blob: 26457d79e9f619dd5f8a1f55fd67fd7675d0a845 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// This code was auto-generated, is not intended to be edited, and is subject to
// significant change. Please see the README file for more information.
library engine.scanner;
import 'dart:collection';
import "dart:math" as math;
import 'java_core.dart';
import 'java_engine.dart';
import 'source.dart';
import 'error.dart';
import 'instrumentation.dart';
import 'utilities_collection.dart' show TokenMap;
/**
* Instances of the class `BeginToken` represent the opening half of a grouping pair of
* tokens. This is used for curly brackets ('{'), parentheses ('('), and square brackets ('[').
*/
class BeginToken extends Token {
/**
* The token that corresponds to this token.
*/
Token endToken;
/**
* Initialize a newly created token representing the opening half of a grouping pair of tokens.
*
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
*/
BeginToken(TokenType type, int offset) : super(type, offset) {
assert((type == TokenType.OPEN_CURLY_BRACKET || type == TokenType.OPEN_PAREN || type == TokenType.OPEN_SQUARE_BRACKET || type == TokenType.STRING_INTERPOLATION_EXPRESSION));
}
@override
Token copy() => new BeginToken(type, offset);
}
/**
* Instances of the class `BeginTokenWithComment` represent a begin token that is preceded by
* comments.
*/
class BeginTokenWithComment extends BeginToken {
/**
* The first comment in the list of comments that precede this token.
*/
final Token _precedingComment;
/**
* Initialize a newly created token to have the given type and offset and to be preceded by the
* comments reachable from the given comment.
*
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
* @param precedingComment the first comment in the list of comments that precede this token
*/
BeginTokenWithComment(TokenType type, int offset, this._precedingComment) : super(type, offset);
@override
Token copy() => new BeginTokenWithComment(type, offset, copyComments(_precedingComment));
@override
Token get precedingComments => _precedingComment;
@override
void applyDelta(int delta) {
super.applyDelta(delta);
Token token = _precedingComment;
while (token != null) {
token.applyDelta(delta);
token = token.next;
}
}
}
/**
* Instances of the class `CharSequenceReader` implement a [CharacterReader] that reads
* characters from a character sequence.
*/
class CharSequenceReader implements CharacterReader {
/**
* The sequence from which characters will be read.
*/
final String _sequence;
/**
* The number of characters in the string.
*/
int _stringLength = 0;
/**
* The index, relative to the string, of the last character that was read.
*/
int _charOffset = 0;
/**
* Initialize a newly created reader to read the characters in the given sequence.
*
* @param sequence the sequence from which characters will be read
*/
CharSequenceReader(this._sequence) {
this._stringLength = _sequence.length;
this._charOffset = -1;
}
@override
int advance() {
if (_charOffset + 1 >= _stringLength) {
return -1;
}
return _sequence.codeUnitAt(++_charOffset);
}
@override
int get offset => _charOffset;
@override
String getString(int start, int endDelta) => _sequence.substring(start, _charOffset + 1 + endDelta).toString();
@override
int peek() {
if (_charOffset + 1 >= _sequence.length) {
return -1;
}
return _sequence.codeUnitAt(_charOffset + 1);
}
@override
void set offset(int offset) {
_charOffset = offset;
}
}
/**
* The interface `CharacterReader`
*/
abstract class CharacterReader {
/**
* Advance the current position and return the character at the new current position.
*
* @return the character at the new current position
*/
int advance();
/**
* Return the current offset relative to the beginning of the source. Return the initial offset if
* the scanner has not yet scanned the source code, and one (1) past the end of the source code if
* the entire source code has been scanned.
*
* @return the current offset of the scanner in the source
*/
int get offset;
/**
* Return the substring of the source code between the start offset and the modified current
* position. The current position is modified by adding the end delta.
*
* @param start the offset to the beginning of the string, relative to the start of the file
* @param endDelta the number of characters after the current location to be included in the
* string, or the number of characters before the current location to be excluded if the
* offset is negative
* @return the specified substring of the source code
*/
String getString(int start, int endDelta);
/**
* Return the character at the current position without changing the current position.
*
* @return the character at the current position
*/
int peek();
/**
* Set the current offset relative to the beginning of the source. The new offset must be between
* the initial offset and one (1) past the end of the source code.
*
* @param offset the new offset in the source
*/
void set offset(int offset);
}
/**
* Instances of the class `IncrementalScanner` implement a scanner that scans a subset of a
* string and inserts the resulting tokens into the middle of an existing token stream.
*/
class IncrementalScanner extends Scanner {
/**
* The reader used to access the characters in the source.
*/
CharacterReader _reader;
/**
* A map from tokens that were copied to the copies of the tokens.
*/
TokenMap _tokenMap = new TokenMap();
/**
* The token in the new token stream immediately to the left of the range of tokens that were
* inserted, or the token immediately to the left of the modified region if there were no new
* tokens.
*/
Token _leftToken;
/**
* The token in the new token stream immediately to the right of the range of tokens that were
* inserted, or the token immediately to the right of the modified region if there were no new
* tokens.
*/
Token _rightToken;
/**
* A flag indicating whether there were any tokens changed as a result of the modification.
*/
bool _hasNonWhitespaceChange = false;
/**
* Initialize a newly created scanner.
*
* @param source the source being scanned
* @param reader the character reader used to read the characters in the source
* @param errorListener the error listener that will be informed of any errors that are found
*/
IncrementalScanner(Source source, CharacterReader reader, AnalysisErrorListener errorListener) : super(source, reader, errorListener) {
this._reader = reader;
}
/**
* Return the token in the new token stream immediately to the left of the range of tokens that
* were inserted, or the token immediately to the left of the modified region if there were no new
* tokens.
*
* @return the token to the left of the inserted tokens
*/
Token get leftToken => _leftToken;
/**
* Return the token in the new token stream immediately to the right of the range of tokens that
* were inserted, or the token immediately to the right of the modified region if there were no
* new tokens.
*
* @return the token to the right of the inserted tokens
*/
Token get rightToken => _rightToken;
/**
* Return a map from tokens that were copied to the copies of the tokens.
*
* @return a map from tokens that were copied to the copies of the tokens
*/
TokenMap get tokenMap => _tokenMap;
/**
* Return `true` if there were any tokens either added or removed (or both) as a result of
* the modification.
*
* @return `true` if there were any tokens changed as a result of the modification
*/
bool get hasNonWhitespaceChange => _hasNonWhitespaceChange;
/**
* Given the stream of tokens scanned from the original source, the modified source (the result of
* replacing one contiguous range of characters with another string of characters), and a
* specification of the modification that was made, return a stream of tokens scanned from the
* modified source. The original stream of tokens will not be modified.
*
* @param originalStream the stream of tokens scanned from the original source
* @param index the index of the first character in both the original and modified source that was
* affected by the modification
* @param removedLength the number of characters removed from the original source
* @param insertedLength the number of characters added to the modified source
*/
Token rescan(Token originalStream, int index, int removedLength, int insertedLength) {
//
// Copy all of the tokens in the originalStream whose end is less than the replacement start.
// (If the replacement start is equal to the end of an existing token, then it means that the
// existing token might have been modified, so we need to rescan it.)
//
while (originalStream.type != TokenType.EOF && originalStream.end < index) {
originalStream = _copyAndAdvance(originalStream, 0);
}
Token oldFirst = originalStream;
Token oldLeftToken = originalStream.previous;
_leftToken = tail;
//
// Skip tokens in the original stream until we find a token whose offset is greater than the end
// of the removed region. (If the end of the removed region is equal to the beginning of an
// existing token, then it means that the existing token might have been modified, so we need to
// rescan it.)
//
int removedEnd = index + (removedLength == 0 ? 0 : removedLength - 1);
while (originalStream.type != TokenType.EOF && originalStream.offset <= removedEnd) {
originalStream = originalStream.next;
}
Token oldLast;
Token oldRightToken;
if (originalStream.type != TokenType.EOF && removedEnd + 1 == originalStream.offset) {
oldLast = originalStream;
originalStream = originalStream.next;
oldRightToken = originalStream;
} else {
oldLast = originalStream.previous;
oldRightToken = originalStream;
}
//
// Compute the delta between the character index of characters after the modified region in the
// original source and the index of the corresponding character in the modified source.
//
int delta = insertedLength - removedLength;
//
// Compute the range of characters that are known to need to be rescanned. If the index is
// within an existing token, then we need to start at the beginning of the token.
//
int scanStart = math.min(oldFirst.offset, index);
int oldEnd = oldLast.end + delta - 1;
int newEnd = index + insertedLength - 1;
int scanEnd = math.max(newEnd, oldEnd);
//
// Starting at the start of the scan region, scan tokens from the modifiedSource until the end
// of the just scanned token is greater than or equal to end of the scan region in the modified
// source. Include trailing characters of any token that was split as a result of inserted text,
// as in "ab" --> "a.b".
//
_reader.offset = scanStart - 1;
int next = _reader.advance();
while (next != -1 && _reader.offset <= scanEnd) {
next = bigSwitch(next);
}
//
// Copy the remaining tokens in the original stream, but apply the delta to the token's offset.
//
if (originalStream.type == TokenType.EOF) {
_copyAndAdvance(originalStream, delta);
_rightToken = tail;
_rightToken.setNextWithoutSettingPrevious(_rightToken);
} else {
originalStream = _copyAndAdvance(originalStream, delta);
_rightToken = tail;
while (originalStream.type != TokenType.EOF) {
originalStream = _copyAndAdvance(originalStream, delta);
}
Token eof = _copyAndAdvance(originalStream, delta);
eof.setNextWithoutSettingPrevious(eof);
}
//
// If the index is immediately after an existing token and the inserted characters did not
// change that original token, then adjust the leftToken to be the next token. For example, in
// "a; c;" --> "a;b c;", the leftToken was ";", but this code advances it to "b" since "b" is
// the first new token.
//
Token newFirst = _leftToken.next;
while (!identical(newFirst, _rightToken) && !identical(oldFirst, oldRightToken) && newFirst.type != TokenType.EOF && _equalTokens(oldFirst, newFirst)) {
_tokenMap.put(oldFirst, newFirst);
oldLeftToken = oldFirst;
oldFirst = oldFirst.next;
_leftToken = newFirst;
newFirst = newFirst.next;
}
Token newLast = _rightToken.previous;
while (!identical(newLast, _leftToken) && !identical(oldLast, oldLeftToken) && newLast.type != TokenType.EOF && _equalTokens(oldLast, newLast)) {
_tokenMap.put(oldLast, newLast);
oldRightToken = oldLast;
oldLast = oldLast.previous;
_rightToken = newLast;
newLast = newLast.previous;
}
_hasNonWhitespaceChange = !identical(_leftToken.next, _rightToken) || !identical(oldLeftToken.next, oldRightToken);
//
// TODO(brianwilkerson) Begin tokens are not getting associated with the corresponding end
// tokens (because the end tokens have not been copied when we're copying the begin tokens).
// This could have implications for parsing.
// TODO(brianwilkerson) Update the lineInfo.
//
return firstToken;
}
Token _copyAndAdvance(Token originalToken, int delta) {
Token copiedToken = originalToken.copy();
_tokenMap.put(originalToken, copiedToken);
copiedToken.applyDelta(delta);
appendToken(copiedToken);
Token originalComment = originalToken.precedingComments;
Token copiedComment = originalToken.precedingComments;
while (originalComment != null) {
_tokenMap.put(originalComment, copiedComment);
originalComment = originalComment.next;
copiedComment = copiedComment.next;
}
return originalToken.next;
}
/**
* Return `true` if the two tokens are equal to each other. For the purposes of the
* incremental scanner, two tokens are equal if they have the same type and lexeme.
*
* @param oldToken the token from the old stream that is being compared
* @param newToken the token from the new stream that is being compared
* @return `true` if the two tokens are equal to each other
*/
bool _equalTokens(Token oldToken, Token newToken) => oldToken.type == newToken.type && oldToken.length == newToken.length && oldToken.lexeme == newToken.lexeme;
}
/**
* The enumeration `Keyword` defines the keywords in the Dart programming language.
*/
class Keyword extends Enum<Keyword> {
static const Keyword ASSERT = const Keyword.con1('ASSERT', 0, "assert");
static const Keyword BREAK = const Keyword.con1('BREAK', 1, "break");
static const Keyword CASE = const Keyword.con1('CASE', 2, "case");
static const Keyword CATCH = const Keyword.con1('CATCH', 3, "catch");
static const Keyword CLASS = const Keyword.con1('CLASS', 4, "class");
static const Keyword CONST = const Keyword.con1('CONST', 5, "const");
static const Keyword CONTINUE = const Keyword.con1('CONTINUE', 6, "continue");
static const Keyword DEFAULT = const Keyword.con1('DEFAULT', 7, "default");
static const Keyword DO = const Keyword.con1('DO', 8, "do");
static const Keyword ELSE = const Keyword.con1('ELSE', 9, "else");
static const Keyword ENUM = const Keyword.con1('ENUM', 10, "enum");
static const Keyword EXTENDS = const Keyword.con1('EXTENDS', 11, "extends");
static const Keyword FALSE = const Keyword.con1('FALSE', 12, "false");
static const Keyword FINAL = const Keyword.con1('FINAL', 13, "final");
static const Keyword FINALLY = const Keyword.con1('FINALLY', 14, "finally");
static const Keyword FOR = const Keyword.con1('FOR', 15, "for");
static const Keyword IF = const Keyword.con1('IF', 16, "if");
static const Keyword IN = const Keyword.con1('IN', 17, "in");
static const Keyword IS = const Keyword.con1('IS', 18, "is");
static const Keyword NEW = const Keyword.con1('NEW', 19, "new");
static const Keyword NULL = const Keyword.con1('NULL', 20, "null");
static const Keyword RETHROW = const Keyword.con1('RETHROW', 21, "rethrow");
static const Keyword RETURN = const Keyword.con1('RETURN', 22, "return");
static const Keyword SUPER = const Keyword.con1('SUPER', 23, "super");
static const Keyword SWITCH = const Keyword.con1('SWITCH', 24, "switch");
static const Keyword THIS = const Keyword.con1('THIS', 25, "this");
static const Keyword THROW = const Keyword.con1('THROW', 26, "throw");
static const Keyword TRUE = const Keyword.con1('TRUE', 27, "true");
static const Keyword TRY = const Keyword.con1('TRY', 28, "try");
static const Keyword VAR = const Keyword.con1('VAR', 29, "var");
static const Keyword VOID = const Keyword.con1('VOID', 30, "void");
static const Keyword WHILE = const Keyword.con1('WHILE', 31, "while");
static const Keyword WITH = const Keyword.con1('WITH', 32, "with");
static const Keyword ABSTRACT = const Keyword.con2('ABSTRACT', 33, "abstract", true);
static const Keyword AS = const Keyword.con2('AS', 34, "as", true);
static const Keyword DEFERRED = const Keyword.con2('DEFERRED', 35, "deferred", true);
static const Keyword DYNAMIC = const Keyword.con2('DYNAMIC', 36, "dynamic", true);
static const Keyword EXPORT = const Keyword.con2('EXPORT', 37, "export", true);
static const Keyword EXTERNAL = const Keyword.con2('EXTERNAL', 38, "external", true);
static const Keyword FACTORY = const Keyword.con2('FACTORY', 39, "factory", true);
static const Keyword GET = const Keyword.con2('GET', 40, "get", true);
static const Keyword IMPLEMENTS = const Keyword.con2('IMPLEMENTS', 41, "implements", true);
static const Keyword IMPORT = const Keyword.con2('IMPORT', 42, "import", true);
static const Keyword LIBRARY = const Keyword.con2('LIBRARY', 43, "library", true);
static const Keyword OPERATOR = const Keyword.con2('OPERATOR', 44, "operator", true);
static const Keyword PART = const Keyword.con2('PART', 45, "part", true);
static const Keyword SET = const Keyword.con2('SET', 46, "set", true);
static const Keyword STATIC = const Keyword.con2('STATIC', 47, "static", true);
static const Keyword TYPEDEF = const Keyword.con2('TYPEDEF', 48, "typedef", true);
static const List<Keyword> values = const [
ASSERT,
BREAK,
CASE,
CATCH,
CLASS,
CONST,
CONTINUE,
DEFAULT,
DO,
ELSE,
ENUM,
EXTENDS,
FALSE,
FINAL,
FINALLY,
FOR,
IF,
IN,
IS,
NEW,
NULL,
RETHROW,
RETURN,
SUPER,
SWITCH,
THIS,
THROW,
TRUE,
TRY,
VAR,
VOID,
WHILE,
WITH,
ABSTRACT,
AS,
DEFERRED,
DYNAMIC,
EXPORT,
EXTERNAL,
FACTORY,
GET,
IMPLEMENTS,
IMPORT,
LIBRARY,
OPERATOR,
PART,
SET,
STATIC,
TYPEDEF];
/**
* The lexeme for the keyword.
*/
final String syntax;
/**
* A flag indicating whether the keyword is a pseudo-keyword. Pseudo keywords can be used as
* identifiers.
*/
final bool isPseudoKeyword;
/**
* A table mapping the lexemes of keywords to the corresponding keyword.
*/
static Map<String, Keyword> keywords = _createKeywordMap();
/**
* Create a table mapping the lexemes of keywords to the corresponding keyword.
*
* @return the table that was created
*/
static Map<String, Keyword> _createKeywordMap() {
LinkedHashMap<String, Keyword> result = new LinkedHashMap<String, Keyword>();
for (Keyword keyword in values) {
result[keyword.syntax] = keyword;
}
return result;
}
/**
* Initialize a newly created keyword to have the given syntax. The keyword is not a
* pseudo-keyword.
*
* @param syntax the lexeme for the keyword
*/
const Keyword.con1(String name, int ordinal, String syntax) : this.con2(name, ordinal, syntax, false);
/**
* Initialize a newly created keyword to have the given syntax. The keyword is a pseudo-keyword if
* the given flag is `true`.
*
* @param syntax the lexeme for the keyword
* @param isPseudoKeyword `true` if this keyword is a pseudo-keyword
*/
const Keyword.con2(String name, int ordinal, this.syntax, this.isPseudoKeyword) : super(name, ordinal);
}
/**
* Instances of the abstract class `KeywordState` represent a state in a state machine used to
* scan keywords.
*/
class KeywordState {
/**
* An empty transition table used by leaf states.
*/
static List<KeywordState> _EMPTY_TABLE = new List<KeywordState>(26);
/**
* The initial state in the state machine.
*/
static KeywordState KEYWORD_STATE = _createKeywordStateTable();
/**
* Create the next state in the state machine where we have already recognized the subset of
* strings in the given array of strings starting at the given offset and having the given length.
* All of these strings have a common prefix and the next character is at the given start index.
*
* @param start the index of the character in the strings used to transition to a new state
* @param strings an array containing all of the strings that will be recognized by the state
* machine
* @param offset the offset of the first string in the array that has the prefix that is assumed
* to have been recognized by the time we reach the state being built
* @param length the number of strings in the array that pass through the state being built
* @return the state that was created
*/
static KeywordState _computeKeywordStateTable(int start, List<String> strings, int offset, int length) {
List<KeywordState> result = new List<KeywordState>(26);
assert(length != 0);
int chunk = 0x0;
int chunkStart = -1;
bool isLeaf = false;
for (int i = offset; i < offset + length; i++) {
if (strings[i].length == start) {
isLeaf = true;
}
if (strings[i].length > start) {
int c = strings[i].codeUnitAt(start);
if (chunk != c) {
if (chunkStart != -1) {
result[chunk - 0x61] = _computeKeywordStateTable(start + 1, strings, chunkStart, i - chunkStart);
}
chunkStart = i;
chunk = c;
}
}
}
if (chunkStart != -1) {
assert(result[chunk - 0x61] == null);
result[chunk - 0x61] = _computeKeywordStateTable(start + 1, strings, chunkStart, offset + length - chunkStart);
} else {
assert(length == 1);
return new KeywordState(_EMPTY_TABLE, strings[offset]);
}
if (isLeaf) {
return new KeywordState(result, strings[offset]);
} else {
return new KeywordState(result, null);
}
}
/**
* Create the initial state in the state machine.
*
* @return the state that was created
*/
static KeywordState _createKeywordStateTable() {
List<Keyword> values = Keyword.values;
List<String> strings = new List<String>(values.length);
for (int i = 0; i < values.length; i++) {
strings[i] = values[i].syntax;
}
strings.sort();
return _computeKeywordStateTable(0, strings, 0, strings.length);
}
/**
* A table mapping characters to the states to which those characters will transition. (The index
* into the array is the offset from the character `'a'` to the transitioning character.)
*/
final List<KeywordState> _table;
/**
* The keyword that is recognized by this state, or `null` if this state is not a terminal
* state.
*/
Keyword _keyword;
/**
* Initialize a newly created state to have the given transitions and to recognize the keyword
* with the given syntax.
*
* @param table a table mapping characters to the states to which those characters will transition
* @param syntax the syntax of the keyword that is recognized by the state
*/
KeywordState(this._table, String syntax) {
this._keyword = (syntax == null) ? null : Keyword.keywords[syntax];
}
/**
* Return the keyword that was recognized by this state, or `null` if this state does not
* recognized a keyword.
*
* @return the keyword that was matched by reaching this state
*/
Keyword keyword() => _keyword;
/**
* Return the state that follows this state on a transition of the given character, or
* `null` if there is no valid state reachable from this state with such a transition.
*
* @param c the character used to transition from this state to another state
* @return the state that follows this state on a transition of the given character
*/
KeywordState next(int c) => _table[c - 0x61];
}
/**
* Instances of the class `KeywordToken` represent a keyword in the language.
*/
class KeywordToken extends Token {
/**
* The keyword being represented by this token.
*/
final Keyword keyword;
/**
* Initialize a newly created token to represent the given keyword.
*
* @param keyword the keyword being represented by this token
* @param offset the offset from the beginning of the file to the first character in the token
*/
KeywordToken(this.keyword, int offset) : super(TokenType.KEYWORD, offset);
@override
Token copy() => new KeywordToken(keyword, offset);
@override
String get lexeme => keyword.syntax;
@override
Keyword value() => keyword;
}
/**
* Instances of the class `KeywordTokenWithComment` implement a keyword token that is preceded
* by comments.
*/
class KeywordTokenWithComment extends KeywordToken {
/**
* The first comment in the list of comments that precede this token.
*/
final Token _precedingComment;
/**
* Initialize a newly created token to to represent the given keyword and to be preceded by the
* comments reachable from the given comment.
*
* @param keyword the keyword being represented by this token
* @param offset the offset from the beginning of the file to the first character in the token
* @param precedingComment the first comment in the list of comments that precede this token
*/
KeywordTokenWithComment(Keyword keyword, int offset, this._precedingComment) : super(keyword, offset);
@override
Token copy() => new KeywordTokenWithComment(keyword, offset, copyComments(_precedingComment));
@override
Token get precedingComments => _precedingComment;
@override
void applyDelta(int delta) {
super.applyDelta(delta);
Token token = _precedingComment;
while (token != null) {
token.applyDelta(delta);
token = token.next;
}
}
}
/**
* The class `Scanner` implements a scanner for Dart code.
*
* The lexical structure of Dart is ambiguous without knowledge of the context in which a token is
* being scanned. For example, without context we cannot determine whether source of the form "<<"
* should be scanned as a single left-shift operator or as two left angle brackets. This scanner
* does not have any context, so it always resolves such conflicts by scanning the longest possible
* token.
*/
class Scanner {
/**
* The source being scanned.
*/
final Source source;
/**
* The reader used to access the characters in the source.
*/
final CharacterReader _reader;
/**
* The error listener that will be informed of any errors that are found during the scan.
*/
final AnalysisErrorListener _errorListener;
/**
* The flag specifying if documentation comments should be parsed.
*/
bool _preserveComments = true;
/**
* The token pointing to the head of the linked list of tokens.
*/
Token _tokens;
/**
* The last token that was scanned.
*/
Token _tail;
/**
* The first token in the list of comment tokens found since the last non-comment token.
*/
Token _firstComment;
/**
* The last token in the list of comment tokens found since the last non-comment token.
*/
Token _lastComment;
/**
* The index of the first character of the current token.
*/
int _tokenStart = 0;
/**
* A list containing the offsets of the first character of each line in the source code.
*/
List<int> _lineStarts = new List<int>();
/**
* A list, treated something like a stack, of tokens representing the beginning of a matched pair.
* It is used to pair the end tokens with the begin tokens.
*/
List<BeginToken> _groupingStack = new List<BeginToken>();
/**
* The index of the last item in the [groupingStack], or `-1` if the stack is empty.
*/
int _stackEnd = -1;
/**
* A flag indicating whether any unmatched groups were found during the parse.
*/
bool _hasUnmatchedGroups = false;
/**
* Initialize a newly created scanner.
*
* @param source the source being scanned
* @param reader the character reader used to read the characters in the source
* @param errorListener the error listener that will be informed of any errors that are found
*/
Scanner(this.source, this._reader, this._errorListener) {
_tokens = new Token(TokenType.EOF, -1);
_tokens.setNext(_tokens);
_tail = _tokens;
_tokenStart = -1;
_lineStarts.add(0);
}
/**
* Return an array containing the offsets of the first character of each line in the source code.
*
* @return an array containing the offsets of the first character of each line in the source code
*/
List<int> get lineStarts => _lineStarts;
/**
* Return `true` if any unmatched groups were found during the parse.
*
* @return `true` if any unmatched groups were found during the parse
*/
bool get hasUnmatchedGroups => _hasUnmatchedGroups;
/**
* Set whether documentation tokens should be scanned.
*
* @param preserveComments `true` if documentation tokens should be scanned
*/
void set preserveComments(bool preserveComments) {
this._preserveComments = preserveComments;
}
/**
* Record that the source begins on the given line and column at the current offset as given by
* the reader. The line starts for lines before the given line will not be correct.
*
* This method must be invoked at most one time and must be invoked before scanning begins. The
* values provided must be sensible. The results are undefined if these conditions are violated.
*
* @param line the one-based index of the line containing the first character of the source
* @param column the one-based index of the column in which the first character of the source
* occurs
*/
void setSourceStart(int line, int column) {
int offset = _reader.offset;
if (line < 1 || column < 1 || offset < 0 || (line + column - 2) >= offset) {
return;
}
for (int i = 2; i < line; i++) {
_lineStarts.add(1);
}
_lineStarts.add(offset - column + 1);
}
/**
* Scan the source code to produce a list of tokens representing the source.
*
* @return the first token in the list of tokens that were produced
*/
Token tokenize() {
InstrumentationBuilder instrumentation = Instrumentation.builder2("dart.engine.AbstractScanner.tokenize");
int tokenCounter = 0;
try {
int next = _reader.advance();
while (next != -1) {
tokenCounter++;
next = bigSwitch(next);
}
_appendEofToken();
instrumentation.metric2("tokensCount", tokenCounter);
return firstToken;
} finally {
instrumentation.log2(2);
//Log if over 1ms
}
}
/**
* Append the given token to the end of the token stream being scanned. This method is intended to
* be used by subclasses that copy existing tokens and should not normally be used because it will
* fail to correctly associate any comments with the token being passed in.
*
* @param token the token to be appended
*/
void appendToken(Token token) {
_tail = _tail.setNext(token);
}
int bigSwitch(int next) {
_beginToken();
if (next == 0xD) {
next = _reader.advance();
if (next == 0xA) {
next = _reader.advance();
}
recordStartOfLine();
return next;
} else if (next == 0xA) {
next = _reader.advance();
recordStartOfLine();
return next;
} else if (next == 0x9 || next == 0x20) {
return _reader.advance();
}
if (next == 0x72) {
int peek = _reader.peek();
if (peek == 0x22 || peek == 0x27) {
int start = _reader.offset;
return _tokenizeString(_reader.advance(), start, true);
}
}
if (0x61 <= next && next <= 0x7A) {
return _tokenizeKeywordOrIdentifier(next, true);
}
if ((0x41 <= next && next <= 0x5A) || next == 0x5F || next == 0x24) {
return _tokenizeIdentifier(next, _reader.offset, true);
}
if (next == 0x3C) {
return _tokenizeLessThan(next);
}
if (next == 0x3E) {
return _tokenizeGreaterThan(next);
}
if (next == 0x3D) {
return _tokenizeEquals(next);
}
if (next == 0x21) {
return _tokenizeExclamation(next);
}
if (next == 0x2B) {
return _tokenizePlus(next);
}
if (next == 0x2D) {
return _tokenizeMinus(next);
}
if (next == 0x2A) {
return _tokenizeMultiply(next);
}
if (next == 0x25) {
return _tokenizePercent(next);
}
if (next == 0x26) {
return _tokenizeAmpersand(next);
}
if (next == 0x7C) {
return _tokenizeBar(next);
}
if (next == 0x5E) {
return _tokenizeCaret(next);
}
if (next == 0x5B) {
return _tokenizeOpenSquareBracket(next);
}
if (next == 0x7E) {
return _tokenizeTilde(next);
}
if (next == 0x5C) {
_appendTokenOfType(TokenType.BACKSLASH);
return _reader.advance();
}
if (next == 0x23) {
return _tokenizeTag(next);
}
if (next == 0x28) {
_appendBeginToken(TokenType.OPEN_PAREN);
return _reader.advance();
}
if (next == 0x29) {
_appendEndToken(TokenType.CLOSE_PAREN, TokenType.OPEN_PAREN);
return _reader.advance();
}
if (next == 0x2C) {
_appendTokenOfType(TokenType.COMMA);
return _reader.advance();
}
if (next == 0x3A) {
_appendTokenOfType(TokenType.COLON);
return _reader.advance();
}
if (next == 0x3B) {
_appendTokenOfType(TokenType.SEMICOLON);
return _reader.advance();
}
if (next == 0x3F) {
_appendTokenOfType(TokenType.QUESTION);
return _reader.advance();
}
if (next == 0x5D) {
_appendEndToken(TokenType.CLOSE_SQUARE_BRACKET, TokenType.OPEN_SQUARE_BRACKET);
return _reader.advance();
}
if (next == 0x60) {
_appendTokenOfType(TokenType.BACKPING);
return _reader.advance();
}
if (next == 0x7B) {
_appendBeginToken(TokenType.OPEN_CURLY_BRACKET);
return _reader.advance();
}
if (next == 0x7D) {
_appendEndToken(TokenType.CLOSE_CURLY_BRACKET, TokenType.OPEN_CURLY_BRACKET);
return _reader.advance();
}
if (next == 0x2F) {
return _tokenizeSlashOrComment(next);
}
if (next == 0x40) {
_appendTokenOfType(TokenType.AT);
return _reader.advance();
}
if (next == 0x22 || next == 0x27) {
return _tokenizeString(next, _reader.offset, false);
}
if (next == 0x2E) {
return _tokenizeDotOrNumber(next);
}
if (next == 0x30) {
return _tokenizeHexOrNumber(next);
}
if (0x31 <= next && next <= 0x39) {
return _tokenizeNumber(next);
}
if (next == -1) {
return -1;
}
_reportError(ScannerErrorCode.ILLEGAL_CHARACTER, [next]);
return _reader.advance();
}
/**
* Return the first token in the token stream that was scanned.
*
* @return the first token in the token stream that was scanned
*/
Token get firstToken => _tokens.next;
/**
* Return the last token that was scanned.
*
* @return the last token that was scanned
*/
Token get tail => _tail;
/**
* Record the fact that we are at the beginning of a new line in the source.
*/
void recordStartOfLine() {
_lineStarts.add(_reader.offset);
}
void _appendBeginToken(TokenType type) {
BeginToken token;
if (_firstComment == null) {
token = new BeginToken(type, _tokenStart);
} else {
token = new BeginTokenWithComment(type, _tokenStart, _firstComment);
_firstComment = null;
_lastComment = null;
}
_tail = _tail.setNext(token);
_groupingStack.add(token);
_stackEnd++;
}
void _appendCommentToken(TokenType type, String value) {
// Ignore comment tokens if client specified that it doesn't need them.
if (!_preserveComments) {
return;
}
// OK, remember comment tokens.
if (_firstComment == null) {
_firstComment = new StringToken(type, value, _tokenStart);
_lastComment = _firstComment;
} else {
_lastComment = _lastComment.setNext(new StringToken(type, value, _tokenStart));
}
}
void _appendEndToken(TokenType type, TokenType beginType) {
Token token;
if (_firstComment == null) {
token = new Token(type, _tokenStart);
} else {
token = new TokenWithComment(type, _tokenStart, _firstComment);
_firstComment = null;
_lastComment = null;
}
_tail = _tail.setNext(token);
if (_stackEnd >= 0) {
BeginToken begin = _groupingStack[_stackEnd];
if (begin.type == beginType) {
begin.endToken = token;
_groupingStack.removeAt(_stackEnd--);
}
}
}
void _appendEofToken() {
Token eofToken;
if (_firstComment == null) {
eofToken = new Token(TokenType.EOF, _reader.offset + 1);
} else {
eofToken = new TokenWithComment(TokenType.EOF, _reader.offset + 1, _firstComment);
_firstComment = null;
_lastComment = null;
}
// The EOF token points to itself so that there is always infinite look-ahead.
eofToken.setNext(eofToken);
_tail = _tail.setNext(eofToken);
if (_stackEnd >= 0) {
_hasUnmatchedGroups = true;
// TODO(brianwilkerson) Fix the ungrouped tokens?
}
}
void _appendKeywordToken(Keyword keyword) {
if (_firstComment == null) {
_tail = _tail.setNext(new KeywordToken(keyword, _tokenStart));
} else {
_tail = _tail.setNext(new KeywordTokenWithComment(keyword, _tokenStart, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void _appendStringToken(TokenType type, String value) {
if (_firstComment == null) {
_tail = _tail.setNext(new StringToken(type, value, _tokenStart));
} else {
_tail = _tail.setNext(new StringTokenWithComment(type, value, _tokenStart, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void _appendStringTokenWithOffset(TokenType type, String value, int offset) {
if (_firstComment == null) {
_tail = _tail.setNext(new StringToken(type, value, _tokenStart + offset));
} else {
_tail = _tail.setNext(new StringTokenWithComment(type, value, _tokenStart + offset, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void _appendTokenOfType(TokenType type) {
if (_firstComment == null) {
_tail = _tail.setNext(new Token(type, _tokenStart));
} else {
_tail = _tail.setNext(new TokenWithComment(type, _tokenStart, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void _appendTokenOfTypeWithOffset(TokenType type, int offset) {
if (_firstComment == null) {
_tail = _tail.setNext(new Token(type, offset));
} else {
_tail = _tail.setNext(new TokenWithComment(type, offset, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void _beginToken() {
_tokenStart = _reader.offset;
}
/**
* Return the beginning token corresponding to a closing brace that was found while scanning
* inside a string interpolation expression. Tokens that cannot be matched with the closing brace
* will be dropped from the stack.
*
* @return the token to be paired with the closing brace
*/
BeginToken _findTokenMatchingClosingBraceInInterpolationExpression() {
while (_stackEnd >= 0) {
BeginToken begin = _groupingStack[_stackEnd];
if (begin.type == TokenType.OPEN_CURLY_BRACKET || begin.type == TokenType.STRING_INTERPOLATION_EXPRESSION) {
return begin;
}
_hasUnmatchedGroups = true;
_groupingStack.removeAt(_stackEnd--);
}
//
// We should never get to this point because we wouldn't be inside a string interpolation
// expression unless we had previously found the start of the expression.
//
return null;
}
/**
* Report an error at the current offset.
*
* @param errorCode the error code indicating the nature of the error
* @param arguments any arguments needed to complete the error message
*/
void _reportError(ScannerErrorCode errorCode, List<Object> arguments) {
_errorListener.onError(new AnalysisError.con2(source, _reader.offset, 1, errorCode, arguments));
}
int _select(int choice, TokenType yesType, TokenType noType) {
int next = _reader.advance();
if (next == choice) {
_appendTokenOfType(yesType);
return _reader.advance();
} else {
_appendTokenOfType(noType);
return next;
}
}
int _selectWithOffset(int choice, TokenType yesType, TokenType noType, int offset) {
int next = _reader.advance();
if (next == choice) {
_appendTokenOfTypeWithOffset(yesType, offset);
return _reader.advance();
} else {
_appendTokenOfTypeWithOffset(noType, offset);
return next;
}
}
int _tokenizeAmpersand(int next) {
// && &= &
next = _reader.advance();
if (next == 0x26) {
_appendTokenOfType(TokenType.AMPERSAND_AMPERSAND);
return _reader.advance();
} else if (next == 0x3D) {
_appendTokenOfType(TokenType.AMPERSAND_EQ);
return _reader.advance();
} else {
_appendTokenOfType(TokenType.AMPERSAND);
return next;
}
}
int _tokenizeBar(int next) {
// | || |=
next = _reader.advance();
if (next == 0x7C) {
_appendTokenOfType(TokenType.BAR_BAR);
return _reader.advance();
} else if (next == 0x3D) {
_appendTokenOfType(TokenType.BAR_EQ);
return _reader.advance();
} else {
_appendTokenOfType(TokenType.BAR);
return next;
}
}
int _tokenizeCaret(int next) => _select(0x3D, TokenType.CARET_EQ, TokenType.CARET);
int _tokenizeDotOrNumber(int next) {
int start = _reader.offset;
next = _reader.advance();
if (0x30 <= next && next <= 0x39) {
return _tokenizeFractionPart(next, start);
} else if (0x2E == next) {
return _select(0x2E, TokenType.PERIOD_PERIOD_PERIOD, TokenType.PERIOD_PERIOD);
} else {
_appendTokenOfType(TokenType.PERIOD);
return next;
}
}
int _tokenizeEquals(int next) {
// = == =>
next = _reader.advance();
if (next == 0x3D) {
_appendTokenOfType(TokenType.EQ_EQ);
return _reader.advance();
} else if (next == 0x3E) {
_appendTokenOfType(TokenType.FUNCTION);
return _reader.advance();
}
_appendTokenOfType(TokenType.EQ);
return next;
}
int _tokenizeExclamation(int next) {
// ! !=
next = _reader.advance();
if (next == 0x3D) {
_appendTokenOfType(TokenType.BANG_EQ);
return _reader.advance();
}
_appendTokenOfType(TokenType.BANG);
return next;
}
int _tokenizeExponent(int next) {
if (next == 0x2B || next == 0x2D) {
next = _reader.advance();
}
bool hasDigits = false;
while (true) {
if (0x30 <= next && next <= 0x39) {
hasDigits = true;
} else {
if (!hasDigits) {
_reportError(ScannerErrorCode.MISSING_DIGIT, []);
}
return next;
}
next = _reader.advance();
}
}
int _tokenizeFractionPart(int next, int start) {
bool done = false;
bool hasDigit = false;
LOOP: while (!done) {
if (0x30 <= next && next <= 0x39) {
hasDigit = true;
} else if (0x65 == next || 0x45 == next) {
hasDigit = true;
next = _tokenizeExponent(_reader.advance());
done = true;
continue LOOP;
} else {
done = true;
continue LOOP;
}
next = _reader.advance();
}
if (!hasDigit) {
_appendStringToken(TokenType.INT, _reader.getString(start, -2));
if (0x2E == next) {
return _selectWithOffset(0x2E, TokenType.PERIOD_PERIOD_PERIOD, TokenType.PERIOD_PERIOD, _reader.offset - 1);
}
_appendTokenOfTypeWithOffset(TokenType.PERIOD, _reader.offset - 1);
return bigSwitch(next);
}
_appendStringToken(TokenType.DOUBLE, _reader.getString(start, next < 0 ? 0 : -1));
return next;
}
int _tokenizeGreaterThan(int next) {
// > >= >> >>=
next = _reader.advance();
if (0x3D == next) {
_appendTokenOfType(TokenType.GT_EQ);
return _reader.advance();
} else if (0x3E == next) {
next = _reader.advance();
if (0x3D == next) {
_appendTokenOfType(TokenType.GT_GT_EQ);
return _reader.advance();
} else {
_appendTokenOfType(TokenType.GT_GT);
return next;
}
} else {
_appendTokenOfType(TokenType.GT);
return next;
}
}
int _tokenizeHex(int next) {
int start = _reader.offset - 1;
bool hasDigits = false;
while (true) {
next = _reader.advance();
if ((0x30 <= next && next <= 0x39) || (0x41 <= next && next <= 0x46) || (0x61 <= next && next <= 0x66)) {
hasDigits = true;
} else {
if (!hasDigits) {
_reportError(ScannerErrorCode.MISSING_HEX_DIGIT, []);
}
_appendStringToken(TokenType.HEXADECIMAL, _reader.getString(start, next < 0 ? 0 : -1));
return next;
}
}
}
int _tokenizeHexOrNumber(int next) {
int x = _reader.peek();
if (x == 0x78 || x == 0x58) {
_reader.advance();
return _tokenizeHex(x);
}
return _tokenizeNumber(next);
}
int _tokenizeIdentifier(int next, int start, bool allowDollar) {
while ((0x61 <= next && next <= 0x7A) || (0x41 <= next && next <= 0x5A) || (0x30 <= next && next <= 0x39) || next == 0x5F || (next == 0x24 && allowDollar)) {
next = _reader.advance();
}
_appendStringToken(TokenType.IDENTIFIER, _reader.getString(start, next < 0 ? 0 : -1));
return next;
}
int _tokenizeInterpolatedExpression(int next, int start) {
_appendBeginToken(TokenType.STRING_INTERPOLATION_EXPRESSION);
next = _reader.advance();
while (next != -1) {
if (next == 0x7D) {
BeginToken begin = _findTokenMatchingClosingBraceInInterpolationExpression();
if (begin == null) {
_beginToken();
_appendTokenOfType(TokenType.CLOSE_CURLY_BRACKET);
next = _reader.advance();
_beginToken();
return next;
} else if (begin.type == TokenType.OPEN_CURLY_BRACKET) {
_beginToken();
_appendEndToken(TokenType.CLOSE_CURLY_BRACKET, TokenType.OPEN_CURLY_BRACKET);
next = _reader.advance();
_beginToken();
} else if (begin.type == TokenType.STRING_INTERPOLATION_EXPRESSION) {
_beginToken();
_appendEndToken(TokenType.CLOSE_CURLY_BRACKET, TokenType.STRING_INTERPOLATION_EXPRESSION);
next = _reader.advance();
_beginToken();
return next;
}
} else {
next = bigSwitch(next);
}
}
return next;
}
int _tokenizeInterpolatedIdentifier(int next, int start) {
_appendStringTokenWithOffset(TokenType.STRING_INTERPOLATION_IDENTIFIER, "\$", 0);
if ((0x41 <= next && next <= 0x5A) || (0x61 <= next && next <= 0x7A) || next == 0x5F) {
_beginToken();
next = _tokenizeKeywordOrIdentifier(next, false);
}
_beginToken();
return next;
}
int _tokenizeKeywordOrIdentifier(int next, bool allowDollar) {
KeywordState state = KeywordState.KEYWORD_STATE;
int start = _reader.offset;
while (state != null && 0x61 <= next && next <= 0x7A) {
state = state.next(next);
next = _reader.advance();
}
if (state == null || state.keyword() == null) {
return _tokenizeIdentifier(next, start, allowDollar);
}
if ((0x41 <= next && next <= 0x5A) || (0x30 <= next && next <= 0x39) || next == 0x5F || next == 0x24) {
return _tokenizeIdentifier(next, start, allowDollar);
} else if (next < 128) {
_appendKeywordToken(state.keyword());
return next;
} else {
return _tokenizeIdentifier(next, start, allowDollar);
}
}
int _tokenizeLessThan(int next) {
// < <= << <<=
next = _reader.advance();
if (0x3D == next) {
_appendTokenOfType(TokenType.LT_EQ);
return _reader.advance();
} else if (0x3C == next) {
return _select(0x3D, TokenType.LT_LT_EQ, TokenType.LT_LT);
} else {
_appendTokenOfType(TokenType.LT);
return next;
}
}
int _tokenizeMinus(int next) {
// - -- -=
next = _reader.advance();
if (next == 0x2D) {
_appendTokenOfType(TokenType.MINUS_MINUS);
return _reader.advance();
} else if (next == 0x3D) {
_appendTokenOfType(TokenType.MINUS_EQ);
return _reader.advance();
} else {
_appendTokenOfType(TokenType.MINUS);
return next;
}
}
int _tokenizeMultiLineComment(int next) {
int nesting = 1;
next = _reader.advance();
while (true) {
if (-1 == next) {
_reportError(ScannerErrorCode.UNTERMINATED_MULTI_LINE_COMMENT, []);
_appendCommentToken(TokenType.MULTI_LINE_COMMENT, _reader.getString(_tokenStart, 0));
return next;
} else if (0x2A == next) {
next = _reader.advance();
if (0x2F == next) {
--nesting;
if (0 == nesting) {
_appendCommentToken(TokenType.MULTI_LINE_COMMENT, _reader.getString(_tokenStart, 0));
return _reader.advance();
} else {
next = _reader.advance();
}
}
} else if (0x2F == next) {
next = _reader.advance();
if (0x2A == next) {
next = _reader.advance();
++nesting;
}
} else if (next == 0xD) {
next = _reader.advance();
if (next == 0xA) {
next = _reader.advance();
}
recordStartOfLine();
} else if (next == 0xA) {
recordStartOfLine();
next = _reader.advance();
} else {
next = _reader.advance();
}
}
}
int _tokenizeMultiLineRawString(int quoteChar, int start) {
int next = _reader.advance();
outer: while (next != -1) {
while (next != quoteChar) {
next = _reader.advance();
if (next == -1) {
break outer;
} else if (next == 0xD) {
next = _reader.advance();
if (next == 0xA) {
next = _reader.advance();
}
recordStartOfLine();
} else if (next == 0xA) {
recordStartOfLine();
next = _reader.advance();
}
}
next = _reader.advance();
if (next == quoteChar) {
next = _reader.advance();
if (next == quoteChar) {
_appendStringToken(TokenType.STRING, _reader.getString(start, 0));
return _reader.advance();
}
}
}
_reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
_appendStringToken(TokenType.STRING, _reader.getString(start, 0));
return _reader.advance();
}
int _tokenizeMultiLineString(int quoteChar, int start, bool raw) {
if (raw) {
return _tokenizeMultiLineRawString(quoteChar, start);
}
int next = _reader.advance();
while (next != -1) {
if (next == 0x24) {
_appendStringToken(TokenType.STRING, _reader.getString(start, -1));
next = _tokenizeStringInterpolation(start);
_beginToken();
start = _reader.offset;
continue;
}
if (next == quoteChar) {
next = _reader.advance();
if (next == quoteChar) {
next = _reader.advance();
if (next == quoteChar) {
_appendStringToken(TokenType.STRING, _reader.getString(start, 0));
return _reader.advance();
}
}
continue;
}
if (next == 0x5C) {
next = _reader.advance();
if (next == -1) {
break;
}
if (next == 0xD) {
next = _reader.advance();
if (next == 0xA) {
next = _reader.advance();
}
recordStartOfLine();
} else if (next == 0xA) {
recordStartOfLine();
next = _reader.advance();
} else {
next = _reader.advance();
}
} else if (next == 0xD) {
next = _reader.advance();
if (next == 0xA) {
next = _reader.advance();
}
recordStartOfLine();
} else if (next == 0xA) {
recordStartOfLine();
next = _reader.advance();
} else {
next = _reader.advance();
}
}
_reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
if (start == _reader.offset) {
_appendStringTokenWithOffset(TokenType.STRING, "", 1);
} else {
_appendStringToken(TokenType.STRING, _reader.getString(start, 0));
}
return _reader.advance();
}
int _tokenizeMultiply(int next) => _select(0x3D, TokenType.STAR_EQ, TokenType.STAR);
int _tokenizeNumber(int next) {
int start = _reader.offset;
while (true) {
next = _reader.advance();
if (0x30 <= next && next <= 0x39) {
continue;
} else if (next == 0x2E) {
return _tokenizeFractionPart(_reader.advance(), start);
} else if (next == 0x65 || next == 0x45) {
return _tokenizeFractionPart(next, start);
} else {
_appendStringToken(TokenType.INT, _reader.getString(start, next < 0 ? 0 : -1));
return next;
}
}
}
int _tokenizeOpenSquareBracket(int next) {
// [ [] []=
next = _reader.advance();
if (next == 0x5D) {
return _select(0x3D, TokenType.INDEX_EQ, TokenType.INDEX);
} else {
_appendBeginToken(TokenType.OPEN_SQUARE_BRACKET);
return next;
}
}
int _tokenizePercent(int next) => _select(0x3D, TokenType.PERCENT_EQ, TokenType.PERCENT);
int _tokenizePlus(int next) {
// + ++ +=
next = _reader.advance();
if (0x2B == next) {
_appendTokenOfType(TokenType.PLUS_PLUS);
return _reader.advance();
} else if (0x3D == next) {
_appendTokenOfType(TokenType.PLUS_EQ);
return _reader.advance();
} else {
_appendTokenOfType(TokenType.PLUS);
return next;
}
}
int _tokenizeSingleLineComment(int next) {
while (true) {
next = _reader.advance();
if (-1 == next) {
_appendCommentToken(TokenType.SINGLE_LINE_COMMENT, _reader.getString(_tokenStart, 0));
return next;
} else if (0xA == next || 0xD == next) {
_appendCommentToken(TokenType.SINGLE_LINE_COMMENT, _reader.getString(_tokenStart, -1));
return next;
}
}
}
int _tokenizeSingleLineRawString(int next, int quoteChar, int start) {
next = _reader.advance();
while (next != -1) {
if (next == quoteChar) {
_appendStringToken(TokenType.STRING, _reader.getString(start, 0));
return _reader.advance();
} else if (next == 0xD || next == 0xA) {
_reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
_appendStringToken(TokenType.STRING, _reader.getString(start, -1));
return _reader.advance();
}
next = _reader.advance();
}
_reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
_appendStringToken(TokenType.STRING, _reader.getString(start, 0));
return _reader.advance();
}
int _tokenizeSingleLineString(int next, int quoteChar, int start) {
while (next != quoteChar) {
if (next == 0x5C) {
next = _reader.advance();
} else if (next == 0x24) {
_appendStringToken(TokenType.STRING, _reader.getString(start, -1));
next = _tokenizeStringInterpolation(start);
_beginToken();
start = _reader.offset;
continue;
}
if (next <= 0xD && (next == 0xA || next == 0xD || next == -1)) {
_reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
if (start == _reader.offset) {
_appendStringTokenWithOffset(TokenType.STRING, "", 1);
} else if (next == -1) {
_appendStringToken(TokenType.STRING, _reader.getString(start, 0));
} else {
_appendStringToken(TokenType.STRING, _reader.getString(start, -1));
}
return _reader.advance();
}
next = _reader.advance();
}
_appendStringToken(TokenType.STRING, _reader.getString(start, 0));
return _reader.advance();
}
int _tokenizeSlashOrComment(int next) {
next = _reader.advance();
if (0x2A == next) {
return _tokenizeMultiLineComment(next);
} else if (0x2F == next) {
return _tokenizeSingleLineComment(next);
} else if (0x3D == next) {
_appendTokenOfType(TokenType.SLASH_EQ);
return _reader.advance();
} else {
_appendTokenOfType(TokenType.SLASH);
return next;
}
}
int _tokenizeString(int next, int start, bool raw) {
int quoteChar = next;
next = _reader.advance();
if (quoteChar == next) {
next = _reader.advance();
if (quoteChar == next) {
// Multiline string.
return _tokenizeMultiLineString(quoteChar, start, raw);
} else {
// Empty string.
_appendStringToken(TokenType.STRING, _reader.getString(start, -1));
return next;
}
}
if (raw) {
return _tokenizeSingleLineRawString(next, quoteChar, start);
} else {
return _tokenizeSingleLineString(next, quoteChar, start);
}
}
int _tokenizeStringInterpolation(int start) {
_beginToken();
int next = _reader.advance();
if (next == 0x7B) {
return _tokenizeInterpolatedExpression(next, start);
} else {
return _tokenizeInterpolatedIdentifier(next, start);
}
}
int _tokenizeTag(int next) {
// # or #!.*[\n\r]
if (_reader.offset == 0) {
if (_reader.peek() == 0x21) {
do {
next = _reader.advance();
} while (next != 0xA && next != 0xD && next > 0);
_appendStringToken(TokenType.SCRIPT_TAG, _reader.getString(_tokenStart, 0));
return next;
}
}
_appendTokenOfType(TokenType.HASH);
return _reader.advance();
}
int _tokenizeTilde(int next) {
// ~ ~/ ~/=
next = _reader.advance();
if (next == 0x2F) {
return _select(0x3D, TokenType.TILDE_SLASH_EQ, TokenType.TILDE_SLASH);
} else {
_appendTokenOfType(TokenType.TILDE);
return next;
}
}
}
/**
* The enumeration `ScannerErrorCode` defines the error codes used for errors detected by the
* scanner.
*/
class ScannerErrorCode extends Enum<ScannerErrorCode> implements ErrorCode {
static const ScannerErrorCode ILLEGAL_CHARACTER = const ScannerErrorCode.con1('ILLEGAL_CHARACTER', 0, "Illegal character {0}");
static const ScannerErrorCode MISSING_DIGIT = const ScannerErrorCode.con1('MISSING_DIGIT', 1, "Decimal digit expected");
static const ScannerErrorCode MISSING_HEX_DIGIT = const ScannerErrorCode.con1('MISSING_HEX_DIGIT', 2, "Hexidecimal digit expected");
static const ScannerErrorCode MISSING_QUOTE = const ScannerErrorCode.con1('MISSING_QUOTE', 3, "Expected quote (' or \")");
static const ScannerErrorCode UNTERMINATED_MULTI_LINE_COMMENT = const ScannerErrorCode.con1('UNTERMINATED_MULTI_LINE_COMMENT', 4, "Unterminated multi-line comment");
static const ScannerErrorCode UNTERMINATED_STRING_LITERAL = const ScannerErrorCode.con1('UNTERMINATED_STRING_LITERAL', 5, "Unterminated string literal");
static const List<ScannerErrorCode> values = const [
ILLEGAL_CHARACTER,
MISSING_DIGIT,
MISSING_HEX_DIGIT,
MISSING_QUOTE,
UNTERMINATED_MULTI_LINE_COMMENT,
UNTERMINATED_STRING_LITERAL];
/**
* The template used to create the message to be displayed for this error.
*/
final String message;
/**
* The template used to create the correction to be displayed for this error, or `null` if
* there is no correction information for this error.
*/
final String correction;
/**
* Initialize a newly created error code to have the given message.
*
* @param message the message template used to create the message to be displayed for this error
*/
const ScannerErrorCode.con1(String name, int ordinal, String message) : this.con2(name, ordinal, message, null);
/**
* Initialize a newly created error code to have the given message and correction.
*
* @param message the template used to create the message to be displayed for the error
* @param correction the template used to create the correction to be displayed for the error
*/
const ScannerErrorCode.con2(String name, int ordinal, this.message, this.correction) : super(name, ordinal);
@override
ErrorSeverity get errorSeverity => ErrorSeverity.ERROR;
@override
ErrorType get type => ErrorType.SYNTACTIC_ERROR;
@override
String get uniqueName => "$runtimeType.$name";
}
/**
* Instances of the class `StringToken` represent a token whose value is independent of it's
* type.
*/
class StringToken extends Token {
/**
* The lexeme represented by this token.
*/
String _value;
/**
* Initialize a newly created token to represent a token of the given type with the given value.
*
* @param type the type of the token
* @param value the lexeme represented by this token
* @param offset the offset from the beginning of the file to the first character in the token
*/
StringToken(TokenType type, String value, int offset) : super(type, offset) {
this._value = StringUtilities.intern(value);
}
@override
Token copy() => new StringToken(type, _value, offset);
@override
String get lexeme => _value;
@override
String value() => _value;
}
/**
* Instances of the class `TokenWithComment` represent a string token that is preceded by
* comments.
*/
class StringTokenWithComment extends StringToken {
/**
* The first comment in the list of comments that precede this token.
*/
final Token _precedingComment;
/**
* Initialize a newly created token to have the given type and offset and to be preceded by the
* comments reachable from the given comment.
*
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
* @param precedingComment the first comment in the list of comments that precede this token
*/
StringTokenWithComment(TokenType type, String value, int offset, this._precedingComment) : super(type, value, offset);
@override
Token copy() => new StringTokenWithComment(type, lexeme, offset, copyComments(_precedingComment));
@override
Token get precedingComments => _precedingComment;
@override
void applyDelta(int delta) {
super.applyDelta(delta);
Token token = _precedingComment;
while (token != null) {
token.applyDelta(delta);
token = token.next;
}
}
}
/**
* Instances of the class `SubSequenceReader` implement a [CharacterReader] that reads
* characters from a character sequence, but adds a delta when reporting the current character
* offset so that the character sequence can be a subsequence from a larger sequence.
*/
class SubSequenceReader extends CharSequenceReader {
/**
* The offset from the beginning of the file to the beginning of the source being scanned.
*/
final int _offsetDelta;
/**
* Initialize a newly created reader to read the characters in the given sequence.
*
* @param sequence the sequence from which characters will be read
* @param offsetDelta the offset from the beginning of the file to the beginning of the source
* being scanned
*/
SubSequenceReader(String sequence, this._offsetDelta) : super(sequence);
@override
int get offset => _offsetDelta + super.offset;
@override
String getString(int start, int endDelta) => super.getString(start - _offsetDelta, endDelta);
@override
void set offset(int offset) {
super.offset = offset - _offsetDelta;
}
}
/**
* Synthetic `StringToken` represent a token whose value is independent of it's type.
*/
class SyntheticStringToken extends StringToken {
/**
* Initialize a newly created token to represent a token of the given type with the given value.
*
* @param type the type of the token
* @param value the lexeme represented by this token
* @param offset the offset from the beginning of the file to the first character in the token
*/
SyntheticStringToken(TokenType type, String value, int offset) : super(type, value, offset);
@override
bool get isSynthetic => true;
}
/**
* Instances of the class `Token` represent a token that was scanned from the input. Each
* token knows which token follows it, acting as the head of a linked list of tokens.
*/
class Token {
/**
* The type of the token.
*/
final TokenType type;
/**
* The offset from the beginning of the file to the first character in the token.
*/
int offset = 0;
/**
* The previous token in the token stream.
*/
Token previous;
/**
* The next token in the token stream.
*/
Token _next;
/**
* Initialize a newly created token to have the given type and offset.
*
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
*/
Token(this.type, int offset) {
this.offset = offset;
}
/**
* Return a newly created token that is a copy of this token but that is not a part of any token
* stream.
*
* @return a newly created token that is a copy of this token
*/
Token copy() => new Token(type, offset);
/**
* Return the offset from the beginning of the file to the character after last character of the
* token.
*
* @return the offset from the beginning of the file to the first character after last character
* of the token
*/
int get end => offset + length;
/**
* Return the number of characters in the node's source range.
*
* @return the number of characters in the node's source range
*/
int get length => lexeme.length;
/**
* Return the lexeme that represents this token.
*
* @return the lexeme that represents this token
*/
String get lexeme => type.lexeme;
/**
* Return the next token in the token stream.
*
* @return the next token in the token stream
*/
Token get next => _next;
/**
* Return the first comment in the list of comments that precede this token, or `null` if
* there are no comments preceding this token. Additional comments can be reached by following the
* token stream using [getNext] until `null` is returned.
*
* @return the first comment in the list of comments that precede this token
*/
Token get precedingComments => null;
/**
* Return `true` if this token represents an operator.
*
* @return `true` if this token represents an operator
*/
bool get isOperator => type.isOperator;
/**
* Return `true` if this token is a synthetic token. A synthetic token is a token that was
* introduced by the parser in order to recover from an error in the code.
*
* @return `true` if this token is a synthetic token
*/
bool get isSynthetic => length == 0;
/**
* Return `true` if this token represents an operator that can be defined by users.
*
* @return `true` if this token represents an operator that can be defined by users
*/
bool get isUserDefinableOperator => type.isUserDefinableOperator;
/**
* Return `true` if this token has any one of the given types.
*
* @param types the types of token that are being tested for
* @return `true` if this token has any of the given types
*/
bool matchesAny(List<TokenType> types) {
for (TokenType type in types) {
if (this.type == type) {
return true;
}
}
return false;
}
/**
* Set the next token in the token stream to the given token. This has the side-effect of setting
* this token to be the previous token for the given token.
*
* @param token the next token in the token stream
* @return the token that was passed in
*/
Token setNext(Token token) {
_next = token;
token.previous = this;
return token;
}
/**
* Set the next token in the token stream to the given token without changing which token is the
* previous token for the given token.
*
* @param token the next token in the token stream
* @return the token that was passed in
*/
Token setNextWithoutSettingPrevious(Token token) {
_next = token;
return token;
}
@override
String toString() => lexeme;
/**
* Return the value of this token. For keyword tokens, this is the keyword associated with the
* token, for other tokens it is the lexeme associated with the token.
*
* @return the value of this token
*/
Object value() => type.lexeme;
/**
* Apply (add) the given delta to this token's offset.
*
* @param delta the amount by which the offset is to be adjusted
*/
void applyDelta(int delta) {
offset += delta;
}
/**
* Copy a linked list of comment tokens identical to the given comment tokens.
*
* @param token the first token in the list, or `null` if there are no tokens to be copied
* @return the tokens that were created
*/
Token copyComments(Token token) {
if (token == null) {
return null;
}
Token head = token.copy();
Token tail = head;
token = token.next;
while (token != null) {
tail = tail.setNext(token.copy());
token = token.next;
}
return head;
}
}
/**
* The enumeration `TokenClass` represents classes (or groups) of tokens with a similar use.
*/
class TokenClass extends Enum<TokenClass> {
/**
* A value used to indicate that the token type is not part of any specific class of token.
*/
static const TokenClass NO_CLASS = const TokenClass.con1('NO_CLASS', 0);
/**
* A value used to indicate that the token type is an additive operator.
*/
static const TokenClass ADDITIVE_OPERATOR = const TokenClass.con2('ADDITIVE_OPERATOR', 1, 12);
/**
* A value used to indicate that the token type is an assignment operator.
*/
static const TokenClass ASSIGNMENT_OPERATOR = const TokenClass.con2('ASSIGNMENT_OPERATOR', 2, 1);
/**
* A value used to indicate that the token type is a bitwise-and operator.
*/
static const TokenClass BITWISE_AND_OPERATOR = const TokenClass.con2('BITWISE_AND_OPERATOR', 3, 10);
/**
* A value used to indicate that the token type is a bitwise-or operator.
*/
static const TokenClass BITWISE_OR_OPERATOR = const TokenClass.con2('BITWISE_OR_OPERATOR', 4, 8);
/**
* A value used to indicate that the token type is a bitwise-xor operator.
*/
static const TokenClass BITWISE_XOR_OPERATOR = const TokenClass.con2('BITWISE_XOR_OPERATOR', 5, 9);
/**
* A value used to indicate that the token type is a cascade operator.
*/
static const TokenClass CASCADE_OPERATOR = const TokenClass.con2('CASCADE_OPERATOR', 6, 2);
/**
* A value used to indicate that the token type is a conditional operator.
*/
static const TokenClass CONDITIONAL_OPERATOR = const TokenClass.con2('CONDITIONAL_OPERATOR', 7, 3);
/**
* A value used to indicate that the token type is an equality operator.
*/
static const TokenClass EQUALITY_OPERATOR = const TokenClass.con2('EQUALITY_OPERATOR', 8, 6);
/**
* A value used to indicate that the token type is a logical-and operator.
*/
static const TokenClass LOGICAL_AND_OPERATOR = const TokenClass.con2('LOGICAL_AND_OPERATOR', 9, 5);
/**
* A value used to indicate that the token type is a logical-or operator.
*/
static const TokenClass LOGICAL_OR_OPERATOR = const TokenClass.con2('LOGICAL_OR_OPERATOR', 10, 4);
/**
* A value used to indicate that the token type is a multiplicative operator.
*/
static const TokenClass MULTIPLICATIVE_OPERATOR = const TokenClass.con2('MULTIPLICATIVE_OPERATOR', 11, 13);
/**
* A value used to indicate that the token type is a relational operator.
*/
static const TokenClass RELATIONAL_OPERATOR = const TokenClass.con2('RELATIONAL_OPERATOR', 12, 7);
/**
* A value used to indicate that the token type is a shift operator.
*/
static const TokenClass SHIFT_OPERATOR = const TokenClass.con2('SHIFT_OPERATOR', 13, 11);
/**
* A value used to indicate that the token type is a unary operator.
*/
static const TokenClass UNARY_POSTFIX_OPERATOR = const TokenClass.con2('UNARY_POSTFIX_OPERATOR', 14, 15);
/**
* A value used to indicate that the token type is a unary operator.
*/
static const TokenClass UNARY_PREFIX_OPERATOR = const TokenClass.con2('UNARY_PREFIX_OPERATOR', 15, 14);
static const List<TokenClass> values = const [
NO_CLASS,
ADDITIVE_OPERATOR,
ASSIGNMENT_OPERATOR,
BITWISE_AND_OPERATOR,
BITWISE_OR_OPERATOR,
BITWISE_XOR_OPERATOR,
CASCADE_OPERATOR,
CONDITIONAL_OPERATOR,
EQUALITY_OPERATOR,
LOGICAL_AND_OPERATOR,
LOGICAL_OR_OPERATOR,
MULTIPLICATIVE_OPERATOR,
RELATIONAL_OPERATOR,
SHIFT_OPERATOR,
UNARY_POSTFIX_OPERATOR,
UNARY_PREFIX_OPERATOR];
/**
* The precedence of tokens of this class, or `0` if the such tokens do not represent an
* operator.
*/
final int precedence;
const TokenClass.con1(String name, int ordinal) : this.con2(name, ordinal, 0);
const TokenClass.con2(String name, int ordinal, this.precedence) : super(name, ordinal);
}
/**
* The enumeration `TokenType` defines the types of tokens that can be returned by the
* scanner.
*/
class TokenType extends Enum<TokenType> {
/**
* The type of the token that marks the end of the input.
*/
static const TokenType EOF = const TokenType_EOF('EOF', 0, TokenClass.NO_CLASS, "");
static const TokenType DOUBLE = const TokenType.con1('DOUBLE', 1);
static const TokenType HEXADECIMAL = const TokenType.con1('HEXADECIMAL', 2);
static const TokenType IDENTIFIER = const TokenType.con1('IDENTIFIER', 3);
static const TokenType INT = const TokenType.con1('INT', 4);
static const TokenType KEYWORD = const TokenType.con1('KEYWORD', 5);
static const TokenType MULTI_LINE_COMMENT = const TokenType.con1('MULTI_LINE_COMMENT', 6);
static const TokenType SCRIPT_TAG = const TokenType.con1('SCRIPT_TAG', 7);
static const TokenType SINGLE_LINE_COMMENT = const TokenType.con1('SINGLE_LINE_COMMENT', 8);
static const TokenType STRING = const TokenType.con1('STRING', 9);
static const TokenType AMPERSAND = const TokenType.con2('AMPERSAND', 10, TokenClass.BITWISE_AND_OPERATOR, "&");
static const TokenType AMPERSAND_AMPERSAND = const TokenType.con2('AMPERSAND_AMPERSAND', 11, TokenClass.LOGICAL_AND_OPERATOR, "&&");
static const TokenType AMPERSAND_EQ = const TokenType.con2('AMPERSAND_EQ', 12, TokenClass.ASSIGNMENT_OPERATOR, "&=");
static const TokenType AT = const TokenType.con2('AT', 13, TokenClass.NO_CLASS, "@");
static const TokenType BANG = const TokenType.con2('BANG', 14, TokenClass.UNARY_PREFIX_OPERATOR, "!");
static const TokenType BANG_EQ = const TokenType.con2('BANG_EQ', 15, TokenClass.EQUALITY_OPERATOR, "!=");
static const TokenType BAR = const TokenType.con2('BAR', 16, TokenClass.BITWISE_OR_OPERATOR, "|");
static const TokenType BAR_BAR = const TokenType.con2('BAR_BAR', 17, TokenClass.LOGICAL_OR_OPERATOR, "||");
static const TokenType BAR_EQ = const TokenType.con2('BAR_EQ', 18, TokenClass.ASSIGNMENT_OPERATOR, "|=");
static const TokenType COLON = const TokenType.con2('COLON', 19, TokenClass.NO_CLASS, ":");
static const TokenType COMMA = const TokenType.con2('COMMA', 20, TokenClass.NO_CLASS, ",");
static const TokenType CARET = const TokenType.con2('CARET', 21, TokenClass.BITWISE_XOR_OPERATOR, "^");
static const TokenType CARET_EQ = const TokenType.con2('CARET_EQ', 22, TokenClass.ASSIGNMENT_OPERATOR, "^=");
static const TokenType CLOSE_CURLY_BRACKET = const TokenType.con2('CLOSE_CURLY_BRACKET', 23, TokenClass.NO_CLASS, "}");
static const TokenType CLOSE_PAREN = const TokenType.con2('CLOSE_PAREN', 24, TokenClass.NO_CLASS, ")");
static const TokenType CLOSE_SQUARE_BRACKET = const TokenType.con2('CLOSE_SQUARE_BRACKET', 25, TokenClass.NO_CLASS, "]");
static const TokenType EQ = const TokenType.con2('EQ', 26, TokenClass.ASSIGNMENT_OPERATOR, "=");
static const TokenType EQ_EQ = const TokenType.con2('EQ_EQ', 27, TokenClass.EQUALITY_OPERATOR, "==");
static const TokenType FUNCTION = const TokenType.con2('FUNCTION', 28, TokenClass.NO_CLASS, "=>");
static const TokenType GT = const TokenType.con2('GT', 29, TokenClass.RELATIONAL_OPERATOR, ">");
static const TokenType GT_EQ = const TokenType.con2('GT_EQ', 30, TokenClass.RELATIONAL_OPERATOR, ">=");
static const TokenType GT_GT = const TokenType.con2('GT_GT', 31, TokenClass.SHIFT_OPERATOR, ">>");
static const TokenType GT_GT_EQ = const TokenType.con2('GT_GT_EQ', 32, TokenClass.ASSIGNMENT_OPERATOR, ">>=");
static const TokenType HASH = const TokenType.con2('HASH', 33, TokenClass.NO_CLASS, "#");
static const TokenType INDEX = const TokenType.con2('INDEX', 34, TokenClass.UNARY_POSTFIX_OPERATOR, "[]");
static const TokenType INDEX_EQ = const TokenType.con2('INDEX_EQ', 35, TokenClass.UNARY_POSTFIX_OPERATOR, "[]=");
static const TokenType IS = const TokenType.con2('IS', 36, TokenClass.RELATIONAL_OPERATOR, "is");
static const TokenType LT = const TokenType.con2('LT', 37, TokenClass.RELATIONAL_OPERATOR, "<");
static const TokenType LT_EQ = const TokenType.con2('LT_EQ', 38, TokenClass.RELATIONAL_OPERATOR, "<=");
static const TokenType LT_LT = const TokenType.con2('LT_LT', 39, TokenClass.SHIFT_OPERATOR, "<<");
static const TokenType LT_LT_EQ = const TokenType.con2('LT_LT_EQ', 40, TokenClass.ASSIGNMENT_OPERATOR, "<<=");
static const TokenType MINUS = const TokenType.con2('MINUS', 41, TokenClass.ADDITIVE_OPERATOR, "-");
static const TokenType MINUS_EQ = const TokenType.con2('MINUS_EQ', 42, TokenClass.ASSIGNMENT_OPERATOR, "-=");
static const TokenType MINUS_MINUS = const TokenType.con2('MINUS_MINUS', 43, TokenClass.UNARY_PREFIX_OPERATOR, "--");
static const TokenType OPEN_CURLY_BRACKET = const TokenType.con2('OPEN_CURLY_BRACKET', 44, TokenClass.NO_CLASS, "{");
static const TokenType OPEN_PAREN = const TokenType.con2('OPEN_PAREN', 45, TokenClass.UNARY_POSTFIX_OPERATOR, "(");
static const TokenType OPEN_SQUARE_BRACKET = const TokenType.con2('OPEN_SQUARE_BRACKET', 46, TokenClass.UNARY_POSTFIX_OPERATOR, "[");
static const TokenType PERCENT = const TokenType.con2('PERCENT', 47, TokenClass.MULTIPLICATIVE_OPERATOR, "%");
static const TokenType PERCENT_EQ = const TokenType.con2('PERCENT_EQ', 48, TokenClass.ASSIGNMENT_OPERATOR, "%=");
static const TokenType PERIOD = const TokenType.con2('PERIOD', 49, TokenClass.UNARY_POSTFIX_OPERATOR, ".");
static const TokenType PERIOD_PERIOD = const TokenType.con2('PERIOD_PERIOD', 50, TokenClass.CASCADE_OPERATOR, "..");
static const TokenType PLUS = const TokenType.con2('PLUS', 51, TokenClass.ADDITIVE_OPERATOR, "+");
static const TokenType PLUS_EQ = const TokenType.con2('PLUS_EQ', 52, TokenClass.ASSIGNMENT_OPERATOR, "+=");
static const TokenType PLUS_PLUS = const TokenType.con2('PLUS_PLUS', 53, TokenClass.UNARY_PREFIX_OPERATOR, "++");
static const TokenType QUESTION = const TokenType.con2('QUESTION', 54, TokenClass.CONDITIONAL_OPERATOR, "?");
static const TokenType SEMICOLON = const TokenType.con2('SEMICOLON', 55, TokenClass.NO_CLASS, ";");
static const TokenType SLASH = const TokenType.con2('SLASH', 56, TokenClass.MULTIPLICATIVE_OPERATOR, "/");
static const TokenType SLASH_EQ = const TokenType.con2('SLASH_EQ', 57, TokenClass.ASSIGNMENT_OPERATOR, "/=");
static const TokenType STAR = const TokenType.con2('STAR', 58, TokenClass.MULTIPLICATIVE_OPERATOR, "*");
static const TokenType STAR_EQ = const TokenType.con2('STAR_EQ', 59, TokenClass.ASSIGNMENT_OPERATOR, "*=");
static const TokenType STRING_INTERPOLATION_EXPRESSION = const TokenType.con2('STRING_INTERPOLATION_EXPRESSION', 60, TokenClass.NO_CLASS, "\${");
static const TokenType STRING_INTERPOLATION_IDENTIFIER = const TokenType.con2('STRING_INTERPOLATION_IDENTIFIER', 61, TokenClass.NO_CLASS, "\$");
static const TokenType TILDE = const TokenType.con2('TILDE', 62, TokenClass.UNARY_PREFIX_OPERATOR, "~");
static const TokenType TILDE_SLASH = const TokenType.con2('TILDE_SLASH', 63, TokenClass.MULTIPLICATIVE_OPERATOR, "~/");
static const TokenType TILDE_SLASH_EQ = const TokenType.con2('TILDE_SLASH_EQ', 64, TokenClass.ASSIGNMENT_OPERATOR, "~/=");
static const TokenType BACKPING = const TokenType.con2('BACKPING', 65, TokenClass.NO_CLASS, "`");
static const TokenType BACKSLASH = const TokenType.con2('BACKSLASH', 66, TokenClass.NO_CLASS, "\\");
static const TokenType PERIOD_PERIOD_PERIOD = const TokenType.con2('PERIOD_PERIOD_PERIOD', 67, TokenClass.NO_CLASS, "...");
static const List<TokenType> values = const [
EOF,
DOUBLE,
HEXADECIMAL,
IDENTIFIER,
INT,
KEYWORD,
MULTI_LINE_COMMENT,
SCRIPT_TAG,
SINGLE_LINE_COMMENT,
STRING,
AMPERSAND,
AMPERSAND_AMPERSAND,
AMPERSAND_EQ,
AT,
BANG,
BANG_EQ,
BAR,
BAR_BAR,
BAR_EQ,
COLON,
COMMA,
CARET,
CARET_EQ,
CLOSE_CURLY_BRACKET,
CLOSE_PAREN,
CLOSE_SQUARE_BRACKET,
EQ,
EQ_EQ,
FUNCTION,
GT,
GT_EQ,
GT_GT,
GT_GT_EQ,
HASH,
INDEX,
INDEX_EQ,
IS,
LT,
LT_EQ,
LT_LT,
LT_LT_EQ,
MINUS,
MINUS_EQ,
MINUS_MINUS,
OPEN_CURLY_BRACKET,
OPEN_PAREN,
OPEN_SQUARE_BRACKET,
PERCENT,
PERCENT_EQ,
PERIOD,
PERIOD_PERIOD,
PLUS,
PLUS_EQ,
PLUS_PLUS,
QUESTION,
SEMICOLON,
SLASH,
SLASH_EQ,
STAR,
STAR_EQ,
STRING_INTERPOLATION_EXPRESSION,
STRING_INTERPOLATION_IDENTIFIER,
TILDE,
TILDE_SLASH,
TILDE_SLASH_EQ,
BACKPING,
BACKSLASH,
PERIOD_PERIOD_PERIOD];
/**
* The class of the token.
*/
final TokenClass _tokenClass;
/**
* The lexeme that defines this type of token, or `null` if there is more than one possible
* lexeme for this type of token.
*/
final String lexeme;
const TokenType.con1(String name, int ordinal) : this.con2(name, ordinal, TokenClass.NO_CLASS, null);
const TokenType.con2(String name, int ordinal, this._tokenClass, this.lexeme) : super(name, ordinal);
/**
* Return the precedence of the token, or `0` if the token does not represent an operator.
*
* @return the precedence of the token
*/
int get precedence => _tokenClass.precedence;
/**
* Return `true` if this type of token represents an additive operator.
*
* @return `true` if this type of token represents an additive operator
*/
bool get isAdditiveOperator => _tokenClass == TokenClass.ADDITIVE_OPERATOR;
/**
* Return `true` if this type of token represents an assignment operator.
*
* @return `true` if this type of token represents an assignment operator
*/
bool get isAssignmentOperator => _tokenClass == TokenClass.ASSIGNMENT_OPERATOR;
/**
* Return `true` if this type of token represents an associative operator. An associative
* operator is an operator for which the following equality is true:
* `(a * b) * c == a * (b * c)`. In other words, if the result of applying the operator to
* multiple operands does not depend on the order in which those applications occur.
*
* Note: This method considers the logical-and and logical-or operators to be associative, even
* though the order in which the application of those operators can have an effect because
* evaluation of the right-hand operand is conditional.
*
* @return `true` if this type of token represents an associative operator
*/
bool get isAssociativeOperator => this == AMPERSAND || this == AMPERSAND_AMPERSAND || this == BAR || this == BAR_BAR || this == CARET || this == PLUS || this == STAR;
/**
* Return `true` if this type of token represents an equality operator.
*
* @return `true` if this type of token represents an equality operator
*/
bool get isEqualityOperator => _tokenClass == TokenClass.EQUALITY_OPERATOR;
/**
* Return `true` if this type of token represents an increment operator.
*
* @return `true` if this type of token represents an increment operator
*/
bool get isIncrementOperator => identical(lexeme, "++") || identical(lexeme, "--");
/**
* Return `true` if this type of token represents a multiplicative operator.
*
* @return `true` if this type of token represents a multiplicative operator
*/
bool get isMultiplicativeOperator => _tokenClass == TokenClass.MULTIPLICATIVE_OPERATOR;
/**
* Return `true` if this token type represents an operator.
*
* @return `true` if this token type represents an operator
*/
bool get isOperator => _tokenClass != TokenClass.NO_CLASS && this != OPEN_PAREN && this != OPEN_SQUARE_BRACKET && this != PERIOD;
/**
* Return `true` if this type of token represents a relational operator.
*
* @return `true` if this type of token represents a relational operator
*/
bool get isRelationalOperator => _tokenClass == TokenClass.RELATIONAL_OPERATOR;
/**
* Return `true` if this type of token represents a shift operator.
*
* @return `true` if this type of token represents a shift operator
*/
bool get isShiftOperator => _tokenClass == TokenClass.SHIFT_OPERATOR;
/**
* Return `true` if this type of token represents a unary postfix operator.
*
* @return `true` if this type of token represents a unary postfix operator
*/
bool get isUnaryPostfixOperator => _tokenClass == TokenClass.UNARY_POSTFIX_OPERATOR;
/**
* Return `true` if this type of token represents a unary prefix operator.
*
* @return `true` if this type of token represents a unary prefix operator
*/
bool get isUnaryPrefixOperator => _tokenClass == TokenClass.UNARY_PREFIX_OPERATOR;
/**
* Return `true` if this token type represents an operator that can be defined by users.
*
* @return `true` if this token type represents an operator that can be defined by users
*/
bool get isUserDefinableOperator => identical(lexeme, "==") || identical(lexeme, "~") || identical(lexeme, "[]") || identical(lexeme, "[]=") || identical(lexeme, "*") || identical(lexeme, "/") || identical(lexeme, "%") || identical(lexeme, "~/") || identical(lexeme, "+") || identical(lexeme, "-") || identical(lexeme, "<<") || identical(lexeme, ">>") || identical(lexeme, ">=") || identical(lexeme, ">") || identical(lexeme, "<=") || identical(lexeme, "<") || identical(lexeme, "&") || identical(lexeme, "^") || identical(lexeme, "|");
}
class TokenType_EOF extends TokenType {
const TokenType_EOF(String name, int ordinal, TokenClass arg0, String arg1) : super.con2(name, ordinal, arg0, arg1);
@override
String toString() => "-eof-";
}
/**
* Instances of the class `TokenWithComment` represent a normal token that is preceded by
* comments.
*/
class TokenWithComment extends Token {
/**
* The first comment in the list of comments that precede this token.
*/
final Token _precedingComment;
/**
* Initialize a newly created token to have the given type and offset and to be preceded by the
* comments reachable from the given comment.
*
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
* @param precedingComment the first comment in the list of comments that precede this token
*/
TokenWithComment(TokenType type, int offset, this._precedingComment) : super(type, offset);
@override
Token copy() => new TokenWithComment(type, offset, _precedingComment);
@override
Token get precedingComments => _precedingComment;
}