blob: 34a16b071c9d577218ca30400a88a61dee1774cd [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library elements.modelx;
import 'elements.dart';
import '../../compiler.dart' as api;
import '../tree/tree.dart';
import '../util/util.dart';
import '../resolution/resolution.dart';
import '../dart2jslib.dart' show invariant,
InterfaceType,
DartType,
TypeVariableType,
TypedefType,
DualKind,
MessageKind,
DiagnosticListener,
Script,
FunctionType,
Selector,
Constant,
Compiler,
isPrivateName;
import '../dart_types.dart';
import '../scanner/scannerlib.dart' show Token, EOF_TOKEN;
import '../ordered_typeset.dart' show OrderedTypeSet;
import 'visitor.dart' show ElementVisitor;
abstract class ElementX implements Element {
static int elementHashCode = 0;
final String name;
final ElementKind kind;
final Element enclosingElement;
final int hashCode = ++elementHashCode;
Link<MetadataAnnotation> metadata = const Link<MetadataAnnotation>();
ElementX(this.name, this.kind, this.enclosingElement) {
assert(isErroneous() || getImplementationLibrary() != null);
}
Modifiers get modifiers => Modifiers.EMPTY;
Node parseNode(DiagnosticListener listener) {
listener.internalErrorOnElement(this, 'not implemented');
}
DartType computeType(Compiler compiler) {
compiler.internalError("$this.computeType.", token: position());
}
void addMetadata(MetadataAnnotation annotation) {
assert(annotation.annotatedElement == null);
annotation.annotatedElement = this;
metadata = metadata.prepend(annotation);
}
bool isFunction() => identical(kind, ElementKind.FUNCTION);
bool isConstructor() => isFactoryConstructor() || isGenerativeConstructor();
bool isClosure() => false;
bool isMember() {
// Check that this element is defined in the scope of a Class.
return enclosingElement != null && enclosingElement.isClass();
}
bool isInstanceMember() => false;
bool isFactoryConstructor() => modifiers.isFactory();
bool isGenerativeConstructor() =>
identical(kind, ElementKind.GENERATIVE_CONSTRUCTOR);
bool isGenerativeConstructorBody() =>
identical(kind, ElementKind.GENERATIVE_CONSTRUCTOR_BODY);
bool isCompilationUnit() => identical(kind, ElementKind.COMPILATION_UNIT);
bool isClass() => identical(kind, ElementKind.CLASS);
bool isPrefix() => identical(kind, ElementKind.PREFIX);
bool isVariable() => identical(kind, ElementKind.VARIABLE);
bool isParameter() => identical(kind, ElementKind.PARAMETER);
bool isStatement() => identical(kind, ElementKind.STATEMENT);
bool isTypedef() => identical(kind, ElementKind.TYPEDEF);
bool isTypeVariable() => identical(kind, ElementKind.TYPE_VARIABLE);
bool isField() => identical(kind, ElementKind.FIELD);
bool isFieldParameter() => identical(kind, ElementKind.FIELD_PARAMETER);
bool isAbstractField() => identical(kind, ElementKind.ABSTRACT_FIELD);
bool isGetter() => identical(kind, ElementKind.GETTER);
bool isSetter() => identical(kind, ElementKind.SETTER);
bool isAccessor() => isGetter() || isSetter();
bool isLibrary() => identical(kind, ElementKind.LIBRARY);
bool impliesType() => (kind.category & ElementCategory.IMPLIES_TYPE) != 0;
/** See [ErroneousElement] for documentation. */
bool isErroneous() => false;
/** See [AmbiguousElement] for documentation. */
bool isAmbiguous() => false;
/** See [WarnOnUseElement] for documentation. */
bool isWarnOnUse() => false;
/**
* Is [:true:] if this element has a corresponding patch.
*
* If [:true:] this element has a non-null [patch] field.
*
* See [:patch_parser.dart:] for a description of the terminology.
*/
bool get isPatched => false;
/**
* Is [:true:] if this element is a patch.
*
* If [:true:] this element has a non-null [origin] field.
*
* See [:patch_parser.dart:] for a description of the terminology.
*/
bool get isPatch => false;
/**
* Is [:true:] if this element defines the implementation for the entity of
* this element.
*
* See [:patch_parser.dart:] for a description of the terminology.
*/
bool get isImplementation => !isPatched;
/**
* Is [:true:] if this element introduces the entity of this element.
*
* See [:patch_parser.dart:] for a description of the terminology.
*/
bool get isDeclaration => !isPatch;
bool get isSynthesized => false;
bool get isForwardingConstructor => false;
bool get isMixinApplication => false;
/**
* Returns the element which defines the implementation for the entity of this
* element.
*
* See [:patch_parser.dart:] for a description of the terminology.
*/
Element get implementation => isPatched ? patch : this;
/**
* Returns the element which introduces the entity of this element.
*
* See [:patch_parser.dart:] for a description of the terminology.
*/
Element get declaration => isPatch ? origin : this;
Element get patch {
throw new UnsupportedError('patch is not supported on $this');
}
Element get origin {
throw new UnsupportedError('origin is not supported on $this');
}
// TODO(johnniwinther): This breaks for libraries (for which enclosing
// elements are null) and is invalid for top level variable declarations for
// which the enclosing element is a VariableDeclarations and not a compilation
// unit.
bool isTopLevel() {
return enclosingElement != null && enclosingElement.isCompilationUnit();
}
bool isAssignable() {
if (modifiers.isFinalOrConst()) return false;
if (isFunction() || isGenerativeConstructor()) return false;
return true;
}
Token position() => null;
Token findMyName(Token token) {
return findNameToken(token, isConstructor(), name, enclosingElement.name);
}
static Token findNameToken(Token token, bool isConstructor, String name,
String enclosingClassName) {
// We search for the token that has the name of this element.
// For constructors, that doesn't work because they may have
// named formed out of multiple tokens (named constructors) so
// for those we search for the class name instead.
String needle = isConstructor ? enclosingClassName : name;
// The unary '-' operator has a special element name (specified).
if (needle == 'unary-') needle = '-';
for (Token t = token; EOF_TOKEN != t.kind; t = t.next) {
if (needle == t.value) return t;
}
return token;
}
CompilationUnitElement getCompilationUnit() {
Element element = this;
while (!element.isCompilationUnit()) {
element = element.enclosingElement;
}
return element;
}
LibraryElement getLibrary() => enclosingElement.getLibrary();
LibraryElement getImplementationLibrary() {
Element element = this;
while (!identical(element.kind, ElementKind.LIBRARY)) {
element = element.enclosingElement;
}
return element;
}
ClassElement getEnclosingClass() {
for (Element e = this; e != null; e = e.enclosingElement) {
if (e.isClass()) return e;
}
return null;
}
Element getEnclosingClassOrCompilationUnit() {
for (Element e = this; e != null; e = e.enclosingElement) {
if (e.isClass() || e.isCompilationUnit()) return e;
}
return null;
}
/**
* Returns the member enclosing this element or the element itself if it is a
* member. If no enclosing element is found, [:null:] is returned.
*/
Element getEnclosingMember() {
for (Element e = this; e != null; e = e.enclosingElement) {
if (e.isMember()) return e;
}
return null;
}
Element getOutermostEnclosingMemberOrTopLevel() {
// TODO(lrn): Why is this called "Outermost"?
for (Element e = this; e != null; e = e.enclosingElement) {
if (e.isMember() || e.isTopLevel()) {
return e;
}
}
return null;
}
/**
* Creates the scope for this element.
*/
Scope buildScope() => enclosingElement.buildScope();
String toString() {
// TODO(johnniwinther): Test for nullness of name, or make non-nullness an
// invariant for all element types?
var nameText = name != null ? name : '?';
if (enclosingElement != null && !isTopLevel()) {
String holderName = enclosingElement.name != null
? enclosingElement.name
: '${enclosingElement.kind}?';
return '$kind($holderName#${nameText})';
} else {
return '$kind(${nameText})';
}
}
String _fixedBackendName = null;
bool _isNative = false;
bool isNative() => _isNative;
bool hasFixedBackendName() => _fixedBackendName != null;
String fixedBackendName() => _fixedBackendName;
// Marks this element as a native element.
void setNative(String name) {
_isNative = true;
_fixedBackendName = name;
}
void setFixedBackendName(String name) {
_fixedBackendName = name;
}
FunctionElement asFunctionElement() => null;
bool get isAbstract => modifiers.isAbstract();
bool isForeign(Compiler compiler) => getLibrary() == compiler.foreignLibrary;
FunctionElement get targetConstructor => null;
void diagnose(Element context, DiagnosticListener listener) {}
}
/**
* Represents an unresolvable or duplicated element.
*
* An [ErroneousElement] is used instead of [:null:] to provide additional
* information about the error that caused the element to be unresolvable
* or otherwise invalid.
*
* Accessing any field or calling any method defined on [ErroneousElement]
* except [isErroneous] will currently throw an exception. (This might
* change when we actually want more information on the erroneous element,
* e.g., the name of the element we were trying to resolve.)
*
* Code that cannot not handle an [ErroneousElement] should use
* [: Element.isInvalid(element) :]
* to check for unresolvable elements instead of
* [: element == null :].
*/
class ErroneousElementX extends ElementX implements ErroneousElement {
final MessageKind messageKind;
final Map messageArguments;
ErroneousElementX(this.messageKind, this.messageArguments,
String name, Element enclosing)
: super(name, ElementKind.ERROR, enclosing);
isErroneous() => true;
unsupported() {
throw 'unsupported operation on erroneous element';
}
Link<MetadataAnnotation> get metadata => unsupported();
get type => unsupported();
get cachedNode => unsupported();
get functionSignature => unsupported();
get patch => null;
get origin => this;
get defaultImplementation => unsupported();
get nestedClosures => unsupported();
bool get isRedirectingFactory => unsupported();
setPatch(patch) => unsupported();
computeSignature(compiler) => unsupported();
requiredParameterCount(compiler) => unsupported();
optionalParameterCount(compiler) => unsupported();
parameterCount(compiler) => unsupported();
// TODO(kasperl): These seem unnecessary.
set patch(value) => unsupported();
set origin(value) => unsupported();
set defaultImplementation(value) => unsupported();
get redirectionTarget => this;
getLibrary() => enclosingElement.getLibrary();
computeTargetType(InterfaceType newType) => unsupported();
String get message => '${messageKind.message(messageArguments)}';
String toString() => '<$name: $message>';
accept(ElementVisitor visitor) => visitor.visitErroneousElement(this);
}
/// A message attached to a [WarnOnUseElementX].
class WrappedMessage {
/// The message position. If [:null:] the position of the reference to the
/// [WarnOnUseElementX] is used.
final Spannable spannable;
/**
* The message to report on resolving a wrapped element.
*/
final MessageKind messageKind;
/**
* The message arguments to report on resolving a wrapped element.
*/
final Map messageArguments;
WrappedMessage(this.spannable, this.messageKind, this.messageArguments);
}
/**
* An [Element] whose reference should cause one or more warnings.
*/
class WarnOnUseElementX extends ElementX implements WarnOnUseElement {
/// Warning to report on resolving this element.
final WrappedMessage warning;
/// Info to report on resolving this element.
final WrappedMessage info;
/// The element whose usage cause a warning.
final Element wrappedElement;
WarnOnUseElementX(WrappedMessage this.warning, WrappedMessage this.info,
Element enclosingElement, Element wrappedElement)
: this.wrappedElement = wrappedElement,
super(wrappedElement.name, ElementKind.WARN_ON_USE, enclosingElement);
bool isWarnOnUse() => true;
Element unwrap(DiagnosticListener listener, Spannable usageSpannable) {
var unwrapped = wrappedElement;
if (warning != null) {
Spannable spannable = warning.spannable;
if (spannable == null) spannable = usageSpannable;
listener.reportWarningCode(
spannable, warning.messageKind, warning.messageArguments);
}
if (info != null) {
Spannable spannable = info.spannable;
if (spannable == null) spannable = usageSpannable;
listener.reportInfo(
spannable, info.messageKind, info.messageArguments);
}
if (unwrapped.isWarnOnUse()) {
unwrapped = unwrapped.unwrap(listener, usageSpannable);
}
return unwrapped;
}
accept(ElementVisitor visitor) => visitor.visitWarnOnUseElement(this);
}
/**
* An ambiguous element represents multiple elements accessible by the same name.
*
* Ambiguous elements are created during handling of import/export scopes. If an
* ambiguous element is encountered during resolution a warning/error should be
* reported.
*/
class AmbiguousElementX extends ElementX implements AmbiguousElement {
/**
* The message to report on resolving this element.
*/
final DualKind messageKind;
/**
* The message arguments to report on resolving this element.
*/
final Map messageArguments;
/**
* The first element that this ambiguous element might refer to.
*/
final Element existingElement;
/**
* The second element that this ambiguous element might refer to.
*/
final Element newElement;
AmbiguousElementX(this.messageKind, this.messageArguments,
Element enclosingElement, Element existingElement, Element newElement)
: this.existingElement = existingElement,
this.newElement = newElement,
super(existingElement.name, ElementKind.AMBIGUOUS, enclosingElement);
bool isAmbiguous() => true;
Setlet flatten() {
Element element = this;
var set = new Setlet();
while (element.isAmbiguous()) {
AmbiguousElement ambiguous = element;
set.add(ambiguous.newElement);
element = ambiguous.existingElement;
}
set.add(element);
return set;
}
void diagnose(Element context, DiagnosticListener listener) {
Setlet ambiguousElements = flatten();
MessageKind code = (ambiguousElements.length == 1)
? MessageKind.AMBIGUOUS_REEXPORT : MessageKind.AMBIGUOUS_LOCATION;
LibraryElementX importer = context.getLibrary();
for (Element element in ambiguousElements) {
var arguments = {'name': element.name};
listener.reportInfo(element, code, arguments);
Link<Import> importers = importer.importers.getImports(element);
listener.withCurrentElement(importer, () {
for (; !importers.isEmpty; importers = importers.tail) {
listener.reportInfo(
importers.head, MessageKind.IMPORTED_HERE, arguments);
}
});
}
}
accept(ElementVisitor visitor) => visitor.visitAmbiguousElement(this);
}
class ScopeX {
final Map<String, Element> contents = new Map<String, Element>();
bool get isEmpty => contents.isEmpty;
Iterable<Element> get values => contents.values;
Element lookup(String name) {
return contents[name];
}
void add(Element element, DiagnosticListener listener) {
String name = element.name;
if (element.isAccessor()) {
addAccessor(element, contents[name], listener);
} else {
Element existing = contents.putIfAbsent(name, () => element);
if (!identical(existing, element)) {
listener.reportError(
element, MessageKind.DUPLICATE_DEFINITION, {'name': name});
listener.reportMessage(
listener.spanFromSpannable(existing),
MessageKind.EXISTING_DEFINITION.error({'name': name}),
api.Diagnostic.INFO);
}
}
}
/**
* Adds a definition for an [accessor] (getter or setter) to a scope.
* The definition binds to an abstract field that can hold both a getter
* and a setter.
*
* The abstract field is added once, for the first getter or setter, and
* reused if the other one is also added.
* The abstract field should not be treated as a proper member of the
* container, it's simply a way to return two results for one lookup.
* That is, the getter or setter does not have the abstract field as enclosing
* element, they are enclosed by the class or compilation unit, as is the
* abstract field.
*/
void addAccessor(Element accessor,
Element existing,
DiagnosticListener listener) {
void reportError(Element other) {
// TODO(ahe): Do something similar to Resolver.reportErrorWithContext.
listener.cancel('duplicate definition of ${accessor.name}',
element: accessor);
listener.cancel('existing definition', element: other);
}
if (existing != null) {
if (!identical(existing.kind, ElementKind.ABSTRACT_FIELD)) {
reportError(existing);
} else {
AbstractFieldElementX field = existing;
if (accessor.isGetter()) {
if (field.getter != null && field.getter != accessor) {
reportError(field.getter);
}
field.getter = accessor;
} else {
assert(accessor.isSetter());
if (field.setter != null && field.setter != accessor) {
reportError(field.setter);
}
field.setter = accessor;
}
}
} else {
Element container = accessor.getEnclosingClassOrCompilationUnit();
AbstractFieldElementX field =
new AbstractFieldElementX(accessor.name, container);
if (accessor.isGetter()) {
field.getter = accessor;
} else {
field.setter = accessor;
}
add(field, listener);
}
}
}
class CompilationUnitElementX extends ElementX
implements CompilationUnitElement {
final Script script;
PartOf partTag;
Link<Element> localMembers = const Link<Element>();
CompilationUnitElementX(Script script, LibraryElement library)
: this.script = script,
super(script.name,
ElementKind.COMPILATION_UNIT,
library) {
library.addCompilationUnit(this);
}
void forEachLocalMember(f(Element element)) {
localMembers.forEach(f);
}
void addMember(Element element, DiagnosticListener listener) {
// Keep a list of top level members.
localMembers = localMembers.prepend(element);
// Provide the member to the library to build scope.
if (enclosingElement.isPatch) {
getImplementationLibrary().addMember(element, listener);
} else {
getLibrary().addMember(element, listener);
}
}
void setPartOf(PartOf tag, DiagnosticListener listener) {
LibraryElementX library = enclosingElement;
if (library.entryCompilationUnit == this) {
listener.reportMessage(
listener.spanFromSpannable(tag),
MessageKind.ILLEGAL_DIRECTIVE.error(),
api.Diagnostic.WARNING);
return;
}
if (!localMembers.isEmpty) {
listener.reportError(tag, MessageKind.BEFORE_TOP_LEVEL);
return;
}
if (partTag != null) {
listener.reportMessage(
listener.spanFromSpannable(tag),
MessageKind.DUPLICATED_PART_OF.error(),
api.Diagnostic.WARNING);
return;
}
partTag = tag;
LibraryName libraryTag = getLibrary().libraryTag;
String actualName = tag.name.toString();
if (libraryTag != null) {
String expectedName = libraryTag.name.toString();
if (expectedName != actualName) {
listener.reportWarningCode(tag.name,
MessageKind.LIBRARY_NAME_MISMATCH,
{'libraryName': expectedName});
}
} else {
listener.reportWarningCode(getLibrary(),
MessageKind.MISSING_LIBRARY_NAME,
{'libraryName': actualName});
listener.reportInfo(tag.name,
MessageKind.THIS_IS_THE_PART_OF_TAG);
}
}
bool get hasMembers => !localMembers.isEmpty;
int compareTo(CompilationUnitElement other) {
if (this == other) return 0;
return '${script.uri}'.compareTo('${other.script.uri}');
}
accept(ElementVisitor visitor) => visitor.visitCompilationUnitElement(this);
}
class Importers {
Map<Element, Link<Import>> importers = new Map<Element, Link<Import>>();
Link<Import> getImports(Element element) {
Link<Import> imports = importers[element];
return imports != null ? imports : const Link<Import>();
}
Import getImport(Element element) => getImports(element).head;
void registerImport(Element element, Import import) {
if (import == null) return;
importers[element] =
importers.putIfAbsent(element, () => const Link<Import>())
.prepend(import);
}
}
class ImportScope {
/**
* Map for elements imported through import declarations.
*
* Addition to the map is performed by [addImport]. Lookup is done trough
* [find].
*/
final Map<String, Element> importScope =
new Map<String, Element>();
/**
* Adds [element] to the import scope of this library.
*
* If an element by the same name is already in the imported scope, an
* [ErroneousElement] will be put in the imported scope, allowing for
* detection of ambiguous uses of imported names.
*/
void addImport(Element enclosingElement,
Element element,
Import import,
DiagnosticListener listener) {
LibraryElementX library = enclosingElement.getLibrary();
Importers importers = library.importers;
String name = element.name;
Element existing = importScope.putIfAbsent(name, () => element);
importers.registerImport(element, import);
void registerWarnOnUseElement(Import import,
MessageKind messageKind,
Element hidingElement,
Element hiddenElement) {
Uri hiddenUri = hiddenElement.getLibrary().canonicalUri;
Uri hidingUri = hidingElement.getLibrary().canonicalUri;
Element element = new WarnOnUseElementX(
new WrappedMessage(
null, // Report on reference to [hidingElement].
messageKind,
{'name': name, 'hiddenUri': hiddenUri, 'hidingUri': hidingUri}),
new WrappedMessage(
listener.spanFromSpannable(import),
MessageKind.IMPORTED_HERE,
{'name': name}),
enclosingElement, hidingElement);
importScope[name] = element;
importers.registerImport(element, import);
}
if (existing != element) {
Import existingImport = importers.getImport(existing);
Element newElement;
if (existing.getLibrary().isPlatformLibrary &&
!element.getLibrary().isPlatformLibrary) {
// [existing] is implicitly hidden.
registerWarnOnUseElement(
import, MessageKind.HIDDEN_IMPORT, element, existing);
} else if (!existing.getLibrary().isPlatformLibrary &&
element.getLibrary().isPlatformLibrary) {
// [element] is implicitly hidden.
if (import == null) {
// [element] is imported implicitly (probably through dart:core).
registerWarnOnUseElement(
existingImport, MessageKind.HIDDEN_IMPLICIT_IMPORT,
existing, element);
} else {
registerWarnOnUseElement(
import, MessageKind.HIDDEN_IMPORT, existing, element);
}
} else {
Element ambiguousElement = new AmbiguousElementX(
MessageKind.DUPLICATE_IMPORT, {'name': name},
enclosingElement, existing, element);
importScope[name] = ambiguousElement;
importers.registerImport(ambiguousElement, import);
importers.registerImport(ambiguousElement, existingImport);
}
}
}
Element operator [](String name) => importScope[name];
}
class LibraryElementX extends ElementX implements LibraryElement {
final Uri canonicalUri;
CompilationUnitElement entryCompilationUnit;
Link<CompilationUnitElement> compilationUnits =
const Link<CompilationUnitElement>();
Link<LibraryTag> tags = const Link<LibraryTag>();
LibraryName libraryTag;
bool canUseNative = false;
Link<Element> localMembers = const Link<Element>();
final ScopeX localScope = new ScopeX();
final ImportScope importScope = new ImportScope();
/**
* If this library is patched, [patch] points to the patch library.
*
* See [:patch_parser.dart:] for a description of the terminology.
*/
LibraryElementX patch = null;
/**
* If this is a patch library, [origin] points to the origin library.
*
* See [:patch_parser.dart:] for a description of the terminology.
*/
final LibraryElementX origin;
/// A mapping from an imported element to the "import" tag.
final Importers importers = new Importers();
/**
* Link for elements exported either through export declarations or through
* declaration. This field should not be accessed directly but instead through
* the [exports] getter.
*
* [LibraryDependencyHandler] sets this field through [setExports] when the
* library is loaded.
*/
Link<Element> slotForExports;
final Map<LibraryDependency, LibraryElement> tagMapping =
new Map<LibraryDependency, LibraryElement>();
LibraryElementX(Script script, [Uri canonicalUri, LibraryElement this.origin])
: this.canonicalUri = ((canonicalUri == null) ? script.uri : canonicalUri),
super(script.name, ElementKind.LIBRARY, null) {
entryCompilationUnit = new CompilationUnitElementX(script, this);
if (isPatch) {
origin.patch = this;
}
}
bool get isPatched => patch != null;
bool get isPatch => origin != null;
LibraryElement get declaration => super.declaration;
LibraryElement get implementation => super.implementation;
Link<MetadataAnnotation> get metadata {
return (libraryTag == null) ? super.metadata : libraryTag.metadata;
}
set metadata(value) {
// The metadata is stored on [libraryTag].
throw new SpannableAssertionFailure(this, 'Cannot set metadata on Library');
}
CompilationUnitElement getCompilationUnit() => entryCompilationUnit;
void addCompilationUnit(CompilationUnitElement element) {
compilationUnits = compilationUnits.prepend(element);
}
void addTag(LibraryTag tag, DiagnosticListener listener) {
tags = tags.prepend(tag);
}
void recordResolvedTag(LibraryDependency tag, LibraryElement library) {
assert(tagMapping[tag] == null);
tagMapping[tag] = library;
}
LibraryElement getLibraryFromTag(LibraryDependency tag) => tagMapping[tag];
/**
* Adds [element] to the import scope of this library.
*
* If an element by the same name is already in the imported scope, an
* [ErroneousElement] will be put in the imported scope, allowing for detection of ambiguous uses of imported names.
*/
void addImport(Element element, Import import, DiagnosticListener listener) {
importScope.addImport(this, element, import, listener);
}
void addMember(Element element, DiagnosticListener listener) {
localMembers = localMembers.prepend(element);
addToScope(element, listener);
}
void addToScope(Element element, DiagnosticListener listener) {
localScope.add(element, listener);
}
Element localLookup(String elementName) {
Element result = localScope.lookup(elementName);
if (result == null && isPatch) {
result = origin.localLookup(elementName);
}
return result;
}
/**
* Returns [:true:] if the export scope has already been computed for this
* library.
*/
bool get exportsHandled => slotForExports != null;
Link<Element> get exports {
assert(invariant(this, exportsHandled,
message: 'Exports not handled on $this'));
return slotForExports;
}
/**
* Sets the export scope of this library. This method can only be called once.
*/
void setExports(Iterable<Element> exportedElements) {
assert(invariant(this, !exportsHandled,
message: 'Exports already set to $slotForExports on $this'));
assert(invariant(this, exportedElements != null));
var builder = new LinkBuilder<Element>();
for (Element export in exportedElements) {
builder.addLast(export);
}
slotForExports = builder.toLink();
}
LibraryElement getLibrary() => isPatch ? origin : this;
/**
* Look up a top-level element in this library. The element could
* potentially have been imported from another library. Returns
* null if no such element exist and an [ErroneousElement] if multiple
* elements have been imported.
*/
Element find(String elementName) {
Element result = localScope.lookup(elementName);
if (result != null) return result;
if (origin != null) {
result = origin.localScope.lookup(elementName);
if (result != null) return result;
}
result = importScope[elementName];
if (result != null) return result;
if (origin != null) {
result = origin.importScope[elementName];
if (result != null) return result;
}
return null;
}
/** Look up a top-level element in this library, but only look for
* non-imported elements. Returns null if no such element exist. */
Element findLocal(String elementName) {
// TODO(johnniwinther): How to handle injected elements in the patch
// library?
Element result = localScope.lookup(elementName);
if (result == null || result.getLibrary() != this) return null;
return result;
}
Element findExported(String elementName) {
for (Link link = exports; !link.isEmpty; link = link.tail) {
Element element = link.head;
if (element.name == elementName) return element;
}
return null;
}
void forEachExport(f(Element element)) {
exports.forEach((Element e) => f(e));
}
Link<Import> getImportsFor(Element element) => importers.getImports(element);
void forEachLocalMember(f(Element element)) {
if (isPatch) {
// Patch libraries traverse both origin and injected members.
origin.localMembers.forEach(f);
void filterPatch(Element element) {
if (!element.isPatch) {
// Do not traverse the patch members.
f(element);
}
}
localMembers.forEach(filterPatch);
} else {
localMembers.forEach(f);
}
}
Iterable<Element> getNonPrivateElementsInScope() {
return localScope.values.where((Element element) {
// At this point [localScope] only contains members so we don't need
// to check for foreign or prefix elements.
return !isPrivateName(element.name);
});
}
bool hasLibraryName() => libraryTag != null;
/**
* Returns the library name, which is either the name given in the library tag
* or the empty string if there is no library tag.
*/
String getLibraryName() {
if (libraryTag == null) return '';
return libraryTag.name.toString();
}
/**
* Returns the library name (as defined by the library tag) or for script
* (which have no library tag) the script file name. The latter case is used
* to private 'library name' for scripts to use for instance in dartdoc.
*
* Note: the returned filename will still be escaped ("a%20b.dart" instead of
* "a b.dart").
*/
String getLibraryOrScriptName() {
if (libraryTag != null) {
return libraryTag.name.toString();
} else {
// Use the file name as script name.
String path = canonicalUri.path;
return path.substring(path.lastIndexOf('/') + 1);
}
}
Scope buildScope() => new LibraryScope(this);
bool get isPlatformLibrary => canonicalUri.scheme == 'dart';
bool get isPackageLibrary => canonicalUri.scheme == 'package';
bool get isInternalLibrary =>
isPlatformLibrary && canonicalUri.path.startsWith('_');
String toString() {
if (origin != null) {
return 'patch library(${getLibraryOrScriptName()})';
} else if (patch != null) {
return 'origin library(${getLibraryOrScriptName()})';
} else {
return 'library(${getLibraryOrScriptName()})';
}
}
int compareTo(LibraryElement other) {
if (this == other) return 0;
return getLibraryOrScriptName().compareTo(other.getLibraryOrScriptName());
}
accept(ElementVisitor visitor) => visitor.visitLibraryElement(this);
}
class PrefixElementX extends ElementX implements PrefixElement {
Token firstPosition;
final ImportScope importScope = new ImportScope();
PrefixElementX(String prefix, Element enclosing, this.firstPosition)
: super(prefix, ElementKind.PREFIX, enclosing);
Element lookupLocalMember(String memberName) => importScope[memberName];
DartType computeType(Compiler compiler) => compiler.types.dynamicType;
Token position() => firstPosition;
void addImport(Element element, Import import, DiagnosticListener listener) {
importScope.addImport(this, element, import, listener);
}
accept(ElementVisitor visitor) => visitor.visitPrefixElement(this);
}
class TypedefElementX extends ElementX implements TypedefElement {
Typedef cachedNode;
/**
* The type of this typedef in which the type arguments are the type
* variables.
*
* This resembles the [ClassElement.thisType] though a typedef has no notion
* of [:this:].
*
* This type is computed in [computeType].
*/
TypedefType thisType;
/**
* Canonicalized raw version of [thisType].
*
* See [ClassElement.rawType] for motivation.
*
* The [rawType] is computed together with [thisType] in [computeType].
*/
TypedefType rawType;
/**
* The type annotation which defines this typedef.
*/
DartType alias;
/// [:true:] if the typedef has been checked for cyclic reference.
bool hasBeenCheckedForCycles = false;
bool get isResolved => mapping != null;
// TODO(johnniwinther): Store the mapping in the resolution enqueuer instead.
TreeElements mapping;
TypedefElementX(String name, Element enclosing)
: super(name, ElementKind.TYPEDEF, enclosing);
/**
* Function signature for a typedef of a function type. The signature is
* kept to provide full information about parameter names through the mirror
* system.
*
* The [functionSignature] is not available until the typedef element has been
* resolved.
*/
FunctionSignature functionSignature;
TypedefType computeType(Compiler compiler) {
if (thisType != null) return thisType;
Typedef node = parseNode(compiler);
Link<DartType> parameters =
TypeDeclarationElementX.createTypeVariables(this, node.typeParameters);
thisType = new TypedefType(this, parameters);
if (parameters.isEmpty) {
rawType = thisType;
} else {
var dynamicParameters = const Link<DartType>();
parameters.forEach((_) {
dynamicParameters =
dynamicParameters.prepend(compiler.types.dynamicType);
});
rawType = new TypedefType(this, dynamicParameters);
}
compiler.resolveTypedef(this);
return thisType;
}
Link<DartType> get typeVariables => thisType.typeArguments;
Scope buildScope() {
return new TypeDeclarationScope(enclosingElement.buildScope(), this);
}
void checkCyclicReference(Compiler compiler) {
if (hasBeenCheckedForCycles) return;
var visitor = new TypedefCyclicVisitor(compiler, this);
computeType(compiler).accept(visitor, null);
hasBeenCheckedForCycles = true;
}
accept(ElementVisitor visitor) => visitor.visitTypedefElement(this);
}
class VariableElementX extends ElementX implements VariableElement {
final VariableListElement variables;
Expression cachedNode; // The send or the identifier in the variables list.
Modifiers get modifiers => variables.modifiers;
VariableElementX(String name,
VariableListElement variables,
ElementKind kind,
this.cachedNode)
: this.variables = variables,
super(name, kind, variables.enclosingElement);
VariableElementX.synthetic(String name,
ElementKind kind,
Element enclosing) :
variables = null,
super(name, kind, enclosing);
Node parseNode(DiagnosticListener listener) {
if (cachedNode != null) return cachedNode;
VariableDefinitions definitions = variables.parseNode(listener);
for (Link<Node> link = definitions.definitions.nodes;
!link.isEmpty; link = link.tail) {
Expression initializedIdentifier = link.head;
Identifier identifier = initializedIdentifier.asIdentifier();
if (identifier == null) {
identifier = initializedIdentifier.asSendSet().selector.asIdentifier();
}
if (identical(name, identifier.source)) {
cachedNode = initializedIdentifier;
return cachedNode;
}
}
listener.cancel('internal error: could not find $name', node: variables);
}
DartType computeType(Compiler compiler) {
return variables.computeType(compiler);
}
bool isInstanceMember() => variables.isInstanceMember();
// Note: cachedNode.getBeginToken() will not be correct in all
// cases, for example, for function typed parameters.
Token position() => findMyName(variables.position());
accept(ElementVisitor visitor) => visitor.visitVariableElement(this);
}
class FieldElementX extends VariableElementX implements FieldElement {
List<FunctionElement> nestedClosures = new List<FunctionElement>();
FieldElementX(String name,
VariableListElement variables,
Expression cachedNode)
: super(name, variables, ElementKind.FIELD, cachedNode);
accept(ElementVisitor visitor) => visitor.visitFieldElement(this);
}
/**
* Parameters in constructors that directly initialize fields. For example:
* [:A(this.field):].
*/
class FieldParameterElementX extends VariableElementX
implements FieldParameterElement {
VariableElement fieldElement;
FieldParameterElementX(String name,
this.fieldElement,
VariableListElement variables,
Node node)
: super(name, variables, ElementKind.FIELD_PARAMETER, node);
DartType computeType(Compiler compiler) {
VariableDefinitions definitions = variables.parseNode(compiler);
if (definitions.type == null) {
return fieldElement.computeType(compiler);
}
return super.computeType(compiler);
}
accept(ElementVisitor visitor) => visitor.visitFieldParameterElement(this);
}
// This element represents a list of variable or field declaration.
// It contains the node, and the type. A [VariableElement] always
// references its [VariableListElement]. It forwards its
// [computeType] and [parseNode] methods to this element.
class VariableListElementX extends ElementX implements VariableListElement {
VariableDefinitions cachedNode;
DartType type;
final Modifiers modifiers;
/**
* Function signature for a variable with a function type. The signature is
* kept to provide full information about parameter names through the mirror
* system.
*/
FunctionSignature functionSignature;
VariableListElementX(ElementKind kind,
Modifiers this.modifiers,
Element enclosing)
: super(null, kind, enclosing);
VariableListElementX.node(VariableDefinitions node,
ElementKind kind,
Element enclosing)
: super(null, kind, enclosing),
this.cachedNode = node,
this.modifiers = node.modifiers {
assert(modifiers != null);
}
VariableDefinitions parseNode(DiagnosticListener listener) {
return cachedNode;
}
DartType computeType(Compiler compiler) {
if (type != null) return type;
compiler.withCurrentElement(this, () {
VariableDefinitions node = parseNode(compiler);
if (node.type != null) {
type = compiler.resolveTypeAnnotation(this, node.type);
} else {
// Is node.definitions exactly one FunctionExpression?
Link<Node> link = node.definitions.nodes;
if (!link.isEmpty &&
link.head.asFunctionExpression() != null &&
link.tail.isEmpty) {
FunctionExpression functionExpression = link.head;
// We found exactly one FunctionExpression
functionSignature =
compiler.resolveFunctionExpression(this, functionExpression);
// TODO(johnniwinther): Use the parameter's [VariableElement] instead
// of [functionClass].
type = compiler.computeFunctionType(compiler.functionClass,
functionSignature);
} else {
type = compiler.types.dynamicType;
}
}
});
assert(type != null);
return type;
}
Token position() => cachedNode.getBeginToken();
bool isInstanceMember() {
return isMember() && !modifiers.isStatic();
}
accept(ElementVisitor visitor) => visitor.visitVariableListElement(this);
}
class AbstractFieldElementX extends ElementX implements AbstractFieldElement {
FunctionElement getter;
FunctionElement setter;
AbstractFieldElementX(String name, Element enclosing)
: super(name, ElementKind.ABSTRACT_FIELD, enclosing);
DartType computeType(Compiler compiler) {
throw "internal error: AbstractFieldElement has no type";
}
Node parseNode(DiagnosticListener listener) {
throw "internal error: AbstractFieldElement has no node";
}
Token position() {
// The getter and setter may be defined in two different
// compilation units. However, we know that one of them is
// non-null and defined in the same compilation unit as the
// abstract element.
// TODO(lrn): No we don't know that if the element from the same
// compilation unit is patched.
//
// We need to make sure that the position returned is relative to
// the compilation unit of the abstract element.
if (getter != null
&& identical(getter.getCompilationUnit(), getCompilationUnit())) {
return getter.position();
} else {
return setter.position();
}
}
Modifiers get modifiers {
// The resolver ensures that the flags match (ignoring abstract).
if (getter != null) {
return new Modifiers.withFlags(
getter.modifiers.nodes,
getter.modifiers.flags | Modifiers.FLAG_ABSTRACT);
} else {
return new Modifiers.withFlags(
setter.modifiers.nodes,
setter.modifiers.flags | Modifiers.FLAG_ABSTRACT);
}
}
bool isInstanceMember() {
return isMember() && !modifiers.isStatic();
}
accept(ElementVisitor visitor) => visitor.visitAbstractFieldElement(this);
bool get isAbstract {
return getter != null && getter.isAbstract
|| setter != null && setter.isAbstract;
}
}
// TODO(johnniwinther): [FunctionSignature] should be merged with
// [FunctionType].
class FunctionSignatureX implements FunctionSignature {
final Link<Element> requiredParameters;
final Link<Element> optionalParameters;
final DartType returnType;
final int requiredParameterCount;
final int optionalParameterCount;
final bool optionalParametersAreNamed;
List<Element> _orderedOptionalParameters;
FunctionSignatureX(this.requiredParameters,
this.optionalParameters,
this.requiredParameterCount,
this.optionalParameterCount,
this.optionalParametersAreNamed,
this.returnType);
void forEachRequiredParameter(void function(Element parameter)) {
for (Link<Element> link = requiredParameters;
!link.isEmpty;
link = link.tail) {
function(link.head);
}
}
void forEachOptionalParameter(void function(Element parameter)) {
for (Link<Element> link = optionalParameters;
!link.isEmpty;
link = link.tail) {
function(link.head);
}
}
List<Element> get orderedOptionalParameters {
if (_orderedOptionalParameters != null) return _orderedOptionalParameters;
List<Element> list = optionalParameters.toList();
if (optionalParametersAreNamed) {
list.sort((Element a, Element b) {
return a.name.compareTo(b.name);
});
}
_orderedOptionalParameters = list;
return list;
}
Element get firstOptionalParameter => optionalParameters.head;
void forEachParameter(void function(Element parameter)) {
forEachRequiredParameter(function);
forEachOptionalParameter(function);
}
void orderedForEachParameter(void function(Element parameter)) {
forEachRequiredParameter(function);
orderedOptionalParameters.forEach(function);
}
int get parameterCount => requiredParameterCount + optionalParameterCount;
/**
* Check whether a function with this signature can be used instead of a
* function with signature [signature] without causing a `noSuchMethod`
* exception/call.
*/
bool isCompatibleWith(FunctionSignature signature) {
if (optionalParametersAreNamed) {
if (!signature.optionalParametersAreNamed) {
return requiredParameterCount == signature.parameterCount;
}
// If both signatures have named parameters, then they must have
// the same number of required parameters, and the names in
// [signature] must all be in [:this:].
if (requiredParameterCount != signature.requiredParameterCount) {
return false;
}
Set<String> names = optionalParameters.toList().map(
(Element element) => element.name).toSet();
for (Element namedParameter in signature.optionalParameters) {
if (!names.contains(namedParameter.name)) {
return false;
}
}
} else {
if (signature.optionalParametersAreNamed) return false;
// There must be at least as many arguments as in the other signature, but
// this signature must not have more required parameters. Having more
// optional parameters is not a problem, they simply are never provided
// by call sites of a call to a method with the other signature.
int otherTotalCount = signature.parameterCount;
return requiredParameterCount <= otherTotalCount
&& parameterCount >= otherTotalCount;
}
return true;
}
}
class FunctionElementX extends ElementX implements FunctionElement {
FunctionExpression cachedNode;
DartType type;
final Modifiers modifiers;
List<FunctionElement> nestedClosures = new List<FunctionElement>();
FunctionSignature functionSignature;
/**
* A function declaration that should be parsed instead of the current one.
* The patch should be parsed as if it was in the current scope. Its
* signature must match this function's signature.
*/
FunctionElement patch = null;
FunctionElement origin = null;
final bool _hasNoBody;
/**
* If this is a redirecting factory, [defaultImplementation] will be
* changed by the resolver to point to the redirection target.
* Otherwise, [:identical(defaultImplementation, this):].
*/
// TODO(ahe): Rename this field to redirectionTarget.
FunctionElement defaultImplementation;
FunctionElementX(String name,
ElementKind kind,
Modifiers modifiers,
Element enclosing,
bool hasNoBody)
: this.tooMuchOverloading(name, null, kind, modifiers, enclosing, null,
hasNoBody);
FunctionElementX.node(String name,
FunctionExpression node,
ElementKind kind,
Modifiers modifiers,
Element enclosing)
: this.tooMuchOverloading(name, node, kind, modifiers, enclosing, null,
false);
FunctionElementX.from(String name,
FunctionElement other,
Element enclosing)
: this.tooMuchOverloading(name, other.cachedNode, other.kind,
other.modifiers, enclosing,
other.functionSignature,
false);
FunctionElementX.tooMuchOverloading(String name,
FunctionExpression this.cachedNode,
ElementKind kind,
this.modifiers,
Element enclosing,
this.functionSignature,
bool hasNoBody)
: super(name, kind, enclosing),
_hasNoBody = hasNoBody {
assert(modifiers != null);
defaultImplementation = this;
}
bool get isPatched => patch != null;
bool get isPatch => origin != null;
bool get isRedirectingFactory => defaultImplementation != this;
/// This field is set by the post process queue when checking for cycles.
FunctionElement internalRedirectionTarget;
DartType redirectionTargetType;
set redirectionTarget(FunctionElement constructor) {
assert(constructor != null && internalRedirectionTarget == null);
internalRedirectionTarget = constructor;
}
FunctionElement get redirectionTarget {
if (Elements.isErroneousElement(defaultImplementation)) {
return defaultImplementation;
}
assert(!isRedirectingFactory || internalRedirectionTarget != null);
return isRedirectingFactory ? internalRedirectionTarget : this;
}
InterfaceType computeTargetType(InterfaceType newType) {
if (!isRedirectingFactory) return newType;
assert(invariant(this, redirectionTargetType != null,
message: 'Redirection target type has not yet been computed for '
'$this.'));
return redirectionTargetType.substByContext(newType);
}
/**
* Applies a patch function to this function. The patch function's body
* is used as replacement when parsing this function's body.
* This method must not be called after the function has been parsed,
* and it must be called at most once.
*/
void setPatch(FunctionElement patchElement) {
// Sanity checks. The caller must check these things before calling.
assert(patch == null);
this.patch = patchElement;
}
bool isInstanceMember() {
return isMember()
&& !isConstructor()
&& !modifiers.isStatic();
}
FunctionSignature computeSignature(Compiler compiler) {
if (functionSignature != null) return functionSignature;
compiler.withCurrentElement(this, () {
functionSignature = compiler.resolveSignature(this);
});
return functionSignature;
}
int requiredParameterCount(Compiler compiler) {
return computeSignature(compiler).requiredParameterCount;
}
int optionalParameterCount(Compiler compiler) {
return computeSignature(compiler).optionalParameterCount;
}
int parameterCount(Compiler compiler) {
return computeSignature(compiler).parameterCount;
}
FunctionType computeType(Compiler compiler) {
if (type != null) return type;
type = compiler.computeFunctionType(declaration,
computeSignature(compiler));
return type;
}
FunctionExpression parseNode(DiagnosticListener listener) {
if (patch == null) {
if (modifiers.isExternal()) {
listener.cancel("Compiling external function with no implementation.",
element: this);
}
}
return cachedNode;
}
Token position() {
// Use the name as position if this is not an unnamed closure.
if (cachedNode.name != null) {
return cachedNode.name.getBeginToken();
} else {
return cachedNode.getBeginToken();
}
}
FunctionElement asFunctionElement() => this;
String toString() {
if (isPatch) {
return 'patch ${super.toString()}';
} else if (isPatched) {
return 'origin ${super.toString()}';
} else {
return super.toString();
}
}
bool get isAbstract {
return !modifiers.isExternal() &&
(isFunction() || isAccessor()) &&
_hasNoBody;
}
accept(ElementVisitor visitor) => visitor.visitFunctionElement(this);
}
class ConstructorBodyElementX extends FunctionElementX
implements ConstructorBodyElement {
FunctionElement constructor;
ConstructorBodyElementX(FunctionElement constructor)
: this.constructor = constructor,
super(constructor.name,
ElementKind.GENERATIVE_CONSTRUCTOR_BODY,
Modifiers.EMPTY,
constructor.enclosingElement, false) {
functionSignature = constructor.functionSignature;
}
bool isInstanceMember() => true;
FunctionType computeType(Compiler compiler) {
compiler.internalErrorOnElement(this, '$this.computeType.');
}
Node parseNode(DiagnosticListener listener) {
if (cachedNode != null) return cachedNode;
cachedNode = constructor.parseNode(listener);
assert(cachedNode != null);
return cachedNode;
}
Token position() => constructor.position();
Element getOutermostEnclosingMemberOrTopLevel() => constructor;
accept(ElementVisitor visitor) => visitor.visitConstructorBodyElement(this);
}
/**
* A constructor that is not defined in the source code but rather implied by
* the language semantics.
*
* This class is used to represent default constructors and forwarding
* constructors for mixin applications.
*/
class SynthesizedConstructorElementX extends FunctionElementX {
final FunctionElement superMember;
final bool isDefaultConstructor;
SynthesizedConstructorElementX(String name,
this.superMember,
Element enclosing,
this.isDefaultConstructor)
: super(name,
ElementKind.GENERATIVE_CONSTRUCTOR,
Modifiers.EMPTY,
enclosing, false);
SynthesizedConstructorElementX.forDefault(superMember, Element enclosing)
: this('', superMember, enclosing, true);
Token position() => enclosingElement.position();
bool get isSynthesized => true;
FunctionElement get targetConstructor => superMember;
FunctionSignature computeSignature(compiler) {
if (functionSignature != null) return functionSignature;
if (isDefaultConstructor) {
return functionSignature = new FunctionSignatureX(
const Link<Element>(), const Link<Element>(), 0, 0, false,
getEnclosingClass().thisType);
}
if (superMember.isErroneous()) {
return functionSignature = compiler.objectClass.localLookup('')
.computeSignature(compiler);
}
// TODO(johnniwinther): Ensure that the function signature (and with it the
// function type) substitutes type variables correctly.
return functionSignature = superMember.computeSignature(compiler);
}
get declaration => this;
get implementation => this;
get defaultImplementation => this;
accept(ElementVisitor visitor) {
return visitor.visitFunctionElement(this);
}
}
class VoidElementX extends ElementX implements VoidElement {
VoidElementX(Element enclosing) : super('void', ElementKind.VOID, enclosing);
DartType computeType(compiler) => compiler.types.voidType;
Node parseNode(_) {
throw 'internal error: parseNode on void';
}
bool impliesType() => true;
accept(ElementVisitor visitor) => visitor.visitVoidElement(this);
}
class TypeDeclarationElementX {
/**
* Creates the type variables, their type and corresponding element, for the
* type variables declared in [parameter] on [element]. The bounds of the type
* variables are not set until [element] has been resolved.
*/
static Link<DartType> createTypeVariables(TypeDeclarationElement element,
NodeList parameters) {
if (parameters == null) return const Link<DartType>();
// Create types and elements for type variable.
var arguments = new LinkBuilder<DartType>();
for (Link link = parameters.nodes; !link.isEmpty; link = link.tail) {
TypeVariable node = link.head;
String variableName = node.name.source;
TypeVariableElement variableElement =
new TypeVariableElementX(variableName, element, node);
TypeVariableType variableType = new TypeVariableType(variableElement);
variableElement.type = variableType;
arguments.addLast(variableType);
}
return arguments.toLink();
}
}
abstract class BaseClassElementX extends ElementX implements ClassElement {
final int id;
/**
* The type of [:this:] for this class declaration.
*
* The type of [:this:] is the interface type based on this element in which
* the type arguments are the declared type variables. For instance,
* [:List<E>:] for [:List:] and [:Map<K,V>:] for [:Map:].
*
* This type is computed in [computeType].
*/
InterfaceType thisType;
/**
* The raw type for this class declaration.
*
* The raw type is the interface type base on this element in which the type
* arguments are all [dynamic]. For instance [:List<dynamic>:] for [:List:]
* and [:Map<dynamic,dynamic>:] for [:Map:]. For non-generic classes [rawType]
* is the same as [thisType].
*
* The [rawType] field is a canonicalization of the raw type and should be
* used to distinguish explicit and implicit uses of the [dynamic]
* type arguments. For instance should [:List:] be the [rawType] of the
* [:List:] class element whereas [:List<dynamic>:] should be its own
* instantiation of [InterfaceType] with [:dynamic:] as type argument. Using
* this distinction, we can print the raw type with type arguments only when
* the input source has used explicit type arguments.
*
* This type is computed together with [thisType] in [computeType].
*/
InterfaceType rawTypeCache;
DartType supertype;
Link<DartType> interfaces;
String nativeTagInfo;
int supertypeLoadState;
int resolutionState;
bool get isResolved => resolutionState == STATE_DONE;
bool isProxy = false;
bool hasIncompleteHierarchy = false;
// backendMembers are members that have been added by the backend to simplify
// compilation. They don't have any user-side counter-part.
Link<Element> backendMembers = const Link<Element>();
OrderedTypeSet allSupertypesAndSelf;
Link<DartType> get allSupertypes => allSupertypesAndSelf.supertypes;
int get hierarchyDepth => allSupertypesAndSelf.maxDepth;
Map<Name, Member> classMembers;
Map<Name, MemberSignature> interfaceMembers;
BaseClassElementX(String name,
Element enclosing,
this.id,
int initialState)
: supertypeLoadState = initialState,
resolutionState = initialState,
super(name, ElementKind.CLASS, enclosing);
int get hashCode => id;
ClassElement get patch => super.patch;
ClassElement get origin => super.origin;
ClassElement get declaration => super.declaration;
ClassElement get implementation => super.implementation;
bool get hasBackendMembers => !backendMembers.isEmpty;
bool get isUnnamedMixinApplication => false;
void computeThisAndRawType(Compiler compiler, Link<DartType> typeVariables) {
if (thisType == null) {
if (origin == null) {
Link<DartType> parameters = typeVariables;
thisType = new InterfaceType(this, parameters);
if (parameters.isEmpty) {
rawTypeCache = thisType;
} else {
var dynamicParameters = const Link<DartType>();
parameters.forEach((_) {
dynamicParameters =
dynamicParameters.prepend(compiler.types.dynamicType);
});
rawTypeCache = new InterfaceType(this, dynamicParameters);
}
} else {
thisType = origin.computeType(compiler);
rawTypeCache = origin.rawType;
}
}
}
// TODO(johnniwinther): Add [thisType] getter similar to [rawType].
InterfaceType computeType(Compiler compiler) {
if (thisType == null) {
computeThisAndRawType(compiler, computeTypeParameters(compiler));
}
return thisType;
}
InterfaceType get rawType {
assert(invariant(this, rawTypeCache != null,
message: 'Raw type has not been computed for $this'));
return rawTypeCache;
}
Link<DartType> computeTypeParameters(Compiler compiler);
/**
* Return [:true:] if this element is the [:Object:] class for the [compiler].
*/
bool isObject(Compiler compiler) =>
identical(declaration, compiler.objectClass);
Link<DartType> get typeVariables => thisType.typeArguments;
ClassElement ensureResolved(Compiler compiler) {
if (resolutionState == STATE_NOT_STARTED) {
compiler.resolver.resolveClass(this);
}
return this;
}
void setDefaultConstructor(FunctionElement constructor, Compiler compiler);
void addBackendMember(Element member) {
// TODO(ngeoffray): Deprecate this method.
assert(member.isGenerativeConstructorBody());
backendMembers = backendMembers.prepend(member);
}
void reverseBackendMembers() {
backendMembers = backendMembers.reverse();
}
/**
* Lookup local members in the class. This will ignore constructors.
*/
Element lookupLocalMember(String memberName) {
var result = localLookup(memberName);
if (result != null && result.isConstructor()) return null;
return result;
}
/// Lookup a synthetic element created by the backend.
Element lookupBackendMember(String memberName) {
for (Element element in backendMembers) {
if (element.name == memberName) {
return element;
}
}
}
/**
* Lookup super members for the class. This will ignore constructors.
*/
Element lookupSuperMember(String memberName) {
return lookupSuperMemberInLibrary(memberName, getLibrary());
}
/**
* Lookup super members for the class that is accessible in [library].
* This will ignore constructors.
*/
Element lookupSuperMemberInLibrary(String memberName,
LibraryElement library) {
bool isPrivate = isPrivateName(memberName);
for (ClassElement s = superclass; s != null; s = s.superclass) {
// Private members from a different library are not visible.
if (isPrivate && !identical(library, s.getLibrary())) continue;
Element e = s.lookupLocalMember(memberName);
if (e == null) continue;
// Static members are not inherited.
if (e.modifiers.isStatic()) continue;
return e;
}
return null;
}
/**
* Find the first member in the class chain with the given [selector].
*
* This method is NOT to be used for resolving
* unqualified sends because it does not implement the scoping
* rules, where library scope comes before superclass scope.
*
* When called on the implementation element both members declared in the
* origin and the patch class are returned.
*/
Element lookupSelector(Selector selector, Compiler compiler) {
return internalLookupSelector(selector, compiler, false);
}
Element lookupSuperSelector(Selector selector, Compiler compiler) {
return internalLookupSelector(selector, compiler, true);
}
Element internalLookupSelector(Selector selector,
Compiler compiler,
bool isSuperLookup) {
String name = selector.name;
bool isPrivate = isPrivateName(name);
LibraryElement library = selector.library;
for (ClassElement current = isSuperLookup ? superclass : this;
current != null;
current = current.superclass) {
Element member = current.lookupLocalMember(name);
if (member == null && current.isPatched) {
// Doing lookups on selectors is done after resolution, so it
// is safe to look in the patch class.
member = current.patch.lookupLocalMember(name);
}
if (member == null) continue;
// Private members from a different library are not visible.
if (isPrivate && !identical(library, member.getLibrary())) continue;
// Static members are not inherited.
if (member.modifiers.isStatic() && !identical(this, current)) continue;
// If we find an abstract field we have to make sure that it has
// the getter or setter part we're actually looking
// for. Otherwise, we continue up the superclass chain.
if (member.isAbstractField()) {
AbstractFieldElement field = member;
FunctionElement getter = field.getter;
FunctionElement setter = field.setter;
if (selector.isSetter()) {
// Abstract members can be defined in a super class.
if (setter != null && !setter.isAbstract) return setter;
} else {
assert(selector.isGetter() || selector.isCall());
if (getter != null && !getter.isAbstract) return getter;
}
// Abstract members can be defined in a super class.
} else if (!member.isAbstract) {
return member;
}
}
return null;
}
/**
* Find the first member in the class chain with the given
* [memberName]. This method is NOT to be used for resolving
* unqualified sends because it does not implement the scoping
* rules, where library scope comes before superclass scope.
*/
Element lookupMember(String memberName) {
Element localMember = lookupLocalMember(memberName);
return localMember == null ? lookupSuperMember(memberName) : localMember;
}
/**
* Returns true if the [fieldMember] shadows another field. The given
* [fieldMember] must be a member of this class, i.e. if there is a field of
* the same name in the superclass chain.
*
* This method also works if the [fieldMember] is private.
*/
bool hasFieldShadowedBy(Element fieldMember) {
assert(fieldMember.isField());
String fieldName = fieldMember.name;
bool isPrivate = isPrivateName(fieldName);
LibraryElement memberLibrary = fieldMember.getLibrary();
ClassElement lookupClass = this.superclass;
while (lookupClass != null) {
Element foundMember = lookupClass.lookupLocalMember(fieldName);
if (foundMember != null) {
if (foundMember.isField()) {
if (!isPrivate || memberLibrary == foundMember.getLibrary()) {
// Private fields can only be shadowed by a field declared in the
// same library.
return true;
}
}
}
lookupClass = lookupClass.superclass;
}
return false;
}
Element validateConstructorLookupResults(Selector selector,
Element result,
Element noMatch(Element)) {
if (result == null
|| !result.isConstructor()
|| (isPrivateName(selector.name)
&& result.getLibrary() != selector.library)) {
result = noMatch != null ? noMatch(result) : null;
}
return result;
}
// TODO(aprelev@gmail.com): Peter believes that it would be great to
// make noMatch a required argument. Peter's suspicion is that most
// callers of this method would benefit from using the noMatch method.
Element lookupConstructor(Selector selector, [Element noMatch(Element)]) {
Element result = localLookup(selector.name);
return validateConstructorLookupResults(selector, result, noMatch);
}
Link<Element> get constructors {
// TODO(ajohnsen): See if we can avoid this method at some point.
Link<Element> result = const Link<Element>();
// TODO(johnniwinther): Should we include injected constructors?
forEachMember((_, Element member) {
if (member.isConstructor()) result = result.prepend(member);
});
return result;
}
/**
* Returns the super class, if any.
*
* The returned element may not be resolved yet.
*/
ClassElement get superclass {
assert(supertypeLoadState == STATE_DONE);
return supertype == null ? null : supertype.element;
}
/**
* Runs through all members of this class.
*
* The enclosing class is passed to the callback. This is useful when
* [includeSuperAndInjectedMembers] is [:true:].
*
* When called on an implementation element both the members in the origin
* and patch class are included.
*/
// TODO(johnniwinther): Clean up lookup to get rid of the include predicates.
void forEachMember(void f(ClassElement enclosingClass, Element member),
{includeBackendMembers: false,
includeSuperAndInjectedMembers: false}) {
bool includeInjectedMembers = includeSuperAndInjectedMembers || isPatch;
ClassElement classElement = declaration;
do {
// Iterate through the members in textual order, which requires
// to reverse the data structure [localMembers] we created.
// Textual order may be important for certain operations, for
// example when emitting the initializers of fields.
classElement.forEachLocalMember((e) => f(classElement, e));
if (includeBackendMembers) {
classElement.forEachBackendMember((e) => f(classElement, e));
}
if (includeInjectedMembers) {
if (classElement.patch != null) {
classElement.patch.forEachLocalMember((e) {
if (!e.isPatch) f(classElement, e);
});
}
}
classElement = includeSuperAndInjectedMembers
? classElement.superclass
: null;
} while (classElement != null);
}
/**
* Runs through all instance-field members of this class.
*
* The enclosing class is passed to the callback. This is useful when
* [includeSuperAndInjectedMembers] is [:true:].
*
* When called on the implementation element both the fields declared in the
* origin and in the patch are included.
*/
void forEachInstanceField(void f(ClassElement enclosingClass,
FieldElement field),
{bool includeSuperAndInjectedMembers: false}) {
// Filters so that [f] is only invoked with instance fields.
void fieldFilter(ClassElement enclosingClass, Element member) {
if (member.isInstanceMember() && member.kind == ElementKind.FIELD) {
f(enclosingClass, member);
}
}
forEachMember(fieldFilter,
includeSuperAndInjectedMembers: includeSuperAndInjectedMembers);
}
/// Similar to [forEachInstanceField] but visits static fields.
void forEachStaticField(void f(ClassElement enclosingClass, Element field)) {
// Filters so that [f] is only invoked with static fields.
void fieldFilter(ClassElement enclosingClass, Element member) {
if (!member.isInstanceMember() && member.kind == ElementKind.FIELD) {
f(enclosingClass, member);
}
}
forEachMember(fieldFilter);
}
void forEachBackendMember(void f(Element member)) {
backendMembers.forEach(f);
}
bool implementsInterface(ClassElement intrface) {
for (DartType implementedInterfaceType in allSupertypes) {
ClassElement implementedInterface = implementedInterfaceType.element;
if (identical(implementedInterface, intrface)) {
return true;
}
}
return false;
}
/**
* Returns true if [this] is a subclass of [cls].
*
* This method is not to be used for checking type hierarchy and
* assignments, because it does not take parameterized types into
* account.
*/
bool isSubclassOf(ClassElement cls) {
// Use [declaration] for both [this] and [cls], because
// declaration classes hold the superclass hierarchy.
cls = cls.declaration;
for (ClassElement s = declaration; s != null; s = s.superclass) {
if (identical(s, cls)) return true;
}
return false;
}
bool isNative() => nativeTagInfo != null;
void setNative(String name) {
nativeTagInfo = name;
}
Member lookupClassMember(Name name) => classMembers[name];
void forEachClassMember(f(Member member)) {
classMembers.forEach((_, member) => f(member));
}
MemberSignature lookupInterfaceMember(Name name) => interfaceMembers[name];
void forEachInterfaceMember(f(MemberSignature member)) {
interfaceMembers.forEach((_, member) => f(member));
}
}
abstract class ClassElementX extends BaseClassElementX {
// Lazily applied patch of class members.
ClassElement patch = null;
ClassElement origin = null;
Link<Element> localMembers = const Link<Element>();
final ScopeX localScope = new ScopeX();
ClassElementX(String name, Element enclosing, int id, int initialState)
: super(name, enclosing, id, initialState);
ClassNode parseNode(Compiler compiler);
bool get isMixinApplication => false;
bool get isPatched => patch != null;
bool get isPatch => origin != null;
bool get hasLocalScopeMembers => !localScope.isEmpty;
void addMember(Element element, DiagnosticListener listener) {
localMembers = localMembers.prepend(element);
addToScope(element, listener);
}
void addToScope(Element element, DiagnosticListener listener) {
if (element.isField() && element.name == name) {
listener.reportError(element, MessageKind.MEMBER_USES_CLASS_NAME);
}
localScope.add(element, listener);
}
Element localLookup(String elementName) {
Element result = localScope.lookup(elementName);
if (result == null && isPatch) {
result = origin.localLookup(elementName);
}
return result;
}
void forEachLocalMember(void f(Element member)) {
localMembers.reverse().forEach(f);
}
bool get hasConstructor {
// Search in scope to be sure we search patched constructors.
for (var element in localScope.values) {
if (element.isConstructor()) return true;
}
return false;
}
void setDefaultConstructor(FunctionElement constructor, Compiler compiler) {
addToScope(constructor, compiler);
// The default constructor, although synthetic, is part of a class' API.
localMembers = localMembers.prepend(constructor);
}
Link<DartType> computeTypeParameters(Compiler compiler) {
ClassNode node = parseNode(compiler);
return TypeDeclarationElementX.createTypeVariables(
this, node.typeParameters);
}
Scope buildScope() => new ClassScope(enclosingElement.buildScope(), this);
String toString() {
if (origin != null) {
return 'patch ${super.toString()}';
} else if (patch != null) {
return 'origin ${super.toString()}';
} else {
return super.toString();
}
}
}
class MixinApplicationElementX extends BaseClassElementX
implements MixinApplicationElement {
final Node node;
final Modifiers modifiers;
Link<FunctionElement> constructors = new Link<FunctionElement>();
InterfaceType mixinType;
MixinApplicationElementX(String name, Element enclosing, int id,
this.node, this.modifiers)
: super(name, enclosing, id, STATE_NOT_STARTED);
ClassElement get mixin => mixinType != null ? mixinType.element : null;
bool get isMixinApplication => true;
bool get isUnnamedMixinApplication => node is! NamedMixinApplication;
bool get hasConstructor => !constructors.isEmpty;
bool get hasLocalScopeMembers => !constructors.isEmpty;
unsupported(message) {
throw new UnsupportedError('$message is not supported on $this');
}
get patch => null;
get origin => null;
set patch(value) => unsupported('set patch');
set origin(value) => unsupported('set origin');
Token position() => node.getBeginToken();
Node parseNode(DiagnosticListener listener) => node;
FunctionElement lookupLocalConstructor(String name) {
for (Link<Element> link = constructors;
!link.isEmpty;
link = link.tail) {
if (link.head.name == name) return link.head;
}
return null;
}
Element localLookup(String name) {
Element constructor = lookupLocalConstructor(name);
if (constructor != null) return constructor;
if (mixin == null) return null;
Element mixedInElement = mixin.localLookup(name);
if (mixedInElement == null) return null;
return mixedInElement.isInstanceMember() ? mixedInElement : null;
}
void forEachLocalMember(void f(Element member)) {
constructors.forEach(f);
if (mixin != null) mixin.forEachLocalMember((Element mixedInElement) {
if (mixedInElement.isInstanceMember()) f(mixedInElement);
});
}
void addMember(Element element, DiagnosticListener listener) {
throw new UnsupportedError("cannot add member to $this");
}
void addToScope(Element element, DiagnosticListener listener) {
listener.internalError('cannot add to scope of $this', element: this);
}
void addConstructor(FunctionElement constructor) {
constructors = constructors.prepend(constructor);
}
void setDefaultConstructor(FunctionElement constructor, Compiler compiler) {
assert(!hasConstructor);
addConstructor(constructor);
}
Link<DartType> computeTypeParameters(Compiler compiler) {
NamedMixinApplication named = node.asNamedMixinApplication();
if (named == null) {
throw new SpannableAssertionFailure(node,
"Type variables on unnamed mixin applications must be set on "
"creation.");
}
return TypeDeclarationElementX.createTypeVariables(
this, named.typeParameters);
}
accept(ElementVisitor visitor) => visitor.visitMixinApplicationElement(this);
}
class LabelElementX extends ElementX implements LabelElement {
// We store the original label here so it can be returned by [parseNode].
final Label label;
final String labelName;
final TargetElement target;
bool isBreakTarget = false;
bool isContinueTarget = false;
LabelElementX(Label label, String labelName, this.target,
Element enclosingElement)
: this.label = label,
this.labelName = labelName,
// In case of a synthetic label, just use [labelName] for
// identifying the element.
super(label == null
? labelName
: label.identifier.source,
ElementKind.LABEL,
enclosingElement);
void setBreakTarget() {
isBreakTarget = true;
target.isBreakTarget = true;
}
void setContinueTarget() {
isContinueTarget = true;
target.isContinueTarget = true;
}
bool get isTarget => isBreakTarget || isContinueTarget;
Node parseNode(DiagnosticListener l) => label;
Token position() => label.getBeginToken();
String toString() => "${labelName}:";
accept(ElementVisitor visitor) => visitor.visitLabelElement(this);
}
// Represents a reference to a statement or switch-case, either by label or the
// default target of a break or continue.
class TargetElementX extends ElementX implements TargetElement {
final Node statement;
final int nestingLevel;
Link<LabelElement> labels = const Link<LabelElement>();
bool isBreakTarget = false;
bool isContinueTarget = false;
TargetElementX(this.statement, this.nestingLevel, Element enclosingElement)
: super("target", ElementKind.STATEMENT, enclosingElement);
bool get isTarget => isBreakTarget || isContinueTarget;
LabelElement addLabel(Label label, String labelName) {
LabelElement result = new LabelElementX(label, labelName, this,
enclosingElement);
labels = labels.prepend(result);
return result;
}
Node parseNode(DiagnosticListener l) => statement;
bool get isSwitch => statement is SwitchStatement;
Token position() => statement.getBeginToken();
String toString() => statement.toString();
accept(ElementVisitor visitor) => visitor.visitTargetElement(this);
}
class TypeVariableElementX extends ElementX implements TypeVariableElement {
final Node cachedNode;
TypeVariableType type;
DartType bound;
TypeVariableElementX(String name, Element enclosing, this.cachedNode,
[this.type, this.bound])
: super(name, ElementKind.TYPE_VARIABLE, enclosing);
TypeVariableType computeType(compiler) => type;
Node parseNode(compiler) => cachedNode;
String toString() => "${enclosingElement.toString()}.${name}";
Token position() => cachedNode.getBeginToken();
accept(ElementVisitor visitor) => visitor.visitTypeVariableElement(this);
}
/**
* A single metadata annotation.
*
* For example, consider:
*
* class Data {
* const Data();
* }
*
* const data = const Data();
*
* @data
* class Foo {}
*
* @data @data
* class Bar {}
*
* In this example, there are three instances of [MetadataAnnotation]
* and they correspond each to a location in the source code where
* there is an at-sign, '@'. The [value] of each of these instances
* are the same compile-time constant, [: const Data() :].
*
* The mirror system does not have a concept matching this class.
*/
abstract class MetadataAnnotationX implements MetadataAnnotation {
/**
* The compile-time constant which this annotation resolves to.
* In the mirror system, this would be an object mirror.
*/
Constant get value;
Element annotatedElement;
int resolutionState;
/**
* The beginning token of this annotation, or [:null:] if it is synthetic.
*/
Token get beginToken;
MetadataAnnotationX([this.resolutionState = STATE_NOT_STARTED]);
MetadataAnnotation ensureResolved(Compiler compiler) {
if (resolutionState == STATE_NOT_STARTED) {
compiler.resolver.resolveMetadataAnnotation(this);
}
return this;
}
String toString() => 'MetadataAnnotation($value, $resolutionState)';
}