blob: 36df28e0c627cfc955ebdbe0aaf400d44a428180 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_X64.
#if defined(TARGET_ARCH_X64)
#include "vm/intermediate_language.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph.h"
#include "vm/flow_graph_compiler.h"
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#define __ compiler->assembler()->
namespace dart {
DECLARE_FLAG(bool, emit_edge_counters);
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, propagate_ic_data);
DECLARE_FLAG(bool, throw_on_javascript_int_overflow);
DECLARE_FLAG(bool, use_osr);
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register RAX.
LocationSummary* Instruction::MakeCallSummary() {
LocationSummary* result = new LocationSummary(
Isolate::Current(), 0, 0, LocationSummary::kCall);
result->set_out(0, Location::RegisterLocation(RAX));
return result;
}
LocationSummary* PushArgumentInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps= 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::AnyOrConstant(value()));
return locs;
}
void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// In SSA mode, we need an explicit push. Nothing to do in non-SSA mode
// where PushArgument is handled by BindInstr::EmitNativeCode.
if (compiler->is_optimizing()) {
Location value = locs()->in(0);
if (value.IsRegister()) {
__ pushq(value.reg());
} else if (value.IsConstant()) {
__ PushObject(value.constant(), PP);
} else {
ASSERT(value.IsStackSlot());
__ pushq(value.ToStackSlotAddress());
}
}
}
LocationSummary* ReturnInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterLocation(RAX));
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instruction: a jump).
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->in(0).reg();
ASSERT(result == RAX);
#if defined(DEBUG)
__ Comment("Stack Check");
Label done;
const intptr_t fp_sp_dist =
(kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize;
ASSERT(fp_sp_dist <= 0);
__ movq(RDI, RSP);
__ subq(RDI, RBP);
__ CompareImmediate(RDI, Immediate(fp_sp_dist), PP);
__ j(EQUAL, &done, Assembler::kNearJump);
__ int3();
__ Bind(&done);
#endif
__ LeaveDartFrame();
__ ret();
}
static Condition NegateCondition(Condition condition) {
switch (condition) {
case EQUAL: return NOT_EQUAL;
case NOT_EQUAL: return EQUAL;
case LESS: return GREATER_EQUAL;
case LESS_EQUAL: return GREATER;
case GREATER: return LESS_EQUAL;
case GREATER_EQUAL: return LESS;
case BELOW: return ABOVE_EQUAL;
case BELOW_EQUAL: return ABOVE;
case ABOVE: return BELOW_EQUAL;
case ABOVE_EQUAL: return BELOW;
default:
UNIMPLEMENTED();
return EQUAL;
}
}
// Detect pattern when one value is zero and another is a power of 2.
static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) {
return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) ||
(Utils::IsPowerOfTwo(v2) && (v1 == 0));
}
LocationSummary* IfThenElseInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
comparison()->InitializeLocationSummary(isolate, opt);
// TODO(vegorov): support byte register constraints in the register allocator.
comparison()->locs()->set_out(0, Location::RegisterLocation(RDX));
return comparison()->locs();
}
void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->out(0).reg() == RDX);
// Clear upper part of the out register. We are going to use setcc on it
// which is a byte move.
__ xorq(RDX, RDX);
// Emit comparison code. This must not overwrite the result register.
BranchLabels labels = { NULL, NULL, NULL };
Condition true_condition = comparison()->EmitComparisonCode(compiler, labels);
const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_);
intptr_t true_value = if_true_;
intptr_t false_value = if_false_;
if (is_power_of_two_kind) {
if (true_value == 0) {
// We need to have zero in RDX on true_condition.
true_condition = NegateCondition(true_condition);
}
} else {
if (true_value == 0) {
// Swap values so that false_value is zero.
intptr_t temp = true_value;
true_value = false_value;
false_value = temp;
} else {
true_condition = NegateCondition(true_condition);
}
}
__ setcc(true_condition, DL);
if (is_power_of_two_kind) {
const intptr_t shift =
Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value));
__ shlq(RDX, Immediate(shift + kSmiTagSize));
} else {
__ decq(RDX);
__ AndImmediate(RDX,
Immediate(Smi::RawValue(true_value) - Smi::RawValue(false_value)), PP);
if (false_value != 0) {
__ AddImmediate(RDX, Immediate(Smi::RawValue(false_value)), PP);
}
}
}
LocationSummary* LoadLocalInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t stack_index = (local().index() < 0)
? kFirstLocalSlotFromFp - local().index()
: kParamEndSlotFromFp - local().index();
return LocationSummary::Make(isolate,
kNumInputs,
Location::StackSlot(stack_index),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(!compiler->is_optimizing());
// Nothing to do.
}
LocationSummary* StoreLocalInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(isolate,
kNumInputs,
Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out(0).reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ movq(Address(RBP, local().index() * kWordSize), value);
}
LocationSummary* ConstantInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 0;
return LocationSummary::Make(isolate,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out(0).IsInvalid()) {
Register result = locs()->out(0).reg();
__ LoadObject(result, value(), PP);
}
}
LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_out(0, Location::RequiresFpuRegister());
return locs;
}
void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out(0).IsInvalid()) {
XmmRegister result = locs()->out(0).fpu_reg();
if (Utils::DoublesBitEqual(Double::Cast(value()).value(), 0.0)) {
__ xorps(result, result);
} else {
__ LoadObject(TMP, value(), PP);
__ movsd(result, FieldAddress(TMP, Double::value_offset()));
}
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX)); // Value.
summary->set_in(1, Location::RegisterLocation(RCX)); // Instantiator.
summary->set_in(2, Location::RegisterLocation(RDX)); // Type arguments.
summary->set_out(0, Location::RegisterLocation(RAX));
return summary;
}
LocationSummary* AssertBooleanInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
static void EmitAssertBoolean(Register reg,
intptr_t token_pos,
intptr_t deopt_id,
LocationSummary* locs,
FlowGraphCompiler* compiler) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
ASSERT(locs->always_calls());
Label done;
__ CompareObject(reg, Bool::True(), PP);
__ j(EQUAL, &done, Assembler::kNearJump);
__ CompareObject(reg, Bool::False(), PP);
__ j(EQUAL, &done, Assembler::kNearJump);
__ pushq(reg); // Push the source object.
compiler->GenerateRuntimeCall(token_pos,
deopt_id,
kNonBoolTypeErrorRuntimeEntry,
1,
locs);
// We should never return here.
__ int3();
__ Bind(&done);
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register obj = locs()->in(0).reg();
Register result = locs()->out(0).reg();
EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler);
ASSERT(obj == result);
}
static Condition TokenKindToSmiCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return LESS;
case Token::kGT: return GREATER;
case Token::kLTE: return LESS_EQUAL;
case Token::kGTE: return GREATER_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
if (operation_cid() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
if (operation_cid() == kSmiCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
// Only right can be a stack slot.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
UNREACHABLE();
return NULL;
}
static void LoadValueCid(FlowGraphCompiler* compiler,
Register value_cid_reg,
Register value_reg,
Label* value_is_smi = NULL) {
Label done;
if (value_is_smi == NULL) {
__ LoadImmediate(value_cid_reg, Immediate(kSmiCid), PP);
}
__ testq(value_reg, Immediate(kSmiTagMask));
if (value_is_smi == NULL) {
__ j(ZERO, &done, Assembler::kNearJump);
} else {
__ j(ZERO, value_is_smi);
}
__ LoadClassId(value_cid_reg, value_reg);
__ Bind(&done);
}
static Condition FlipCondition(Condition condition) {
switch (condition) {
case EQUAL: return EQUAL;
case NOT_EQUAL: return NOT_EQUAL;
case LESS: return GREATER;
case LESS_EQUAL: return GREATER_EQUAL;
case GREATER: return LESS;
case GREATER_EQUAL: return LESS_EQUAL;
case BELOW: return ABOVE;
case BELOW_EQUAL: return ABOVE_EQUAL;
case ABOVE: return BELOW;
case ABOVE_EQUAL: return BELOW_EQUAL;
default:
UNIMPLEMENTED();
return EQUAL;
}
}
static void EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition,
BranchLabels labels) {
if (labels.fall_through == labels.false_label) {
// If the next block is the false successor, fall through to it.
__ j(true_condition, labels.true_label);
} else {
// If the next block is not the false successor, branch to it.
Condition false_condition = NegateCondition(true_condition);
__ j(false_condition, labels.false_label);
// Fall through or jump to the true successor.
if (labels.fall_through != labels.true_label) {
__ jmp(labels.true_label);
}
}
}
static Condition EmitSmiComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchLabels labels) {
Location left = locs.in(0);
Location right = locs.in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToSmiCondition(kind);
if (left.IsConstant()) {
__ CompareObject(right.reg(), left.constant(), PP);
true_condition = FlipCondition(true_condition);
} else if (right.IsConstant()) {
__ CompareObject(left.reg(), right.constant(), PP);
} else if (right.IsStackSlot()) {
__ cmpq(left.reg(), right.ToStackSlotAddress());
} else {
__ cmpq(left.reg(), right.reg());
}
return true_condition;
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return BELOW;
case Token::kGT: return ABOVE;
case Token::kLTE: return BELOW_EQUAL;
case Token::kGTE: return ABOVE_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchLabels labels) {
XmmRegister left = locs.in(0).fpu_reg();
XmmRegister right = locs.in(1).fpu_reg();
__ comisd(left, right);
Condition true_condition = TokenKindToDoubleCondition(kind);
Label* nan_result = (true_condition == NOT_EQUAL)
? labels.true_label : labels.false_label;
__ j(PARITY_EVEN, nan_result);
return true_condition;
}
Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, *locs(), kind(), labels);
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels);
}
}
void EqualityCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((kind() == Token::kEQ) || (kind() == Token::kNE));
Label is_true, is_false;
BranchLabels labels = { &is_true, &is_false, &is_false };
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
Register result = locs()->out(0).reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False(), PP);
__ jmp(&done);
__ Bind(&is_true);
__ LoadObject(result, Bool::True(), PP);
__ Bind(&done);
}
void EqualityCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* TestSmiInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, Location::RegisterOrConstant(right()));
return locs;
}
Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
Register left_reg = locs()->in(0).reg();
Location right = locs()->in(1);
if (right.IsConstant()) {
ASSERT(right.constant().IsSmi());
const int64_t imm =
reinterpret_cast<int64_t>(right.constant().raw());
__ TestImmediate(left_reg, Immediate(imm), PP);
} else {
__ testq(left_reg, right.reg());
}
Condition true_condition = (kind() == Token::kNE) ? NOT_ZERO : ZERO;
return true_condition;
}
void TestSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Never emitted outside of the BranchInstr.
UNREACHABLE();
}
void TestSmiInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* TestCidsInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT));
Register val_reg = locs()->in(0).reg();
Register cid_reg = locs()->temp(0).reg();
Label* deopt = CanDeoptimize() ?
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptTestCids) : NULL;
const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0;
const ZoneGrowableArray<intptr_t>& data = cid_results();
ASSERT(data[0] == kSmiCid);
bool result = data[1] == true_result;
__ testq(val_reg, Immediate(kSmiTagMask));
__ j(ZERO, result ? labels.true_label : labels.false_label);
__ LoadClassId(cid_reg, val_reg);
for (intptr_t i = 2; i < data.length(); i += 2) {
const intptr_t test_cid = data[i];
ASSERT(test_cid != kSmiCid);
result = data[i + 1] == true_result;
__ cmpq(cid_reg, Immediate(test_cid));
__ j(EQUAL, result ? labels.true_label : labels.false_label);
}
// No match found, deoptimize or false.
if (deopt == NULL) {
Label* target = result ? labels.false_label : labels.true_label;
if (target != labels.fall_through) {
__ jmp(target);
}
} else {
__ jmp(deopt);
}
// Dummy result as the last instruction is a jump, any conditional
// branch using the result will therefore be skipped.
return ZERO;
}
void TestCidsInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
EmitComparisonCode(compiler, labels);
}
void TestCidsInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result_reg = locs()->out(0).reg();
Label is_true, is_false, done;
BranchLabels labels = { &is_true, &is_false, &is_false };
EmitComparisonCode(compiler, labels);
__ Bind(&is_false);
__ LoadObject(result_reg, Bool::False(), PP);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_true);
__ LoadObject(result_reg, Bool::True(), PP);
__ Bind(&done);
}
LocationSummary* RelationalOpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operation_cid() == kDoubleCid) {
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
ASSERT(operation_cid() == kSmiCid);
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, *locs(), kind(), labels);
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels);
}
}
void RelationalOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label is_true, is_false;
BranchLabels labels = { &is_true, &is_false, &is_false };
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
Register result = locs()->out(0).reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False(), PP);
__ jmp(&done);
__ Bind(&is_true);
__ LoadObject(result, Bool::True(), PP);
__ Bind(&done);
}
void RelationalOpInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* NativeCallInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 3;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(RAX));
locs->set_temp(1, Location::RegisterLocation(RBX));
locs->set_temp(2, Location::RegisterLocation(R10));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == RAX);
ASSERT(locs()->temp(1).reg() == RBX);
ASSERT(locs()->temp(2).reg() == R10);
Register result = locs()->out(0).reg();
const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function());
const bool is_leaf_call =
(argc_tag & NativeArguments::AutoSetupScopeMask()) == 0;
StubCode* stub_code = compiler->isolate()->stub_code();
// Push the result place holder initialized to NULL.
__ PushObject(Object::null_object(), PP);
// Pass a pointer to the first argument in RAX.
if (!function().HasOptionalParameters()) {
__ leaq(RAX, Address(RBP, (kParamEndSlotFromFp +
function().NumParameters()) * kWordSize));
} else {
__ leaq(RAX,
Address(RBP, kFirstLocalSlotFromFp * kWordSize));
}
__ LoadImmediate(
RBX, Immediate(reinterpret_cast<uword>(native_c_function())), PP);
__ LoadImmediate(
R10, Immediate(argc_tag), PP);
const ExternalLabel* stub_entry = (is_bootstrap_native() || is_leaf_call) ?
&stub_code->CallBootstrapCFunctionLabel() :
&stub_code->CallNativeCFunctionLabel();
compiler->GenerateCall(token_pos(),
stub_entry,
RawPcDescriptors::kOther,
locs());
__ popq(result);
}
static bool CanBeImmediateIndex(Value* index, intptr_t cid) {
if (!index->definition()->IsConstant()) return false;
const Object& constant = index->definition()->AsConstant()->value();
if (!constant.IsSmi()) return false;
const Smi& smi_const = Smi::Cast(constant);
const intptr_t scale = Instance::ElementSizeFor(cid);
const intptr_t data_offset = Instance::DataOffsetFor(cid);
const int64_t disp = smi_const.AsInt64Value() * scale + data_offset;
return Utils::IsInt(32, disp);
}
LocationSummary* StringFromCharCodeInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
// TODO(fschneider): Allow immediate operands for the char code.
return LocationSummary::Make(isolate,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringFromCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register char_code = locs()->in(0).reg();
Register result = locs()->out(0).reg();
__ LoadImmediate(result,
Immediate(reinterpret_cast<uword>(Symbols::PredefinedAddress())), PP);
__ movq(result, Address(result,
char_code,
TIMES_HALF_WORD_SIZE, // Char code is a smi.
Symbols::kNullCharCodeSymbolOffset * kWordSize));
}
LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(isolate,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(cid_ == kOneByteStringCid);
Register str = locs()->in(0).reg();
Register result = locs()->out(0).reg();
Label is_one, done;
__ movq(result, FieldAddress(str, String::length_offset()));
__ cmpq(result, Immediate(Smi::RawValue(1)));
__ j(EQUAL, &is_one, Assembler::kNearJump);
__ movq(result, Immediate(Smi::RawValue(-1)));
__ jmp(&done);
__ Bind(&is_one);
__ movzxb(result, FieldAddress(str, OneByteString::data_offset()));
__ SmiTag(result);
__ Bind(&done);
}
LocationSummary* StringInterpolateInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_out(0, Location::RegisterLocation(RAX));
return summary;
}
void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
__ pushq(array);
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
compiler->GenerateStaticCall(deopt_id(),
token_pos(),
CallFunction(),
kNumberOfArguments,
kNoArgumentNames,
locs(),
ICData::Handle());
ASSERT(locs()->out(0).reg() == RAX);
}
LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(isolate,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register object = locs()->in(0).reg();
Register result = locs()->out(0).reg();
__ movq(result, FieldAddress(object, offset()));
}
LocationSummary* LoadClassIdInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(isolate,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register object = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
Label load, done;
// We don't use Assembler::LoadTaggedClassIdMayBeSmi() here---which uses
// a conditional move instead---because it is slower, probably due to
// branch prediction usually working just fine in this case.
__ testq(object, Immediate(kSmiTagMask));
__ j(NOT_ZERO, &load, Assembler::kNearJump);
__ LoadImmediate(result, Immediate(Smi::RawValue(kSmiCid)), PP);
__ jmp(&done);
__ Bind(&load);
__ LoadClassId(result, object);
__ SmiTag(result);
__ Bind(&done);
}
CompileType LoadIndexedInstr::ComputeType() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
return CompileType::Dynamic();
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return CompileType::FromCid(kDoubleCid);
case kTypedDataFloat32x4ArrayCid:
return CompileType::FromCid(kFloat32x4Cid);
case kTypedDataInt32x4ArrayCid:
return CompileType::FromCid(kInt32x4Cid);
case kTypedDataFloat64x2ArrayCid:
return CompileType::FromCid(kFloat64x2Cid);
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
return CompileType::FromCid(kSmiCid);
default:
UNIMPLEMENTED();
return CompileType::Dynamic();
}
}
Representation LoadIndexedInstr::representation() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
return kTagged;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNIMPLEMENTED();
return kTagged;
}
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// The smi index is either untagged (element size == 1), or it is left smi
// tagged (for all element sizes > 1).
if (index_scale() == 1) {
locs->set_in(1, CanBeImmediateIndex(index(), class_id())
? Location::Constant(
index()->definition()->AsConstant()->value())
: Location::WritableRegister());
} else {
locs->set_in(1, CanBeImmediateIndex(index(), class_id())
? Location::Constant(
index()->definition()->AsConstant()->value())
: Location::RequiresRegister());
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
locs->set_out(0, Location::RequiresFpuRegister());
} else {
locs->set_out(0, Location::RequiresRegister());
}
return locs;
}
static Address ElementAddressForIntIndex(bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
intptr_t index) {
if (is_external) {
return Address(array, index * index_scale);
} else {
const int64_t disp = static_cast<int64_t>(index) * index_scale +
Instance::DataOffsetFor(cid);
ASSERT(Utils::IsInt(32, disp));
return FieldAddress(array, static_cast<int32_t>(disp));
}
}
static ScaleFactor ToScaleFactor(intptr_t index_scale) {
// Note that index is expected smi-tagged, (i.e, times 2) for all arrays with
// index scale factor > 1. E.g., for Uint8Array and OneByteString the index is
// expected to be untagged before accessing.
ASSERT(kSmiTagShift == 1);
switch (index_scale) {
case 1: return TIMES_1;
case 2: return TIMES_1;
case 4: return TIMES_2;
case 8: return TIMES_4;
case 16: return TIMES_8;
default:
UNREACHABLE();
return TIMES_1;
}
}
static Address ElementAddressForRegIndex(bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
Register index) {
if (is_external) {
return Address(array, index, ToScaleFactor(index_scale), 0);
} else {
return FieldAddress(array,
index,
ToScaleFactor(index_scale),
Instance::DataOffsetFor(cid));
}
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address = index.IsRegister()
? ElementAddressForRegIndex(IsExternal(), class_id(), index_scale(),
array, index.reg())
: ElementAddressForIntIndex(IsExternal(), class_id(), index_scale(),
array, Smi::Cast(index.constant()).Value());
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
XmmRegister result = locs()->out(0).fpu_reg();
if (class_id() == kTypedDataFloat32ArrayCid) {
// Load single precision float.
__ movss(result, element_address);
} else if (class_id() == kTypedDataFloat64ArrayCid) {
__ movsd(result, element_address);
} else {
ASSERT((class_id() == kTypedDataInt32x4ArrayCid) ||
(class_id() == kTypedDataFloat32x4ArrayCid) ||
(class_id() == kTypedDataFloat64x2ArrayCid));
__ movups(result, element_address);
}
return;
}
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
Register result = locs()->out(0).reg();
switch (class_id()) {
case kTypedDataInt8ArrayCid:
__ movsxb(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
__ movzxb(result, element_address);
__ SmiTag(result);
break;
case kTypedDataInt16ArrayCid:
__ movsxw(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint16ArrayCid:
case kTwoByteStringCid:
__ movzxw(result, element_address);
__ SmiTag(result);
break;
case kTypedDataInt32ArrayCid:
__ movsxd(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint32ArrayCid:
__ movl(result, element_address);
__ SmiTag(result);
break;
default:
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid));
__ movq(result, element_address);
break;
}
}
Representation StoreIndexedInstr::RequiredInputRepresentation(
intptr_t idx) const {
if (idx == 0) return kNoRepresentation;
if (idx == 1) return kTagged;
ASSERT(idx == 2);
switch (class_id_) {
case kArrayCid:
case kOneByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
return kTagged;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNIMPLEMENTED();
return kTagged;
}
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// The smi index is either untagged (element size == 1), or it is left smi
// tagged (for all element sizes > 1).
if (index_scale() == 1) {
locs->set_in(1, CanBeImmediateIndex(index(), class_id())
? Location::Constant(
index()->definition()->AsConstant()->value())
: Location::WritableRegister());
} else {
locs->set_in(1, CanBeImmediateIndex(index(), class_id())
? Location::Constant(
index()->definition()->AsConstant()->value())
: Location::RequiresRegister());
}
switch (class_id()) {
case kArrayCid:
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
break;
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
// TODO(fschneider): Add location constraint for byte registers (RAX,
// RBX, RCX, RDX) instead of using a fixed register.
locs->set_in(2, Location::FixedRegisterOrSmiConstant(value(), RAX));
break;
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
// Writable register because the value must be untagged before storing.
locs->set_in(2, Location::WritableRegister());
break;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
// TODO(srdjan): Support Float64 constants.
locs->set_in(2, Location::RequiresFpuRegister());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
case kTypedDataFloat32x4ArrayCid:
locs->set_in(2, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
return NULL;
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address = index.IsRegister()
? ElementAddressForRegIndex(IsExternal(), class_id(), index_scale(),
array, index.reg())
: ElementAddressForIntIndex(IsExternal(), class_id(), index_scale(),
array, Smi::Cast(index.constant()).Value());
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
switch (class_id()) {
case kArrayCid:
if (ShouldEmitStoreBarrier()) {
Register value = locs()->in(2).reg();
__ StoreIntoObject(array, element_address, value);
} else if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreObject(element_address, constant, PP);
} else {
Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, element_address, value);
}
break;
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kOneByteStringCid:
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
__ movb(element_address,
Immediate(static_cast<int8_t>(constant.Value())));
} else {
ASSERT(locs()->in(2).reg() == RAX);
__ SmiUntag(RAX);
__ movb(element_address, RAX);
}
break;
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid: {
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
intptr_t value = constant.Value();
// Clamp to 0x0 or 0xFF respectively.
if (value > 0xFF) {
value = 0xFF;
} else if (value < 0) {
value = 0;
}
__ movb(element_address,
Immediate(static_cast<int8_t>(value)));
} else {
ASSERT(locs()->in(2).reg() == RAX);
Label store_value, store_0xff;
__ SmiUntag(RAX);
__ CompareImmediate(RAX, Immediate(0xFF), PP);
__ j(BELOW_EQUAL, &store_value, Assembler::kNearJump);
// Clamp to 0x0 or 0xFF respectively.
__ j(GREATER, &store_0xff);
__ xorq(RAX, RAX);
__ jmp(&store_value, Assembler::kNearJump);
__ Bind(&store_0xff);
__ LoadImmediate(RAX, Immediate(0xFF), PP);
__ Bind(&store_value);
__ movb(element_address, RAX);
}
break;
}
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid: {
Register value = locs()->in(2).reg();
__ SmiUntag(value);
__ movw(element_address, value);
break;
}
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid: {
Register value = locs()->in(2).reg();
__ SmiUntag(value);
__ movl(element_address, value);
break;
}
case kTypedDataFloat32ArrayCid:
__ movss(element_address, locs()->in(2).fpu_reg());
break;
case kTypedDataFloat64ArrayCid:
__ movsd(element_address, locs()->in(2).fpu_reg());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
case kTypedDataFloat32x4ArrayCid:
__ movups(element_address, locs()->in(2).fpu_reg());
break;
default:
UNREACHABLE();
}
}
LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const bool emit_full_guard = !opt || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
(value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
intptr_t num_temps = 0;
if (needs_value_cid_temp_reg) {
num_temps++;
}
if (needs_field_temp_reg) {
num_temps++;
}
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
for (intptr_t i = 0; i < num_temps; i++) {
summary->set_temp(i, Location::RequiresRegister());
}
return summary;
}
void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid;
if (field_cid == kDynamicCid) {
ASSERT(!compiler->is_optimizing());
return; // Nothing to emit.
}
const bool emit_full_guard =
!compiler->is_optimizing() || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
(value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
const Register value_reg = locs()->in(0).reg();
const Register value_cid_reg = needs_value_cid_temp_reg ?
locs()->temp(0).reg() : kNoRegister;
const Register field_reg = needs_field_temp_reg ?
locs()->temp(locs()->temp_count() - 1).reg() : kNoRegister;
Label ok, fail_label;
Label* deopt = compiler->is_optimizing() ?
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) : NULL;
Label* fail = (deopt != NULL) ? deopt : &fail_label;
if (emit_full_guard) {
__ LoadObject(field_reg, Field::ZoneHandle(field().raw()), PP);
FieldAddress field_cid_operand(field_reg, Field::guarded_cid_offset());
FieldAddress field_nullability_operand(
field_reg, Field::is_nullable_offset());
if (value_cid == kDynamicCid) {
LoadValueCid(compiler, value_cid_reg, value_reg);
__ cmpl(value_cid_reg, field_cid_operand);
__ j(EQUAL, &ok);
__ cmpl(value_cid_reg, field_nullability_operand);
} else if (value_cid == kNullCid) {
__ cmpl(field_nullability_operand, Immediate(value_cid));
} else {
__ cmpl(field_cid_operand, Immediate(value_cid));
}
__ j(EQUAL, &ok);
// Check if the tracked state of the guarded field can be initialized
// inline. If the field needs length check we fall through to runtime
// which is responsible for computing offset of the length field
// based on the class id.
if (!field().needs_length_check()) {
// Uninitialized field can be handled inline. Check if the
// field is still unitialized.
__ cmpl(field_cid_operand, Immediate(kIllegalCid));
__ j(NOT_EQUAL, fail);
if (value_cid == kDynamicCid) {
__ movl(field_cid_operand, value_cid_reg);
__ movl(field_nullability_operand, value_cid_reg);
} else {
ASSERT(field_reg != kNoRegister);
__ movl(field_cid_operand, Immediate(value_cid));
__ movl(field_nullability_operand, Immediate(value_cid));
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ jmp(&ok);
}
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ Bind(fail);
__ cmpl(FieldAddress(field_reg, Field::guarded_cid_offset()),
Immediate(kDynamicCid));
__ j(EQUAL, &ok);
__ pushq(field_reg);
__ pushq(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
}
} else {
ASSERT(compiler->is_optimizing());
ASSERT(deopt != NULL);
// Field guard class has been initialized and is known.
if (value_cid == kDynamicCid) {
// Value's class id is not known.
__ testq(value_reg, Immediate(kSmiTagMask));
if (field_cid != kSmiCid) {
__ j(ZERO, fail);
__ LoadClassId(value_cid_reg, value_reg);
__ CompareImmediate(value_cid_reg, Immediate(field_cid), PP);
}
if (field().is_nullable() && (field_cid != kNullCid)) {
__ j(EQUAL, &ok);
__ CompareObject(value_reg, Object::null_object(), PP);
}
__ j(NOT_EQUAL, fail);
} else {
// Both value's and field's class id is known.
ASSERT((value_cid != field_cid) && (value_cid != nullability));
__ jmp(fail);
}
}
__ Bind(&ok);
}
LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) {
const intptr_t kNumTemps = 3;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We need temporaries for field object, length offset and expected length.
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, Location::RequiresRegister());
return summary;
} else {
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, 0, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
}
void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (field().guarded_list_length() == Field::kNoFixedLength) {
ASSERT(!compiler->is_optimizing());
return; // Nothing to emit.
}
Label* deopt = compiler->is_optimizing() ?
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) : NULL;
const Register value_reg = locs()->in(0).reg();
if (!compiler->is_optimizing() ||
(field().guarded_list_length() == Field::kUnknownFixedLength)) {
const Register field_reg = locs()->temp(0).reg();
const Register offset_reg = locs()->temp(1).reg();
const Register length_reg = locs()->temp(2).reg();
Label ok;
__ LoadObject(field_reg, Field::ZoneHandle(field().raw()), PP);
__ movsxb(offset_reg, FieldAddress(field_reg,
Field::guarded_list_length_in_object_offset_offset()));
__ movq(length_reg, FieldAddress(field_reg,
Field::guarded_list_length_offset()));
__ cmpq(offset_reg, Immediate(0));
__ j(NEGATIVE, &ok);
// Load the length from the value. GuardFieldClass already verified that
// value's class matches guarded class id of the field.
// offset_reg contains offset already corrected by -kHeapObjectTag that is
// why we use Address instead of FieldAddress.
__ cmpq(length_reg, Address(value_reg, offset_reg, TIMES_1, 0));
if (deopt == NULL) {
__ j(EQUAL, &ok);
__ pushq(field_reg);
__ pushq(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ j(NOT_EQUAL, deopt);
}
__ Bind(&ok);
} else {
ASSERT(compiler->is_optimizing());
ASSERT(field().guarded_list_length() >= 0);
ASSERT(field().guarded_list_length_in_object_offset() !=
Field::kUnknownLengthOffset);
__ CompareImmediate(
FieldAddress(value_reg,
field().guarded_list_length_in_object_offset()),
Immediate(Smi::RawValue(field().guarded_list_length())),
PP);
__ j(NOT_EQUAL, deopt);
}
}
class StoreInstanceFieldSlowPath : public SlowPathCode {
public:
StoreInstanceFieldSlowPath(StoreInstanceFieldInstr* instruction,
const Class& cls)
: instruction_(instruction), cls_(cls) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("StoreInstanceFieldSlowPath");
__ Bind(entry_label());
Isolate* isolate = compiler->isolate();
StubCode* stub_code = isolate->stub_code();
const Code& stub = Code::Handle(isolate,
stub_code->GetAllocationStubForClass(cls_));
const ExternalLabel label(stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->temp(0));
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kNoSourcePos, // No token position.
&label,
RawPcDescriptors::kOther,
locs);
__ MoveRegister(locs->temp(0).reg(), RAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
StoreInstanceFieldInstr* instruction_;
const Class& cls_;
};
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps =
(IsUnboxedStore() && opt) ? 2 :
((IsPotentialUnboxedStore()) ? 3 : 0);
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps,
((IsUnboxedStore() && opt && is_initialization_) ||
IsPotentialUnboxedStore())
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (IsUnboxedStore() && opt) {
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
} else if (IsPotentialUnboxedStore()) {
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, opt ? Location::RequiresFpuRegister()
: Location::FpuRegisterLocation(XMM1));
} else {
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
}
return summary;
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label skip_store;
Register instance_reg = locs()->in(0).reg();
if (IsUnboxedStore() && compiler->is_optimizing()) {
XmmRegister value = locs()->in(1).fpu_reg();
Register temp = locs()->temp(0).reg();
Register temp2 = locs()->temp(1).reg();
const intptr_t cid = field().UnboxedFieldCid();
if (is_initialization_) {
const Class* cls = NULL;
switch (cid) {
case kDoubleCid:
cls = &compiler->double_class();
break;
case kFloat32x4Cid:
cls = &compiler->float32x4_class();
break;
case kFloat64x2Cid:
cls = &compiler->float64x2_class();
break;
default:
UNREACHABLE();
}
StoreInstanceFieldSlowPath* slow_path =
new StoreInstanceFieldSlowPath(this, *cls);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(*cls,
slow_path->entry_label(),
Assembler::kFarJump,
temp,
PP);
__ Bind(slow_path->exit_label());
__ movq(temp2, temp);
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_),
temp2);
} else {
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes_));
}
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleStoreInstanceFieldInstr");
__ movsd(FieldAddress(temp, Double::value_offset()), value);
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4StoreInstanceFieldInstr");
__ movups(FieldAddress(temp, Float32x4::value_offset()), value);
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2StoreInstanceFieldInstr");
__ movups(FieldAddress(temp, Float64x2::value_offset()), value);
break;
default:
UNREACHABLE();
}
return;
}
if (IsPotentialUnboxedStore()) {
Register value_reg = locs()->in(1).reg();
Register temp = locs()->temp(0).reg();
Register temp2 = locs()->temp(1).reg();
FpuRegister fpu_temp = locs()->temp(2).fpu_reg();
Label store_pointer;
Label store_double;
Label store_float32x4;
Label store_float64x2;
__ LoadObject(temp, Field::ZoneHandle(field().raw()), PP);
__ cmpl(FieldAddress(temp, Field::is_nullable_offset()),
Immediate(kNullCid));
__ j(EQUAL, &store_pointer);
__ movzxb(temp2, FieldAddress(temp, Field::kind_bits_offset()));
__ testq(temp2, Immediate(1 << Field::kUnboxingCandidateBit));
__ j(ZERO, &store_pointer);
__ cmpl(FieldAddress(temp, Field::guarded_cid_offset()),
Immediate(kDoubleCid));
__ j(EQUAL, &store_double);
__ cmpl(FieldAddress(temp, Field::guarded_cid_offset()),
Immediate(kFloat32x4Cid));
__ j(EQUAL, &store_float32x4);
__ cmpl(FieldAddress(temp, Field::guarded_cid_offset()),
Immediate(kFloat64x2Cid));
__ j(EQUAL, &store_float64x2);
// Fall through.
__ jmp(&store_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
locs()->live_registers()->Add(locs()->in(1));
}
{
__ Bind(&store_double);
Label copy_double;
StoreInstanceFieldSlowPath* slow_path =
new StoreInstanceFieldSlowPath(this, compiler->double_class());
compiler->AddSlowPathCode(slow_path);
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes_));
__ CompareObject(temp, Object::null_object(), PP);
__ j(NOT_EQUAL, &copy_double);
__ TryAllocate(compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
temp,
PP);
__ Bind(slow_path->exit_label());
__ movq(temp2, temp);
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_),
temp2);
__ Bind(&copy_double);
__ movsd(fpu_temp, FieldAddress(value_reg, Double::value_offset()));
__ movsd(FieldAddress(temp, Double::value_offset()), fpu_temp);
__ jmp(&skip_store);
}
{
__ Bind(&store_float32x4);
Label copy_float32x4;
StoreInstanceFieldSlowPath* slow_path =
new StoreInstanceFieldSlowPath(this, compiler->float32x4_class());
compiler->AddSlowPathCode(slow_path);
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes_));
__ CompareObject(temp, Object::null_object(), PP);
__ j(NOT_EQUAL, &copy_float32x4);
__ TryAllocate(compiler->float32x4_class(),
slow_path->entry_label(),
Assembler::kFarJump,
temp,
PP);
__ Bind(slow_path->exit_label());
__ movq(temp2, temp);
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_),
temp2);
__ Bind(&copy_float32x4);
__ movups(fpu_temp, FieldAddress(value_reg, Float32x4::value_offset()));
__ movups(FieldAddress(temp, Float32x4::value_offset()), fpu_temp);
__ jmp(&skip_store);
}
{
__ Bind(&store_float64x2);
Label copy_float64x2;
StoreInstanceFieldSlowPath* slow_path =
new StoreInstanceFieldSlowPath(this, compiler->float64x2_class());
compiler->AddSlowPathCode(slow_path);
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes_));
__ CompareObject(temp, Object::null_object(), PP);
__ j(NOT_EQUAL, &copy_float64x2);
__ TryAllocate(compiler->float64x2_class(),
slow_path->entry_label(),
Assembler::kFarJump,
temp,
temp2);
__ Bind(slow_path->exit_label());
__ movq(temp2, temp);
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_),
temp2);
__ Bind(&copy_float64x2);
__ movups(fpu_temp, FieldAddress(value_reg, Float64x2::value_offset()));
__ movups(FieldAddress(temp, Float64x2::value_offset()), fpu_temp);
__ jmp(&skip_store);
}
__ Bind(&store_pointer);
}
if (ShouldEmitStoreBarrier()) {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_),
value_reg,
CanValueBeSmi());
} else {
if (locs()->in(1).IsConstant()) {
__ StoreObject(FieldAddress(instance_reg, offset_in_bytes_),
locs()->in(1).constant(), PP);
} else {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectNoBarrier(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_), value_reg);
}
}
__ Bind(&skip_store);
}
LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
// When the parser is building an implicit static getter for optimization,
// it can generate a function body where deoptimization ids do not line up
// with the unoptimized code.
//
// This is safe only so long as LoadStaticFieldInstr cannot deoptimize.
void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register field = locs()->in(0).reg();
Register result = locs()->out(0).reg();
__ movq(result, FieldAddress(field, Field::value_offset()));
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
LocationSummary* locs = new(isolate) LocationSummary(
isolate, 1, 1, LocationSummary::kNoCall);
locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister()
: Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
__ LoadObject(temp, field(), PP);
if (this->value()->NeedsStoreBuffer()) {
__ StoreIntoObject(temp,
FieldAddress(temp, Field::value_offset()), value, CanValueBeSmi());
} else {
__ StoreIntoObjectNoBarrier(
temp, FieldAddress(temp, Field::value_offset()), value);
}
}
LocationSummary* InstanceOfInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::RegisterLocation(RCX));
summary->set_in(2, Location::RegisterLocation(RDX));
summary->set_out(0, Location::RegisterLocation(RAX));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == RAX); // Value.
ASSERT(locs()->in(1).reg() == RCX); // Instantiator.
ASSERT(locs()->in(2).reg() == RDX); // Instantiator type arguments.
compiler->GenerateInstanceOf(token_pos(),
deopt_id(),
type(),
negate_result(),
locs());
ASSERT(locs()->out(0).reg() == RAX);
}
// TODO(srdjan): In case of constant inputs make CreateArray kNoCall and
// use slow path stub.
LocationSummary* CreateArrayInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RBX));
locs->set_in(1, Location::RegisterLocation(R10));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
// Inlines array allocation for known constant values.
static void InlineArrayAllocation(FlowGraphCompiler* compiler,
intptr_t num_elements,
Label* slow_path,
Label* done) {
const Register kLengthReg = R10;
const Register kElemTypeReg = RBX;
const intptr_t kArraySize = Array::InstanceSize(num_elements);
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
__ movq(RAX, Immediate(heap->TopAddress()));
__ movq(RAX, Address(RAX, 0));
__ movq(RCX, RAX);
__ addq(RCX, Immediate(kArraySize));
__ j(CARRY, slow_path);
// Check if the allocation fits into the remaining space.
// RAX: potential new object start.
// RCX: potential next object start.
__ movq(R13, Immediate(heap->EndAddress()));
__ cmpq(RCX, Address(R13, 0));
__ j(ABOVE_EQUAL, slow_path);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ movq(R13, Immediate(heap->TopAddress()));
__ movq(Address(R13, 0), RCX);
__ addq(RAX, Immediate(kHeapObjectTag));
__ movq(R13, Immediate(kArraySize));
__ UpdateAllocationStatsWithSize(kArrayCid, R13);
// Initialize the tags.
// RAX: new object start as a tagged pointer.
{
uword tags = 0;
tags = RawObject::ClassIdTag::update(kArrayCid, tags);
tags = RawObject::SizeTag::update(kArraySize, tags);
__ movq(FieldAddress(RAX, Array::tags_offset()), Immediate(tags));
}
// RAX: new object start as a tagged pointer.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(RAX,
FieldAddress(RAX, Array::type_arguments_offset()),
kElemTypeReg);
// Set the length field.
__ StoreIntoObjectNoBarrier(RAX,
FieldAddress(RAX, Array::length_offset()),
kLengthReg);
// Initialize all array elements to raw_null.
// RAX: new object start as a tagged pointer.
// RCX: new object end address.
// RDI: iterator which initially points to the start of the variable
// data area to be initialized.
__ LoadObject(R12, Object::null_object(), PP);
__ leaq(RDI, FieldAddress(RAX, sizeof(RawArray)));
Label init_loop;
__ Bind(&init_loop);
__ cmpq(RDI, RCX);
__ j(ABOVE_EQUAL, done, Assembler::kNearJump);
__ movq(Address(RDI, 0), R12);
__ addq(RDI, Immediate(kWordSize));
__ jmp(&init_loop, Assembler::kNearJump);
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Allocate the array. R10 = length, RBX = element type.
const Register kLengthReg = R10;
const Register kElemTypeReg = RBX;
const Register kResultReg = RAX;
ASSERT(locs()->in(0).reg() == kElemTypeReg);
ASSERT(locs()->in(1).reg() == kLengthReg);
Label slow_path, done;
if (num_elements()->BindsToConstant() &&
num_elements()->BoundConstant().IsSmi()) {
const intptr_t length = Smi::Cast(num_elements()->BoundConstant()).Value();
if ((length >= 0) && (length <= Array::kMaxElements)) {
Label slow_path, done;
InlineArrayAllocation(compiler, length, &slow_path, &done);
__ Bind(&slow_path);
__ PushObject(Object::null_object(), PP); // Make room for the result.
__ pushq(kLengthReg);
__ pushq(kElemTypeReg);
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kAllocateArrayRuntimeEntry,
2,
locs());
__ Drop(2);
__ popq(kResultReg);
__ Bind(&done);
return;
}
}
__ Bind(&slow_path);
StubCode* stub_code = compiler->isolate()->stub_code();
compiler->GenerateCall(token_pos(),
&stub_code->AllocateArrayLabel(),
RawPcDescriptors::kOther,
locs());
__ Bind(&done);
ASSERT(locs()->out(0).reg() == kResultReg);
}
class BoxDoubleSlowPath : public SlowPathCode {
public:
explicit BoxDoubleSlowPath(Instruction* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxDoubleSlowPath");
__ Bind(entry_label());
Isolate* isolate = compiler->isolate();
StubCode* stub_code = isolate->stub_code();
const Class& double_class = compiler->double_class();
const Code& stub =
Code::Handle(isolate,
stub_code->GetAllocationStubForClass(double_class));
const ExternalLabel label(stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
ASSERT(!locs->live_registers()->Contains(locs->out(0)));
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kNoSourcePos, // No token position.
&label,
RawPcDescriptors::kOther,
locs);
__ MoveRegister(locs->out(0).reg(), RAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
Instruction* instruction_;
};
class BoxFloat32x4SlowPath : public SlowPathCode {
public:
explicit BoxFloat32x4SlowPath(Instruction* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxFloat32x4SlowPath");
__ Bind(entry_label());
Isolate* isolate = compiler->isolate();
StubCode* stub_code = isolate->stub_code();
const Class& float32x4_class = compiler->float32x4_class();
const Code& stub =
Code::Handle(isolate,
stub_code->GetAllocationStubForClass(float32x4_class));
const ExternalLabel label(stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
ASSERT(!locs->live_registers()->Contains(locs->out(0)));
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kNoSourcePos, // No token position.
&label,
RawPcDescriptors::kOther,
locs);
__ MoveRegister(locs->out(0).reg(), RAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
Instruction* instruction_;
};
class BoxFloat64x2SlowPath : public SlowPathCode {
public:
explicit BoxFloat64x2SlowPath(Instruction* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxFloat64x2SlowPath");
__ Bind(entry_label());
Isolate* isolate = compiler->isolate();
StubCode* stub_code = isolate->stub_code();
const Class& float64x2_class = compiler->float64x2_class();
const Code& stub =
Code::Handle(isolate,
stub_code->GetAllocationStubForClass(float64x2_class));
const ExternalLabel label(stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
ASSERT(!locs->live_registers()->Contains(locs->out(0)));
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kNoSourcePos, // No token position.
&label,
RawPcDescriptors::kOther,
locs);
__ MoveRegister(locs->out(0).reg(), RAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
Instruction* instruction_;
};
LocationSummary* LoadFieldInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps =
(IsUnboxedLoad() && opt) ? 1 :
((IsPotentialUnboxedLoad()) ? 2 : 0);
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps,
(opt && !IsPotentialUnboxedLoad())
? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath);
locs->set_in(0, Location::RequiresRegister());
if (IsUnboxedLoad() && opt) {
locs->set_temp(0, Location::RequiresRegister());
} else if (IsPotentialUnboxedLoad()) {
locs->set_temp(0, opt ? Location::RequiresFpuRegister()
: Location::FpuRegisterLocation(XMM1));
locs->set_temp(1, Location::RequiresRegister());
}
locs->set_out(0, Location::RequiresRegister());
return locs;
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instance_reg = locs()->in(0).reg();
if (IsUnboxedLoad() && compiler->is_optimizing()) {
XmmRegister result = locs()->out(0).fpu_reg();
Register temp = locs()->temp(0).reg();
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes()));
intptr_t cid = field()->UnboxedFieldCid();
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleLoadFieldInstr");
__ movsd(result, FieldAddress(temp, Double::value_offset()));
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4LoadFieldInstr");
__ movups(result, FieldAddress(temp, Float32x4::value_offset()));
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2LoadFieldInstr");
__ movups(result, FieldAddress(temp, Float64x2::value_offset()));
break;
default:
UNREACHABLE();
}
return;
}
Label done;
Register result = locs()->out(0).reg();
if (IsPotentialUnboxedLoad()) {
Register temp = locs()->temp(1).reg();
XmmRegister value = locs()->temp(0).fpu_reg();
Label load_pointer;
Label load_double;
Label load_float32x4;
Label load_float64x2;
__ LoadObject(result, Field::ZoneHandle(field()->raw()), PP);
__ cmpl(FieldAddress(result, Field::is_nullable_offset()),
Immediate(kNullCid));
__ j(EQUAL, &load_pointer);
__ cmpl(FieldAddress(result, Field::guarded_cid_offset()),
Immediate(kDoubleCid));
__ j(EQUAL, &load_double);
__ cmpl(FieldAddress(result, Field::guarded_cid_offset()),
Immediate(kFloat32x4Cid));
__ j(EQUAL, &load_float32x4);
__ cmpl(FieldAddress(result, Field::guarded_cid_offset()),
Immediate(kFloat64x2Cid));
__ j(EQUAL, &load_float64x2);
// Fall through.
__ jmp(&load_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
}
{
__ Bind(&load_double);
BoxDoubleSlowPath* slow_path = new BoxDoubleSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
result,
PP);
__ Bind(slow_path->exit_label());
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes()));
__ movsd(value, FieldAddress(temp, Double::value_offset()));
__ movsd(FieldAddress(result, Double::value_offset()), value);
__ jmp(&done);
}
{
__ Bind(&load_float32x4);
BoxFloat32x4SlowPath* slow_path = new BoxFloat32x4SlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(compiler->float32x4_class(),
slow_path->entry_label(),
Assembler::kFarJump,
result,
PP);
__ Bind(slow_path->exit_label());
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes()));
__ movups(value, FieldAddress(temp, Float32x4::value_offset()));
__ movups(FieldAddress(result, Float32x4::value_offset()), value);
__ jmp(&done);
}
{
__ Bind(&load_float64x2);
BoxFloat64x2SlowPath* slow_path = new BoxFloat64x2SlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(compiler->float64x2_class(),
slow_path->entry_label(),
Assembler::kFarJump,
result,
temp);
__ Bind(slow_path->exit_label());
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes()));
__ movups(value, FieldAddress(temp, Float64x2::value_offset()));
__ movups(FieldAddress(result, Float64x2::value_offset()), value);
__ jmp(&done);
}
__ Bind(&load_pointer);
}
__ movq(result, FieldAddress(instance_reg, offset_in_bytes()));
__ Bind(&done);
}
LocationSummary* InstantiateTypeInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out(0).reg();
// 'instantiator_reg' is the instantiator TypeArguments object (or null).
// A runtime call to instantiate the type is required.
__ PushObject(Object::null_object(), PP); // Make room for the result.
__ PushObject(type(), PP);
__ pushq(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kInstantiateTypeRuntimeEntry,
2,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type.
__ popq(result_reg); // Pop instantiated type.
ASSERT(instantiator_reg == result_reg);
}
LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary(
Isolate* isolate, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void InstantiateTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out(0).reg();
ASSERT(instantiator_reg == RAX);
ASSERT(instantiator_reg == result_reg);
// 'instantiator_reg' is the instantiator TypeArguments object (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
__ CompareObject(instantiator_reg, Object::null_object(), PP);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
}
// Lookup cache before calling runtime.
// TODO(fschneider): Consider moving this into a shared stub to reduce
// generated code size.
__ LoadObject(RDI, type_arguments(), PP);
__ movq(RDI, FieldAddress(RDI, TypeArguments::instantiations_offset()));
__ leaq(RDI, FieldAddress(RDI, Array::data_offset()));
// The instantiations cache is initialized with Object::zero_array() and is
// therefore guaranteed to contain kNoInstantiator. No length check needed.
Label loop, found, slow_case;
__ Bind(&loop);
__ movq(RDX, Address(RDI, 0 * kWordSize)); // Cached instantiator.
__ cmpq(RDX, RAX);
__ j(EQUAL, &found, Assembler::kNearJump);
__ addq(RDI, Immediate(2 * kWordSize));
__ cmpq(RDX, Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
__ jmp(&slow_case, Assembler::kNearJump);
__ Bind(&found);
__ movq(RAX, Address(RDI, 1 * kWordSize)); // Cached instantiated args.
__ jmp(&type_arguments_instantiated, Assembler::kNearJump);
__ Bind(&slow_case);
// Instantiate non-null type arguments.
// A runtime call to instantiate the type arguments is required.
__ PushObject(Object::null_object(), PP); // Make room for the result.
__ PushObject(type_arguments(), PP);
__ pushq(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kInstantiateTypeArgumentsRuntimeEntry,
2,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type arguments.
__ popq(result_reg); // Pop instantiated type arguments.
__ Bind(&type_arguments_instantiated);
ASSERT(instantiator_reg == result_reg);
}
LocationSummary* AllocateContextInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(R10));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == R10);
ASSERT(locs()->out(0).reg() == RAX);
StubCode* stub_code = compiler->isolate()->stub_code();
__ LoadImmediate(R10, Immediate(num_context_variables()), PP);
const ExternalLabel label(stub_code->AllocateContextEntryPoint());
compiler->GenerateCall(token_pos(),
&label,
RawPcDescriptors::kOther,
locs());
}
LocationSummary* CloneContextInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register context_value = locs()->in(0).reg();
Register result = locs()->out(0).reg();
__ PushObject(Object::null_object(), PP); // Make room for the result.
__ pushq(context_value);
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kCloneContextRuntimeEntry,
1,
locs());
__ popq(result); // Remove argument.
__ popq(result); // Get result (cloned context).
}
LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
UNREACHABLE();
return NULL;
}
void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
compiler->AddExceptionHandler(catch_try_index(),
try_index(),
compiler->assembler()->CodeSize(),
catch_handler_types_,
needs_stacktrace());
// Restore the pool pointer.
__ LoadPoolPointer(PP);
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// Restore RSP from RBP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t fp_sp_dist =
(kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize;
ASSERT(fp_sp_dist <= 0);
__ leaq(RSP, Address(RBP, fp_sp_dist));
// Restore stack and initialize the two exception variables:
// exception and stack trace variables.
__ movq(Address(RBP, exception_var().index() * kWordSize),
kExceptionObjectReg);
__ movq(Address(RBP, stacktrace_var().index() * kWordSize),
kStackTraceObjectReg);
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
class CheckStackOverflowSlowPath : public SlowPathCode {
public:
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (FLAG_use_osr) {
uword flags_address = Isolate::Current()->stack_overflow_flags_address();
Register temp = instruction_->locs()->temp(0).reg();
__ Comment("CheckStackOverflowSlowPathOsr");
__ Bind(osr_entry_label());
__ LoadImmediate(temp, Immediate(flags_address), PP);
__ movq(Address(temp, 0), Immediate(Isolate::kOsrRequest));
}
__ Comment("CheckStackOverflowSlowPath");
__ Bind(entry_label());
compiler->SaveLiveRegisters(instruction_->locs());
// pending_deoptimization_env_ is needed to generate a runtime call that
// may throw an exception.
ASSERT(compiler->pending_deoptimization_env_ == NULL);
Environment* env = compiler->SlowPathEnvironmentFor(instruction_);
compiler->pending_deoptimization_env_ = env;
compiler->GenerateRuntimeCall(instruction_->token_pos(),
instruction_->deopt_id(),
kStackOverflowRuntimeEntry,
0,
instruction_->locs());
if (FLAG_use_osr && !compiler->is_optimizing() && instruction_->in_loop()) {
// In unoptimized code, record loop stack checks as possible OSR entries.
compiler->AddCurrentDescriptor(RawPcDescriptors::kOsrEntry,
instruction_->deopt_id(),
0); // No token position.
}
compiler->pending_deoptimization_env_ = NULL;
compiler->RestoreLiveRegisters(instruction_->locs());
__ jmp(exit_label());
}
Label* osr_entry_label() {
ASSERT(FLAG_use_osr);
return &osr_entry_label_;
}
private:
CheckStackOverflowInstr* instruction_;
Label osr_entry_label_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register temp = locs()->temp(0).reg();
// Generate stack overflow check.
__ LoadImmediate(
temp, Immediate(Isolate::Current()->stack_limit_address()), PP);
__ cmpq(RSP, Address(temp, 0));
__ j(BELOW_EQUAL, slow_path->entry_label());
if (compiler->CanOSRFunction() && in_loop()) {
// In unoptimized code check the usage counter to trigger OSR at loop
// stack checks. Use progressively higher thresholds for more deeply
// nested loops to attempt to hit outer loops with OSR when possible.
__ LoadObject(temp, compiler->parsed_function().function(), PP);
int32_t threshold =
FLAG_optimization_counter_threshold * (loop_depth() + 1);
__ cmpl(FieldAddress(temp, Function::usage_counter_offset()),
Immediate(threshold));
__ j(GREATER_EQUAL, slow_path->osr_entry_label());
}
if (compiler->ForceSlowPathForStackOverflow()) {
__ jmp(slow_path->entry_label());
}
__ Bind(slow_path->exit_label());
}
static void EmitJavascriptOverflowCheck(FlowGraphCompiler* compiler,
Range* range,
Label* overflow,
Register result) {
if (!range->IsWithin(-0x20000000000000LL, 0x20000000000000LL)) {
ASSERT(overflow != NULL);
// TODO(zra): This can be tightened to one compare/branch using:
// overflow = (result + 2^52) > 2^53 with an unsigned comparison.
__ CompareImmediate(result, Immediate(-0x20000000000000LL), PP);
__ j(LESS, overflow);
__ CompareImmediate(result, Immediate(0x20000000000000LL), PP);
__ j(GREATER, overflow);
}
}
static void EmitSmiShiftLeft(FlowGraphCompiler* compiler,
BinarySmiOpInstr* shift_left) {
const bool is_truncating = shift_left->IsTruncating();
const LocationSummary& locs = *shift_left->locs();
Register left = locs.in(0).reg();
Register result = locs.out(0).reg();
ASSERT(left == result);
Label* deopt = shift_left->CanDeoptimize() ?
compiler->AddDeoptStub(shift_left->deopt_id(), ICData::kDeoptBinarySmiOp)
: NULL;
if (locs.in(1).IsConstant()) {
const Object& constant = locs.in(1).constant();
ASSERT(constant.IsSmi());
// shlq operation masks the count to 6 bits.
const intptr_t kCountLimit = 0x3F;
const intptr_t value = Smi::Cast(constant).Value();
if (value == 0) {
// No code needed.
} else if ((value < 0) || (value >= kCountLimit)) {
// This condition may not be known earlier in some cases because
// of constant propagation, inlining, etc.
if ((value >= kCountLimit) && is_truncating) {
__ xorq(result, result);
} else {
// Result is Mint or exception.
__ jmp(deopt);
}
} else {
if (!is_truncating) {
// Check for overflow.
Register temp = locs.temp(0).reg();
__ movq(temp, left);
__ shlq(left, Immediate(value));
__ sarq(left, Immediate(value));
__ cmpq(left, temp);
__ j(NOT_EQUAL, deopt); // Overflow.
}
// Shift for result now we know there is no overflow.
__ shlq(left, Immediate(value));
}
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, shift_left->range(), deopt, result);
}
return;
}
// Right (locs.in(1)) is not constant.
Register right = locs.in(1).reg();
Range* right_range = shift_left->right()->definition()->range();
if (shift_left->left()->BindsToConstant() && !is_truncating) {
// TODO(srdjan): Implement code below for is_truncating().
// If left is constant, we know the maximal allowed size for right.
const Object& obj = shift_left->left()->BoundConstant();
if (obj.IsSmi()) {
const intptr_t left_int = Smi::Cast(obj).Value();
if (left_int == 0) {
__ CompareImmediate(right, Immediate(0), PP);
__ j(NEGATIVE, deopt);
return;
}
const intptr_t max_right = kSmiBits - Utils::HighestBit(left_int);
const bool right_needs_check =
(right_range == NULL) ||
!right_range->IsWithin(0, max_right - 1);
if (right_needs_check) {
__ CompareImmediate(right,
Immediate(reinterpret_cast<int64_t>(Smi::New(max_right))), PP);
__ j(ABOVE_EQUAL, deopt);
}
__ SmiUntag(right);
__ shlq(left, right);
}
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, shift_left->range(), deopt, result);
}
return;
}
const bool right_needs_check =
(right_range == NULL) || !right_range->IsWithin(0, (Smi::kBits - 1));
ASSERT(right == RCX); // Count must be in RCX
if (is_truncating) {
if (right_needs_check) {
const bool right_may_be_negative =
(right_range == NULL) || !right_range->IsPositive();
if (right_may_be_negative) {
ASSERT(shift_left->CanDeoptimize());
__ CompareImmediate(right, Immediate(0), PP);
__ j(NEGATIVE, deopt);
}
Label done, is_not_zero;
__ CompareImmediate(right,
Immediate(reinterpret_cast<int64_t>(Smi::New(Smi::kBits))), PP);
__ j(BELOW, &is_not_zero, Assembler::kNearJump);
__ xorq(left, left);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_not_zero);
__ SmiUntag(right);
__ shlq(left, right);
__ Bind(&done);
} else {
__ SmiUntag(right);
__ shlq(left, right);
}
} else {
if (right_needs_check) {
ASSERT(shift_left->CanDeoptimize());
__ CompareImmediate(right,
Immediate(reinterpret_cast<int64_t>(Smi::New(Smi::kBits))), PP);
__ j(ABOVE_EQUAL, deopt);
}
// Left is not a constant.
Register temp = locs.temp(0).reg();
// Check if count too large for handling it inlined.
__ movq(temp, left);
__ SmiUntag(right);
// Overflow test (preserve temp and right);
__ shlq(left, right);
__ sarq(left, right);
__ cmpq(left, temp);
__ j(NOT_EQUAL, deopt); // Overflow.
// Shift for result now we know there is no overflow.
__ shlq(left, right);
}
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, shift_left->range(), deopt, result);
}
}
static bool CanBeImmediate(const Object& constant) {
return constant.IsSmi() &&
Immediate(reinterpret_cast<int64_t>(constant.raw())).is_int32();
}
LocationSummary* BinarySmiOpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
ConstantInstr* right_constant = right()->definition()->AsConstant();
if ((right_constant != NULL) &&
(op_kind() != Token::kTRUNCDIV) &&
(op_kind() != Token::kSHL) &&
(op_kind() != Token::kMUL) &&
(op_kind() != Token::kMOD) &&
CanBeImmediate(right_constant->value())) {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::Constant(right_constant->value()));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
if (op_kind() == Token::kTRUNCDIV) {
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (RightIsPowerOfTwoConstant()) {
summary->set_in(0, Location::RequiresRegister());
ConstantInstr* right_constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(right_constant->value()));
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
} else {
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(0, Location::SameAsFirstInput());
// Will be used for sign extension and division.
summary->set_temp(0, Location::RegisterLocation(RDX));
}
return summary;
} else if (op_kind() == Token::kMOD) {
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(RDX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(0, Location::SameAsFirstInput());
// Will be used for sign extension and division.
summary->set_temp(0, Location::RegisterLocation(RAX));
return summary;
} else if (op_kind() == Token::kSHR) {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), RCX));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
} else if (op_kind() == Token::kSHL) {
const intptr_t kNumTemps = !IsTruncating() ? 1 : 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), RCX));
if (!IsTruncating()) {
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(0, Location::SameAsFirstInput());
return summary;
} else {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
ConstantInstr* constant = right()->definition()->AsConstant();
if (constant != NULL) {
summary->set_in(1, Location::RegisterOrSmiConstant(right()));
} else {
summary->set_in(1, Location::PrefersRegister());
}
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
}
void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (op_kind() == Token::kSHL) {
EmitSmiShiftLeft(compiler, this);
return;
}
Register left = locs()->in(0).reg();
Register result = locs()->out(0).reg();
ASSERT(left == result);
Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
const int64_t imm = reinterpret_cast<int64_t>(constant.raw());
switch (op_kind()) {
case Token::kADD: {
if (imm != 0) {
// Checking overflow without emitting an instruction would be wrong.
__ AddImmediate(left, Immediate(imm), PP);
if (deopt != NULL) __ j(OVERFLOW, deopt);
}
break;
}
case Token::kSUB: {
if (imm != 0) {
// Checking overflow without emitting an instruction would be wrong.
__ SubImmediate(left, Immediate(imm), PP);
if (deopt != NULL) __ j(OVERFLOW, deopt);
}
break;
}
case Token::kMUL: {
// Keep left value tagged and untag right value.
const intptr_t value = Smi::Cast(constant).Value();
if (value == 2) {
__ shlq(left, Immediate(1));
} else {
__ MulImmediate(left, Immediate(value), PP);
}
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kTRUNCDIV: {
const intptr_t value = Smi::Cast(constant).Value();
if (value == 1) {
// Do nothing.
break;
} else if (value == -1) {
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot negate the result.
__ CompareImmediate(left, Immediate(0x8000000000000000), PP);
__ j(EQUAL, deopt);
__ negq(left);
break;
}
ASSERT(Utils::IsPowerOfTwo(Utils::Abs(value)));
const intptr_t shift_count =
Utils::ShiftForPowerOfTwo(Utils::Abs(value)) + kSmiTagSize;
ASSERT(kSmiTagSize == 1);
Register temp = locs()->temp(0).reg();
__ movq(temp, left);
__ sarq(temp, Immediate(63));
ASSERT(shift_count > 1); // 1, -1 case handled above.
__ shrq(temp, Immediate(64 - shift_count));
__ addq(left, temp);
ASSERT(shift_count > 0);
__ sarq(left, Immediate(shift_count));
if (value < 0) {
__ negq(left);
}
__ SmiTag(left);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ AndImmediate(left, Immediate(imm), PP);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ OrImmediate(left, Immediate(imm), PP);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ XorImmediate(left, Immediate(imm), PP);
break;
}
case Token::kSHR: {
// sarq operation masks the count to 6 bits.
const intptr_t kCountLimit = 0x3F;
intptr_t value = Smi::Cast(constant).Value();
if (value == 0) {
// TODO(vegorov): should be handled outside.
break;
} else if (value < 0) {
// TODO(vegorov): should be handled outside.
__ jmp(deopt);
break;
}
value = value + kSmiTagSize;
if (value >= kCountLimit) value = kCountLimit;
__ sarq(left, Immediate(value));
__ SmiTag(left);
break;
}
default:
UNREACHABLE();
break;
}
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, range(), deopt, result);
}
return;
} // locs()->in(1).IsConstant().
if (locs()->in(1).IsStackSlot()) {
const Address& right = locs()->in(1).ToStackSlotAddress();
switch (op_kind()) {
case Token::kADD: {
__ addq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
__ SmiUntag(left);
__ imulq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andq(left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orq(left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorq(left, right);
break;
}
default:
UNREACHABLE();
break;
}
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, range(), deopt, result);
}
return;
} // locs()->in(1).IsStackSlot().
// if locs()->in(1).IsRegister.
Register right = locs()->in(1).reg();
Range* right_range = this->right()->definition()->range();
switch (op_kind()) {
case Token::kADD: {
__ addq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
__ SmiUntag(left);
__ imulq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andq(left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orq(left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorq(left, right);
break;
}
case Token::kTRUNCDIV: {
Label not_32bit, done;
Register temp = locs()->temp(0).reg();
ASSERT(left == RAX);
ASSERT((right != RDX) && (right != RAX));
ASSERT(temp == RDX);
ASSERT(result == RAX);
if ((right_range == NULL) || right_range->Overlaps(0, 0)) {
// Handle divide by zero in runtime.
__ testq(right, right);
__ j(ZERO, deopt);
}
// Check if both operands fit into 32bits as idiv with 64bit operands
// requires twice as many cycles and has much higher latency.
// We are checking this before untagging them to avoid corner case
// dividing INT_MAX by -1 that raises exception because quotient is
// too large for 32bit register.
__ movsxd(temp, left);
__ cmpq(temp, left);
__ j(NOT_EQUAL, &not_32bit);
__ movsxd(temp, right);
__ cmpq(temp, right);
__ j(NOT_EQUAL, &not_32bit);
// Both operands are 31bit smis. Divide using 32bit idiv.
__ SmiUntag(left);
__ SmiUntag(right);
__ cdq();
__ idivl(right);
__ movsxd(result, result);
__ jmp(&done);
// Divide using 64bit idiv.
__ Bind(&not_32bit);
__ SmiUntag(left);
__ SmiUntag(right);
__ cqo(); // Sign extend RAX -> RDX:RAX.
__ idivq(right); // RAX: quotient, RDX: remainder.
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ CompareImmediate(result, Immediate(0x4000000000000000), PP);
__ j(EQUAL, deopt);
__ Bind(&done);
__ SmiTag(result);
break;
}
case Token::kMOD: {
Label not_32bit, div_done;
Register temp = locs()->temp(0).reg();
ASSERT(left == RDX);
ASSERT((right != RDX) && (right != RAX));
ASSERT(temp == RAX);
ASSERT(result == RDX);
if ((right_range == NULL) || right_range->Overlaps(0, 0)) {
// Handle divide by zero in runtime.
__ testq(right, right);
__ j(ZERO, deopt);
}
// Check if both operands fit into 32bits as idiv with 64bit operands
// requires twice as many cycles and has much higher latency.
// We are checking this before untagging them to avoid corner case
// dividing INT_MAX by -1 that raises exception because quotient is
// too large for 32bit register.
__ movsxd(temp, left);
__ cmpq(temp, left);
__ j(NOT_EQUAL, &not_32bit);
__ movsxd(temp, right);
__ cmpq(temp, right);
__ j(NOT_EQUAL, &not_32bit);
// Both operands are 31bit smis. Divide using 32bit idiv.
__ SmiUntag(left);
__ SmiUntag(right);
__ movq(RAX, RDX);
__ cdq();
__ idivl(right);
__ movsxd(result, result);
__ jmp(&div_done);
// Divide using 64bit idiv.
__ Bind(&not_32bit);
__ SmiUntag(left);
__ SmiUntag(right);
__ movq(RAX, RDX);
__ cqo(); // Sign extend RAX -> RDX:RAX.
__ idivq(right); // RAX: quotient, RDX: remainder.
__ Bind(&div_done);
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
Label all_done;
__ cmpq(result, Immediate(0));
__ j(GREATER_EQUAL, &all_done, Assembler::kNearJump);
// Result is negative, adjust it.
if ((right_range == NULL) || right_range->Overlaps(-1, 1)) {
Label subtract;
__ cmpq(right, Immediate(0));
__ j(LESS, &subtract, Assembler::kNearJump);
__ addq(result, right);
__ jmp(&all_done, Assembler::kNearJump);
__ Bind(&subtract);
__ subq(result, right);
} else if (right_range->IsPositive()) {
// Right is positive.
__ addq(result, right);
} else {
// Right is negative.
__ subq(result, right);
}
__ Bind(&all_done);
__ SmiTag(result);
break;
}
case Token::kSHR: {
if (CanDeoptimize()) {
__ CompareImmediate(right, Immediate(0), PP);
__ j(LESS, deopt);
}
__ SmiUntag(right);
// sarq operation masks the count to 6 bits.
const intptr_t kCountLimit = 0x3F;
if ((right_range == NULL) ||
!right_range->OnlyLessThanOrEqualTo(kCountLimit)) {
__ CompareImmediate(right, Immediate(kCountLimit), PP);
Label count_ok;
__ j(LESS, &count_ok, Assembler::kNearJump);
__ LoadImmediate(right, Immediate(kCountLimit), PP);
__ Bind(&count_ok);
}
ASSERT(right == RCX); // Count must be in RCX
__ SmiUntag(left);
__ sarq(left, right);
__ SmiTag(left);
break;
}
case Token::kDIV: {
// Dispatches to 'Double./'.
// TODO(srdjan): Implement as conversion to double and double division.
UNREACHABLE();
break;
}
case Token::kOR:
case Token::kAND: {
// Flow graph builder has dissected this operation to guarantee correct
// behavior (short-circuit evaluation).
UNREACHABLE();
break;
}
default:
UNREACHABLE();
break;
}
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, range(), deopt, result);
}
}
LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
ASSERT((left_cid != kDoubleCid) && (right_cid != kDoubleCid));
const intptr_t kNumInputs = 2;
const bool need_temp = (left()->definition() != right()->definition())
&& (left_cid != kSmiCid)
&& (right_cid != kSmiCid);
const intptr_t kNumTemps = need_temp ? 1 : 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
if (need_temp) summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
ICData::kDeoptBinaryDoubleOp);
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
if (this->left()->definition() == this->right()->definition()) {
__ testq(left, Immediate(kSmiTagMask));
} else if (left_cid == kSmiCid) {
__ testq(right, Immediate(kSmiTagMask));
} else if (right_cid == kSmiCid) {
__ testq(left, Immediate(kSmiTagMask));
} else {
Register temp = locs()->temp(0).reg();
__ movq(temp, left);
__ orq(temp, right);
__ testq(temp, Immediate(kSmiTagMask));
}
__ j(ZERO, deopt);
}
LocationSummary* BoxDoubleInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxDoubleSlowPath* slow_path = new BoxDoubleSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out(0).reg();
XmmRegister value = locs()->in(0).fpu_reg();
__ TryAllocate(compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg,
PP);
__ Bind(slow_path->exit_label());
__ movsd(FieldAddress(out_reg, Double::value_offset()), value);
}
LocationSummary* UnboxDoubleInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
const bool needs_writable_input = (value()->Type()->ToCid() != kDoubleCid);
summary->set_in(0, needs_writable_input
? Location::WritableRegister()
: Location::RequiresRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void UnboxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CompileType* value_type = value()->Type();
const intptr_t value_cid = value_type->ToCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out(0).fpu_reg();
if (value_cid == kDoubleCid) {
__ movsd(result, FieldAddress(value, Double::value_offset()));
} else if (value_cid == kSmiCid) {
__ SmiUntag(value); // Untag input before conversion.
__ cvtsi2sd(result, value);
} else {
Label* deopt = compiler->AddDeoptStub(deopt_id_,
ICData::kDeoptBinaryDoubleOp);
if (value_type->is_nullable() &&
(value_type->ToNullableCid() == kDoubleCid)) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpq(value, raw_null);
__ j(EQUAL, deopt);
// It must be double now.
__ movsd(result, FieldAddress(value, Double::value_offset()));
} else {
Label is_smi, done;
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, &is_smi);
__ CompareClassId(value, kDoubleCid);
__ j(NOT_EQUAL, deopt);
__ movsd(result, FieldAddress(value, Double::value_offset()));
__ jmp(&done);
__ Bind(&is_smi);
__ SmiUntag(value);
__ cvtsi2sd(result, value);
__ Bind(&done);
}
}
}
LocationSummary* BoxFloat32x4Instr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxFloat32x4SlowPath* slow_path = new BoxFloat32x4SlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out(0).reg();
XmmRegister value = locs()->in(0).fpu_reg();
__ TryAllocate(compiler->float32x4_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg,
PP);
__ Bind(slow_path->exit_label());
__ movups(FieldAddress(out_reg, Float32x4::value_offset()), value);
}
LocationSummary* UnboxFloat32x4Instr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(isolate,
kNumInputs,
Location::RequiresFpuRegister(),
LocationSummary::kNoCall);
}
void UnboxFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out(0).fpu_reg();
if (value_cid != kFloat32x4Cid) {
Label* deopt = compiler->AddDeoptStub(deopt_id_, ICData::kDeoptCheckClass);
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
__ CompareClassId(value, kFloat32x4Cid);
__ j(NOT_EQUAL, deopt);
}
__ movups(result, FieldAddress(value, Float32x4::value_offset()));
}
LocationSummary* BoxFloat64x2Instr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxFloat64x2Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxFloat64x2SlowPath* slow_path = new BoxFloat64x2SlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out(0).reg();
XmmRegister value = locs()->in(0).fpu_reg();
__ TryAllocate(compiler->float64x2_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg,
kNoRegister);
__ Bind(slow_path->exit_label());
__ movups(FieldAddress(out_reg, Float64x2::value_offset()), value);
}
LocationSummary* UnboxFloat64x2Instr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = value_cid == kFloat64x2Cid ? 0 : 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void UnboxFloat64x2Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out(0).fpu_reg();
if (value_cid != kFloat64x2Cid) {
Label* deopt = compiler->AddDeoptStub(deopt_id_, ICData::kDeoptCheckClass);
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
__ CompareClassId(value, kFloat64x2Cid);
__ j(NOT_EQUAL, deopt);
}
__ movups(result, FieldAddress(value, Float64x2::value_offset()));
}
LocationSummary* BoxInt32x4Instr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
class BoxInt32x4SlowPath : public SlowPathCode {
public:
explicit BoxInt32x4SlowPath(BoxInt32x4Instr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxInt32x4SlowPath");
__ Bind(entry_label());
Isolate* isolate = compiler->isolate();
StubCode* stub_code = isolate->stub_code();
const Class& int32x4_class = compiler->int32x4_class();
const Code& stub =
Code::Handle(isolate,
stub_code->GetAllocationStubForClass(int32x4_class));
const ExternalLabel label(stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
ASSERT(!locs->live_registers()->Contains(locs->out(0)));
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kNoSourcePos, // No token position.
&label,
RawPcDescriptors::kOther,
locs);
__ MoveRegister(locs->out(0).reg(), RAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
BoxInt32x4Instr* instruction_;
};
void BoxInt32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxInt32x4SlowPath* slow_path = new BoxInt32x4SlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out(0).reg();
XmmRegister value = locs()->in(0).fpu_reg();
__ TryAllocate(compiler->int32x4_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg,
PP);
__ Bind(slow_path->exit_label());
__ movups(FieldAddress(out_reg, Int32x4::value_offset()), value);
}
LocationSummary* UnboxInt32x4Instr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void UnboxInt32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out(0).fpu_reg();
if (value_cid != kInt32x4Cid) {
Label* deopt = compiler->AddDeoptStub(deopt_id_, ICData::kDeoptCheckClass);
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
__ CompareClassId(value, kInt32x4Cid);
__ j(NOT_EQUAL, deopt);
}
__ movups(result, FieldAddress(value, Int32x4::value_offset()));
}
LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case Token::kADD: __ addsd(left, right); break;
case Token::kSUB: __ subsd(left, right); break;
case Token::kMUL: __ mulsd(left, right); break;
case Token::kDIV: __ divsd(left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* BinaryFloat32x4OpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void BinaryFloat32x4OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case Token::kADD: __ addps(left, right); break;
case Token::kSUB: __ subps(left, right); break;
case Token::kMUL: __ mulps(left, right); break;
case Token::kDIV: __ divps(left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* BinaryFloat64x2OpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void BinaryFloat64x2OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case Token::kADD: __ addpd(left, right); break;
case Token::kSUB: __ subpd(left, right); break;
case Token::kMUL: __ mulpd(left, right); break;
case Token::kDIV: __ divpd(left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* Simd32x4ShuffleInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Simd32x4ShuffleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == value);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4ShuffleX:
// Shuffle not necessary.
__ cvtss2sd(value, value);
break;
case MethodRecognizer::kFloat32x4ShuffleY:
__ shufps(value, value, Immediate(0x55));
__ cvtss2sd(value, value);
break;
case MethodRecognizer::kFloat32x4ShuffleZ:
__ shufps(value, value, Immediate(0xAA));
__ cvtss2sd(value, value);
break;
case MethodRecognizer::kFloat32x4ShuffleW:
__ shufps(value, value, Immediate(0xFF));
__ cvtss2sd(value, value);
break;
case MethodRecognizer::kFloat32x4Shuffle:
case MethodRecognizer::kInt32x4Shuffle:
__ shufps(value, value, Immediate(mask_));
break;
default: UNREACHABLE();
}
}
LocationSummary* Simd32x4ShuffleMixInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Simd32x4ShuffleMixInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4ShuffleMix:
case MethodRecognizer::kInt32x4ShuffleMix:
__ shufps(left, right, Immediate(mask_));
break;
default: UNREACHABLE();
}
}
LocationSummary* Simd32x4GetSignMaskInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void Simd32x4GetSignMaskInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
Register out = locs()->out(0).reg();
__ movmskps(out, value);
__ SmiTag(out);
}
LocationSummary* Float32x4ConstructorInstr::MakeLocationSummary(
Isolate* isolate, bool opt) const {
const intptr_t kNumInputs = 4;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_in(3, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4ConstructorInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister v0 = locs()->in(0).fpu_reg();
XmmRegister v1 = locs()->in(1).fpu_reg();
XmmRegister v2 = locs()->in(2).fpu_reg();
XmmRegister v3 = locs()->in(3).fpu_reg();
ASSERT(v0 == locs()->out(0).fpu_reg());
__ AddImmediate(RSP, Immediate(-16), PP);
__ cvtsd2ss(v0, v0);
__ movss(Address(RSP, 0), v0);
__ movsd(v0, v1);
__ cvtsd2ss(v0, v0);
__ movss(Address(RSP, 4), v0);
__ movsd(v0, v2);
__ cvtsd2ss(v0, v0);
__ movss(Address(RSP, 8), v0);
__ movsd(v0, v3);
__ cvtsd2ss(v0, v0);
__ movss(Address(RSP, 12), v0);
__ movups(v0, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(16), PP);
}
LocationSummary* Float32x4ZeroInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void Float32x4ZeroInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->out(0).fpu_reg();
__ xorps(value, value);
}
LocationSummary* Float32x4SplatInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4SplatInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->out(0).fpu_reg();
ASSERT(locs()->in(0).fpu_reg() == locs()->out(0).fpu_reg());
// Convert to Float32.
__ cvtsd2ss(value, value);
// Splat across all lanes.
__ shufps(value, value, Immediate(0x00));
}
LocationSummary* Float32x4ComparisonInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Equal:
__ cmppseq(left, right);
break;
case MethodRecognizer::kFloat32x4NotEqual:
__ cmppsneq(left, right);
break;
case MethodRecognizer::kFloat32x4GreaterThan:
__ cmppsnle(left, right);
break;
case MethodRecognizer::kFloat32x4GreaterThanOrEqual:
__ cmppsnlt(left, right);
break;
case MethodRecognizer::kFloat32x4LessThan:
__ cmppslt(left, right);
break;
case MethodRecognizer::kFloat32x4LessThanOrEqual:
__ cmppsle(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4MinMaxInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4MinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Min:
__ minps(left, right);
break;
case MethodRecognizer::kFloat32x4Max:
__ maxps(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ScaleInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4ScaleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Scale:
__ cvtsd2ss(left, left);
__ shufps(left, left, Immediate(0x00));
__ mulps(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4SqrtInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4SqrtInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Sqrt:
__ sqrtps(left);
break;
case MethodRecognizer::kFloat32x4Reciprocal:
__ reciprocalps(left);
break;
case MethodRecognizer::kFloat32x4ReciprocalSqrt:
__ rsqrtps(left);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ZeroArgInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4ZeroArgInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Negate:
__ negateps(left);
break;
case MethodRecognizer::kFloat32x4Absolute:
__ absps(left);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ClampInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4ClampInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister lower = locs()->in(1).fpu_reg();
XmmRegister upper = locs()->in(2).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
__ minps(left, upper);
__ maxps(left, lower);
}
LocationSummary* Float32x4WithInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4WithInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister replacement = locs()->in(0).fpu_reg();
XmmRegister value = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == replacement);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4WithX:
__ cvtsd2ss(replacement, replacement);
__ AddImmediate(RSP, Immediate(-16), PP);
// Move value to stack.
__ movups(Address(RSP, 0), value);
// Write over X value.
__ movss(Address(RSP, 0), replacement);
// Move updated value into output register.
__ movups(replacement, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(16), PP);
break;
case MethodRecognizer::kFloat32x4WithY:
__ cvtsd2ss(replacement, replacement);
__ AddImmediate(RSP, Immediate(-16), PP);
// Move value to stack.
__ movups(Address(RSP, 0), value);
// Write over Y value.
__ movss(Address(RSP, 4), replacement);
// Move updated value into output register.
__ movups(replacement, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(16), PP);
break;
case MethodRecognizer::kFloat32x4WithZ:
__ cvtsd2ss(replacement, replacement);
__ AddImmediate(RSP, Immediate(-16), PP);
// Move value to stack.
__ movups(Address(RSP, 0), value);
// Write over Z value.
__ movss(Address(RSP, 8), replacement);
// Move updated value into output register.
__ movups(replacement, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(16), PP);
break;
case MethodRecognizer::kFloat32x4WithW:
__ cvtsd2ss(replacement, replacement);
__ AddImmediate(RSP, Immediate(-16), PP);
// Move value to stack.
__ movups(Address(RSP, 0), value);
// Write over W value.
__ movss(Address(RSP, 12), replacement);
// Move updated value into output register.
__ movups(replacement, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(16), PP);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ToInt32x4Instr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4ToInt32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
// NOP.
}
LocationSummary* Simd64x2ShuffleInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Simd64x2ShuffleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == value);
switch (op_kind()) {
case MethodRecognizer::kFloat64x2GetX:
// nop.
break;
case MethodRecognizer::kFloat64x2GetY:
__ shufpd(value, value, Immediate(0x33));
break;
default: UNREACHABLE();
}
}
LocationSummary* Float64x2ZeroInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void Float64x2ZeroInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->out(0).fpu_reg();
__ xorpd(value, value);
}
LocationSummary* Float64x2SplatInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float64x2SplatInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->out(0).fpu_reg();
__ shufpd(value, value, Immediate(0x0));
}
LocationSummary* Float64x2ConstructorInstr::MakeLocationSummary(
Isolate* isolate, bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float64x2ConstructorInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister v0 = locs()->in(0).fpu_reg();
XmmRegister v1 = locs()->in(1).fpu_reg();
ASSERT(v0 == locs()->out(0).fpu_reg());
__ AddImmediate(RSP, Immediate(-16), PP);
__ movsd(Address(RSP, 0), v0);
__ movsd(Address(RSP, 8), v1);
__ movups(v0, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(16), PP);
}
LocationSummary* Float64x2ToFloat32x4Instr::MakeLocationSummary(
Isolate* isolate, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float64x2ToFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->out(0).fpu_reg();
__ cvtpd2ps(value, value);
}
LocationSummary* Float32x4ToFloat64x2Instr::MakeLocationSummary(
Isolate* isolate, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float32x4ToFloat64x2Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->out(0).fpu_reg();
__ cvtps2pd(value, value);
}
LocationSummary* Float64x2ZeroArgInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
if (representation() == kTagged) {
ASSERT(op_kind() == MethodRecognizer::kFloat64x2GetSignMask);
summary->set_out(0, Location::RequiresRegister());
} else {
ASSERT(representation() == kUnboxedFloat64x2);
summary->set_out(0, Location::SameAsFirstInput());
}
return summary;
}
void Float64x2ZeroArgInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
ASSERT((op_kind() == MethodRecognizer::kFloat64x2GetSignMask) ||
(locs()->out(0).fpu_reg() == left));
switch (op_kind()) {
case MethodRecognizer::kFloat64x2Negate:
__ negatepd(left);
break;
case MethodRecognizer::kFloat64x2Abs:
__ abspd(left);
break;
case MethodRecognizer::kFloat64x2Sqrt:
__ sqrtpd(left);
break;
case MethodRecognizer::kFloat64x2GetSignMask:
__ movmskpd(locs()->out(0).reg(), left);
__ SmiTag(locs()->out(0).reg());
break;
default: UNREACHABLE();
}
}
LocationSummary* Float64x2OneArgInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Float64x2OneArgInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT((locs()->out(0).fpu_reg() == left));
switch (op_kind()) {
case MethodRecognizer::kFloat64x2Scale:
__ shufpd(right, right, Immediate(0x00));
__ mulpd(left, right);
break;
case MethodRecognizer::kFloat64x2WithX:
__ subq(RSP, Immediate(16));
// Move value to stack.
__ movups(Address(RSP, 0), left);
// Write over X value.
__ movsd(Address(RSP, 0), right);
// Move updated value into output register.
__ movups(left, Address(RSP, 0));
__ addq(RSP, Immediate(16));
break;
case MethodRecognizer::kFloat64x2WithY:
__ subq(RSP, Immediate(16));
// Move value to stack.
__ movups(Address(RSP, 0), left);
// Write over Y value.
__ movsd(Address(RSP, 8), right);
// Move updated value into output register.
__ movups(left, Address(RSP, 0));
__ addq(RSP, Immediate(16));
break;
case MethodRecognizer::kFloat64x2Min:
__ minpd(left, right);
break;
case MethodRecognizer::kFloat64x2Max:
__ maxpd(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Int32x4BoolConstructorInstr::MakeLocationSummary(
Isolate* isolate, bool opt) const {
const intptr_t kNumInputs = 4;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_in(2, Location::RequiresRegister());
summary->set_in(3, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void Int32x4BoolConstructorInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register v0 = locs()->in(0).reg();
Register v1 = locs()->in(1).reg();
Register v2 = locs()->in(2).reg();
Register v3 = locs()->in(3).reg();
Register temp = locs()->temp(0).reg();
XmmRegister result = locs()->out(0).fpu_reg();
Label x_false, x_done;
Label y_false, y_done;
Label z_false, z_done;
Label w_false, w_done;
__ AddImmediate(RSP, Immediate(-16), PP);
__ CompareObject(v0, Bool::True(), PP);
__ j(NOT_EQUAL, &x_false);
__ LoadImmediate(temp, Immediate(0xFFFFFFFF), PP);
__ jmp(&x_done);
__ Bind(&x_false);
__ LoadImmediate(temp, Immediate(0x0), PP);
__ Bind(&x_done);
__ movl(Address(RSP, 0), temp);
__ CompareObject(v1, Bool::True(), PP);
__ j(NOT_EQUAL, &y_false);
__ LoadImmediate(temp, Immediate(0xFFFFFFFF), PP);
__ jmp(&y_done);
__ Bind(&y_false);
__ LoadImmediate(temp, Immediate(0x0), PP);
__ Bind(&y_done);
__ movl(Address(RSP, 4), temp);
__ CompareObject(v2, Bool::True(), PP);
__ j(NOT_EQUAL, &z_false);
__ LoadImmediate(temp, Immediate(0xFFFFFFFF), PP);
__ jmp(&z_done);
__ Bind(&z_false);
__ LoadImmediate(temp, Immediate(0x0), PP);
__ Bind(&z_done);
__ movl(Address(RSP, 8), temp);
__ CompareObject(v3, Bool::True(), PP);
__ j(NOT_EQUAL, &w_false);
__ LoadImmediate(temp, Immediate(0xFFFFFFFF), PP);
__ jmp(&w_done);
__ Bind(&w_false);
__ LoadImmediate(temp, Immediate(0x0), PP);
__ Bind(&w_done);
__ movl(Address(RSP, 12), temp);
__ movups(result, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(16), PP);
}
LocationSummary* Int32x4GetFlagInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void Int32x4GetFlagInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
Register result = locs()->out(0).reg();
Label done;
Label non_zero;
__ AddImmediate(RSP, Immediate(-16), PP);
// Move value to stack.
__ movups(Address(RSP, 0), value);
switch (op_kind()) {
case MethodRecognizer::kInt32x4GetFlagX:
__ movl(result, Address(RSP, 0));
break;
case MethodRecognizer::kInt32x4GetFlagY:
__ movl(result, Address(RSP, 4));
break;
case MethodRecognizer::kInt32x4GetFlagZ:
__ movl(result, Address(RSP, 8));
break;
case MethodRecognizer::kInt32x4GetFlagW:
__ movl(result, Address(RSP, 12));
break;
default: UNREACHABLE();
}
__ AddImmediate(RSP, Immediate(16), PP);
__ testl(result, result);
__ j(NOT_ZERO, &non_zero, Assembler::kNearJump);
__ LoadObject(result, Bool::False(), PP);
__ jmp(&done);
__ Bind(&non_zero);
__ LoadObject(result, Bool::True(), PP);
__ Bind(&done);
}
LocationSummary* Int32x4SelectInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Int32x4SelectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister mask = locs()->in(0).fpu_reg();
XmmRegister trueValue = locs()->in(1).fpu_reg();
XmmRegister falseValue = locs()->in(2).fpu_reg();
XmmRegister out = locs()->out(0).fpu_reg();
XmmRegister temp = locs()->temp(0).fpu_reg();
ASSERT(out == mask);
// Copy mask.
__ movaps(temp, mask);
// Invert it.
__ notps(temp);
// mask = mask & trueValue.
__ andps(mask, trueValue);
// temp = temp & falseValue.
__ andps(temp, falseValue);
// out = mask | temp.
__ orps(mask, temp);
}
LocationSummary* Int32x4SetFlagInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Int32x4SetFlagInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister mask = locs()->in(0).fpu_reg();
Register flag = locs()->in(1).reg();
Register temp = locs()->temp(0).reg();
ASSERT(mask == locs()->out(0).fpu_reg());
__ AddImmediate(RSP, Immediate(-16), PP);
// Copy mask to stack.
__ movups(Address(RSP, 0), mask);
Label falsePath, exitPath;
__ CompareObject(flag, Bool::True(), PP);
__ j(NOT_EQUAL, &falsePath);
switch (op_kind()) {
case MethodRecognizer::kInt32x4WithFlagX:
__ LoadImmediate(temp, Immediate(0xFFFFFFFF), PP);
__ movl(Address(RSP, 0), temp);
__ jmp(&exitPath);
__ Bind(&falsePath);
__ LoadImmediate(temp, Immediate(0x0), PP);
__ movl(Address(RSP, 0), temp);
break;
case MethodRecognizer::kInt32x4WithFlagY:
__ LoadImmediate(temp, Immediate(0xFFFFFFFF), PP);
__ movl(Address(RSP, 4), temp);
__ jmp(&exitPath);
__ Bind(&falsePath);
__ LoadImmediate(temp, Immediate(0x0), PP);
__ movl(Address(RSP, 4), temp);
break;
case MethodRecognizer::kInt32x4WithFlagZ:
__ LoadImmediate(temp, Immediate(0xFFFFFFFF), PP);
__ movl(Address(RSP, 8), temp);
__ jmp(&exitPath);
__ Bind(&falsePath);
__ LoadImmediate(temp, Immediate(0x0), PP);
__ movl(Address(RSP, 8), temp);
break;
case MethodRecognizer::kInt32x4WithFlagW:
__ LoadImmediate(temp, Immediate(0xFFFFFFFF), PP);
__ movl(Address(RSP, 12), temp);
__ jmp(&exitPath);
__ Bind(&falsePath);
__ LoadImmediate(temp, Immediate(0x0), PP);
__ movl(Address(RSP, 12), temp);
break;
default: UNREACHABLE();
}
__ Bind(&exitPath);
// Copy mask back to register.
__ movups(mask, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(16), PP);
}
LocationSummary* Int32x4ToFloat32x4Instr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void Int32x4ToFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
// NOP.
}
LocationSummary* BinaryInt32x4OpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void BinaryInt32x4OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(left == locs()->out(0).fpu_reg());
switch (op_kind()) {
case Token::kBIT_AND: {
__ andps(left, right);
break;
}
case Token::kBIT_OR: {
__ orps(left, right);
break;
}
case Token::kBIT_XOR: {
__ xorps(left, right);
break;
}
case Token::kADD:
__ addpl(left, right);
break;
case Token::kSUB:
__ subpl(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* MathUnaryInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
if ((kind() == MathUnaryInstr::kSin) || (kind() == MathUnaryInstr::kCos)) {
// Calling convention on x64 uses XMM0 and XMM1 to pass the first two
// double arguments and XMM0 to return the result. Unfortunately
// currently we can't specify these registers because ParallelMoveResolver
// assumes that XMM0 is free at all times.
// TODO(vegorov): allow XMM0 to be used.
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, InputCount(), kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::FpuRegisterLocation(XMM1));
// R13 is chosen because it is callee saved so we do not need to back it
// up before calling into the runtime.
summary->set_temp(0, Location::RegisterLocation(R13));
summary->set_out(0, Location::FpuRegisterLocation(XMM1));
return summary;
}
ASSERT((kind() == MathUnaryInstr::kSqrt) ||
(kind() == MathUnaryInstr::kDoubleSquare));
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
if (kind() == MathUnaryInstr::kDoubleSquare) {
summary->set_out(0, Location::SameAsFirstInput());
} else {
summary->set_out(0, Location::RequiresFpuRegister());
}
return summary;
}
void MathUnaryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (kind() == MathUnaryInstr::kSqrt) {
__ sqrtsd(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg());
} else if (kind() == MathUnaryInstr::kDoubleSquare) {
XmmRegister value_reg = locs()->in(0).fpu_reg();
__ mulsd(value_reg, value_reg);
ASSERT(value_reg == locs()->out(0).fpu_reg());
} else {
ASSERT((kind() == MathUnaryInstr::kSin) ||
(kind() == MathUnaryInstr::kCos));
// Save RSP.
__ movq(locs()->temp(0).reg(), RSP);
__ ReserveAlignedFrameSpace(0);
__ movaps(XMM0, locs()->in(0).fpu_reg());
__ CallRuntime(TargetFunction(), InputCount());
__ movaps(locs()->out(0).fpu_reg(), XMM0);
// Restore RSP.
__ movq(RSP, locs()->temp(0).reg());
}
}
LocationSummary* UnarySmiOpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(isolate,
kNumInputs,
Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
ASSERT(value == locs()->out(0).reg());
switch (op_kind()) {
case Token::kNEGATE: {
Label* deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnaryOp);
__ negq(value);
__ j(OVERFLOW, deopt);
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, range(), deopt, value);
}
break;
}
case Token::kBIT_NOT:
__ notq(value);
// Remove inverted smi-tag.
__ AndImmediate(value, Immediate(~kSmiTagMask), PP);
break;
default:
UNREACHABLE();
}
}
LocationSummary* UnaryDoubleOpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void UnaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == value);
__ DoubleNegate(value);
}
LocationSummary* MathMinMaxInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
if (result_cid() == kDoubleCid) {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(0, Location::SameAsFirstInput());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
ASSERT(result_cid() == kSmiCid);
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void MathMinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((op_kind() == MethodRecognizer::kMathMin) ||
(op_kind() == MethodRecognizer::kMathMax));
const intptr_t is_min = (op_kind() == MethodRecognizer::kMathMin);
if (result_cid() == kDoubleCid) {
Label done, returns_nan, are_equal;
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
XmmRegister result = locs()->out(0).fpu_reg();
Register temp = locs()->temp(0).reg();
__ comisd(left, right);
__ j(PARITY_EVEN, &returns_nan, Assembler::kNearJump);
__ j(EQUAL, &are_equal, Assembler::kNearJump);
const Condition double_condition =
is_min ? TokenKindToDoubleCondition(Token::kLT)
: TokenKindToDoubleCondition(Token::kGT);
ASSERT(left == result);
__ j(double_condition, &done, Assembler::kNearJump);
__ movsd(result, right);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&returns_nan);
static double kNaN = NAN;
__ LoadImmediate(temp, Immediate(reinterpret_cast<intptr_t>(&kNaN)), PP);
__ movsd(result, Address(temp, 0));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&are_equal);
Label left_is_negative;
// Check for negative zero: -0.0 is equal 0.0 but min or max must return
// -0.0 or 0.0 respectively.
// Check for negative left value (get the sign bit):
// - min -> left is negative ? left : right.
// - max -> left is negative ? right : left
// Check the sign bit.
__ movmskpd(temp, left);
__ testq(temp, Immediate(1));
if (is_min) {
ASSERT(left == result);
__ j(NOT_ZERO, &done, Assembler::kNearJump); // Negative -> return left.
} else {
ASSERT(left == result);
__ j(ZERO, &done, Assembler::kNearJump); // Positive -> return left.
}
__ movsd(result, right);
__ Bind(&done);
return;
}
ASSERT(result_cid() == kSmiCid);
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register result = locs()->out(0).reg();
__ cmpq(left, right);
ASSERT(result == left);
if (is_min) {
__ cmovgeq(result, right);
} else {
__ cmovlessq(result, right);
}
}
LocationSummary* SmiToDoubleInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::WritableRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
FpuRegister result = locs()->out(0).fpu_reg();
__ SmiUntag(value);
__ cvtsi2sd(result, value);
}
LocationSummary* DoubleToIntegerInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* result = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::RegisterLocation(RCX));
result->set_out(0, Location::RegisterLocation(RAX));
result->set_temp(0, Location::RegisterLocation(RBX));
return result;
}
void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out(0).reg();
Register value_obj = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
XmmRegister value_double = XMM0;
ASSERT(result == RAX);
ASSERT(result != value_obj);
ASSERT(result != temp);
__ movsd(value_double, FieldAddress(value_obj, Double::value_offset()));
__ cvttsd2siq(result, value_double);
// Overflow is signalled with minint.
Label do_call, done;
// Check for overflow and that it fits into Smi.
__ movq(temp, result);
__ shlq(temp, Immediate(1));
__ j(OVERFLOW, &do_call, Assembler::kNearJump);
__ SmiTag(result);
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, range(), &do_call, result);
}
__ jmp(&done);
__ Bind(&do_call);
ASSERT(instance_call()->HasICData());
const ICData& ic_data = *instance_call()->ic_data();
ASSERT((ic_data.NumberOfChecks() == 1));
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(0));
const intptr_t kNumberOfArguments = 1;
__ pushq(value_obj);
compiler->GenerateStaticCall(deopt_id(),
instance_call()->token_pos(),
target,
kNumberOfArguments,
Object::null_array(), // No argument names.
locs(),
ICData::Handle());
__ Bind(&done);
}
LocationSummary* DoubleToSmiInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* result = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresRegister());
result->set_temp(0, Location::RequiresRegister());
return result;
}
void DoubleToSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptDoubleToSmi);
Register result = locs()->out(0).reg();
XmmRegister value = locs()->in(0).fpu_reg();
Register temp = locs()->temp(0).reg();
__ cvttsd2siq(result, value);
// Overflow is signalled with minint.
Label do_call, done;
// Check for overflow and that it fits into Smi.
__ movq(temp, result);
__ shlq(temp, Immediate(1));
__ j(OVERFLOW, deopt);
__ SmiTag(result);
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, range(), deopt, result);
}
}
LocationSummary* DoubleToDoubleInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void DoubleToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
XmmRegister result = locs()->out(0).fpu_reg();
switch (recognized_kind()) {
case MethodRecognizer::kDoubleTruncate:
__ roundsd(result, value, Assembler::kRoundToZero);
break;
case MethodRecognizer::kDoubleFloor:
__ roundsd(result, value, Assembler::kRoundDown);
break;
case MethodRecognizer::kDoubleCeil:
__ roundsd(result, value, Assembler::kRoundUp);
break;
default:
UNREACHABLE();
}
}
LocationSummary* DoubleToFloatInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::SameAsFirstInput());
return result;
}
void DoubleToFloatInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ cvtsd2ss(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg());
}
LocationSummary* FloatToDoubleInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::SameAsFirstInput());
return result;
}
void FloatToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ cvtss2sd(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg());
}
LocationSummary* InvokeMathCFunctionInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
// Calling convention on x64 uses XMM0 and XMM1 to pass the first two
// double arguments and XMM0 to return the result. Unfortunately
// currently we can't specify these registers because ParallelMoveResolver
// assumes that XMM0 is free at all times.
// TODO(vegorov): allow XMM0 to be used.
ASSERT((InputCount() == 1) || (InputCount() == 2));
const intptr_t kNumTemps =
(recognized_kind() == MethodRecognizer::kMathDoublePow) ? 3 : 1;
LocationSummary* result = new(isolate) LocationSummary(
isolate, InputCount(), kNumTemps, LocationSummary::kCall);
result->set_temp(0, Location::RegisterLocation(R13));
result->set_in(0, Location::FpuRegisterLocation(XMM2));
if (InputCount() == 2) {
result->set_in(1, Location::FpuRegisterLocation(XMM1));
}
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
// Temp index 1.
result->set_temp(1, Location::RegisterLocation(RAX));
// Temp index 2.
result->set_temp(2, Location::FpuRegisterLocation(XMM4));
}
result->set_out(0, Location::FpuRegisterLocation(XMM3));
return result;
}
// Pseudo code:
// if (exponent == 0.0) return 1.0;
// // Speed up simple cases.
// if (exponent == 1.0) return base;
// if (exponent == 2.0) return base * base;
// if (exponent == 3.0) return base * base * base;
// if (base == 1.0) return 1.0;
// if (base.isNaN || exponent.isNaN) {
// return double.NAN;
// }
// if (base != -Infinity && exponent == 0.5) {
// if (base == 0.0) return 0.0;
// return sqrt(value);
// }
// TODO(srdjan): Move into a stub?
static void InvokeDoublePow(FlowGraphCompiler* compiler,
InvokeMathCFunctionInstr* instr) {
ASSERT(instr->recognized_kind() == MethodRecognizer::kMathDoublePow);
const intptr_t kInputCount = 2;
ASSERT(instr->InputCount() == kInputCount);
LocationSummary* locs = instr->locs();
XmmRegister base = locs->in(0).fpu_reg();
XmmRegister exp = locs->in(1).fpu_reg();
XmmRegister result = locs->out(0).fpu_reg();
Register temp =
locs->temp(InvokeMathCFunctionInstr::kObjectTempIndex).reg();
XmmRegister zero_temp =
locs->temp(InvokeMathCFunctionInstr::kDoubleTempIndex).fpu_reg();
__ xorps(zero_temp, zero_temp);
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(1)), PP);
__ movsd(result, FieldAddress(temp, Double::value_offset()));
Label check_base, skip_call;
// exponent == 0.0 -> return 1.0;
__ comisd(exp, zero_temp);
__ j(PARITY_EVEN, &check_base, Assembler::kNearJump);
__ j(EQUAL, &skip_call); // 'result' is 1.0.
// exponent == 1.0 ?
__ comisd(exp, result);
Label return_base;
__ j(EQUAL, &return_base, Assembler::kNearJump);
// exponent == 2.0 ?
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(2.0)), PP);
__ movsd(XMM0, FieldAddress(temp, Double::value_offset()));
__ comisd(exp, XMM0);
Label return_base_times_2;
__ j(EQUAL, &return_base_times_2, Assembler::kNearJump);
// exponent == 3.0 ?
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(3.0)), PP);
__ movsd(XMM0, FieldAddress(temp, Double::value_offset()));
__ comisd(exp, XMM0);
__ j(NOT_EQUAL, &check_base);
// Base times 3.
__ movsd(result, base);
__ mulsd(result, base);
__ mulsd(result, base);
__ jmp(&skip_call);
__ Bind(&return_base);
__ movsd(result, base);
__ jmp(&skip_call);
__ Bind(&return_base_times_2);
__ movsd(result, base);
__ mulsd(result, base);
__ jmp(&skip_call);
__ Bind(&check_base);
// Note: 'exp' could be NaN.
Label return_nan;
// base == 1.0 -> return 1.0;
__ comisd(base, result);
__ j(PARITY_EVEN, &return_nan, Assembler::kNearJump);
__ j(EQUAL, &skip_call, Assembler::kNearJump);
// Note: 'base' could be NaN.
__ comisd(exp, base);
// Neither 'exp' nor 'base' is NaN.
Label try_sqrt;
__ j(PARITY_ODD, &try_sqrt, Assembler::kNearJump);
// Return NaN.
__ Bind(&return_nan);
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(NAN)), PP);
__ movsd(result, FieldAddress(temp, Double::value_offset()));
__ jmp(&skip_call);
Label do_pow, return_zero;
__ Bind(&try_sqrt);
// Before calling pow, check if we could use sqrt instead of pow.
__ LoadObject(temp,
Double::ZoneHandle(Double::NewCanonical(-INFINITY)), PP);
__ movsd(result, FieldAddress(temp, Double::value_offset()));
// base == -Infinity -> call pow;
__ comisd(base, result);
__ j(EQUAL, &do_pow, Assembler::kNearJump);
// exponent == 0.5 ?
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(0.5)), PP);
__ movsd(result, FieldAddress(temp, Double::value_offset()));
__ comisd(exp, result);
__ j(NOT_EQUAL, &do_pow, Assembler::kNearJump);
// base == 0 -> return 0;
__ comisd(base, zero_temp);
__ j(EQUAL, &return_zero, Assembler::kNearJump);
__ sqrtsd(result, base);
__ jmp(&skip_call, Assembler::kNearJump);
__ Bind(&return_zero);
__ movsd(result, zero_temp);
__ jmp(&skip_call);
__ Bind(&do_pow);
// Save RSP.
__ movq(locs->temp(InvokeMathCFunctionInstr::kSavedSpTempIndex).reg(), RSP);
__ ReserveAlignedFrameSpace(0);
__ movaps(XMM0, locs->in(0).fpu_reg());
ASSERT(locs->in(1).fpu_reg() == XMM1);
__ CallRuntime(instr->TargetFunction(), kInputCount);
__ movaps(locs->out(0).fpu_reg(), XMM0);
// Restore RSP.
__ movq(RSP, locs->temp(InvokeMathCFunctionInstr::kSavedSpTempIndex).reg());
__ Bind(&skip_call);
}
void InvokeMathCFunctionInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
InvokeDoublePow(compiler, this);
return;
}
// Save RSP.
__ movq(locs()->temp(kSavedSpTempIndex).reg(), RSP);
__ ReserveAlignedFrameSpace(0);
__ movaps(XMM0, locs()->in(0).fpu_reg());
if (InputCount() == 2) {
ASSERT(locs()->in(1).fpu_reg() == XMM1);
}
__ CallRuntime(TargetFunction(), InputCount());
__ movaps(locs()->out(0).fpu_reg(), XMM0);
// Restore RSP.
__ movq(RSP, locs()->temp(kSavedSpTempIndex).reg());
}
LocationSummary* ExtractNthOutputInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
// Only use this instruction in optimized code.
ASSERT(opt);
const intptr_t kNumInputs = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, 0, LocationSummary::kNoCall);
if (representation() == kUnboxedDouble) {
if (index() == 0) {
summary->set_in(0, Location::Pair(Location::RequiresFpuRegister(),
Location::Any()));
} else {
ASSERT(index() == 1);
summary->set_in(0, Location::Pair(Location::Any(),
Location::RequiresFpuRegister()));
}
summary->set_out(0, Location::RequiresFpuRegister());
} else {
ASSERT(representation() == kTagged);
if (index() == 0) {
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::Any()));
} else {
ASSERT(index() == 1);
summary->set_in(0, Location::Pair(Location::Any(),
Location::RequiresRegister()));
}
summary->set_out(0, Location::RequiresRegister());
}
return summary;
}
void ExtractNthOutputInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).IsPairLocation());
PairLocation* pair = locs()->in(0).AsPairLocation();
Location in_loc = pair->At(index());
if (representation() == kUnboxedDouble) {
XmmRegister out = locs()->out(0).fpu_reg();
XmmRegister in = in_loc.fpu_reg();
__ movaps(out, in);
} else {
ASSERT(representation() == kTagged);
Register out = locs()->out(0).reg();
Register in = in_loc.reg();
__ movq(out, in);
}
}
LocationSummary* MergedMathInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
if (kind() == MergedMathInstr::kTruncDivMod) {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(0, Location::Pair(Location::RegisterLocation(RAX),
Location::RegisterLocation(RDX)));
return summary;
}
if (kind() == MergedMathInstr::kSinCos) {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
// Because we always call into the runtime (LocationSummary::kCall) we
// must specify each input, temp, and output register explicitly.
summary->set_in(0, Location::FpuRegisterLocation(XMM1));
// R13 is chosen because it is callee saved so we do not need to back it
// up before calling into the runtime.
summary->set_temp(0, Location::RegisterLocation(R13));
summary->set_out(0, Location::Pair(Location::FpuRegisterLocation(XMM2),
Location::FpuRegisterLocation(XMM3)));
return summary;
}
UNIMPLEMENTED();
return NULL;
}
typedef void (*SinCosCFunction) (double x, double* res_sin, double* res_cos);
extern const RuntimeEntry kSinCosRuntimeEntry(
"libc_sincos", reinterpret_cast<RuntimeFunction>(
static_cast<SinCosCFunction>(&SinCos)), 1, true, true);
void MergedMathInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
}
if (kind() == MergedMathInstr::kTruncDivMod) {
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
ASSERT(locs()->out(0).IsPairLocation());
PairLocation* pair = locs()->out(0).AsPairLocation();
Register result1 = pair->At(0).reg();
Register result2 = pair->At(1).reg();
Label not_32bit, done;
Register temp = RDX;
ASSERT(left == RAX);
ASSERT((right != RDX) && (right != RAX));
ASSERT(result1 == RAX);
ASSERT(result2 == RDX);
Range* right_range = InputAt(1)->definition()->range();
if ((right_range == NULL) || right_range->Overlaps(0, 0)) {
// Handle divide by zero in runtime.
__ testq(right, right);
__ j(ZERO, deopt);
}
// Check if both operands fit into 32bits as idiv with 64bit operands
// requires twice as many cycles and has much higher latency.
// We are checking this before untagging them to avoid corner case
// dividing INT_MAX by -1 that raises exception because quotient is
// too large for 32bit register.
__ movsxd(temp, left);
__ cmpq(temp, left);
__ j(NOT_EQUAL, &not_32bit);
__ movsxd(temp, right);
__ cmpq(temp, right);
__ j(NOT_EQUAL, &not_32bit);
// Both operands are 31bit smis. Divide using 32bit idiv.
__ SmiUntag(left);
__ SmiUntag(right);
__ cdq();
__ idivl(right);
__ movsxd(RAX, RAX);
__ movsxd(RDX, RDX);
__ jmp(&done);
// Divide using 64bit idiv.
__ Bind(&not_32bit);
__ SmiUntag(left);
__ SmiUntag(right);
__ cqo(); // Sign extend RAX -> RDX:RAX.
__ idivq(right); // RAX: quotient, RDX: remainder.
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ CompareImmediate(RAX, Immediate(0x4000000000000000), PP);
__ j(EQUAL, deopt);
__ Bind(&done);
// Modulo correction (RDX).
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
Label all_done;
__ cmpq(RDX, Immediate(0));
__ j(GREATER_EQUAL, &all_done, Assembler::kNearJump);
// Result is negative, adjust it.
if ((right_range == NULL) || right_range->Overlaps(-1, 1)) {
Label subtract;
__ cmpq(right, Immediate(0));
__ j(LESS, &subtract, Assembler::kNearJump);
__ addq(RDX, right);
__ jmp(&all_done, Assembler::kNearJump);
__ Bind(&subtract);
__ subq(RDX, right);
} else if (right_range->IsPositive()) {
// Right is positive.
__ addq(RDX, right);
} else {
// Right is negative.
__ subq(RDX, right);
}
__ Bind(&all_done);
__ SmiTag(RAX);
__ SmiTag(RDX);
// FLAG_throw_on_javascript_int_overflow: not needed.
// Note that the result of an integer division/modulo of two
// in-range arguments, cannot create out-of-range result.
return;
}
if (kind() == MergedMathInstr::kSinCos) {
ASSERT(locs()->out(0).IsPairLocation());
PairLocation* pair = locs()->out(0).AsPairLocation();
XmmRegister out1 = pair->At(0).fpu_reg();
XmmRegister out2 = pair->At(1).fpu_reg();
// Save RSP.
__ movq(locs()->temp(0).reg(), RSP);
// +-------------------------------+
// | double-argument | <- TOS
// +-------------------------------+
// | address-cos-result | +8
// +-------------------------------+
// | address-sin-result | +16
// +-------------------------------+
// | double-storage-for-cos-result | +24
// +-------------------------------+
// | double-storage-for-sin-result | +32
// +-------------------------------+
// ....
__ ReserveAlignedFrameSpace(kDoubleSize * 3 + kWordSize * 2);
__ movsd(Address(RSP, 0), locs()->in(0).fpu_reg());
__ leaq(RDI, Address(RSP, 2 * kWordSize + kDoubleSize));
__ leaq(RSI, Address(RSP, 2 * kWordSize + 2 * kDoubleSize));
__ movaps(XMM0, locs()->in(0).fpu_reg());
__ CallRuntime(kSinCosRuntimeEntry, InputCount());
__ movsd(out2, Address(RSP, 2 * kWordSize + kDoubleSize * 2)); // sin.
__ movsd(out1, Address(RSP, 2 * kWordSize + kDoubleSize)); // cos.
// Restore RSP.
__ movq(RSP, locs()->temp(0).reg());
return;
}
UNIMPLEMENTED();
}
LocationSummary* PolymorphicInstanceCallInstr::MakeLocationSummary(
Isolate* isolate, bool opt) const {
return MakeCallSummary();
}
void PolymorphicInstanceCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(
deopt_id(), ICData::kDeoptPolymorphicInstanceCallTestFail);
if (ic_data().NumberOfChecks() == 0) {
__ jmp(deopt);
return;
}
ASSERT(ic_data().NumArgsTested() == 1);
if (!with_checks()) {
ASSERT(ic_data().HasOneTarget());
const Function& target = Function::ZoneHandle(ic_data().GetTargetAt(0));
compiler->GenerateStaticCall(deopt_id(),
instance_call()->token_pos(),
target,
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
locs(),
ICData::Handle());
return;
}
// Load receiver into RAX.
__ movq(RAX,
Address(RSP, (instance_call()->ArgumentCount() - 1) * kWordSize));
LoadValueCid(compiler, RDI, RAX,
(ic_data().GetReceiverClassIdAt(0) == kSmiCid) ? NULL : deopt);
compiler->EmitTestAndCall(ic_data(),
RDI, // Class id register.
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
deopt,
deopt_id(),
instance_call()->token_pos(),
locs());
}
LocationSummary* BranchInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
comparison()->InitializeLocationSummary(isolate, opt);
// Branches don't produce a result.
comparison()->locs()->set_out(0, Location::NoLocation());
return comparison()->locs();
}
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
comparison()->EmitBranchCode(compiler, this);
}
LocationSummary* CheckClassInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = !IsNullCheck() ? 1 : 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (!IsNullCheck()) {
summary->set_temp(0, Location::RequiresRegister());
}
return summary;
}
void CheckClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const ICData::DeoptReasonId deopt_reason = licm_hoisted_ ?
ICData::kDeoptHoistedCheckClass : ICData::kDeoptCheckClass;
if (IsNullCheck()) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), deopt_reason);
__ CompareObject(locs()->in(0).reg(),
Object::null_object(), PP);
__ j(EQUAL, deopt);
return;
}
ASSERT((unary_checks().GetReceiverClassIdAt(0) != kSmiCid) ||
(unary_checks().NumberOfChecks() > 1));
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(), deopt_reason);
Label is_ok;
intptr_t cix = 0;
if (unary_checks().GetReceiverClassIdAt(cix) == kSmiCid) {
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, &is_ok);
cix++; // Skip first check.
} else {
__ testq(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
}
__ LoadClassId(temp, value);
const intptr_t num_checks = unary_checks().NumberOfChecks();
const bool use_near_jump = num_checks < 5;
for (intptr_t i = cix; i < num_checks; i++) {
ASSERT(unary_checks().GetReceiverClassIdAt(i) != kSmiCid);
__ cmpl(temp, Immediate(unary_checks().GetReceiverClassIdAt(i)));
if (i == (num_checks - 1)) {
__ j(NOT_EQUAL, deopt);
} else {
if (use_near_jump) {
__ j(EQUAL, &is_ok, Assembler::kNearJump);
} else {
__ j(EQUAL, &is_ok);
}
}
}
__ Bind(&is_ok);
}
LocationSummary* CheckSmiInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckSmi);
__ testq(value, Immediate(kSmiTagMask));
__ j(NOT_ZERO, deopt);
}
LocationSummary* CheckArrayBoundInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(kLengthPos, Location::RegisterOrSmiConstant(length()));
locs->set_in(kIndexPos, Location::RegisterOrSmiConstant(index()));
return locs;
}
void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
ICData::kDeoptCheckArrayBound);
Location length_loc = locs()->in(kLengthPos);
Location index_loc = locs()->in(kIndexPos);
if (length_loc.IsConstant() && index_loc.IsConstant()) {
ASSERT((Smi::Cast(length_loc.constant()).Value() <=
Smi::Cast(index_loc.constant()).Value()) ||
(Smi::Cast(index_loc.constant()).Value() < 0));
// Unconditionally deoptimize for constant bounds checks because they
// only occur only when index is out-of-bounds.
__ jmp(deopt);
return;
}
if (index_loc.IsConstant()) {
Register length = length_loc.reg();
const Smi& index = Smi::Cast(index_loc.constant());
__ CompareImmediate(
length, Immediate(reinterpret_cast<int64_t>(index.raw())), PP);
__ j(BELOW_EQUAL, deopt);
} else if (length_loc.IsConstant()) {
const Smi& length = Smi::Cast(length_loc.constant());
Register index = index_loc.reg();
__ CompareImmediate(
index, Immediate(reinterpret_cast<int64_t>(length.raw())), PP);
__ j(ABOVE_EQUAL, deopt);
} else {
Register length = length_loc.reg();
Register index = index_loc.reg();
__ cmpq(index, length);
__ j(ABOVE_EQUAL, deopt);
}
}
LocationSummary* UnboxIntegerInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
UNIMPLEMENTED();
return NULL;
}
void UnboxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* BoxIntegerInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
UNIMPLEMENTED();
return NULL;
}
void BoxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* BinaryMintOpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
UNIMPLEMENTED();
return NULL;
}
void BinaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* UnaryMintOpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
UNIMPLEMENTED();
return NULL;
}
void UnaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
bool ShiftMintOpInstr::has_shift_count_check() const {
UNREACHABLE();
return false;
}
LocationSummary* ShiftMintOpInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
UNIMPLEMENTED();
return NULL;
}
void ShiftMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* ThrowInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
return new(isolate) LocationSummary(isolate, 0, 0, LocationSummary::kCall);
}
void ThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kThrowRuntimeEntry,
1,
locs());
__ int3();
}
LocationSummary* ReThrowInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
return new(isolate) LocationSummary(isolate, 0, 0, LocationSummary::kCall);
}
void ReThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler->SetNeedsStacktrace(catch_try_index());
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kReThrowRuntimeEntry,
2,
locs());
__ int3();
}
void GraphEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->CanFallThroughTo(normal_entry())) {
__ jmp(compiler->GetJumpLabel(normal_entry()));
}
}
void TargetEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
if (!compiler->is_optimizing()) {
if (compiler->NeedsEdgeCounter(this)) {
compiler->EmitEdgeCounter();
}
// The deoptimization descriptor points after the edge counter code for
// uniformity with ARM and MIPS, where we can reuse pattern matching
// code that matches backwards from the end of the pattern.
compiler->AddCurrentDescriptor(RawPcDescriptors::kDeopt,
deopt_id_,
Scanner::kNoSourcePos);
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
}
LocationSummary* GotoInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
return new(isolate) LocationSummary(isolate, 0, 0, LocationSummary::kNoCall);
}
void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->is_optimizing()) {
if (FLAG_emit_edge_counters) {
compiler->EmitEdgeCounter();
}
// Add a deoptimization descriptor for deoptimizing instructions that
// may be inserted before this instruction. This descriptor points
// after the edge counter for uniformity with ARM and MIPS, where we can
// reuse pattern matching that matches backwards from the end of the
// pattern.
compiler->AddCurrentDescriptor(RawPcDescriptors::kDeopt,
GetDeoptId(),
Scanner::kNoSourcePos);
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// We can fall through if the successor is the next block in the list.
// Otherwise, we need a jump.
if (!compiler->CanFallThroughTo(successor())) {
__ jmp(compiler->GetJumpLabel(successor()));
}
}
LocationSummary* CurrentContextInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
return LocationSummary::Make(isolate,
0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void CurrentContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ MoveRegister(locs()->out(0).reg(), CTX);
}
LocationSummary* StrictCompareInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (needs_number_check()) {
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_in(1, Location::RegisterLocation(RCX));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
LocationSummary* locs = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one of the inputs can be a constant. Choose register if the first one
// is a constant.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition StrictCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
Location left = locs()->in(0);
Location right = locs()->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
if (left.IsConstant()) {
compiler->EmitEqualityRegConstCompare(right.reg(),
left.constant(),
needs_number_check(),
token_pos());
} else if (right.IsConstant()) {
compiler->EmitEqualityRegConstCompare(left.reg(),
right.constant(),
needs_number_check(),
token_pos());
} else {
compiler->EmitEqualityRegRegCompare(left.reg(),
right.reg(),
needs_number_check(),
token_pos());
}
Condition true_condition = (kind() == Token::kEQ_STRICT) ? EQUAL : NOT_EQUAL;
return true_condition;
}
void StrictCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(kind() == Token::kEQ_STRICT || kind() == Token::kNE_STRICT);
Label is_true, is_false;
BranchLabels labels = { &is_true, &is_false, &is_false };
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
Register result = locs()->out(0).reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False(), PP);
__ jmp(&done);
__ Bind(&is_true);
__ LoadObject(result, Bool::True(), PP);
__ Bind(&done);
}
void StrictCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT(kind() == Token::kEQ_STRICT || kind() == Token::kNE_STRICT);
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* ClosureCallInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(isolate) LocationSummary(
isolate, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX)); // Function.
summary->set_out(0, Location::RegisterLocation(RAX));
return summary;
}
void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Arguments descriptor is expected in R10.
intptr_t argument_count = ArgumentCount();
const Array& arguments_descriptor =
Array::ZoneHandle(ArgumentsDescriptor::New(argument_count,
argument_names()));
__ LoadObject(R10, arguments_descriptor, PP);
// Function in RAX.
ASSERT(locs()->in(0).reg() == RAX);
__ movq(RCX, FieldAddress(RAX, Function::instructions_offset()));
// RAX: Function.
// R10: Arguments descriptor array.
// RBX: Smi 0 (no IC data; the lazy-compile stub expects a GC-safe value).
__ xorq(RBX, RBX);
__ addq(RCX, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ call(RCX);
compiler->AddCurrentDescriptor(RawPcDescriptors::kClosureCall,
deopt_id(),
token_pos());
compiler->RecordSafepoint(locs());
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
const intptr_t deopt_id_after = Isolate::ToDeoptAfter(deopt_id());
if (compiler->is_optimizing()) {
compiler->AddDeoptIndexAtCall(deopt_id_after, token_pos());
} else {
// Add deoptimization continuation point after the call and before the
// arguments are removed.
compiler->AddCurrentDescriptor(RawPcDescriptors::kDeopt,
deopt_id_after,
token_pos());
}
__ Drop(argument_count);
}
LocationSummary* BooleanNegateInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
return LocationSummary::Make(isolate,
1,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void BooleanNegateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out(0).reg();
Label done;
__ LoadObject(result, Bool::True(), PP);
__ CompareRegisters(result, value);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
__ LoadObject(result, Bool::False(), PP);
__ Bind(&done);
}
LocationSummary* AllocateObjectInstr::MakeLocationSummary(Isolate* isolate,
bool opt) const {
return MakeCallSummary();
}
void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Isolate* isolate = compiler->isolate();
StubCode* stub_code = isolate->stub_code();
const Code& stub = Code::Handle(isolate,
stub_code->GetAllocationStubForClass(cls()));
const ExternalLabel label(stub.EntryPoint());
compiler->GenerateCall(token_pos(),
&label,
RawPcDescriptors::kOther,
locs());
__ Drop(ArgumentCount()); // Discard arguments.
}
void DebugStepCheckInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(!compiler->is_optimizing());
StubCode* stub_code = compiler->isolate()->stub_code();
const ExternalLabel label(stub_code->DebugStepCheckEntryPoint());
__ movq(R10, Immediate(0));
__ movq(RBX, Immediate(0));
compiler->GenerateCall(token_pos(), &label, stub_kind_, locs());
#if defined(DEBUG)
__ movq(R10, Immediate(kInvalidObjectPointer));
__ movq(RBX, Immediate(kInvalidObjectPointer));
#endif
}
} // namespace dart
#undef __
#endif // defined TARGET_ARCH_X64