}
// Done allocating and initializing the instance.
// R2: new object still missing its heap tag.
__ add(R0, R2, ShifterOperand(kHeapObjectTag));
// R0: new object.
__ Ret();
__ Bind(&slow_case);
}
if (is_cls_parameterized) {
__ ldm(IA, SP, (1 << R0) | (1 << R1));
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame(true); // Uses pool pointer to pass cls to runtime.
__ LoadImmediate(R2, reinterpret_cast<intptr_t>(Object::null()));
__ Push(R2); // Setup space on stack for return value.
__ PushObject(cls); // Push class of object to be allocated.
if (is_cls_parameterized) {
// Push type arguments of object to be allocated and of instantiator.
__ PushList((1 << R0) | (1 << R1));
} else {
// Push null type arguments and kNoInstantiator.
__ LoadImmediate(R1, Smi::RawValue(StubCode::kNoInstantiator));
__ PushList((1 << R1) | (1 << R2));
}
__ CallRuntime(kAllocateObjectRuntimeEntry, 3); // Allocate object.
__ Drop(3); // Pop arguments.
__ Pop(R0); // Pop result (newly allocated object).
// R0: new object
// Restore the frame pointer.
__ LeaveStubFrame(true);
__ Ret();
}
// Called for inline allocation of closures.
// Input parameters:
// LR : return address.
// SP + 4 : receiver (null if not an implicit instance closure).
// SP + 0 : type arguments object (null if class is no parameterized).
void StubCode::GenerateAllocationStubForClosure(Assembler* assembler,
const Function& func) {
ASSERT(func.IsClosureFunction());
ASSERT(!func.IsImplicitStaticClosureFunction());
const bool is_implicit_instance_closure =
func.IsImplicitInstanceClosureFunction();
const Class& cls = Class::ZoneHandle(func.signature_class());
const bool has_type_arguments = cls.NumTypeArguments() > 0;
__ EnterStubFrame(true); // Uses pool pointer to refer to function.
const intptr_t kTypeArgumentsFPOffset = 3 * kWordSize;
const intptr_t kReceiverFPOffset = 4 * kWordSize;
const intptr_t closure_size = Closure::InstanceSize();
const intptr_t context_size = Context::InstanceSize(1); // Captured receiver.
if (FLAG_inline_alloc &&
Heap::IsAllocatableInNewSpace(closure_size + context_size)) {
Label slow_case;
Heap* heap = Isolate::Current()->heap();
__ LoadImmediate(R5, heap->TopAddress());
__ ldr(R2, Address(R5, 0));
__ AddImmediate(R3, R2, closure_size);
if (is_implicit_instance_closure) {
__ mov(R4, ShifterOperand(R3)); // R4: new context address.
__ AddImmediate(R3, context_size);
}
// Check if the allocation fits into the remaining space.
// R2: potential new closure object.
// R3: potential next object start.
// R4: potential new context object (only if is_implicit_closure).
__ LoadImmediate(IP, heap->EndAddress());
__ ldr(IP, Address(IP, 0));
__ cmp(R3, ShifterOperand(IP));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ b(&slow_case, CS); // Branch if unsigned higher or equal.
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
__ str(R3, Address(R5, 0));
// R2: new closure object.
// R4: new context object (only if is_implicit_closure).
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(closure_size, tags);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ LoadImmediate(R0, tags);
__ str(R0, Address(R2, Instance::tags_offset()));
// Initialize the function field in the object.
// R2: new closure object.
// R4: new context object (only if is_implicit_closure).
__ LoadObject(R0, func); // Load function of closure to be allocated.
__ str(R0, Address(R2, Closure::function_offset()));
// Setup the context for this closure.
if (is_implicit_instance_closure) {
// Initialize the new context capturing the receiver.
const Class& context_class = Class::ZoneHandle(Object::context_class());
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(context_size, tags);
tags = RawObject::ClassIdTag::update(context_class.id(), tags);
__ LoadImmediate(R0, tags);
__ str(R0, Address(R4, Context::tags_offset()));
// Set number of variables field to 1 (for captured receiver).
__ LoadImmediate(R0, 1);
__ str(R0, Address(R4, Context::num_variables_offset()));
// Set isolate field to isolate of current context.
__ ldr(R0, FieldAddress(CTX, Context::isolate_offset()));
__ str(R0, Address(R4, Context::isolate_offset()));
// Set the parent to null.
__ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
__ str(R0, Address(R4, Context::parent_offset()));
// Initialize the context variable to the receiver.
__ ldr(R0, Address(FP, kReceiverFPOffset));
__ str(R0, Address(R4, Context::variable_offset(0)));
// Set the newly allocated context in the newly allocated closure.
__ add(R1, R4, ShifterOperand(kHeapObjectTag));
__ str(R1, Address(R2, Closure::context_offset()));
} else {
__ str(CTX, Address(R2, Closure::context_offset()));
}
// Set the type arguments field in the newly allocated closure.
__ ldr(R0, Address(FP, kTypeArgumentsFPOffset));
__ str(R0, Address(R2, Closure::type_arguments_offset()));
// Done allocating and initializing the instance.
// R2: new object still missing its heap tag.
__ add(R0, R2, ShifterOperand(kHeapObjectTag));
// R0: new object.
__ LeaveStubFrame(true);
__ Ret();
__ Bind(&slow_case);
}
__ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
__ Push(R0); // Setup space on stack for return value.
__ PushObject(func);
if (is_implicit_instance_closure) {
__ ldr(R1, Address(FP, kReceiverFPOffset));
__ Push(R1); // Receiver.
}
// R0: raw null.
if (has_type_arguments) {
__ ldr(R0, Address(FP, kTypeArgumentsFPOffset));
}
__ Push(R0); // Push type arguments of closure to be allocated or null.
if (is_implicit_instance_closure) {
__ CallRuntime(kAllocateImplicitInstanceClosureRuntimeEntry, 3);
__ Drop(2); // Pop arguments (type arguments of object and receiver).
} else {
ASSERT(func.IsNonImplicitClosureFunction());
__ CallRuntime(kAllocateClosureRuntimeEntry, 2);
__ Drop(1); // Pop argument (type arguments of object).
}
__ Drop(1); // Pop function object.
__ Pop(R0);
// R0: new object
// Restore the frame pointer.
__ LeaveStubFrame(true);
__ Ret();
}
// Called for invoking "dynamic noSuchMethod(Invocation invocation)" function
// from the entry code of a dart function after an error in passed argument
// name or number is detected.
// Input parameters:
// LR : return address.
// SP : address of last argument.
// R5: inline cache data object.
// R4: arguments descriptor array.
void StubCode::GenerateCallNoSuchMethodFunctionStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ ldr(R2, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ add(IP, FP, ShifterOperand(R2, LSL, 1)); // R2 is Smi.
__ ldr(R6, Address(IP, kParamEndSlotFromFp * kWordSize));
// Push space for the return value.
// Push the receiver.
// Push IC data object.
// Push arguments descriptor array.
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
__ PushList((1 << R4) | (1 << R5) | (1 << R6) | (1 << IP));
// R2: Smi-tagged arguments array length.
PushArgumentsArray(assembler);
__ CallRuntime(kInvokeNoSuchMethodFunctionRuntimeEntry, 4);
// Remove arguments.
__ Drop(4);
__ Pop(R0); // Get result into R0.
__ LeaveStubFrame();
__ Ret();
}
// R6: function object.
// R5: inline cache data object.
// Cannot use function object from ICData as it may be the inlined
// function and not the top-scope function.
void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) {
Register ic_reg = R5;
Register func_reg = R6;
if (FLAG_trace_optimized_ic_calls) {
__ EnterStubFrame();
__ PushList((1 << R5) | (1 << R6)); // Preserve.
__ Push(ic_reg); // Argument.
__ Push(func_reg); // Argument.
__ CallRuntime(kTraceICCallRuntimeEntry, 2);
__ Drop(2); // Discard argument;
__ PopList((1 << R5) | (1 << R6)); // Restore.
__ LeaveStubFrame();
}
__ ldr(R7, FieldAddress(func_reg, Function::usage_counter_offset()));
__ add(R7, R7, ShifterOperand(1));
__ str(R7, FieldAddress(func_reg, Function::usage_counter_offset()));
}
// Loads function into 'temp_reg'.
void StubCode::GenerateUsageCounterIncrement(Assembler* assembler,
Register temp_reg) {
Register ic_reg = R5;
Register func_reg = temp_reg;
ASSERT(temp_reg == R6);
__ ldr(func_reg, FieldAddress(ic_reg, ICData::function_offset()));
__ ldr(R7, FieldAddress(func_reg, Function::usage_counter_offset()));
__ add(R7, R7, ShifterOperand(1));
__ str(R7, FieldAddress(func_reg, Function::usage_counter_offset()));
}
// Generate inline cache check for 'num_args'.
// LR: return address.
// R5: inline cache data object.
// Control flow:
// - If receiver is null -> jump to IC miss.
// - If receiver is Smi -> load Smi class.
// - If receiver is not-Smi -> load receiver's class.
// - Check if 'num_args' (including receiver) match any IC data group.
// - Match found -> jump to target.
// - Match not found -> jump to IC miss.
void StubCode::GenerateNArgsCheckInlineCacheStub(
Assembler* assembler,
intptr_t num_args,
const RuntimeEntry& handle_ic_miss) {
ASSERT(num_args > 0);
#if defined(DEBUG)
{ Label ok;
// Check that the IC data array has NumberOfArgumentsChecked() == num_args.
// 'num_args_tested' is stored as an untagged int.
__ ldr(R6, FieldAddress(R5, ICData::num_args_tested_offset()));
__ CompareImmediate(R6, num_args);
__ b(&ok, EQ);
__ Stop("Incorrect stub for IC data");
__ Bind(&ok);
}
#endif // DEBUG
// Check single stepping.
Label not_stepping;
__ ldr(R6, FieldAddress(CTX, Context::isolate_offset()));
__ ldrb(R6, Address(R6, Isolate::single_step_offset()));
__ CompareImmediate(R6, 0);
__ b(&not_stepping, EQ);
__ EnterStubFrame();
__ Push(R5); // Preserve IC data.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ Pop(R5);
__ LeaveStubFrame();
__ Bind(&not_stepping);
// Load arguments descriptor into R4.
__ ldr(R4, FieldAddress(R5, ICData::arguments_descriptor_offset()));
// Preserve return address, since LR is needed for subroutine call.
__ mov(R8, ShifterOperand(LR));
// Loop that checks if there is an IC data match.
Label loop, update, test, found, get_class_id_as_smi;
// R5: IC data object (preserved).
__ ldr(R6, FieldAddress(R5, ICData::ic_data_offset()));
// R6: ic_data_array with check entries: classes and target functions.
__ AddImmediate(R6, R6, Array::data_offset() - kHeapObjectTag);
// R6: points directly to the first ic data array element.
// Get the receiver's class ID (first read number of arguments from
// arguments descriptor array and then access the receiver from the stack).
__ ldr(R7, FieldAddress(R4, ArgumentsDescriptor::count_offset()));
__ sub(R7, R7, ShifterOperand(Smi::RawValue(1)));
__ ldr(R0, Address(SP, R7, LSL, 1)); // R7 (argument_count - 1) is smi.
__ bl(&get_class_id_as_smi);
// R7: argument_count - 1 (smi).
// R0: receiver's class ID (smi).
__ ldr(R1, Address(R6, 0)); // First class id (smi) to check.
__ b(&test);
__ Bind(&loop);
for (int i = 0; i < num_args; i++) {
if (i > 0) {
// If not the first, load the next argument's class ID.
__ AddImmediate(R0, R7, Smi::RawValue(-i));
__ ldr(R0, Address(SP, R0, LSL, 1));
__ bl(&get_class_id_as_smi);
// R0: next argument class ID (smi).
__ LoadFromOffset(kWord, R1, R6, i * kWordSize);
// R1: next class ID to check (smi).
}
__ cmp(R0, ShifterOperand(R1)); // Class id match?
if (i < (num_args - 1)) {
__ b(&update, NE); // Continue.
} else {
// Last check, all checks before matched.
__ mov(LR, ShifterOperand(R8), EQ); // Restore return address if found.
__ b(&found, EQ); // Break.
}
}
__ Bind(&update);
// Reload receiver class ID. It has not been destroyed when num_args == 1.
if (num_args > 1) {
__ ldr(R0, Address(SP, R7, LSL, 1));
__ bl(&get_class_id_as_smi);
}
const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize;
__ AddImmediate(R6, entry_size); // Next entry.
__ ldr(R1, Address(R6, 0)); // Next class ID.
__ Bind(&test);
__ CompareImmediate(R1, Smi::RawValue(kIllegalCid)); // Done?
__ b(&loop, NE);
// IC miss.
// Restore return address.
__ mov(LR, ShifterOperand(R8));
// Compute address of arguments.
// R7: argument_count - 1 (smi).
__ add(R7, SP, ShifterOperand(R7, LSL, 1)); // R7 is Smi.
// R7: address of receiver.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
// Preserve IC data object and arguments descriptor array and
// setup space on stack for result (target code object).
__ PushList((1 << R0) | (1 << R4) | (1 << R5));
// Push call arguments.
for (intptr_t i = 0; i < num_args; i++) {
__ LoadFromOffset(kWord, IP, R7, -i * kWordSize);
__ Push(IP);
}
// Pass IC data object.
__ Push(R5);
__ CallRuntime(handle_ic_miss, num_args + 1);
// Remove the call arguments pushed earlier, including the IC data object.
__ Drop(num_args + 1);
// Pop returned code object into R0 (null if not found).
// Restore arguments descriptor array and IC data array.
__ PopList((1 << R0) | (1 << R4) | (1 << R5));
__ LeaveStubFrame();
Label call_target_function;
__ CompareImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
__ b(&call_target_function, NE);
// NoSuchMethod or closure.
// Mark IC call that it may be a closure call that does not collect
// type feedback.
__ mov(IP, ShifterOperand(1));
__ strb(IP, FieldAddress(R5, ICData::is_closure_call_offset()));
__ Branch(&StubCode::InstanceFunctionLookupLabel());
__ Bind(&found);
// R6: pointer to an IC data check group.
const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize;
__ LoadFromOffset(kWord, R0, R6, target_offset);
__ LoadFromOffset(kWord, R1, R6, count_offset);
__ adds(R1, R1, ShifterOperand(Smi::RawValue(1)));
__ StoreToOffset(kWord, R1, R6, count_offset);
__ b(&call_target_function, VC); // No overflow.
__ LoadImmediate(R1, Smi::RawValue(Smi::kMaxValue));
__ StoreToOffset(kWord, R1, R6, count_offset);
__ Bind(&call_target_function);
// R0: target function.
__ ldr(R1, FieldAddress(R0, Function::code_offset()));
if (FLAG_collect_code) {
// If we are collecting code, the code object may be null.
Label is_compiled;
__ CompareImmediate(R1, reinterpret_cast<intptr_t>(Object::null()));
__ b(&is_compiled, NE);
__ EnterStubFrame();
// Preserve arg desc. and IC data object.
__ PushList((1 << R4) | (1 << R5));
__ Push(R0); // Pass function.
__ CallRuntime(kCompileFunctionRuntimeEntry, 1);
__ Pop(R0); // Discard argument.
__ PopList((1 << R4) | (1 << R5)); // Restore arg desc. and IC data.
__ LeaveStubFrame();
// R0: target function.
__ ldr(R1, FieldAddress(R0, Function::code_offset()));
__ Bind(&is_compiled);
}
__ ldr(R0, FieldAddress(R1, Code::instructions_offset()));
__ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag);
__ bx(R0);
// Instance in R0, return its class-id in R0 as Smi.
__ Bind(&get_class_id_as_smi);
// Test if Smi -> load Smi class for comparison.
__ tst(R0, ShifterOperand(kSmiTagMask));
__ mov(R0, ShifterOperand(Smi::RawValue(kSmiCid)), EQ);
__ bx(LR, EQ);
__ LoadClassId(R0, R0);
__ SmiTag(R0);
__ bx(LR);
}
// Use inline cache data array to invoke the target or continue in inline
// cache miss handler. Stub for 1-argument check (receiver class).
// LR: return address.
// R5: inline cache data object.
// Inline cache data object structure:
// 0: function-name
// 1: N, number of arguments checked.
// 2 .. (length - 1): group of checks, each check containing:
// - N classes.
// - 1 target function.
void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, R6);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry);
}
void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, R6);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry);
}
void StubCode::GenerateThreeArgsCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, R6);
GenerateNArgsCheckInlineCacheStub(
assembler, 3, kInlineCacheMissHandlerThreeArgsRuntimeEntry);
}
void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry);
}
void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry);
}
void StubCode::GenerateThreeArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 3, kInlineCacheMissHandlerThreeArgsRuntimeEntry);
}
void StubCode::GenerateClosureCallInlineCacheStub(Assembler* assembler) {
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry);
}
void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) {
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry);
}
// Intermediary stub between a static call and its target. ICData contains
// the target function and the call count.
// R5: ICData
void StubCode::GenerateZeroArgsUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, R6);
#if defined(DEBUG)
{ Label ok;
// Check that the IC data array has NumberOfArgumentsChecked() == 0.
// 'num_args_tested' is stored as an untagged int.
__ ldr(R6, FieldAddress(R5, ICData::num_args_tested_offset()));
__ CompareImmediate(R6, 0);
__ b(&ok, EQ);
__ Stop("Incorrect IC data for unoptimized static call");
__ Bind(&ok);
}
#endif // DEBUG
// Check single stepping.
Label not_stepping;
__ ldr(R6, FieldAddress(CTX, Context::isolate_offset()));
__ ldrb(R6, Address(R6, Isolate::single_step_offset()));
__ CompareImmediate(R6, 0);
__ b(&not_stepping, EQ);
__ EnterStubFrame();
__ Push(R5); // Preserve IC data.
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ Pop(R5);
__ LeaveStubFrame();
__ Bind(&not_stepping);
// R5: IC data object (preserved).
__ ldr(R6, FieldAddress(R5, ICData::ic_data_offset()));
// R6: ic_data_array with entries: target functions and count.
__ AddImmediate(R6, R6, Array::data_offset() - kHeapObjectTag);
// R6: points directly to the first ic data array element.
const intptr_t target_offset = ICData::TargetIndexFor(0) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(0) * kWordSize;
// Increment count for this call.
Label increment_done;
__ LoadFromOffset(kWord, R1, R6, count_offset);
__ adds(R1, R1, ShifterOperand(Smi::RawValue(1)));
__ StoreToOffset(kWord, R1, R6, count_offset);
__ b(&increment_done, VC); // No overflow.
__ LoadImmediate(R1, Smi::RawValue(Smi::kMaxValue));
__ StoreToOffset(kWord, R1, R6, count_offset);
__ Bind(&increment_done);
Label target_is_compiled;
// Get function and call it, if possible.
__ LoadFromOffset(kWord, R1, R6, target_offset);
__ ldr(R0, FieldAddress(R1, Function::code_offset()));
__ CompareImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
__ b(&target_is_compiled, NE);
// R1: function.
__ EnterStubFrame();
// Preserve target function and IC data object.
__ PushList((1 << R1) | (1 << R5));
__ Push(R1); // Pass function.
__ CallRuntime(kCompileFunctionRuntimeEntry, 1);
__ Drop(1); // Discard argument.
__ PopList((1 << R1) | (1 << R5)); // Restore function and IC data.
__ LeaveStubFrame();
// R0: target function.
__ ldr(R0, FieldAddress(R1, Function::code_offset()));
__ Bind(&target_is_compiled);
// R0: target code.
__ ldr(R0, FieldAddress(R0, Code::instructions_offset()));
__ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag);
// Load arguments descriptor into R4.
__ ldr(R4, FieldAddress(R5, ICData::arguments_descriptor_offset()));
__ bx(R0);
}
void StubCode::GenerateTwoArgsUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, R6);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry);
}
// Stub for calling the CompileFunction runtime call.
// R5: IC-Data.
// R4: Arguments descriptor.
// R0: Function.
void StubCode::GenerateCompileFunctionRuntimeCallStub(Assembler* assembler) {
// Preserve arg desc. and IC data object.
__ EnterStubFrame();
__ PushList((1 << R4) | (1 << R5));
__ Push(R0); // Pass function.
__ CallRuntime(kCompileFunctionRuntimeEntry, 1);
__ Pop(R0); // Restore argument.
__ PopList((1 << R4) | (1 << R5)); // Restore arg desc. and IC data.
__ LeaveStubFrame();
__ Ret();
}
void StubCode::GenerateBreakpointRuntimeStub(Assembler* assembler) {
__ Comment("BreakpointRuntime stub");
__ EnterStubFrame();
__ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
// Preserve arguments descriptor and make room for result.
__ PushList((1 << R0) | (1 << R4) | (1 << R5));
__ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0);
__ PopList((1 << R0) | (1 << R4) | (1 << R5));
__ LeaveStubFrame();
__ bx(R0);
}
// LR: return address (Dart code).
// R5: IC data (unoptimized static call).
void StubCode::GenerateBreakpointStaticStub(Assembler* assembler) {
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ LoadImmediate(R0, reinterpret_cast<intptr_t>(Object::null()));
// Preserve arguments descriptor and make room for result.
__ PushList((1 << R0) | (1 << R5));
__ CallRuntime(kBreakpointStaticHandlerRuntimeEntry, 0);
// Pop code object result and restore arguments descriptor.
__ PopList((1 << R0) | (1 << R5));
__ LeaveStubFrame();
// Now call the static function. The breakpoint handler function
// ensures that the call target is compiled.
__ ldr(R0, FieldAddress(R0, Code::instructions_offset()));
__ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag);
// Load arguments descriptor into R4.
__ ldr(R4, FieldAddress(R5, ICData::arguments_descriptor_offset()));
__ bx(R0);
}
// R0: return value.
void StubCode::GenerateBreakpointReturnStub(Assembler* assembler) {
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ Push(R0);
__ CallRuntime(kBreakpointReturnHandlerRuntimeEntry, 0);
__ Pop(R0);
__ LeaveStubFrame();
// Instead of returning to the patched Dart function, emulate the
// smashed return code pattern and return to the function's caller.
__ LeaveDartFrame();
__ Ret();
}
// LR: return address (Dart code).
// R5: inline cache data array.
void StubCode::GenerateBreakpointDynamicStub(Assembler* assembler) {
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ Push(R5);
__ CallRuntime(kBreakpointDynamicHandlerRuntimeEntry, 0);
__ Pop(R5);
__ LeaveStubFrame();
// Find out which dispatch stub to call.
__ ldr(IP, FieldAddress(R5, ICData::num_args_tested_offset()));
__ cmp(IP, ShifterOperand(1));
__ Branch(&StubCode::OneArgCheckInlineCacheLabel(), EQ);
__ cmp(IP, ShifterOperand(2));
__ Branch(&StubCode::TwoArgsCheckInlineCacheLabel(), EQ);
__ cmp(IP, ShifterOperand(3));
__ Branch(&StubCode::ThreeArgsCheckInlineCacheLabel(), EQ);
__ Stop("Unsupported number of arguments tested.");
}
// Used to check class and type arguments. Arguments passed in registers:
// LR: return address.
// R0: instance (must be preserved).
// R1: instantiator type arguments or NULL.
// R2: cache array.
// Result in R1: null -> not found, otherwise result (true or false).
static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) {
ASSERT((1 <= n) && (n <= 3));
if (n > 1) {
// Get instance type arguments.
__ LoadClass(R3, R0, R4);
// Compute instance type arguments into R4.
Label has_no_type_arguments;
__ ldr(R5, FieldAddress(R3,
Class::type_arguments_field_offset_in_words_offset()));
__ CompareImmediate(R5, Class::kNoTypeArguments);
__ b(&has_no_type_arguments, EQ);
__ add(R5, R0, ShifterOperand(R5, LSL, 2));
__ ldr(R4, FieldAddress(R5, 0));
__ Bind(&has_no_type_arguments);
}
__ LoadClassId(R3, R0);
// R0: instance.
// R1: instantiator type arguments or NULL.
// R2: SubtypeTestCache.
// R3: instance class id.
// R4: instance type arguments (null if none), used only if n > 1.
__ ldr(R2, FieldAddress(R2, SubtypeTestCache::cache_offset()));
__ AddImmediate(R2, Array::data_offset() - kHeapObjectTag);
Label loop, found, not_found, next_iteration;
// R2: entry start.
// R3: instance class id.
// R4: instance type arguments.
__ SmiTag(R3);
__ Bind(&loop);
__ ldr(R5, Address(R2, kWordSize * SubtypeTestCache::kInstanceClassId));
__ CompareImmediate(R5, reinterpret_cast<intptr_t>(Object::null()));
__ b(&not_found, EQ);
__ cmp(R5, ShifterOperand(R3));
if (n == 1) {
__ b(&found, EQ);
} else {
__ b(&next_iteration, NE);
__ ldr(R5,
Address(R2, kWordSize * SubtypeTestCache::kInstanceTypeArguments));
__ cmp(R5, ShifterOperand(R4));
if (n == 2) {
__ b(&found, EQ);
} else {
__ b(&next_iteration, NE);
__ ldr(R5, Address(R2, kWordSize *
SubtypeTestCache::kInstantiatorTypeArguments));
__ cmp(R5, ShifterOperand(R1));
__ b(&found, EQ);
}
}
__ Bind(&next_iteration);
__ AddImmediate(R2, kWordSize * SubtypeTestCache::kTestEntryLength);
__ b(&loop);
// Fall through to not found.
__ Bind(&not_found);
__ LoadImmediate(R1, reinterpret_cast<intptr_t>(Object::null()));
__ Ret();
__ Bind(&found);
__ ldr(R1, Address(R2, kWordSize * SubtypeTestCache::kTestResult));
__ Ret();
}
// Used to check class and type arguments. Arguments passed in registers:
// LR: return address.
// R0: instance (must be preserved).
// R1: instantiator type arguments or NULL.
// R2: cache array.
// Result in R1: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 1);
}
// Used to check class and type arguments. Arguments passed in registers:
// LR: return address.
// R0: instance (must be preserved).
// R1: instantiator type arguments or NULL.
// R2: cache array.
// Result in R1: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 2);
}
// Used to check class and type arguments. Arguments passed in registers:
// LR: return address.
// R0: instance (must be preserved).
// R1: instantiator type arguments or NULL.
// R2: cache array.
// Result in R1: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 3);
}
// Return the current stack pointer address, used to do stack alignment checks.
void StubCode::GenerateGetStackPointerStub(Assembler* assembler) {
__ mov(R0, ShifterOperand(SP));
__ Ret();
}
// Jump to the exception or error handler.
// LR: return address.
// R0: program_counter.
// R1: stack_pointer.
// R2: frame_pointer.
// R3: error object.
// SP: address of stacktrace object.
// Does not return.
void StubCode::GenerateJumpToExceptionHandlerStub(Assembler* assembler) {
ASSERT(kExceptionObjectReg == R0);
ASSERT(kStackTraceObjectReg == R1);
__ mov(IP, ShifterOperand(R1)); // Stack pointer.
__ mov(LR, ShifterOperand(R0)); // Program counter.
__ mov(R0, ShifterOperand(R3)); // Exception object.
__ ldr(R1, Address(SP, 0)); // StackTrace object.
__ mov(FP, ShifterOperand(R2)); // Frame_pointer.
__ mov(SP, ShifterOperand(IP)); // Stack pointer.
__ bx(LR); // Jump to the exception handler code.
}
// Calls to the runtime to optimize the given function.
// R6: function to be reoptimized.
// R4: argument descriptor (preserved).
void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) {
__ EnterStubFrame();
__ Push(R4);
__ LoadImmediate(IP, reinterpret_cast<intptr_t>(Object::null()));
__ Push(IP); // Setup space on stack for return value.
__ Push(R6);
__ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry, 1);
__ Pop(R0); // Discard argument.
__ Pop(R0); // Get Code object
__ Pop(R4); // Restore argument descriptor.
__ ldr(R0, FieldAddress(R0, Code::instructions_offset()));
__ AddImmediate(R0, Instructions::HeaderSize() - kHeapObjectTag);
__ LeaveStubFrame();
__ bx(R0);
__ bkpt(0);
}
DECLARE_LEAF_RUNTIME_ENTRY(intptr_t,
BigintCompare,
RawBigint* left,
RawBigint* right);
// Does identical check (object references are equal or not equal) with special
// checks for boxed numbers.
// LR: return address.
// Return Zero condition flag set if equal.
// Note: A Mint cannot contain a value that would fit in Smi, a Bigint
// cannot contain a value that fits in Mint or Smi.
void StubCode::GenerateIdenticalWithNumberCheckStub(Assembler* assembler,
const Register left,
const Register right,
const Register temp,
const Register unused) {
Label reference_compare, done, check_mint, check_bigint;
// If any of the arguments is Smi do reference compare.
__ tst(left, ShifterOperand(kSmiTagMask));
__ b(&reference_compare, EQ);
__ tst(right, ShifterOperand(kSmiTagMask));
__ b(&reference_compare, EQ);
// Value compare for two doubles.
__ CompareClassId(left, kDoubleCid, temp);
__ b(&check_mint, NE);
__ CompareClassId(right, kDoubleCid, temp);
__ b(&done, NE);
// Double values bitwise compare.
__ ldr(temp, FieldAddress(left, Double::value_offset() + 0 * kWordSize));
__ ldr(IP, FieldAddress(right, Double::value_offset() + 0 * kWordSize));
__ cmp(temp, ShifterOperand(IP));
__ b(&done, NE);
__ ldr(temp, FieldAddress(left, Double::value_offset() + 1 * kWordSize));
__ ldr(IP, FieldAddress(right, Double::value_offset() + 1 * kWordSize));
__ cmp(temp, ShifterOperand(IP));
__ b(&done);
__ Bind(&check_mint);
__ CompareClassId(left, kMintCid, temp);
__ b(&check_bigint, NE);
__ CompareClassId(right, kMintCid, temp);
__ b(&done, NE);
__ ldr(temp, FieldAddress(left, Mint::value_offset() + 0 * kWordSize));
__ ldr(IP, FieldAddress(right, Mint::value_offset() + 0 * kWordSize));
__ cmp(temp, ShifterOperand(IP));
__ b(&done, NE);
__ ldr(temp, FieldAddress(left, Mint::value_offset() + 1 * kWordSize));
__ ldr(IP, FieldAddress(right, Mint::value_offset() + 1 * kWordSize));
__ cmp(temp, ShifterOperand(IP));
__ b(&done);
__ Bind(&check_bigint);
__ CompareClassId(left, kBigintCid, temp);
__ b(&reference_compare, NE);
__ CompareClassId(right, kBigintCid, temp);
__ b(&done, NE);
__ EnterStubFrame(0);
__ ReserveAlignedFrameSpace(2 * kWordSize);
__ stm(IA, SP, (1 << R0) | (1 << R1));
__ CallRuntime(kBigintCompareRuntimeEntry, 2);
// Result in R0, 0 means equal.
__ LeaveStubFrame();
__ cmp(R0, ShifterOperand(0));
__ b(&done);
__ Bind(&reference_compare);
__ cmp(left, ShifterOperand(right));
__ Bind(&done);
}
// Called only from unoptimized code. All relevant registers have been saved.
// LR: return address.
// SP + 4: left operand.
// SP + 0: right operand.
// Return Zero condition flag set if equal.
void StubCode::GenerateUnoptimizedIdenticalWithNumberCheckStub(
Assembler* assembler) {
// Check single stepping.
Label not_stepping;
__ ldr(R1, FieldAddress(CTX, Context::isolate_offset()));
__ ldrb(R1, Address(R1, Isolate::single_step_offset()));
__ CompareImmediate(R1, 0);
__ b(&not_stepping, EQ);
__ EnterStubFrame();
__ CallRuntime(kSingleStepHandlerRuntimeEntry, 0);
__ LeaveStubFrame();
__ Bind(&not_stepping);
const Register temp = R2;
const Register left = R1;
const Register right = R0;
__ ldr(left, Address(SP, 1 * kWordSize));
__ ldr(right, Address(SP, 0 * kWordSize));
GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp);
__ Ret();
}
// Called from otpimzied code only. Must preserve any registers that are
// destroyed.
// LR: return address.
// SP + 4: left operand.
// SP + 0: right operand.
// Return Zero condition flag set if equal.
void StubCode::GenerateOptimizedIdenticalWithNumberCheckStub(
Assembler* assembler) {
const Register temp = R2;
const Register left = R1;
const Register right = R0;
// Preserve left, right and temp.
__ PushList((1 << R0) | (1 << R1) | (1 << R2));
__ ldr(left, Address(SP, 4 * kWordSize));
__ ldr(right, Address(SP, 3 * kWordSize));
GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp);
__ PopList((1 << R0) | (1 << R1) | (1 << R2));
__ Ret();
}
} // namespace dart
#endif // defined TARGET_ARCH_ARM