blob: 148a24aeb970f07bf3a6afe9b99cfcdee3c2aa33 [file] [log] [blame]
// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/compiler/frontend/kernel_binary_flowgraph.h"
#include "vm/compiler/ffi/callback.h"
#include "vm/compiler/frontend/bytecode_flow_graph_builder.h"
#include "vm/compiler/frontend/bytecode_reader.h"
#include "vm/compiler/frontend/flow_graph_builder.h" // For dart::FlowGraphBuilder::SimpleInstanceOfType.
#include "vm/compiler/frontend/prologue_builder.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/object_store.h"
#include "vm/resolver.h"
#include "vm/stack_frame.h"
namespace dart {
DECLARE_FLAG(bool, enable_interpreter);
namespace kernel {
#define Z (zone_)
#define H (translation_helper_)
#define T (type_translator_)
#define I Isolate::Current()
#define B (flow_graph_builder_)
Class& StreamingFlowGraphBuilder::GetSuperOrDie() {
Class& klass = Class::Handle(Z, parsed_function()->function().Owner());
ASSERT(!klass.IsNull());
klass = klass.SuperClass();
ASSERT(!klass.IsNull());
return klass;
}
FlowGraph* StreamingFlowGraphBuilder::BuildGraphOfFieldInitializer() {
FieldHelper field_helper(this);
field_helper.ReadUntilExcluding(FieldHelper::kInitializer);
Tag initializer_tag = ReadTag(); // read first part of initializer.
if (initializer_tag != kSomething) {
UNREACHABLE();
}
B->graph_entry_ = new (Z) GraphEntryInstr(*parsed_function(), B->osr_id_);
auto normal_entry = B->BuildFunctionEntry(B->graph_entry_);
B->graph_entry_->set_normal_entry(normal_entry);
Fragment body(normal_entry);
body += B->CheckStackOverflowInPrologue(field_helper.position_);
if (field_helper.IsConst()) {
// This will read the initializer.
body += Constant(
Instance::ZoneHandle(Z, constant_reader_.ReadConstantExpression()));
} else {
body += SetupCapturedParameters(parsed_function()->function());
body += BuildExpression(); // read initializer.
}
body += Return(TokenPosition::kNoSource);
PrologueInfo prologue_info(-1, -1);
if (B->IsCompiledForOsr()) {
B->graph_entry_->RelinkToOsrEntry(Z, B->last_used_block_id_ + 1);
}
return new (Z) FlowGraph(*parsed_function(), B->graph_entry_,
B->last_used_block_id_, prologue_info);
}
void StreamingFlowGraphBuilder::EvaluateConstFieldValue(const Field& field) {
ASSERT(field.is_const() && field.IsUninitialized());
FieldHelper field_helper(this);
field_helper.ReadUntilExcluding(FieldHelper::kInitializer);
Tag initializer_tag = ReadTag(); // read first part of initializer.
ASSERT(initializer_tag == kSomething);
Instance& value =
Instance::Handle(Z, constant_reader_.ReadConstantExpression());
field.SetStaticValue(value);
}
void StreamingFlowGraphBuilder::SetupDefaultParameterValues() {
intptr_t optional_parameter_count =
parsed_function()->function().NumOptionalParameters();
if (optional_parameter_count > 0) {
ZoneGrowableArray<const Instance*>* default_values =
new ZoneGrowableArray<const Instance*>(Z, optional_parameter_count);
AlternativeReadingScope alt(&reader_);
FunctionNodeHelper function_node_helper(this);
function_node_helper.ReadUntilExcluding(
FunctionNodeHelper::kPositionalParameters);
if (parsed_function()->function().HasOptionalNamedParameters()) {
// List of positional.
intptr_t list_length = ReadListLength(); // read list length.
for (intptr_t i = 0; i < list_length; ++i) {
SkipVariableDeclaration(); // read ith variable declaration.
}
// List of named.
list_length = ReadListLength(); // read list length.
ASSERT(optional_parameter_count == list_length);
ASSERT(!parsed_function()->function().HasOptionalPositionalParameters());
for (intptr_t i = 0; i < list_length; ++i) {
Instance* default_value;
// Read ith variable declaration
VariableDeclarationHelper helper(this);
helper.ReadUntilExcluding(VariableDeclarationHelper::kInitializer);
Tag tag = ReadTag(); // read (first part of) initializer.
if (tag == kSomething) {
// This will read the initializer.
default_value = &Instance::ZoneHandle(
Z, constant_reader_.ReadConstantExpression());
} else {
default_value = &Instance::ZoneHandle(Z, Instance::null());
}
default_values->Add(default_value);
}
} else {
// List of positional.
intptr_t list_length = ReadListLength(); // read list length.
ASSERT(list_length == function_node_helper.required_parameter_count_ +
optional_parameter_count);
ASSERT(parsed_function()->function().HasOptionalPositionalParameters());
for (intptr_t i = 0; i < function_node_helper.required_parameter_count_;
++i) {
SkipVariableDeclaration(); // read ith variable declaration.
}
for (intptr_t i = 0; i < optional_parameter_count; ++i) {
Instance* default_value;
// Read ith variable declaration
VariableDeclarationHelper helper(this);
helper.ReadUntilExcluding(VariableDeclarationHelper::kInitializer);
Tag tag = ReadTag(); // read (first part of) initializer.
if (tag == kSomething) {
// This will read the initializer.
default_value = &Instance::ZoneHandle(
Z, constant_reader_.ReadConstantExpression());
} else {
default_value = &Instance::ZoneHandle(Z, Instance::null());
}
default_values->Add(default_value);
}
// List of named.
list_length = ReadListLength(); // read list length.
ASSERT(list_length == 0);
}
parsed_function()->set_default_parameter_values(default_values);
}
}
Fragment StreamingFlowGraphBuilder::BuildFieldInitializer(
const Field& field,
bool only_for_side_effects) {
ASSERT(Error::Handle(Z, H.thread()->sticky_error()).IsNull());
if (PeekTag() == kNullLiteral) {
SkipExpression(); // read past the null literal.
if (H.thread()->IsMutatorThread()) {
field.RecordStore(Object::null_object());
} else {
ASSERT(field.is_nullable(/* silence_assert = */ true));
}
return Fragment();
}
Fragment instructions;
if (!only_for_side_effects) {
instructions += LoadLocal(parsed_function()->receiver_var());
}
// All closures created inside BuildExpression will have
// field.RawOwner() as its owner.
closure_owner_ = field.RawOwner();
instructions += BuildExpression();
closure_owner_ = Object::null();
if (only_for_side_effects) {
instructions += Drop();
} else {
instructions += flow_graph_builder_->StoreInstanceFieldGuarded(
field, StoreInstanceFieldInstr::Kind::kInitializing);
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildLateFieldInitializer(
const Field& field,
bool has_initializer) {
if (has_initializer && PeekTag() == kNullLiteral) {
SkipExpression(); // read past the null literal.
if (H.thread()->IsMutatorThread()) {
field.RecordStore(Object::null_object());
} else {
ASSERT(field.is_nullable(/* silence_assert = */ true));
}
return Fragment();
}
Fragment instructions;
instructions += LoadLocal(parsed_function()->receiver_var());
instructions += flow_graph_builder_->Constant(Object::sentinel());
instructions += flow_graph_builder_->StoreInstanceField(
field, StoreInstanceFieldInstr::Kind::kInitializing);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildInitializers(
const Class& parent_class) {
ASSERT(Error::Handle(Z, H.thread()->sticky_error()).IsNull());
Fragment instructions;
// Start by getting the position of the constructors initializer.
intptr_t initializers_offset = -1;
{
AlternativeReadingScope alt(&reader_);
SkipFunctionNode(); // read constructors function node.
initializers_offset = ReaderOffset();
}
bool is_redirecting_constructor = false;
// Field which will be initialized by the initializer with the given index.
GrowableArray<const Field*> initializer_fields(5);
// Check if this is a redirecting constructor and collect all fields which
// will be initialized by the constructor initializer list.
{
AlternativeReadingScope alt(&reader_, initializers_offset);
const intptr_t list_length =
ReadListLength(); // read initializers list length.
initializer_fields.EnsureLength(list_length, nullptr);
bool has_field_initializers = false;
for (intptr_t i = 0; i < list_length; ++i) {
if (PeekTag() == kRedirectingInitializer) {
is_redirecting_constructor = true;
} else if (PeekTag() == kFieldInitializer) {
has_field_initializers = true;
ReadTag();
ReadBool();
const NameIndex field_name = ReadCanonicalNameReference();
const Field& field =
Field::Handle(Z, H.LookupFieldByKernelField(field_name));
initializer_fields[i] = &field;
SkipExpression();
continue;
}
SkipInitializer();
}
ASSERT(!is_redirecting_constructor || !has_field_initializers);
}
// These come from:
//
// class A {
// var x = (expr);
// }
//
// We don't want to do that when this is a Redirecting Constructors though
// (i.e. has a single initializer being of type kRedirectingInitializer).
if (!is_redirecting_constructor) {
// Sort list of fields (represented as their kernel offsets) which will
// be initialized by the constructor initializer list. We will not emit
// StoreInstanceField instructions for those initializers though we will
// still evaluate initialization expression for its side effects.
GrowableArray<intptr_t> constructor_initialized_field_offsets(
initializer_fields.length());
for (auto field : initializer_fields) {
if (field != nullptr) {
constructor_initialized_field_offsets.Add(field->kernel_offset());
}
}
constructor_initialized_field_offsets.Sort(
[](const intptr_t* a, const intptr_t* b) {
return static_cast<int>(*a) - static_cast<int>(*b);
});
constructor_initialized_field_offsets.Add(-1);
ExternalTypedData& kernel_data = ExternalTypedData::Handle(Z);
Array& class_fields = Array::Handle(Z, parent_class.fields());
Field& class_field = Field::Handle(Z);
intptr_t next_constructor_initialized_field_index = 0;
for (intptr_t i = 0; i < class_fields.Length(); ++i) {
class_field ^= class_fields.At(i);
if (!class_field.is_static()) {
const intptr_t field_offset = class_field.kernel_offset();
// Check if this field will be initialized by the constructor
// initializer list.
// Note that both class_fields and the list of initialized fields
// are sorted by their kernel offset (by construction) -
// so we don't need to perform the search.
bool is_constructor_initialized = false;
const intptr_t constructor_initialized_field_offset =
constructor_initialized_field_offsets
[next_constructor_initialized_field_index];
if (constructor_initialized_field_offset == field_offset) {
next_constructor_initialized_field_index++;
is_constructor_initialized = true;
}
kernel_data = class_field.KernelData();
ASSERT(!kernel_data.IsNull());
AlternativeReadingScopeWithNewData alt(&reader_, &kernel_data,
field_offset);
FieldHelper field_helper(this);
field_helper.ReadUntilExcluding(FieldHelper::kInitializer);
const Tag initializer_tag = ReadTag();
if (class_field.is_late()) {
if (!is_constructor_initialized) {
instructions += BuildLateFieldInitializer(
Field::ZoneHandle(Z, class_field.raw()),
initializer_tag == kSomething);
}
} else if (initializer_tag == kSomething) {
EnterScope(field_offset);
// If this field is initialized in constructor then we can ignore the
// value produced by the field initializer. However we still need to
// execute it for its side effects.
instructions += BuildFieldInitializer(
Field::ZoneHandle(Z, class_field.raw()),
/*only_for_side_effects=*/is_constructor_initialized);
ExitScope(field_offset);
}
}
}
}
// These to come from:
// class A {
// var x;
// var y;
// A(this.x) : super(expr), y = (expr);
// }
{
AlternativeReadingScope alt(&reader_, initializers_offset);
intptr_t list_length = ReadListLength(); // read initializers list length.
for (intptr_t i = 0; i < list_length; ++i) {
Tag tag = ReadTag();
bool isSynthetic = ReadBool(); // read isSynthetic flag.
switch (tag) {
case kInvalidInitializer:
UNIMPLEMENTED();
return Fragment();
case kFieldInitializer: {
ReadCanonicalNameReference();
instructions += BuildFieldInitializer(
Field::ZoneHandle(Z, initializer_fields[i]->raw()),
/*only_for_size_effects=*/false);
break;
}
case kAssertInitializer: {
instructions += BuildStatement();
break;
}
case kSuperInitializer: {
TokenPosition position = ReadPosition(); // read position.
NameIndex canonical_target =
ReadCanonicalNameReference(); // read target_reference.
instructions += LoadLocal(parsed_function()->receiver_var());
// TODO(jensj): ASSERT(init->arguments()->types().length() == 0);
Array& argument_names = Array::ZoneHandle(Z);
intptr_t argument_count;
instructions += BuildArguments(
&argument_names, &argument_count,
/* positional_parameter_count = */ NULL); // read arguments.
argument_count += 1;
Class& parent_klass = GetSuperOrDie();
const Function& target = Function::ZoneHandle(
Z, H.LookupConstructorByKernelConstructor(
parent_klass, H.CanonicalNameString(canonical_target)));
instructions += StaticCall(
isSynthetic ? TokenPosition::kNoSource : position, target,
argument_count, argument_names, ICData::kStatic);
instructions += Drop();
break;
}
case kRedirectingInitializer: {
TokenPosition position = ReadPosition(); // read position.
NameIndex canonical_target =
ReadCanonicalNameReference(); // read target_reference.
instructions += LoadLocal(parsed_function()->receiver_var());
// TODO(jensj): ASSERT(init->arguments()->types().length() == 0);
Array& argument_names = Array::ZoneHandle(Z);
intptr_t argument_count;
instructions += BuildArguments(
&argument_names, &argument_count,
/* positional_parameter_count = */ NULL); // read arguments.
argument_count += 1;
const Function& target = Function::ZoneHandle(
Z, H.LookupConstructorByKernelConstructor(canonical_target));
instructions += StaticCall(
isSynthetic ? TokenPosition::kNoSource : position, target,
argument_count, argument_names, ICData::kStatic);
instructions += Drop();
break;
}
case kLocalInitializer: {
// The other initializers following this one might read the variable.
// This is used e.g. for evaluating the arguments to a super call
// first, run normal field initializers next and then make the actual
// super call:
//
// The frontend converts
//
// class A {
// var x;
// A(a, b) : super(a + b), x = 2*b {}
// }
//
// to
//
// class A {
// var x;
// A(a, b) : tmp = a + b, x = 2*b, super(tmp) {}
// }
//
// (This is strictly speaking not what one should do in terms of the
// specification but that is how it is currently implemented.)
LocalVariable* variable =
LookupVariable(ReaderOffset() + data_program_offset_);
// Variable declaration
VariableDeclarationHelper helper(this);
helper.ReadUntilExcluding(VariableDeclarationHelper::kInitializer);
ASSERT(!helper.IsConst());
Tag tag = ReadTag(); // read (first part of) initializer.
if (tag != kSomething) {
UNREACHABLE();
}
instructions += BuildExpression(); // read initializer.
instructions += StoreLocal(TokenPosition::kNoSource, variable);
instructions += Drop();
break;
}
default:
ReportUnexpectedTag("initializer", tag);
UNREACHABLE();
}
}
}
return instructions;
}
void StreamingFlowGraphBuilder::ReadDefaultFunctionTypeArguments(
const Function& function) {
if (!function.IsGeneric()) {
return;
}
AlternativeReadingScope alt(&reader_);
FunctionNodeHelper function_node_helper(this);
function_node_helper.ReadUntilExcluding(FunctionNodeHelper::kTypeParameters);
intptr_t num_type_params = ReadListLength();
ASSERT(num_type_params == function.NumTypeParameters());
TypeArguments& default_types =
TypeArguments::Handle(Z, TypeArguments::New(num_type_params));
for (intptr_t i = 0; i < num_type_params; ++i) {
TypeParameterHelper helper(this);
helper.ReadUntilExcludingAndSetJustRead(TypeParameterHelper::kDefaultType);
if (ReadTag() == kSomething) {
default_types.SetTypeAt(i, T.BuildType());
} else {
default_types.SetTypeAt(i, Object::dynamic_type());
}
helper.Finish();
}
default_types = default_types.Canonicalize(thread(), nullptr);
parsed_function()->SetDefaultFunctionTypeArguments(default_types);
}
Fragment StreamingFlowGraphBuilder::DebugStepCheckInPrologue(
const Function& dart_function,
TokenPosition position) {
if (!NeedsDebugStepCheck(dart_function, position)) {
return {};
}
// Place this check at the last parameter to ensure parameters
// are in scope in the debugger at method entry.
const int parameter_count = dart_function.NumParameters();
TokenPosition check_pos = TokenPosition::kNoSource;
if (parameter_count > 0) {
const LocalVariable& parameter =
*parsed_function()->ParameterVariable(parameter_count - 1);
check_pos = parameter.token_pos();
}
if (!check_pos.IsDebugPause()) {
// No parameters or synthetic parameters.
check_pos = position;
ASSERT(check_pos.IsDebugPause());
}
return DebugStepCheck(check_pos);
}
Fragment StreamingFlowGraphBuilder::SetAsyncStackTrace(
const Function& dart_function) {
if (!FLAG_causal_async_stacks ||
!(dart_function.IsAsyncClosure() || dart_function.IsAsyncGenClosure())) {
return {};
}
// The code we are building will be executed right after we enter
// the function and before any nested contexts are allocated.
ASSERT(B->context_depth_ ==
scopes()->yield_jump_variable->owner()->context_level());
Fragment instructions;
LocalScope* scope = parsed_function()->scope();
const Function& target = Function::ZoneHandle(
Z, I->object_store()->async_set_thread_stack_trace());
ASSERT(!target.IsNull());
// Fetch and load :async_stack_trace
LocalVariable* async_stack_trace_var =
scope->LookupVariable(Symbols::AsyncStackTraceVar(), false);
ASSERT((async_stack_trace_var != NULL) &&
async_stack_trace_var->is_captured());
Fragment code;
code += LoadLocal(async_stack_trace_var);
// Call _asyncSetThreadStackTrace
code += StaticCall(TokenPosition::kNoSource, target,
/* argument_count = */ 1, ICData::kStatic);
code += Drop();
return code;
}
Fragment StreamingFlowGraphBuilder::TypeArgumentsHandling(
const Function& dart_function) {
Fragment prologue = B->BuildDefaultTypeHandling(dart_function);
if (dart_function.IsClosureFunction() &&
dart_function.NumParentTypeParameters() > 0) {
LocalVariable* closure = parsed_function()->ParameterVariable(0);
// Function with yield points can not be generic itself but the outer
// function can be.
ASSERT(yield_continuations().is_empty() || !dart_function.IsGeneric());
LocalVariable* fn_type_args = parsed_function()->function_type_arguments();
ASSERT(fn_type_args != NULL && closure != NULL);
if (dart_function.IsGeneric()) {
prologue += LoadLocal(fn_type_args);
prologue += LoadLocal(closure);
prologue += LoadNativeField(Slot::Closure_function_type_arguments());
prologue += IntConstant(dart_function.NumParentTypeParameters());
prologue += IntConstant(dart_function.NumTypeParameters() +
dart_function.NumParentTypeParameters());
const Library& dart_internal =
Library::Handle(Z, Library::InternalLibrary());
const Function& prepend_function =
Function::ZoneHandle(Z, dart_internal.LookupFunctionAllowPrivate(
Symbols::PrependTypeArguments()));
ASSERT(!prepend_function.IsNull());
prologue += StaticCall(TokenPosition::kNoSource, prepend_function, 4,
ICData::kStatic);
prologue += StoreLocal(TokenPosition::kNoSource, fn_type_args);
prologue += Drop();
} else {
prologue += LoadLocal(closure);
prologue += LoadNativeField(Slot::Closure_function_type_arguments());
prologue += StoreLocal(TokenPosition::kNoSource, fn_type_args);
prologue += Drop();
}
}
return prologue;
}
Fragment StreamingFlowGraphBuilder::CompleteBodyWithYieldContinuations(
Fragment body) {
// The code we are building will be executed right after we enter
// the function and before any nested contexts are allocated.
// Reset current context_depth_ to match this.
const intptr_t current_context_depth = B->context_depth_;
B->context_depth_ = scopes()->yield_jump_variable->owner()->context_level();
// Prepend an entry corresponding to normal entry to the function.
yield_continuations().InsertAt(
0, YieldContinuation(new (Z) DropTempsInstr(0, NULL), kInvalidTryIndex));
yield_continuations()[0].entry->LinkTo(body.entry);
// Load :await_jump_var into a temporary.
Fragment dispatch;
dispatch += LoadLocal(scopes()->yield_jump_variable);
dispatch += StoreLocal(TokenPosition::kNoSource, scopes()->switch_variable);
dispatch += Drop();
const intptr_t continuation_count = yield_continuations().length();
IndirectGotoInstr* indirect_goto;
if (FLAG_async_igoto_threshold >= 0 &&
continuation_count >= FLAG_async_igoto_threshold) {
const auto& offsets = TypedData::ZoneHandle(
Z, TypedData::New(kTypedDataInt32ArrayCid, continuation_count,
Heap::kOld));
dispatch += Constant(offsets);
dispatch += LoadLocal(scopes()->switch_variable);
// Ideally this would just be LoadIndexedTypedData(kTypedDataInt32ArrayCid),
// but that doesn't work in unoptimised code.
// The optimiser will turn this into that in any case.
dispatch += InstanceCall(TokenPosition::kNoSource, Symbols::IndexToken(),
Token::kINDEX, /*argument_count=*/2);
Value* offset_from_start = Pop();
indirect_goto = new (Z) IndirectGotoInstr(&offsets, offset_from_start);
dispatch <<= indirect_goto;
for (intptr_t i = 0; i < continuation_count; i++) {
if (i >= 1) {
Fragment resumption;
// Every continuation after the first is not a normal entry but a
// resumption.
// Restore :current_context_var from :await_ctx_var.
// Note: after this point context_depth_ does not match current context
// depth so we should not access any local variables anymore.
resumption += LoadLocal(scopes()->yield_context_variable);
resumption += StoreLocal(TokenPosition::kNoSource,
parsed_function()->current_context_var());
resumption += Drop();
Instruction* next = yield_continuations()[i].entry->next();
yield_continuations()[i].entry->LinkTo(resumption.entry);
resumption <<= next;
}
IndirectEntryInstr* indirect_entry = B->BuildIndirectEntry(
/*indirect_id=*/i, yield_continuations()[i].try_index);
indirect_entry->LinkTo(yield_continuations()[i].entry->next());
TargetEntryInstr* target = B->BuildTargetEntry();
Fragment(target) + Goto(indirect_entry);
indirect_goto->AddSuccessor(target);
}
} else {
BlockEntryInstr* block = nullptr;
for (intptr_t i = 0; i < continuation_count; i++) {
if (i == 1) {
// This is not a normal entry but a resumption. Restore
// :current_context_var from :await_ctx_var.
// Note: after this point context_depth_ does not match current context
// depth so we should not access any local variables anymore.
dispatch += LoadLocal(scopes()->yield_context_variable);
dispatch += StoreLocal(TokenPosition::kNoSource,
parsed_function()->current_context_var());
dispatch += Drop();
}
if (i == (continuation_count - 1)) {
// We reached the last possibility, no need to build more ifs.
// Continue to the last continuation.
// Note: continuations start with nop DropTemps instruction
// which acts like an anchor, so we need to skip it.
block->set_try_index(yield_continuations()[i].try_index);
dispatch <<= yield_continuations()[i].entry->next();
break;
}
// Build comparison:
//
// if (:await_jump_var == i) {
// -> yield_continuations()[i]
// } else ...
//
TargetEntryInstr* then;
TargetEntryInstr* otherwise;
dispatch += LoadLocal(scopes()->switch_variable);
dispatch += IntConstant(i);
dispatch += B->BranchIfStrictEqual(&then, &otherwise);
// True branch is linked to appropriate continuation point.
// Note: continuations start with nop DropTemps instruction
// which acts like an anchor, so we need to skip it.
then->LinkTo(yield_continuations()[i].entry->next());
then->set_try_index(yield_continuations()[i].try_index);
// False branch will contain the next comparison.
dispatch = Fragment(dispatch.entry, otherwise);
block = otherwise;
}
}
B->context_depth_ = current_context_depth;
return dispatch;
}
Fragment StreamingFlowGraphBuilder::CheckStackOverflowInPrologue(
const Function& dart_function) {
if (dart_function.is_native()) return {};
return B->CheckStackOverflowInPrologue(dart_function.token_pos());
}
Fragment StreamingFlowGraphBuilder::SetupCapturedParameters(
const Function& dart_function) {
Fragment body;
const LocalScope* scope = parsed_function()->scope();
if (scope->num_context_variables() > 0) {
body += flow_graph_builder_->PushContext(scope);
LocalVariable* context = MakeTemporary();
// Copy captured parameters from the stack into the context.
LocalScope* scope = parsed_function()->scope();
intptr_t parameter_count = dart_function.NumParameters();
const ParsedFunction& pf = *flow_graph_builder_->parsed_function_;
const Function& function = pf.function();
for (intptr_t i = 0; i < parameter_count; ++i) {
LocalVariable* variable = pf.ParameterVariable(i);
if (variable->is_captured()) {
LocalVariable& raw_parameter = *pf.RawParameterVariable(i);
ASSERT((function.HasOptionalParameters() &&
raw_parameter.owner() == scope) ||
(!function.HasOptionalParameters() &&
raw_parameter.owner() == NULL));
ASSERT(!raw_parameter.is_captured());
// Copy the parameter from the stack to the context.
body += LoadLocal(context);
body += LoadLocal(&raw_parameter);
body += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource,
Slot::GetContextVariableSlotFor(thread(), *variable),
StoreInstanceFieldInstr::Kind::kInitializing);
}
}
body += Drop(); // The context.
}
return body;
}
// If we run in checked mode or strong mode, we have to check the type of the
// passed arguments.
//
// TODO(#34162): If we're building an extra entry-point to skip
// type checks, we should substitute Redefinition nodes for the AssertAssignable
// instructions to ensure that the argument types are known.
void StreamingFlowGraphBuilder::CheckArgumentTypesAsNecessary(
const Function& dart_function,
intptr_t type_parameters_offset,
Fragment* explicit_checks,
Fragment* implicit_checks,
Fragment* implicit_redefinitions) {
if (!dart_function.NeedsArgumentTypeChecks()) return;
// Check if parent function was annotated with no-dynamic-invocations.
const ProcedureAttributesMetadata attrs =
procedure_attributes_metadata_helper_.GetProcedureAttributes(
dart_function.kernel_offset());
AlternativeReadingScope _(&reader_);
SetOffset(type_parameters_offset);
B->BuildArgumentTypeChecks(
MethodCanSkipTypeChecksForNonCovariantArguments(dart_function, attrs)
? TypeChecksToBuild::kCheckCovariantTypeParameterBounds
: TypeChecksToBuild::kCheckAllTypeParameterBounds,
explicit_checks, implicit_checks, implicit_redefinitions);
}
Fragment StreamingFlowGraphBuilder::ShortcutForUserDefinedEquals(
const Function& dart_function,
LocalVariable* first_parameter) {
// The specification defines the result of `a == b` to be:
//
// a) if either side is `null` then the result is `identical(a, b)`.
// b) else the result is `a.operator==(b)`
//
// For user-defined implementations of `operator==` we need therefore
// implement the handling of a).
//
// The default `operator==` implementation in `Object` is implemented in terms
// of identical (which we assume here!) which means that case a) is actually
// included in b). So we just use the normal implementation in the body.
Fragment body;
if ((dart_function.NumParameters() == 2) &&
(dart_function.name() == Symbols::EqualOperator().raw()) &&
(dart_function.Owner() != I->object_store()->object_class())) {
TargetEntryInstr* null_entry;
TargetEntryInstr* non_null_entry;
body += LoadLocal(first_parameter);
body += BranchIfNull(&null_entry, &non_null_entry);
// The argument was `null` and the receiver is not the null class (we only
// go into this branch for user-defined == operators) so we can return
// false.
Fragment null_fragment(null_entry);
null_fragment += Constant(Bool::False());
null_fragment += Return(dart_function.end_token_pos());
body = Fragment(body.entry, non_null_entry);
}
return body;
}
Fragment StreamingFlowGraphBuilder::BuildFunctionBody(
const Function& dart_function,
LocalVariable* first_parameter,
bool constructor) {
Fragment body;
// TODO(27590): Currently the [VariableDeclaration]s from the
// initializers will be visible inside the entire body of the constructor.
// We should make a separate scope for them.
if (constructor) {
body += BuildInitializers(Class::Handle(Z, dart_function.Owner()));
}
if (body.is_closed()) return body;
FunctionNodeHelper function_node_helper(this);
function_node_helper.ReadUntilExcluding(FunctionNodeHelper::kBody);
const bool has_body = ReadTag() == kSomething; // read first part of body.
if (dart_function.is_native()) {
body += B->NativeFunctionBody(dart_function, first_parameter);
} else if (has_body) {
body += BuildStatement();
} else if (dart_function.is_external()) {
body += ThrowNoSuchMethodError(dart_function);
}
if (body.is_open()) {
body += NullConstant();
body += Return(dart_function.end_token_pos());
}
return body;
}
Fragment StreamingFlowGraphBuilder::BuildEveryTimePrologue(
const Function& dart_function,
TokenPosition token_position,
intptr_t type_parameters_offset) {
Fragment F;
F += CheckStackOverflowInPrologue(dart_function);
F += DebugStepCheckInPrologue(dart_function, token_position);
F += SetAsyncStackTrace(dart_function);
F += B->InitConstantParameters();
return F;
}
Fragment StreamingFlowGraphBuilder::BuildFirstTimePrologue(
const Function& dart_function,
LocalVariable* first_parameter,
intptr_t type_parameters_offset) {
Fragment F;
F += SetupCapturedParameters(dart_function);
F += ShortcutForUserDefinedEquals(dart_function, first_parameter);
return F;
}
Fragment StreamingFlowGraphBuilder::ClearRawParameters(
const Function& dart_function) {
const ParsedFunction& pf = *flow_graph_builder_->parsed_function_;
Fragment code;
for (intptr_t i = 0; i < dart_function.NumParameters(); ++i) {
LocalVariable* variable = pf.ParameterVariable(i);
if (!variable->is_captured()) continue;
// Captured 'this' is immutable, so within the outer method we don't need to
// load it from the context. Therefore we don't reset it to null.
if (pf.function().HasThisParameter() && pf.has_receiver_var() &&
variable == pf.receiver_var()) {
ASSERT(i == 0);
continue;
}
variable = pf.RawParameterVariable(i);
code += NullConstant();
code += StoreLocal(TokenPosition::kNoSource, variable);
code += Drop();
}
return code;
}
UncheckedEntryPointStyle StreamingFlowGraphBuilder::ChooseEntryPointStyle(
const Function& dart_function,
const Fragment& implicit_type_checks,
const Fragment& first_time_prologue,
const Fragment& every_time_prologue,
const Fragment& type_args_handling) {
ASSERT(!dart_function.IsImplicitClosureFunction());
if (!dart_function.MayHaveUncheckedEntryPoint() ||
implicit_type_checks.is_empty()) {
return UncheckedEntryPointStyle::kNone;
}
// Record which entry-point was taken into a variable and test it later if
// either:
//
// 1. There is a non-empty PrologueBuilder-prologue.
//
// 2. There is a non-empty "first-time" prologue.
//
// 3. The "every-time" prologue has more than two instructions (DebugStepCheck
// and CheckStackOverflow).
//
// TODO(#34162): For regular closures we can often avoid the
// PrologueBuilder-prologue on non-dynamic invocations.
if (!PrologueBuilder::HasEmptyPrologue(dart_function) ||
!type_args_handling.is_empty() || !first_time_prologue.is_empty() ||
!(every_time_prologue.entry == every_time_prologue.current ||
every_time_prologue.current->previous() == every_time_prologue.entry)) {
return UncheckedEntryPointStyle::kSharedWithVariable;
}
return UncheckedEntryPointStyle::kSeparate;
}
FlowGraph* StreamingFlowGraphBuilder::BuildGraphOfFunction(
bool is_constructor) {
const Function& dart_function = parsed_function()->function();
intptr_t type_parameters_offset = 0;
LocalVariable* first_parameter = nullptr;
TokenPosition token_position = TokenPosition::kNoSource;
{
AlternativeReadingScope alt(&reader_);
FunctionNodeHelper function_node_helper(this);
function_node_helper.ReadUntilExcluding(
FunctionNodeHelper::kTypeParameters);
type_parameters_offset = ReaderOffset();
function_node_helper.ReadUntilExcluding(
FunctionNodeHelper::kPositionalParameters);
intptr_t list_length = ReadListLength(); // read number of positionals.
if (list_length > 0) {
intptr_t first_parameter_offset = ReaderOffset() + data_program_offset_;
first_parameter = LookupVariable(first_parameter_offset);
}
token_position = function_node_helper.position_;
}
auto graph_entry = flow_graph_builder_->graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function(), flow_graph_builder_->osr_id_);
auto normal_entry = flow_graph_builder_->BuildFunctionEntry(graph_entry);
graph_entry->set_normal_entry(normal_entry);
PrologueInfo prologue_info(-1, -1);
BlockEntryInstr* instruction_cursor =
flow_graph_builder_->BuildPrologue(normal_entry, &prologue_info);
// The 'every_time_prologue' runs first and is run when resuming from yield
// points.
const Fragment every_time_prologue = BuildEveryTimePrologue(
dart_function, token_position, type_parameters_offset);
// The 'first_time_prologue' run after 'every_time_prologue' and is *not* run
// when resuming from yield points.
const Fragment first_time_prologue = BuildFirstTimePrologue(
dart_function, first_parameter, type_parameters_offset);
// TODO(#34162): We can remove the default type handling (and
// shorten the prologue type handling sequence) for non-dynamic invocations of
// regular methods.
const Fragment type_args_handling = TypeArgumentsHandling(dart_function);
Fragment explicit_type_checks;
Fragment implicit_type_checks;
Fragment implicit_redefinitions;
CheckArgumentTypesAsNecessary(dart_function, type_parameters_offset,
&explicit_type_checks, &implicit_type_checks,
&implicit_redefinitions);
// The RawParameter variables should be set to null to avoid retaining more
// objects than necessary during GC.
const Fragment body =
ClearRawParameters(dart_function) + B->BuildNullAssertions() +
BuildFunctionBody(dart_function, first_parameter, is_constructor);
auto extra_entry_point_style = ChooseEntryPointStyle(
dart_function, implicit_type_checks, first_time_prologue,
every_time_prologue, type_args_handling);
Fragment function(instruction_cursor);
if (yield_continuations().is_empty()) {
FunctionEntryInstr* extra_entry = nullptr;
switch (extra_entry_point_style) {
case UncheckedEntryPointStyle::kNone: {
function += every_time_prologue + first_time_prologue +
type_args_handling + implicit_type_checks +
explicit_type_checks + body;
break;
}
case UncheckedEntryPointStyle::kSeparate: {
ASSERT(instruction_cursor == normal_entry);
ASSERT(first_time_prologue.is_empty());
ASSERT(type_args_handling.is_empty());
const Fragment prologue_copy = BuildEveryTimePrologue(
dart_function, token_position, type_parameters_offset);
extra_entry = B->BuildSeparateUncheckedEntryPoint(
normal_entry,
/*normal_prologue=*/every_time_prologue + implicit_type_checks,
/*extra_prologue=*/prologue_copy,
/*shared_prologue=*/explicit_type_checks,
/*body=*/body);
break;
}
case UncheckedEntryPointStyle::kSharedWithVariable: {
Fragment prologue(normal_entry, instruction_cursor);
prologue += every_time_prologue;
prologue += first_time_prologue;
prologue += type_args_handling;
prologue += explicit_type_checks;
extra_entry = B->BuildSharedUncheckedEntryPoint(
/*shared_prologue_linked_in=*/prologue,
/*skippable_checks=*/implicit_type_checks,
/*redefinitions_if_skipped=*/implicit_redefinitions,
/*body=*/body);
break;
}
}
if (extra_entry != nullptr) {
B->RecordUncheckedEntryPoint(graph_entry, extra_entry);
}
} else {
// If the function's body contains any yield points, build switch statement
// that selects a continuation point based on the value of :await_jump_var.
ASSERT(explicit_type_checks.is_empty());
// If the function is generic, type_args_handling might require access to
// (possibly captured) 'this' for preparing default type arguments, in which
// case we can't run it before the 'first_time_prologue'.
ASSERT(!dart_function.IsGeneric());
// TODO(#34162): We can probably ignore the implicit checks
// here as well since the arguments are passed from generated code.
function += every_time_prologue + type_args_handling +
CompleteBodyWithYieldContinuations(first_time_prologue +
implicit_type_checks + body);
}
// When compiling for OSR, use a depth first search to find the OSR
// entry and make graph entry jump to it instead of normal entry.
// Catch entries are always considered reachable, even if they
// become unreachable after OSR.
if (flow_graph_builder_->IsCompiledForOsr()) {
graph_entry->RelinkToOsrEntry(Z,
flow_graph_builder_->last_used_block_id_ + 1);
}
return new (Z)
FlowGraph(*parsed_function(), graph_entry,
flow_graph_builder_->last_used_block_id_, prologue_info);
}
FlowGraph* StreamingFlowGraphBuilder::BuildGraph() {
ASSERT(Error::Handle(Z, H.thread()->sticky_error()).IsNull());
ASSERT(flow_graph_builder_ != nullptr);
const Function& function = parsed_function()->function();
// Setup a [ActiveClassScope] and a [ActiveMemberScope] which will be used
// e.g. for type translation.
const Class& klass =
Class::Handle(zone_, parsed_function()->function().Owner());
Function& outermost_function =
Function::Handle(Z, function.GetOutermostFunction());
ActiveClassScope active_class_scope(active_class(), &klass);
ActiveMemberScope active_member(active_class(), &outermost_function);
ActiveTypeParametersScope active_type_params(active_class(), function, Z);
if (function.is_declared_in_bytecode()) {
bytecode_metadata_helper_.ParseBytecodeFunction(parsed_function());
switch (function.kind()) {
case FunctionLayout::kImplicitClosureFunction:
return B->BuildGraphOfImplicitClosureFunction(function);
case FunctionLayout::kImplicitGetter:
case FunctionLayout::kImplicitSetter:
return B->BuildGraphOfFieldAccessor(function);
case FunctionLayout::kImplicitStaticGetter: {
if (IsStaticFieldGetterGeneratedAsInitializer(function, Z)) {
break;
}
return B->BuildGraphOfFieldAccessor(function);
}
case FunctionLayout::kDynamicInvocationForwarder:
return B->BuildGraphOfDynamicInvocationForwarder(function);
case FunctionLayout::kMethodExtractor:
return B->BuildGraphOfMethodExtractor(function);
case FunctionLayout::kNoSuchMethodDispatcher:
return B->BuildGraphOfNoSuchMethodDispatcher(function);
default:
break;
}
ASSERT(function.HasBytecode());
BytecodeFlowGraphBuilder bytecode_compiler(
flow_graph_builder_, parsed_function(),
&(flow_graph_builder_->ic_data_array_));
if (B->IsRecognizedMethodForFlowGraph(function)) {
bytecode_compiler.CreateParameterVariables();
return B->BuildGraphOfRecognizedMethod(function);
}
return bytecode_compiler.BuildGraph();
}
// Certain special functions could have a VM-internal bytecode
// attached to them.
ASSERT((!function.HasBytecode()) ||
(function.kind() == FunctionLayout::kImplicitGetter) ||
(function.kind() == FunctionLayout::kImplicitSetter) ||
(function.kind() == FunctionLayout::kImplicitStaticGetter) ||
(function.kind() == FunctionLayout::kMethodExtractor) ||
(function.kind() == FunctionLayout::kInvokeFieldDispatcher) ||
(function.kind() == FunctionLayout::kNoSuchMethodDispatcher));
ParseKernelASTFunction();
switch (function.kind()) {
case FunctionLayout::kRegularFunction:
case FunctionLayout::kGetterFunction:
case FunctionLayout::kSetterFunction:
case FunctionLayout::kClosureFunction:
case FunctionLayout::kConstructor: {
if (B->IsRecognizedMethodForFlowGraph(function)) {
return B->BuildGraphOfRecognizedMethod(function);
}
return BuildGraphOfFunction(function.IsGenerativeConstructor());
}
case FunctionLayout::kImplicitGetter:
case FunctionLayout::kImplicitStaticGetter:
case FunctionLayout::kImplicitSetter: {
const Field& field = Field::Handle(Z, function.accessor_field());
if (field.is_const() && field.IsUninitialized()) {
EvaluateConstFieldValue(field);
}
return B->BuildGraphOfFieldAccessor(function);
}
case FunctionLayout::kFieldInitializer:
return BuildGraphOfFieldInitializer();
case FunctionLayout::kDynamicInvocationForwarder:
return B->BuildGraphOfDynamicInvocationForwarder(function);
case FunctionLayout::kMethodExtractor:
return flow_graph_builder_->BuildGraphOfMethodExtractor(function);
case FunctionLayout::kNoSuchMethodDispatcher:
return flow_graph_builder_->BuildGraphOfNoSuchMethodDispatcher(function);
case FunctionLayout::kInvokeFieldDispatcher:
return flow_graph_builder_->BuildGraphOfInvokeFieldDispatcher(function);
case FunctionLayout::kImplicitClosureFunction:
return flow_graph_builder_->BuildGraphOfImplicitClosureFunction(function);
case FunctionLayout::kFfiTrampoline:
return flow_graph_builder_->BuildGraphOfFfiTrampoline(function);
case FunctionLayout::kSignatureFunction:
case FunctionLayout::kIrregexpFunction:
break;
}
UNREACHABLE();
return NULL;
}
void StreamingFlowGraphBuilder::ParseKernelASTFunction() {
const Function& function = parsed_function()->function();
const intptr_t kernel_offset = function.kernel_offset();
ASSERT(kernel_offset >= 0);
SetOffset(kernel_offset);
// Mark forwarding stubs.
switch (function.kind()) {
case FunctionLayout::kRegularFunction:
case FunctionLayout::kImplicitClosureFunction:
case FunctionLayout::kGetterFunction:
case FunctionLayout::kSetterFunction:
case FunctionLayout::kClosureFunction:
case FunctionLayout::kConstructor:
case FunctionLayout::kDynamicInvocationForwarder:
ReadForwardingStubTarget(function);
break;
default:
break;
}
set_scopes(parsed_function()->EnsureKernelScopes());
switch (function.kind()) {
case FunctionLayout::kRegularFunction:
case FunctionLayout::kGetterFunction:
case FunctionLayout::kSetterFunction:
case FunctionLayout::kClosureFunction:
case FunctionLayout::kConstructor:
case FunctionLayout::kImplicitClosureFunction:
ReadUntilFunctionNode();
SetupDefaultParameterValues();
ReadDefaultFunctionTypeArguments(function);
break;
case FunctionLayout::kImplicitGetter:
case FunctionLayout::kImplicitStaticGetter:
case FunctionLayout::kImplicitSetter:
case FunctionLayout::kFieldInitializer:
case FunctionLayout::kMethodExtractor:
case FunctionLayout::kNoSuchMethodDispatcher:
case FunctionLayout::kInvokeFieldDispatcher:
case FunctionLayout::kFfiTrampoline:
break;
case FunctionLayout::kDynamicInvocationForwarder:
if (PeekTag() != kField) {
ReadUntilFunctionNode();
SetupDefaultParameterValues();
ReadDefaultFunctionTypeArguments(function);
}
break;
case FunctionLayout::kSignatureFunction:
case FunctionLayout::kIrregexpFunction:
UNREACHABLE();
break;
}
}
void StreamingFlowGraphBuilder::ReadForwardingStubTarget(
const Function& function) {
if (PeekTag() == kProcedure) {
AlternativeReadingScope alt(&reader_);
ProcedureHelper procedure_helper(this);
procedure_helper.ReadUntilExcluding(ProcedureHelper::kFunction);
if (procedure_helper.IsForwardingStub() && !procedure_helper.IsAbstract()) {
const NameIndex target_name =
procedure_helper.forwarding_stub_super_target_;
ASSERT(target_name != NameIndex::kInvalidName);
const String& name = function.IsSetterFunction()
? H.DartSetterName(target_name)
: H.DartProcedureName(target_name);
const Function* forwarding_target =
&Function::ZoneHandle(Z, H.LookupMethodByMember(target_name, name));
ASSERT(!forwarding_target->IsNull());
parsed_function()->MarkForwardingStub(forwarding_target);
}
}
}
Fragment StreamingFlowGraphBuilder::BuildStatementAt(intptr_t kernel_offset) {
SetOffset(kernel_offset);
return BuildStatement(); // read statement.
}
Fragment StreamingFlowGraphBuilder::BuildExpression(TokenPosition* position) {
uint8_t payload = 0;
Tag tag = ReadTag(&payload); // read tag.
switch (tag) {
case kInvalidExpression:
return BuildInvalidExpression(position);
case kVariableGet:
return BuildVariableGet(position);
case kSpecializedVariableGet:
return BuildVariableGet(payload, position);
case kVariableSet:
return BuildVariableSet(position);
case kSpecializedVariableSet:
return BuildVariableSet(payload, position);
case kPropertyGet:
return BuildPropertyGet(position);
case kPropertySet:
return BuildPropertySet(position);
case kSuperPropertyGet:
return BuildSuperPropertyGet(position);
case kSuperPropertySet:
return BuildSuperPropertySet(position);
case kStaticGet:
return BuildStaticGet(position);
case kStaticSet:
return BuildStaticSet(position);
case kMethodInvocation:
return BuildMethodInvocation(position);
case kSuperMethodInvocation:
return BuildSuperMethodInvocation(position);
case kStaticInvocation:
return BuildStaticInvocation(position);
case kConstructorInvocation:
return BuildConstructorInvocation(position);
case kNot:
return BuildNot(position);
case kNullCheck:
return BuildNullCheck(position);
case kLogicalExpression:
return BuildLogicalExpression(position);
case kConditionalExpression:
return BuildConditionalExpression(position);
case kStringConcatenation:
return BuildStringConcatenation(position);
case kIsExpression:
return BuildIsExpression(position);
case kAsExpression:
return BuildAsExpression(position);
case kTypeLiteral:
return BuildTypeLiteral(position);
case kThisExpression:
return BuildThisExpression(position);
case kRethrow:
return BuildRethrow(position);
case kThrow:
return BuildThrow(position);
case kListLiteral:
return BuildListLiteral(position);
case kSetLiteral:
// Set literals are currently desugared in the frontend and will not
// reach the VM. See http://dartbug.com/35124 for discussion.
UNREACHABLE();
break;
case kMapLiteral:
return BuildMapLiteral(position);
case kFunctionExpression:
return BuildFunctionExpression();
case kLet:
return BuildLet(position);
case kBlockExpression:
return BuildBlockExpression();
case kBigIntLiteral:
return BuildBigIntLiteral(position);
case kStringLiteral:
return BuildStringLiteral(position);
case kSpecializedIntLiteral:
return BuildIntLiteral(payload, position);
case kNegativeIntLiteral:
return BuildIntLiteral(true, position);
case kPositiveIntLiteral:
return BuildIntLiteral(false, position);
case kDoubleLiteral:
return BuildDoubleLiteral(position);
case kTrueLiteral:
return BuildBoolLiteral(true, position);
case kFalseLiteral:
return BuildBoolLiteral(false, position);
case kNullLiteral:
return BuildNullLiteral(position);
case kConstantExpression:
return BuildConstantExpression(position, tag);
case kInstantiation:
return BuildPartialTearoffInstantiation(position);
case kLoadLibrary:
return BuildLibraryPrefixAction(position, Symbols::LoadLibrary());
case kCheckLibraryIsLoaded:
return BuildLibraryPrefixAction(position, Symbols::CheckLoaded());
case kConstStaticInvocation:
case kConstConstructorInvocation:
case kConstListLiteral:
case kConstSetLiteral:
case kConstMapLiteral:
case kSymbolLiteral:
// Const invocations and const literals are removed by the
// constant evaluator.
case kListConcatenation:
case kSetConcatenation:
case kMapConcatenation:
case kInstanceCreation:
case kFileUriExpression:
// Collection concatenation, instance creation operations and
// in-expression URI changes are internal to the front end and
// removed by the constant evaluator.
default:
ReportUnexpectedTag("expression", tag);
UNREACHABLE();
}
return Fragment();
}
Fragment StreamingFlowGraphBuilder::BuildStatement() {
Tag tag = ReadTag(); // read tag.
switch (tag) {
case kExpressionStatement:
return BuildExpressionStatement();
case kBlock:
return BuildBlock();
case kEmptyStatement:
return BuildEmptyStatement();
case kAssertBlock:
return BuildAssertBlock();
case kAssertStatement:
return BuildAssertStatement();
case kLabeledStatement:
return BuildLabeledStatement();
case kBreakStatement:
return BuildBreakStatement();
case kWhileStatement:
return BuildWhileStatement();
case kDoStatement:
return BuildDoStatement();
case kForStatement:
return BuildForStatement();
case kForInStatement:
return BuildForInStatement(false);
case kAsyncForInStatement:
return BuildForInStatement(true);
case kSwitchStatement:
return BuildSwitchStatement();
case kContinueSwitchStatement:
return BuildContinueSwitchStatement();
case kIfStatement:
return BuildIfStatement();
case kReturnStatement:
return BuildReturnStatement();
case kTryCatch:
return BuildTryCatch();
case kTryFinally:
return BuildTryFinally();
case kYieldStatement:
return BuildYieldStatement();
case kVariableDeclaration:
return BuildVariableDeclaration();
case kFunctionDeclaration:
return BuildFunctionDeclaration();
default:
ReportUnexpectedTag("statement", tag);
UNREACHABLE();
}
return Fragment();
}
void StreamingFlowGraphBuilder::ReportUnexpectedTag(const char* variant,
Tag tag) {
if ((flow_graph_builder_ == NULL) || (parsed_function() == NULL)) {
KernelReaderHelper::ReportUnexpectedTag(variant, tag);
} else {
H.ReportError(script_, TokenPosition::kNoSource,
"Unexpected tag %d (%s) in %s, expected %s", tag,
Reader::TagName(tag),
parsed_function()->function().ToQualifiedCString(), variant);
}
}
Tag KernelReaderHelper::ReadTag(uint8_t* payload) {
return reader_.ReadTag(payload);
}
Tag KernelReaderHelper::PeekTag(uint8_t* payload) {
return reader_.PeekTag(payload);
}
Nullability KernelReaderHelper::ReadNullability() {
return reader_.ReadNullability();
}
Variance KernelReaderHelper::ReadVariance() {
if (translation_helper_.info().kernel_binary_version() >= 34) {
return reader_.ReadVariance();
}
return kCovariant;
}
void StreamingFlowGraphBuilder::loop_depth_inc() {
++flow_graph_builder_->loop_depth_;
}
void StreamingFlowGraphBuilder::loop_depth_dec() {
--flow_graph_builder_->loop_depth_;
}
intptr_t StreamingFlowGraphBuilder::for_in_depth() {
return flow_graph_builder_->for_in_depth_;
}
void StreamingFlowGraphBuilder::for_in_depth_inc() {
++flow_graph_builder_->for_in_depth_;
}
void StreamingFlowGraphBuilder::for_in_depth_dec() {
--flow_graph_builder_->for_in_depth_;
}
void StreamingFlowGraphBuilder::catch_depth_inc() {
++flow_graph_builder_->catch_depth_;
}
void StreamingFlowGraphBuilder::catch_depth_dec() {
--flow_graph_builder_->catch_depth_;
}
void StreamingFlowGraphBuilder::try_depth_inc() {
++flow_graph_builder_->try_depth_;
}
void StreamingFlowGraphBuilder::try_depth_dec() {
--flow_graph_builder_->try_depth_;
}
intptr_t StreamingFlowGraphBuilder::block_expression_depth() {
return flow_graph_builder_->block_expression_depth_;
}
void StreamingFlowGraphBuilder::block_expression_depth_inc() {
++flow_graph_builder_->block_expression_depth_;
}
void StreamingFlowGraphBuilder::block_expression_depth_dec() {
--flow_graph_builder_->block_expression_depth_;
}
intptr_t StreamingFlowGraphBuilder::CurrentTryIndex() {
return flow_graph_builder_->CurrentTryIndex();
}
intptr_t StreamingFlowGraphBuilder::AllocateTryIndex() {
return flow_graph_builder_->AllocateTryIndex();
}
LocalVariable* StreamingFlowGraphBuilder::CurrentException() {
return flow_graph_builder_->CurrentException();
}
LocalVariable* StreamingFlowGraphBuilder::CurrentStackTrace() {
return flow_graph_builder_->CurrentStackTrace();
}
CatchBlock* StreamingFlowGraphBuilder::catch_block() {
return flow_graph_builder_->catch_block_;
}
ActiveClass* StreamingFlowGraphBuilder::active_class() {
return active_class_;
}
ScopeBuildingResult* StreamingFlowGraphBuilder::scopes() {
return flow_graph_builder_->scopes_;
}
void StreamingFlowGraphBuilder::set_scopes(ScopeBuildingResult* scope) {
flow_graph_builder_->scopes_ = scope;
}
ParsedFunction* StreamingFlowGraphBuilder::parsed_function() {
return flow_graph_builder_->parsed_function_;
}
TryFinallyBlock* StreamingFlowGraphBuilder::try_finally_block() {
return flow_graph_builder_->try_finally_block_;
}
SwitchBlock* StreamingFlowGraphBuilder::switch_block() {
return flow_graph_builder_->switch_block_;
}
BreakableBlock* StreamingFlowGraphBuilder::breakable_block() {
return flow_graph_builder_->breakable_block_;
}
GrowableArray<YieldContinuation>&
StreamingFlowGraphBuilder::yield_continuations() {
return flow_graph_builder_->yield_continuations_;
}
Value* StreamingFlowGraphBuilder::stack() {
return flow_graph_builder_->stack_;
}
void StreamingFlowGraphBuilder::Push(Definition* definition) {
flow_graph_builder_->Push(definition);
}
Value* StreamingFlowGraphBuilder::Pop() {
return flow_graph_builder_->Pop();
}
Tag StreamingFlowGraphBuilder::PeekArgumentsFirstPositionalTag() {
// read parts of arguments, then go back to before doing so.
AlternativeReadingScope alt(&reader_);
ReadUInt(); // read number of arguments.
SkipListOfDartTypes(); // Read list of types.
// List of positional.
intptr_t list_length = ReadListLength(); // read list length.
if (list_length > 0) {
return ReadTag(); // read first tag.
}
UNREACHABLE();
return kNothing;
}
const TypeArguments& StreamingFlowGraphBuilder::PeekArgumentsInstantiatedType(
const Class& klass) {
// read parts of arguments, then go back to before doing so.
AlternativeReadingScope alt(&reader_);
ReadUInt(); // read argument count.
intptr_t list_length = ReadListLength(); // read types list length.
return T.BuildInstantiatedTypeArguments(klass, list_length); // read types.
}
intptr_t StreamingFlowGraphBuilder::PeekArgumentsCount() {
return PeekUInt();
}
LocalVariable* StreamingFlowGraphBuilder::LookupVariable(
intptr_t kernel_offset) {
return flow_graph_builder_->LookupVariable(kernel_offset);
}
LocalVariable* StreamingFlowGraphBuilder::MakeTemporary() {
return flow_graph_builder_->MakeTemporary();
}
Function& StreamingFlowGraphBuilder::FindMatchingFunction(
const Class& klass,
const String& name,
int type_args_len,
int argument_count,
const Array& argument_names) {
// Search the superclass chain for the selector.
ArgumentsDescriptor args_desc(
Array::Handle(Z, ArgumentsDescriptor::NewBoxed(
type_args_len, argument_count, argument_names)));
Function& function =
Function::Handle(Z, Resolver::ResolveDynamicForReceiverClassAllowPrivate(
klass, name, args_desc, /*allow_add=*/false));
return function;
}
bool StreamingFlowGraphBuilder::NeedsDebugStepCheck(const Function& function,
TokenPosition position) {
return flow_graph_builder_->NeedsDebugStepCheck(function, position);
}
bool StreamingFlowGraphBuilder::NeedsDebugStepCheck(Value* value,
TokenPosition position) {
return flow_graph_builder_->NeedsDebugStepCheck(value, position);
}
void StreamingFlowGraphBuilder::InlineBailout(const char* reason) {
flow_graph_builder_->InlineBailout(reason);
}
Fragment StreamingFlowGraphBuilder::DebugStepCheck(TokenPosition position) {
return flow_graph_builder_->DebugStepCheck(position);
}
Fragment StreamingFlowGraphBuilder::LoadLocal(LocalVariable* variable) {
return flow_graph_builder_->LoadLocal(variable);
}
Fragment StreamingFlowGraphBuilder::Return(TokenPosition position,
intptr_t yield_index) {
return flow_graph_builder_->Return(position, /*omit_result_type_check=*/false,
yield_index);
}
Fragment StreamingFlowGraphBuilder::EvaluateAssertion() {
return flow_graph_builder_->EvaluateAssertion();
}
Fragment StreamingFlowGraphBuilder::RethrowException(TokenPosition position,
int catch_try_index) {
return flow_graph_builder_->RethrowException(position, catch_try_index);
}
Fragment StreamingFlowGraphBuilder::ThrowNoSuchMethodError(
const Function& target) {
return flow_graph_builder_->ThrowNoSuchMethodError(target);
}
Fragment StreamingFlowGraphBuilder::Constant(const Object& value) {
return flow_graph_builder_->Constant(value);
}
Fragment StreamingFlowGraphBuilder::IntConstant(int64_t value) {
return flow_graph_builder_->IntConstant(value);
}
Fragment StreamingFlowGraphBuilder::LoadStaticField(const Field& field,
bool calls_initializer) {
return flow_graph_builder_->LoadStaticField(field, calls_initializer);
}
Fragment StreamingFlowGraphBuilder::RedefinitionWithType(
const AbstractType& type) {
return flow_graph_builder_->RedefinitionWithType(type);
}
Fragment StreamingFlowGraphBuilder::CheckNull(
TokenPosition position,
LocalVariable* receiver,
const String& function_name,
bool clear_the_temp /* = true */) {
return flow_graph_builder_->CheckNull(position, receiver, function_name,
clear_the_temp);
}
Fragment StreamingFlowGraphBuilder::StaticCall(TokenPosition position,
const Function& target,
intptr_t argument_count,
ICData::RebindRule rebind_rule) {
if (!target.AreValidArgumentCounts(0, argument_count, 0, nullptr)) {
return flow_graph_builder_->ThrowNoSuchMethodError(target);
}
return flow_graph_builder_->StaticCall(position, target, argument_count,
rebind_rule);
}
Fragment StreamingFlowGraphBuilder::StaticCall(
TokenPosition position,
const Function& target,
intptr_t argument_count,
const Array& argument_names,
ICData::RebindRule rebind_rule,
const InferredTypeMetadata* result_type,
intptr_t type_args_count,
bool use_unchecked_entry) {
if (!target.AreValidArguments(type_args_count, argument_count, argument_names,
nullptr)) {
return flow_graph_builder_->ThrowNoSuchMethodError(target);
}
return flow_graph_builder_->StaticCall(
position, target, argument_count, argument_names, rebind_rule,
result_type, type_args_count, use_unchecked_entry);
}
Fragment StreamingFlowGraphBuilder::InstanceCall(
TokenPosition position,
const String& name,
Token::Kind kind,
intptr_t argument_count,
intptr_t checked_argument_count) {
const intptr_t kTypeArgsLen = 0;
return flow_graph_builder_->InstanceCall(position, name, kind, kTypeArgsLen,
argument_count, Array::null_array(),
checked_argument_count);
}
Fragment StreamingFlowGraphBuilder::InstanceCall(
TokenPosition position,
const String& name,
Token::Kind kind,
intptr_t type_args_len,
intptr_t argument_count,
const Array& argument_names,
intptr_t checked_argument_count,
const Function& interface_target,
const Function& tearoff_interface_target,
const InferredTypeMetadata* result_type,
bool use_unchecked_entry,
const CallSiteAttributesMetadata* call_site_attrs,
bool receiver_is_not_smi) {
return flow_graph_builder_->InstanceCall(
position, name, kind, type_args_len, argument_count, argument_names,
checked_argument_count, interface_target, tearoff_interface_target,
result_type, use_unchecked_entry, call_site_attrs, receiver_is_not_smi);
}
Fragment StreamingFlowGraphBuilder::ThrowException(TokenPosition position) {
return flow_graph_builder_->ThrowException(position);
}
Fragment StreamingFlowGraphBuilder::BooleanNegate() {
return flow_graph_builder_->BooleanNegate();
}
Fragment StreamingFlowGraphBuilder::TranslateInstantiatedTypeArguments(
const TypeArguments& type_arguments) {
return flow_graph_builder_->TranslateInstantiatedTypeArguments(
type_arguments);
}
Fragment StreamingFlowGraphBuilder::StrictCompare(TokenPosition position,
Token::Kind kind,
bool number_check) {
return flow_graph_builder_->StrictCompare(position, kind, number_check);
}
Fragment StreamingFlowGraphBuilder::AllocateObject(TokenPosition position,
const Class& klass,
intptr_t argument_count) {
return flow_graph_builder_->AllocateObject(position, klass, argument_count);
}
Fragment StreamingFlowGraphBuilder::AllocateContext(
const ZoneGrowableArray<const Slot*>& context_slots) {
return flow_graph_builder_->AllocateContext(context_slots);
}
Fragment StreamingFlowGraphBuilder::LoadNativeField(const Slot& field) {
return flow_graph_builder_->LoadNativeField(field);
}
Fragment StreamingFlowGraphBuilder::StoreLocal(TokenPosition position,
LocalVariable* variable) {
return flow_graph_builder_->StoreLocal(position, variable);
}
Fragment StreamingFlowGraphBuilder::StoreStaticField(TokenPosition position,
const Field& field) {
return flow_graph_builder_->StoreStaticField(position, field);
}
Fragment StreamingFlowGraphBuilder::StringInterpolate(TokenPosition position) {
return flow_graph_builder_->StringInterpolate(position);
}
Fragment StreamingFlowGraphBuilder::StringInterpolateSingle(
TokenPosition position) {
return flow_graph_builder_->StringInterpolateSingle(position);
}
Fragment StreamingFlowGraphBuilder::ThrowTypeError() {
return flow_graph_builder_->ThrowTypeError();
}
Fragment StreamingFlowGraphBuilder::LoadInstantiatorTypeArguments() {
return flow_graph_builder_->LoadInstantiatorTypeArguments();
}
Fragment StreamingFlowGraphBuilder::LoadFunctionTypeArguments() {
return flow_graph_builder_->LoadFunctionTypeArguments();
}
Fragment StreamingFlowGraphBuilder::InstantiateType(const AbstractType& type) {
return flow_graph_builder_->InstantiateType(type);
}
Fragment StreamingFlowGraphBuilder::CreateArray() {
return flow_graph_builder_->CreateArray();
}
Fragment StreamingFlowGraphBuilder::StoreIndexed(intptr_t class_id) {
return flow_graph_builder_->StoreIndexed(class_id);
}
Fragment StreamingFlowGraphBuilder::CheckStackOverflow(TokenPosition position) {
return flow_graph_builder_->CheckStackOverflow(
position, flow_graph_builder_->GetStackDepth(),
flow_graph_builder_->loop_depth_);
}
Fragment StreamingFlowGraphBuilder::CloneContext(
const ZoneGrowableArray<const Slot*>& context_slots) {
return flow_graph_builder_->CloneContext(context_slots);
}
Fragment StreamingFlowGraphBuilder::TranslateFinallyFinalizers(
TryFinallyBlock* outer_finally,
intptr_t target_context_depth) {
// TranslateFinallyFinalizers can move the readers offset.
// Save the current position and restore it afterwards.
AlternativeReadingScope alt(&reader_);
// Save context.
TryFinallyBlock* const saved_finally_block = B->try_finally_block_;
TryCatchBlock* const saved_try_catch_block = B->CurrentTryCatchBlock();
const intptr_t saved_context_depth = B->context_depth_;
const ProgramState state(B->breakable_block_, B->switch_block_,
B->loop_depth_, B->for_in_depth_, B->try_depth_,
B->catch_depth_, B->block_expression_depth_);
Fragment instructions;
// While translating the body of a finalizer we need to set the try-finally
// block which is active when translating the body.
while (B->try_finally_block_ != outer_finally) {
ASSERT(B->try_finally_block_ != nullptr);
// Adjust program context to finalizer's position.
B->try_finally_block_->state().assignTo(B);
// Potentially restore the context to what is expected for the finally
// block.
instructions += B->AdjustContextTo(B->try_finally_block_->context_depth());
// The to-be-translated finalizer has to have the correct try-index (namely
// the one outside the try-finally block).
bool changed_try_index = false;
intptr_t target_try_index = B->try_finally_block_->try_index();
while (B->CurrentTryIndex() != target_try_index) {
B->SetCurrentTryCatchBlock(B->CurrentTryCatchBlock()->outer());
changed_try_index = true;
}
if (changed_try_index) {
JoinEntryInstr* entry = BuildJoinEntry();
instructions += Goto(entry);
instructions = Fragment(instructions.entry, entry);
}
intptr_t finalizer_kernel_offset =
B->try_finally_block_->finalizer_kernel_offset();
B->try_finally_block_ = B->try_finally_block_->outer();
instructions += BuildStatementAt(finalizer_kernel_offset);
// We only need to make sure that if the finalizer ended normally, we
// continue towards the next outer try-finally.
if (!instructions.is_open()) break;
}
if (instructions.is_open() && target_context_depth != -1) {
// A target context depth of -1 indicates that the code after this
// will not care about the context chain so we can leave it any way we
// want after the last finalizer. That is used when returning.
instructions += B->AdjustContextTo(target_context_depth);
}
// Restore.
B->try_finally_block_ = saved_finally_block;
B->SetCurrentTryCatchBlock(saved_try_catch_block);
B->context_depth_ = saved_context_depth;
state.assignTo(B);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BranchIfTrue(
TargetEntryInstr** then_entry,
TargetEntryInstr** otherwise_entry,
bool negate) {
return flow_graph_builder_->BranchIfTrue(then_entry, otherwise_entry, negate);
}
Fragment StreamingFlowGraphBuilder::BranchIfEqual(
TargetEntryInstr** then_entry,
TargetEntryInstr** otherwise_entry,
bool negate) {
return flow_graph_builder_->BranchIfEqual(then_entry, otherwise_entry,
negate);
}
Fragment StreamingFlowGraphBuilder::BranchIfNull(
TargetEntryInstr** then_entry,
TargetEntryInstr** otherwise_entry,
bool negate) {
return flow_graph_builder_->BranchIfNull(then_entry, otherwise_entry, negate);
}
Fragment StreamingFlowGraphBuilder::CatchBlockEntry(const Array& handler_types,
intptr_t handler_index,
bool needs_stacktrace,
bool is_synthesized) {
return flow_graph_builder_->CatchBlockEntry(handler_types, handler_index,
needs_stacktrace, is_synthesized);
}
Fragment StreamingFlowGraphBuilder::TryCatch(int try_handler_index) {
return flow_graph_builder_->TryCatch(try_handler_index);
}
Fragment StreamingFlowGraphBuilder::Drop() {
return flow_graph_builder_->Drop();
}
Fragment StreamingFlowGraphBuilder::DropTempsPreserveTop(
intptr_t num_temps_to_drop) {
return flow_graph_builder_->DropTempsPreserveTop(num_temps_to_drop);
}
Fragment StreamingFlowGraphBuilder::MakeTemp() {
return flow_graph_builder_->MakeTemp();
}
Fragment StreamingFlowGraphBuilder::NullConstant() {
return flow_graph_builder_->NullConstant();
}
JoinEntryInstr* StreamingFlowGraphBuilder::BuildJoinEntry() {
return flow_graph_builder_->BuildJoinEntry();
}
JoinEntryInstr* StreamingFlowGraphBuilder::BuildJoinEntry(intptr_t try_index) {
return flow_graph_builder_->BuildJoinEntry(try_index);
}
Fragment StreamingFlowGraphBuilder::Goto(JoinEntryInstr* destination) {
return flow_graph_builder_->Goto(destination);
}
Fragment StreamingFlowGraphBuilder::BuildImplicitClosureCreation(
const Function& target) {
return flow_graph_builder_->BuildImplicitClosureCreation(target);
}
Fragment StreamingFlowGraphBuilder::CheckBoolean(TokenPosition position) {
return flow_graph_builder_->CheckBoolean(position);
}
Fragment StreamingFlowGraphBuilder::CheckArgumentType(
LocalVariable* variable,
const AbstractType& type) {
return flow_graph_builder_->CheckAssignable(
type, variable->name(), AssertAssignableInstr::kParameterCheck);
}
Fragment StreamingFlowGraphBuilder::EnterScope(
intptr_t kernel_offset,
const LocalScope** scope /* = nullptr */) {
return flow_graph_builder_->EnterScope(kernel_offset, scope);
}
Fragment StreamingFlowGraphBuilder::ExitScope(intptr_t kernel_offset) {
return flow_graph_builder_->ExitScope(kernel_offset);
}
TestFragment StreamingFlowGraphBuilder::TranslateConditionForControl() {
// Skip all negations and go directly to the expression.
bool negate = false;
while (PeekTag() == kNot) {
SkipBytes(1);
negate = !negate;
}
TestFragment result;
if (PeekTag() == kLogicalExpression) {
// Handle '&&' and '||' operators specially to implement short circuit
// evaluation.
SkipBytes(1); // tag.
TestFragment left = TranslateConditionForControl();
LogicalOperator op = static_cast<LogicalOperator>(ReadByte());
TestFragment right = TranslateConditionForControl();
result.entry = left.entry;
if (op == kAnd) {
left.CreateTrueSuccessor(flow_graph_builder_)->LinkTo(right.entry);
result.true_successor_addresses = right.true_successor_addresses;
result.false_successor_addresses = left.false_successor_addresses;
result.false_successor_addresses->AddArray(
*right.false_successor_addresses);
} else {
ASSERT(op == kOr);
left.CreateFalseSuccessor(flow_graph_builder_)->LinkTo(right.entry);
result.true_successor_addresses = left.true_successor_addresses;
result.true_successor_addresses->AddArray(
*right.true_successor_addresses);
result.false_successor_addresses = right.false_successor_addresses;
}
} else {
// Other expressions.
TokenPosition position = TokenPosition::kNoSource;
Fragment instructions = BuildExpression(&position); // read expression.
// Check if the top of the stack is already a StrictCompare that
// can be merged with a branch. Otherwise compare TOS with
// true value and branch on that.
BranchInstr* branch;
if (stack()->definition()->IsStrictCompare() &&
stack()->definition() == instructions.current) {
StrictCompareInstr* compare = Pop()->definition()->AsStrictCompare();
if (negate) {
compare->NegateComparison();
negate = false;
}
branch =
new (Z) BranchInstr(compare, flow_graph_builder_->GetNextDeoptId());
branch->comparison()->ClearTempIndex();
ASSERT(instructions.current->previous() != nullptr);
instructions.current = instructions.current->previous();
} else {
instructions += CheckBoolean(position);
instructions += Constant(Bool::True());
Value* right_value = Pop();
Value* left_value = Pop();
StrictCompareInstr* compare = new (Z) StrictCompareInstr(
TokenPosition::kNoSource,
negate ? Token::kNE_STRICT : Token::kEQ_STRICT, left_value,
right_value, false, flow_graph_builder_->GetNextDeoptId());
branch =
new (Z) BranchInstr(compare, flow_graph_builder_->GetNextDeoptId());
negate = false;
}
instructions <<= branch;
result = TestFragment(instructions.entry, branch);
}
return result.Negate(negate);
}
const TypeArguments& StreamingFlowGraphBuilder::BuildTypeArguments() {
ReadUInt(); // read arguments count.
intptr_t type_count = ReadListLength(); // read type count.
return T.BuildTypeArguments(type_count); // read types.
}
Fragment StreamingFlowGraphBuilder::BuildArguments(Array* argument_names,
intptr_t* argument_count,
intptr_t* positional_count) {
intptr_t dummy;
if (argument_count == NULL) argument_count = &dummy;
*argument_count = ReadUInt(); // read arguments count.
// List of types.
SkipListOfDartTypes(); // read list of types.
{
AlternativeReadingScope _(&reader_);
if (positional_count == NULL) positional_count = &dummy;
*positional_count = ReadListLength(); // read length of expression list
}
return BuildArgumentsFromActualArguments(argument_names);
}
Fragment StreamingFlowGraphBuilder::BuildArgumentsFromActualArguments(
Array* argument_names) {
Fragment instructions;
// List of positional.
intptr_t list_length = ReadListLength(); // read list length.
for (intptr_t i = 0; i < list_length; ++i) {
instructions += BuildExpression(); // read ith expression.
}
// List of named.
list_length = ReadListLength(); // read list length.
if (argument_names != NULL && list_length > 0) {
*argument_names = Array::New(list_length, Heap::kOld);
}
for (intptr_t i = 0; i < list_length; ++i) {
String& name =
H.DartSymbolObfuscate(ReadStringReference()); // read ith name index.
instructions += BuildExpression(); // read ith expression.
if (argument_names != NULL) {
argument_names->SetAt(i, name);
}
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildInvalidExpression(
TokenPosition* position) {
// The frontend will take care of emitting normal errors (like
// [NoSuchMethodError]s) and only emit [InvalidExpression]s in very special
// situations (e.g. an invalid annotation).
TokenPosition pos = ReadPosition();
if (position != NULL) *position = pos;
const String& message = H.DartString(ReadStringReference());
// Invalid expression message has pointer to the source code, no need to
// report it twice.
H.ReportError(script(), TokenPosition::kNoSource, "%s", message.ToCString());
return Fragment();
}
Fragment StreamingFlowGraphBuilder::BuildVariableGet(TokenPosition* position) {
const TokenPosition pos = ReadPosition();
if (position != nullptr) *position = pos;
intptr_t variable_kernel_position = ReadUInt(); // read kernel position.
ReadUInt(); // read relative variable index.
SkipOptionalDartType(); // read promoted type.
return BuildVariableGetImpl(variable_kernel_position, pos);
}
Fragment StreamingFlowGraphBuilder::BuildVariableGet(uint8_t payload,
TokenPosition* position) {
const TokenPosition pos = ReadPosition();
if (position != nullptr) *position = pos;
intptr_t variable_kernel_position = ReadUInt(); // read kernel position.
return BuildVariableGetImpl(variable_kernel_position, pos);
}
Fragment StreamingFlowGraphBuilder::BuildVariableGetImpl(
intptr_t variable_kernel_position,
TokenPosition position) {
LocalVariable* variable = LookupVariable(variable_kernel_position);
if (!variable->is_late()) {
return LoadLocal(variable);
}
// Late variable, so check whether it has been initialized already.
Fragment instructions = LoadLocal(variable);
TargetEntryInstr *is_uninitialized, *is_initialized;
instructions += Constant(Object::sentinel());
instructions += flow_graph_builder_->BranchIfStrictEqual(&is_uninitialized,
&is_initialized);
JoinEntryInstr* join = BuildJoinEntry();
{
AlternativeReadingScope alt(&reader_, variable->late_init_offset());
const bool has_initializer = (ReadTag() != kNothing);
if (has_initializer) {
// If the variable isn't initialized, call the initializer and set it.
Fragment initialize(is_uninitialized);
initialize += BuildExpression();
initialize += StoreLocal(position, variable);
initialize += Drop();
initialize += Goto(join);
} else {
// The variable has no initializer, so throw a LateInitializationError.
Fragment initialize(is_uninitialized);
initialize += flow_graph_builder_->ThrowLateInitializationError(
position, variable->name());
initialize += Goto(join);
}
}
{
// Already initialized, so there's nothing to do.
Fragment already_initialized(is_initialized);
already_initialized += Goto(join);
}
Fragment done = Fragment(instructions.entry, join);
done += LoadLocal(variable);
return done;
}
Fragment StreamingFlowGraphBuilder::BuildVariableSet(TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
intptr_t variable_kernel_position = ReadUInt(); // read kernel position.
ReadUInt(); // read relative variable index.
return BuildVariableSetImpl(position, variable_kernel_position);
}
Fragment StreamingFlowGraphBuilder::BuildVariableSet(uint8_t payload,
TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
intptr_t variable_kernel_position = ReadUInt(); // read kernel position.
return BuildVariableSetImpl(position, variable_kernel_position);
}
Fragment StreamingFlowGraphBuilder::BuildVariableSetImpl(
TokenPosition position,
intptr_t variable_kernel_position) {
Fragment instructions = BuildExpression(); // read expression.
if (NeedsDebugStepCheck(stack(), position)) {
instructions = DebugStepCheck(position) + instructions;
}
LocalVariable* variable = LookupVariable(variable_kernel_position);
if (variable->is_late() && variable->is_final()) {
// Late final variable, so check whether it has been initialized.
LocalVariable* expr_temp = MakeTemporary();
instructions += LoadLocal(variable);
TargetEntryInstr *is_uninitialized, *is_initialized;
instructions += Constant(Object::sentinel());
instructions += flow_graph_builder_->BranchIfStrictEqual(&is_uninitialized,
&is_initialized);
JoinEntryInstr* join = BuildJoinEntry();
{
// The variable is uninitialized, so store the expression value.
Fragment initialize(is_uninitialized);
initialize += LoadLocal(expr_temp);
initialize += StoreLocal(position, variable);
initialize += Drop();
initialize += Goto(join);
}
{
// Already initialized, so throw a LateInitializationError.
Fragment already_initialized(is_initialized);
already_initialized += flow_graph_builder_->ThrowLateInitializationError(
position, variable->name());
already_initialized += Goto(join);
}
instructions = Fragment(instructions.entry, join);
} else {
instructions += StoreLocal(position, variable);
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildPropertyGet(TokenPosition* p) {
const intptr_t offset = ReaderOffset() - 1; // Include the tag.
const TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const DirectCallMetadata direct_call =
direct_call_metadata_helper_.GetDirectTargetForPropertyGet(offset);
const InferredTypeMetadata result_type =
inferred_type_metadata_helper_.GetInferredType(offset);
Fragment instructions = BuildExpression(); // read receiver.
LocalVariable* receiver = NULL;
if (direct_call.check_receiver_for_null_) {
// Duplicate receiver for CheckNull before it is consumed by PushArgument.
receiver = MakeTemporary();
instructions += LoadLocal(receiver);
}
const String& getter_name = ReadNameAsGetterName(); // read name.
const Function* interface_target = &Function::null_function();
const Function* tearoff_interface_target = &Function::null_function();
const NameIndex itarget_name =
ReadInterfaceMemberNameReference(); // read interface_target_reference.
if (!H.IsRoot(itarget_name) &&
(H.IsGetter(itarget_name) || H.IsField(itarget_name))) {
interface_target = &Function::ZoneHandle(
Z,
H.LookupMethodByMember(itarget_name, H.DartGetterName(itarget_name)));
ASSERT(getter_name.raw() == interface_target->name());
} else if (!H.IsRoot(itarget_name) && H.IsMethod(itarget_name)) {
tearoff_interface_target = &Function::ZoneHandle(
Z,
H.LookupMethodByMember(itarget_name, H.DartMethodName(itarget_name)));
}
if (direct_call.check_receiver_for_null_) {
instructions += CheckNull(position, receiver, getter_name);
}
const String* mangled_name = &getter_name;
const Function* direct_call_target = &direct_call.target_;
if (H.IsRoot(itarget_name)) {
mangled_name = &String::ZoneHandle(
Z, Function::CreateDynamicInvocationForwarderName(getter_name));
if (!direct_call_target->IsNull()) {
direct_call_target = &Function::ZoneHandle(
direct_call.target_.GetDynamicInvocationForwarder(*mangled_name));
}
}
if (!direct_call_target->IsNull()) {
ASSERT(CompilerState::Current().is_aot());
instructions +=
StaticCall(position, *direct_call_target, 1, Array::null_array(),
ICData::kNoRebind, &result_type);
} else {
const intptr_t kTypeArgsLen = 0;
const intptr_t kNumArgsChecked = 1;
instructions +=
InstanceCall(position, *mangled_name, Token::kGET, kTypeArgsLen, 1,
Array::null_array(), kNumArgsChecked, *interface_target,
*tearoff_interface_target, &result_type);
}
if (direct_call.check_receiver_for_null_) {
instructions += DropTempsPreserveTop(1); // Drop receiver, preserve result.
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildPropertySet(TokenPosition* p) {
const intptr_t offset = ReaderOffset() - 1; // Include the tag.
const DirectCallMetadata direct_call =
direct_call_metadata_helper_.GetDirectTargetForPropertySet(offset);
const CallSiteAttributesMetadata call_site_attributes =
call_site_attributes_metadata_helper_.GetCallSiteAttributes(offset);
const InferredTypeMetadata inferred_type =
inferred_type_metadata_helper_.GetInferredType(offset);
// True if callee can skip argument type checks.
bool is_unchecked_call = inferred_type.IsSkipCheck();
if (call_site_attributes.receiver_type != nullptr &&
call_site_attributes.receiver_type->HasTypeClass() &&
!Class::Handle(call_site_attributes.receiver_type->type_class())
.IsGeneric()) {
is_unchecked_call = true;
}
Fragment instructions(MakeTemp());
LocalVariable* variable = MakeTemporary();
const TokenPosition position = ReadPosition(); // read position.
if (p != nullptr) *p = position;
if (PeekTag() == kThisExpression) {
is_unchecked_call = true;
}
instructions += BuildExpression(); // read receiver.
LocalVariable* receiver = nullptr;
if (direct_call.check_receiver_for_null_) {
// Duplicate receiver for CheckNull before it is consumed by PushArgument.
receiver = MakeTemporary();
instructions += LoadLocal(receiver);
}
const String& setter_name = ReadNameAsSetterName(); // read name.
instructions += BuildExpression(); // read value.
instructions += StoreLocal(TokenPosition::kNoSource, variable);
const Function* interface_target = &Function::null_function();
const NameIndex itarget_name =
ReadInterfaceMemberNameReference(); // read interface_target_reference.
if (!H.IsRoot(itarget_name)) {
interface_target = &Function::ZoneHandle(
Z,
H.LookupMethodByMember(itarget_name, H.DartSetterName(itarget_name)));
ASSERT(setter_name.raw() == interface_target->name());
}
if (direct_call.check_receiver_for_null_) {
instructions += CheckNull(position, receiver, setter_name);
}
const String* mangled_name = &setter_name;
const Function* direct_call_target = &direct_call.target_;
if (H.IsRoot(itarget_name)) {
mangled_name = &String::ZoneHandle(
Z, Function::CreateDynamicInvocationForwarderName(setter_name));
if (!direct_call_target->IsNull()) {
direct_call_target = &Function::ZoneHandle(
direct_call.target_.GetDynamicInvocationForwarder(*mangled_name));
}
}
if (!direct_call_target->IsNull()) {
ASSERT(CompilerState::Current().is_aot());
instructions +=
StaticCall(position, *direct_call_target, 2, Array::null_array(),
ICData::kNoRebind, /*result_type=*/nullptr,
/*type_args_count=*/0,
/*use_unchecked_entry=*/is_unchecked_call);
} else {
const intptr_t kTypeArgsLen = 0;
const intptr_t kNumArgsChecked = 1;
instructions += InstanceCall(
position, *mangled_name, Token::kSET, kTypeArgsLen, 2,
Array::null_array(), kNumArgsChecked, *interface_target,
Function::null_function(),
/*result_type=*/nullptr,
/*use_unchecked_entry=*/is_unchecked_call, &call_site_attributes);
}
instructions += Drop(); // Drop result of the setter invocation.
if (direct_call.check_receiver_for_null_) {
instructions += Drop(); // Drop receiver.
}
return instructions;
}
static Function& GetNoSuchMethodOrDie(Thread* thread,
Zone* zone,
const Class& klass) {
Function& nsm_function = Function::Handle(zone);
Class& iterate_klass = Class::Handle(zone, klass.raw());
while (!iterate_klass.IsNull()) {
if (iterate_klass.EnsureIsFinalized(thread) == Error::null()) {
nsm_function =
iterate_klass.LookupDynamicFunction(Symbols::NoSuchMethod());
}
if (!nsm_function.IsNull() && nsm_function.NumParameters() == 2 &&
nsm_function.NumTypeParameters() == 0) {
break;
}
iterate_klass = iterate_klass.SuperClass();
}
// We are guaranteed to find noSuchMethod of class Object.
ASSERT(!nsm_function.IsNull());
return nsm_function;
}
// Note, that this will always mark `super` flag to true.
Fragment StreamingFlowGraphBuilder::BuildAllocateInvocationMirrorCall(
TokenPosition position,
const String& name,
intptr_t num_type_arguments,
intptr_t num_arguments,
const Array& argument_names,
LocalVariable* actuals_array,
Fragment build_rest_of_actuals) {
Fragment instructions;
// Populate array containing the actual arguments. Just add [this] here.
instructions += LoadLocal(actuals_array); // array
instructions += IntConstant(num_type_arguments == 0 ? 0 : 1); // index
instructions += LoadLocal(parsed_function()->receiver_var()); // receiver
instructions += StoreIndexed(kArrayCid);
instructions += build_rest_of_actuals;
// First argument is receiver.
instructions += LoadLocal(parsed_function()->receiver_var());
// Push the arguments for allocating the invocation mirror:
// - the name.
instructions += Constant(String::ZoneHandle(Z, name.raw()));
// - the arguments descriptor.
const Array& args_descriptor =
Array::Handle(Z, ArgumentsDescriptor::NewBoxed(
num_type_arguments, num_arguments, argument_names));
instructions += Constant(Array::ZoneHandle(Z, args_descriptor.raw()));
// - an array containing the actual arguments.
instructions += LoadLocal(actuals_array);
// - [true] indicating this is a `super` NoSuchMethod.
instructions += Constant(Bool::True());
const Class& mirror_class =
Class::Handle(Z, Library::LookupCoreClass(Symbols::InvocationMirror()));
ASSERT(!mirror_class.IsNull());
const auto& error = mirror_class.EnsureIsFinalized(thread());
ASSERT(error == Error::null());
const Function& allocation_function = Function::ZoneHandle(
Z, mirror_class.LookupStaticFunction(
Library::PrivateCoreLibName(Symbols::AllocateInvocationMirror())));
ASSERT(!allocation_function.IsNull());
instructions += StaticCall(position, allocation_function,
/* argument_count = */ 4, ICData::kStatic);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildSuperPropertyGet(TokenPosition* p) {
const intptr_t offset = ReaderOffset() - 1; // Include the tag.
const TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const InferredTypeMetadata result_type =
inferred_type_metadata_helper_.GetInferredType(offset);
Class& klass = GetSuperOrDie();
StringIndex name_index = ReadStringReference(); // read name index.
NameIndex library_reference =
((H.StringSize(name_index) >= 1) && H.CharacterAt(name_index, 0) == '_')
? ReadCanonicalNameReference() // read library index.
: NameIndex();
const String& getter_name = H.DartGetterName(library_reference, name_index);
const String& method_name = H.DartMethodName(library_reference, name_index);
SkipInterfaceMemberNameReference(); // skip target_reference.
// Search the superclass chain for the selector looking for either getter or
// method.
Function& function = Function::Handle(Z);
while (!klass.IsNull()) {
if (klass.EnsureIsFinalized(thread()) == Error::null()) {
function = klass.LookupDynamicFunction(method_name);
if (!function.IsNull()) {
Function& target =
Function::ZoneHandle(Z, function.ImplicitClosureFunction());
ASSERT(!target.IsNull());
// Generate inline code for allocation closure object with context
// which captures `this`.
return BuildImplicitClosureCreation(target);
}
function = klass.LookupDynamicFunction(getter_name);
if (!function.IsNull()) break;
}
klass = klass.SuperClass();
}
Fragment instructions;
if (klass.IsNull()) {
instructions +=
Constant(TypeArguments::ZoneHandle(Z, TypeArguments::null()));
instructions += IntConstant(1); // array size
instructions += CreateArray();
LocalVariable* actuals_array = MakeTemporary();
Class& parent_klass = GetSuperOrDie();
instructions += BuildAllocateInvocationMirrorCall(
position, getter_name,
/* num_type_arguments = */ 0,
/* num_arguments = */ 1,
/* argument_names = */ Object::empty_array(), actuals_array,
/* build_rest_of_actuals = */ Fragment());
Function& nsm_function = GetNoSuchMethodOrDie(thread(), Z, parent_klass);
instructions +=
StaticCall(position, Function::ZoneHandle(Z, nsm_function.raw()),
/* argument_count = */ 2, ICData::kNSMDispatch);
instructions += DropTempsPreserveTop(1); // Drop array
} else {
ASSERT(!klass.IsNull());
ASSERT(!function.IsNull());
instructions += LoadLocal(parsed_function()->receiver_var());
instructions +=
StaticCall(position, Function::ZoneHandle(Z, function.raw()),
/* argument_count = */ 1, Array::null_array(),
ICData::kSuper, &result_type);
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildSuperPropertySet(TokenPosition* p) {
const TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
Class& klass = GetSuperOrDie();
const String& setter_name = ReadNameAsSetterName(); // read name.
Function& function = Function::Handle(Z);
if (klass.EnsureIsFinalized(thread()) == Error::null()) {
function = H.LookupDynamicFunction(klass, setter_name);
}
Fragment instructions(MakeTemp());
LocalVariable* value = MakeTemporary(); // this holds RHS value
if (function.IsNull()) {
instructions +=
Constant(TypeArguments::ZoneHandle(Z, TypeArguments::null()));
instructions += IntConstant(2); // array size
instructions += CreateArray();
LocalVariable* actuals_array = MakeTemporary();
Fragment build_rest_of_actuals;
build_rest_of_actuals += LoadLocal(actuals_array); // array
build_rest_of_actuals += IntConstant(1); // index
build_rest_of_actuals += BuildExpression(); // value.
build_rest_of_actuals += StoreLocal(position, value);
build_rest_of_actuals += StoreIndexed(kArrayCid);
instructions += BuildAllocateInvocationMirrorCall(
position, setter_name, /* num_type_arguments = */ 0,
/* num_arguments = */ 2,
/* argument_names = */ Object::empty_array(), actuals_array,
build_rest_of_actuals);
SkipInterfaceMemberNameReference(); // skip target_reference.
Function& nsm_function = GetNoSuchMethodOrDie(thread(), Z, klass);
instructions +=
StaticCall(position, Function::ZoneHandle(Z, nsm_function.raw()),
/* argument_count = */ 2, ICData::kNSMDispatch);
instructions += Drop(); // Drop result of NoSuchMethod invocation
instructions += Drop(); // Drop array
} else {
// receiver
instructions += LoadLocal(parsed_function()->receiver_var());
instructions += BuildExpression(); // read value.
instructions += StoreLocal(position, value);
SkipInterfaceMemberNameReference(); // skip target_reference.
instructions += StaticCall(
position, Function::ZoneHandle(Z, function.raw()),
/* argument_count = */ 2, Array::null_array(), ICData::kSuper,
/*result_type=*/nullptr, /*type_args_len=*/0,
/*use_unchecked_entry=*/true);
instructions += Drop(); // Drop result of the setter invocation.
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildStaticGet(TokenPosition* p) {
ASSERT(Error::Handle(Z, H.thread()->sticky_error()).IsNull());
const intptr_t offset = ReaderOffset() - 1; // Include the tag.
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const InferredTypeMetadata result_type =
inferred_type_metadata_helper_.GetInferredType(offset);
NameIndex target = ReadCanonicalNameReference(); // read target_reference.
if (H.IsField(target)) {
const Field& field =
Field::ZoneHandle(Z, H.LookupFieldByKernelField(target));
if (field.is_const()) {
// Since the CFE inlines all references to const variables and fields,
// it never emits a StaticGet of a const field.
// This situation only arises because of the static const fields in
// the ClassID class, which are generated internally in the VM
// during loading. See also Class::InjectCIDFields.
ASSERT(Class::Handle(field.Owner()).library() ==
Library::InternalLibrary() &&
Class::Handle(field.Owner()).Name() == Symbols::ClassID().raw());
return Constant(Instance::ZoneHandle(Z, field.StaticValue()));
} else {
const Class& owner = Class::Handle(Z, field.Owner());
const String& getter_name = H.DartGetterName(target);
const Function& getter =
Function::ZoneHandle(Z, owner.LookupStaticFunction(getter_name));
if (!getter.IsNull() && field.NeedsGetter()) {
return StaticCall(position, getter, 0, Array::null_array(),
ICData::kStatic, &result_type);
} else {
if (result_type.IsConstant()) {
return Constant(result_type.constant_value);
}
return LoadStaticField(field, /*calls_initializer=*/false);
}
}
} else {
const Function& function =
Function::ZoneHandle(Z, H.LookupStaticMethodByKernelProcedure(target));
if (H.IsGetter(target)) {
return StaticCall(position, function, 0, Array::null_array(),
ICData::kStatic, &result_type);
} else if (H.IsMethod(target)) {
const auto& closure_function =
Function::Handle(Z, function.ImplicitClosureFunction());
const auto& static_closure =
Instance::Handle(Z, closure_function.ImplicitStaticClosure());
return Constant(Instance::ZoneHandle(Z, H.Canonicalize(static_closure)));
} else {
UNIMPLEMENTED();
}
}
return Fragment();
}
Fragment StreamingFlowGraphBuilder::BuildStaticSet(TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
NameIndex target = ReadCanonicalNameReference(); // read target_reference.
if (H.IsField(target)) {
const Field& field =
Field::ZoneHandle(Z, H.LookupFieldByKernelField(target));
const Class& owner = Class::Handle(Z, field.Owner());
const String& setter_name = H.DartSetterName(target);
const Function& setter =
Function::ZoneHandle(Z, owner.LookupStaticFunction(setter_name));
Fragment instructions = BuildExpression(); // read expression.
if (NeedsDebugStepCheck(stack(), position)) {
instructions = DebugStepCheck(position) + instructions;
}
LocalVariable* variable = MakeTemporary();
instructions += LoadLocal(variable);
if (!setter.IsNull() && field.NeedsSetter()) {
instructions += StaticCall(position, setter, 1, ICData::kStatic);
instructions += Drop();
} else {
instructions += StoreStaticField(position, field);
}
return instructions;
} else {
ASSERT(H.IsProcedure(target));
// Evaluate the expression on the right hand side.
Fragment instructions = BuildExpression(); // read expression.
LocalVariable* variable = MakeTemporary();
// Prepare argument.
instructions += LoadLocal(variable);
// Invoke the setter function.
const Function& function =
Function::ZoneHandle(Z, H.LookupStaticMethodByKernelProcedure(target));
instructions += StaticCall(position, function, 1, ICData::kStatic);
// Drop the unused result & leave the stored value on the stack.
return instructions + Drop();
}
}
Fragment StreamingFlowGraphBuilder::BuildMethodInvocation(TokenPosition* p) {
const intptr_t offset = ReaderOffset() - 1; // Include the tag.
const TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const DirectCallMetadata direct_call =
direct_call_metadata_helper_.GetDirectTargetForMethodInvocation(offset);
const InferredTypeMetadata result_type =
inferred_type_metadata_helper_.GetInferredType(offset);
const CallSiteAttributesMetadata call_site_attributes =
call_site_attributes_metadata_helper_.GetCallSiteAttributes(offset);
const Tag receiver_tag = PeekTag(); // peek tag for receiver.
bool is_unchecked_closure_call = false;
bool is_unchecked_call = result_type.IsSkipCheck();
if (call_site_attributes.receiver_type != nullptr) {
if (call_site_attributes.receiver_type->IsFunctionType()) {
AlternativeReadingScope alt(&reader_);
SkipExpression(); // skip receiver
is_unchecked_closure_call =
ReadNameAsMethodName().Equals(Symbols::Call());
} else if (call_site_attributes.receiver_type->HasTypeClass() &&
!call_site_attributes.receiver_type->IsDynamicType() &&
!Class::Handle(call_site_attributes.receiver_type->type_class())
.IsGeneric()) {
is_unchecked_call = true;
}
}
Fragment instructions;
intptr_t type_args_len = 0;
LocalVariable* type_arguments_temp = NULL;
{
AlternativeReadingScope alt(&reader_);
SkipExpression(); // skip receiver
SkipName(); // skip method name
ReadUInt(); // read argument count.
intptr_t list_length = ReadListLength(); // read types list length.
if (list_length > 0) {
const TypeArguments& type_arguments =
T.BuildTypeArguments(list_length); // read types.
instructions += TranslateInstantiatedTypeArguments(type_arguments);
if (direct_call.check_receiver_for_null_ || is_unchecked_closure_call) {
// Don't yet push type arguments if we need to check receiver for null.
// In this case receiver will be duplicated so instead of pushing
// type arguments here we need to push it between receiver_temp
// and actual receiver. See the code below.
type_arguments_temp = MakeTemporary();
}
}
type_args_len = list_length;
}
// Take note of whether the invocation is against the receiver of the current
// function: in this case, we may skip some type checks in the callee.
if (PeekTag() == kThisExpression) {
is_unchecked_call = true;
}
instructions += BuildExpression(); // read receiver.
const String& name = ReadNameAsMethodName(); // read name.
const Token::Kind token_kind =
MethodTokenRecognizer::RecognizeTokenKind(name);
// Detect comparison with null.
if ((token_kind == Token::kEQ || token_kind == Token::kNE) &&
PeekArgumentsCount() == 1 &&
(receiver_tag == kNullLiteral ||
PeekArgumentsFirstPositionalTag() == kNullLiteral)) {
ASSERT(type_args_len == 0);
// "==" or "!=" with null on either side.
instructions +=
BuildArguments(NULL /* named */, NULL /* arg count */,
NULL /* positional arg count */); // read arguments.
SkipInterfaceMemberNameReference(); // read interface_target_reference.
Token::Kind strict_cmp_kind =
token_kind == Token::kEQ ? Token::kEQ_STRICT : Token::kNE_STRICT;
return instructions +
StrictCompare(position, strict_cmp_kind, /*number_check = */ true);
}
LocalVariable* receiver_temp = NULL;
if (direct_call.check_receiver_for_null_ || is_unchecked_closure_call) {
// Duplicate receiver for CheckNull before it is consumed by PushArgument.
receiver_temp = MakeTemporary();
if (type_arguments_temp != NULL) {
// If call has type arguments then push them before pushing the receiver.
// The stack will contain:
//
// [type_arguments_temp][receiver_temp][type_arguments][receiver] ...
//
instructions += LoadLocal(type_arguments_temp);
}
instructions += LoadLocal(receiver_temp);
}
intptr_t argument_count;
intptr_t positional_argument_count;
Array& argument_names = Array::ZoneHandle(Z);
instructions +=
BuildArguments(&argument_names, &argument_count,
&positional_argument_count); // read arguments.
++argument_count; // include receiver
intptr_t checked_argument_count = 1;
// If we have a special operation (e.g. +/-/==) we mark both arguments as
// to be checked.
if (token_kind != Token::kILLEGAL) {
ASSERT(argument_count <= 2);
checked_argument_count = argument_count;
}
const Function* interface_target = &Function::null_function();
const NameIndex itarget_name =
ReadInterfaceMemberNameReference(); // read interface_target_reference.
// TODO(dartbug.com/34497): Once front-end desugars calls via
// fields/getters, filtering of field and getter interface targets here
// can be turned into assertions.
if (!H.IsRoot(itarget_name) && !H.IsField(itarget_name) &&
!H.IsGetter(itarget_name)) {
interface_target = &Function::ZoneHandle(
Z, H.LookupMethodByMember(itarget_name,
H.DartProcedureName(itarget_name)));
ASSERT(name.raw() == interface_target->name());
ASSERT(!interface_target->IsGetterFunction());
}
// TODO(sjindel): Avoid the check for null on unchecked closure calls if TFA
// allows.
if (direct_call.check_receiver_for_null_ || is_unchecked_closure_call) {
// Receiver temp is needed to load the function to call from the closure.
instructions += CheckNull(position, receiver_temp, name,
/*clear_temp=*/!is_unchecked_closure_call);
}
const String* mangled_name = &name;
// Do not mangle ==:
// * operator == takes an Object so its either not checked or checked
// at the entry because the parameter is marked covariant, neither of
// those cases require a dynamic invocation forwarder.
const Function* direct_call_target = &direct_call.target_;
if (H.IsRoot(itarget_name) &&
(name.raw() != Symbols::EqualOperator().raw())) {
mangled_name = &String::ZoneHandle(
Z, Function::CreateDynamicInvocationForwarderName(name));
if (!direct_call_target->IsNull()) {
direct_call_target = &Function::ZoneHandle(
direct_call_target->GetDynamicInvocationForwarder(*mangled_name));
}
}
if (is_unchecked_closure_call) {
// Lookup the function in the closure.
instructions += LoadLocal(receiver_temp);
instructions += LoadNativeField(Slot::Closure_function());
if (parsed_function()->function().is_debuggable()) {
ASSERT(!parsed_function()->function().is_native());
instructions += DebugStepCheck(position);
}
instructions +=
B->ClosureCall(position, type_args_len, argument_count, argument_names,
/*use_unchecked_entry=*/true);
} else if (!direct_call_target->IsNull()) {
// Even if TFA infers a concrete receiver type, the static type of the
// call-site may still be dynamic and we need to call the dynamic invocation
// forwarder to ensure type-checks are performed.
ASSERT(CompilerState::Current().is_aot());
instructions +=
StaticCall(position, *direct_call_target, argument_count,
argument_names, ICData::kNoRebind, &result_type,
type_args_len, /*use_unchecked_entry=*/is_unchecked_call);
} else {
instructions +=
InstanceCall(position, *mangled_name, token_kind, type_args_len,
argument_count, argument_names, checked_argument_count,
*interface_target, Function::null_function(), &result_type,
/*use_unchecked_entry=*/is_unchecked_call,
&call_site_attributes, result_type.ReceiverNotInt());
}
// Drop temporaries preserving result on the top of the stack.
ASSERT((receiver_temp != NULL) || (type_arguments_temp == NULL));
if (receiver_temp != NULL) {
const intptr_t num_temps =
(receiver_temp != NULL ? 1 : 0) + (type_arguments_temp != NULL ? 1 : 0);
instructions += DropTempsPreserveTop(num_temps);
}
// Later optimization passes assume that result of a x.[]=(...) call is not
// used. We must guarantee this invariant because violation will lead to an
// illegal IL once we replace x.[]=(...) with a sequence that does not
// actually produce any value. See http://dartbug.com/29135 for more details.
if (name.raw() == Symbols::AssignIndexToken().raw()) {
instructions += Drop();
instructions += NullConstant();
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildSuperMethodInvocation(
TokenPosition* p) {
const intptr_t offset = ReaderOffset() - 1; // Include the tag.
const TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const InferredTypeMetadata result_type =
inferred_type_metadata_helper_.GetInferredType(offset);
intptr_t type_args_len = 0;
{
AlternativeReadingScope alt(&reader_);
SkipName(); // skip method name
ReadUInt(); // read argument count.
type_args_len = ReadListLength(); // read types list length.
}
Class& klass = GetSuperOrDie();
// Search the superclass chain for the selector.
const String& method_name = ReadNameAsMethodName(); // read name.
// Figure out selector signature.
intptr_t argument_count;
Array& argument_names = Array::Handle(Z);
{
AlternativeReadingScope alt(&reader_);
argument_count = ReadUInt();
SkipListOfDartTypes();
SkipListOfExpressions();
intptr_t named_list_length = ReadListLength();
argument_names = Array::New(named_list_length, H.allocation_space());
for (intptr_t i = 0; i < named_list_length; i++) {
const String& arg_name = H.DartSymbolObfuscate(ReadStringReference());
argument_names.SetAt(i, arg_name);
SkipExpression();
}
}
Function& function = FindMatchingFunction(
klass, method_name, type_args_len,
argument_count + 1 /* account for 'this' */, argument_names);
if (function.IsNull()) {
ReadUInt(); // argument count
intptr_t type_list_length = ReadListLength();
Fragment instructions;
instructions +=
Constant(TypeArguments::ZoneHandle(Z, TypeArguments::null()));
instructions += IntConstant(argument_count + 1 /* this */ +
(type_list_length == 0 ? 0 : 1)); // array size
instructions += CreateArray();
LocalVariable* actuals_array = MakeTemporary();
// Call allocationInvocationMirror to get instance of Invocation.
Fragment build_rest_of_actuals;
intptr_t actuals_array_index = 0;
if (type_list_length > 0) {
const TypeArguments& type_arguments =
T.BuildTypeArguments(type_list_length);
build_rest_of_actuals += LoadLocal(actuals_array);
build_rest_of_actuals += IntConstant(actuals_array_index);
build_rest_of_actuals +=
TranslateInstantiatedTypeArguments(type_arguments);
build_rest_of_actuals += StoreIndexed(kArrayCid);
++actuals_array_index;
}
++actuals_array_index; // account for 'this'.
// Read arguments
intptr_t list_length = ReadListLength();
intptr_t i = 0;
while (i < list_length) {
build_rest_of_actuals += LoadLocal(actuals_array); // array
build_rest_of_actuals += IntConstant(actuals_array_index + i); // index
build_rest_of_actuals += BuildExpression(); // value.
build_rest_of_actuals += StoreIndexed(kArrayCid);
++i;
}
// Read named arguments
intptr_t named_list_length = ReadListLength();
if (named_list_length > 0) {
ASSERT(argument_count == list_length + named_list_length);
while ((i - list_length) < named_list_length) {
SkipStringReference();
build_rest_of_actuals += LoadLocal(actuals_array); // array
build_rest_of_actuals += IntConstant(i + actuals_array_index); // index
build_rest_of_actuals += BuildExpression(); // value.
build_rest_of_actuals += StoreIndexed(kArrayCid);
++i;
}
}
instructions += BuildAllocateInvocationMirrorCall(
position, method_name, type_list_length,
/* num_arguments = */ argument_count + 1, argument_names, actuals_array,
build_rest_of_actuals);
SkipInterfaceMemberNameReference(); // skip target_reference.
Function& nsm_function = GetNoSuchMethodOrDie(thread(), Z, klass);
instructions += StaticCall(TokenPosition::kNoSource,
Function::ZoneHandle(Z, nsm_function.raw()),
/* argument_count = */ 2, ICData::kNSMDispatch);
instructions += DropTempsPreserveTop(1); // Drop actuals_array temp.
return instructions;
} else {
Fragment instructions;
{
AlternativeReadingScope alt(&reader_);
ReadUInt(); // read argument count.
intptr_t list_length = ReadListLength(); // read types list length.
if (list_length > 0) {
const TypeArguments& type_arguments =
T.BuildTypeArguments(list_length); // read types.
instructions += TranslateInstantiatedTypeArguments(type_arguments);
}
}
// receiver
instructions += LoadLocal(parsed_function()->receiver_var());
Array& argument_names = Array::ZoneHandle(Z);
intptr_t argument_count;
instructions += BuildArguments(
&argument_names, &argument_count,
/* positional_argument_count = */ NULL); // read arguments.
++argument_count; // include receiver
SkipInterfaceMemberNameReference(); // interfaceTargetReference
return instructions +
StaticCall(position, Function::ZoneHandle(Z, function.raw()),
argument_count, argument_names, ICData::kSuper,
&result_type, type_args_len,
/*use_unchecked_entry_point=*/true);
}
}
Fragment StreamingFlowGraphBuilder::BuildStaticInvocation(TokenPosition* p) {
const intptr_t offset = ReaderOffset() - 1; // Include the tag.
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const InferredTypeMetadata result_type =
inferred_type_metadata_helper_.GetInferredType(offset);
NameIndex procedure_reference =
ReadCanonicalNameReference(); // read procedure reference.
intptr_t argument_count = PeekArgumentsCount();
const Function& target = Function::ZoneHandle(
Z, H.LookupStaticMethodByKernelProcedure(procedure_reference));
const Class& klass = Class::ZoneHandle(Z, target.Owner());
if (target.IsGenerativeConstructor() || target.IsFactory()) {
// The VM requires a TypeArguments object as first parameter for
// every factory constructor.
++argument_count;
}
const auto recognized_kind = target.recognized_kind();
if (recognized_kind == MethodRecognizer::kFfiAsFunctionInternal) {
return BuildFfiAsFunctionInternal();
} else if (CompilerState::Current().is_aot() &&
recognized_kind == MethodRecognizer::kFfiNativeCallbackFunction) {
return BuildFfiNativeCallbackFunction();
}
Fragment instructions;
LocalVariable* instance_variable = NULL;
const bool special_case_nop_async_stack_trace_helper =
!FLAG_causal_async_stacks &&
recognized_kind == MethodRecognizer::kAsyncStackTraceHelper;
const bool special_case_unchecked_cast =
klass.IsTopLevel() && (klass.library() == Library::InternalLibrary()) &&
(target.name() == Symbols::UnsafeCast().raw());
const bool special_case_identical =
klass.IsTopLevel() && (klass.library() == Library::CoreLibrary()) &&
(target.name() == Symbols::Identical().raw());
const bool special_case = special_case_identical ||
special_case_unchecked_cast ||
special_case_nop_async_stack_trace_helper;
// If we cross the Kernel -> VM core library boundary, a [StaticInvocation]
// can appear, but the thing we're calling is not a static method, but a
// factory constructor.
// The `H.LookupStaticmethodByKernelProcedure` will potentially resolve to the
// forwarded constructor.
// In that case we'll make an instance and pass it as first argument.
//
// TODO(27590): Get rid of this after we're using core libraries compiled
// into Kernel.
intptr_t type_args_len = 0;
if (target.IsGenerativeConstructor()) {
if (klass.NumTypeArguments() > 0) {
const TypeArguments& type_arguments =
PeekArgumentsInstantiatedType(klass);
instructions += TranslateInstantiatedTypeArguments(type_arguments);
instructions += AllocateObject(position, klass, 1);
} else {
instructions += AllocateObject(position, klass, 0);
}
instance_variable = MakeTemporary();
instructions += LoadLocal(instance_variable);
} else if (target.IsFactory()) {
// The VM requires currently a TypeArguments object as first parameter for
// every factory constructor :-/ !
//
// TODO(27590): Get rid of this after we're using core libraries compiled
// into Kernel.
const TypeArguments& type_arguments = PeekArgumentsInstantiatedType(klass);
instructions += TranslateInstantiatedTypeArguments(type_arguments);
} else if (!special_case) {
AlternativeReadingScope alt(&reader_);
ReadUInt(); // read argument count.
intptr_t list_length = ReadListLength(); // read types list length.
if (list_length > 0) {
const TypeArguments& type_arguments =
T.BuildTypeArguments(list_length); // read types.
instructions += TranslateInstantiatedTypeArguments(type_arguments);
}
type_args_len = list_length;
}
Array& argument_names = Array::ZoneHandle(Z);
instructions +=
BuildArguments(&argument_names, NULL /* arg count */,
NULL /* positional arg count */); // read arguments.
ASSERT(!special_case ||
target.AreValidArguments(type_args_len, argument_count, argument_names,
NULL));
// Special case identical(x, y) call.
// Note: similar optimization is performed in bytecode flow graph builder -
// see BytecodeFlowGraphBuilder::BuildDirectCall().
// TODO(27590) consider moving this into the inliner and force inline it
// there.
if (special_case_identical) {
ASSERT(argument_count == 2);
instructions +=
StrictCompare(position, Token::kEQ_STRICT, /*number_check=*/true);
} else if (special_case_nop_async_stack_trace_helper) {
ASSERT(argument_count == 1);
instructions += Drop();
instructions += NullConstant();
} else if (special_case_unchecked_cast) {
// Simply do nothing: the result value is already pushed on the stack.
} else {
instructions += StaticCall(position, target, argument_count, argument_names,
ICData::kStatic, &result_type, type_args_len);
if (target.IsGenerativeConstructor()) {
// Drop the result of the constructor call and leave [instance_variable]
// on top-of-stack.
instructions += Drop();
}
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildConstructorInvocation(
TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
NameIndex kernel_name =
ReadCanonicalNameReference(); // read target_reference.
Class& klass = Class::ZoneHandle(
Z, H.LookupClassByKernelClass(H.EnclosingName(kernel_name)));
Fragment instructions;
if (klass.NumTypeArguments() > 0) {
if (!klass.IsGeneric()) {
Type& type = Type::ZoneHandle(Z, T.ReceiverType(klass).raw());
// TODO(27590): Can we move this code into [ReceiverType]?
type ^= ClassFinalizer::FinalizeType(*active_class()->klass, type,
ClassFinalizer::kFinalize);
TypeArguments& canonicalized_type_arguments =
TypeArguments::ZoneHandle(Z, type.arguments());
canonicalized_type_arguments =
canonicalized_type_arguments.Canonicalize(thread(), nullptr);
instructions += Constant(canonicalized_type_arguments);
} else {
const TypeArguments& type_arguments =
PeekArgumentsInstantiatedType(klass);
instructions += TranslateInstantiatedTypeArguments(type_arguments);
}
instructions += AllocateObject(position, klass, 1);
} else {
instructions += AllocateObject(position, klass, 0);
}
LocalVariable* variable = MakeTemporary();
instructions += LoadLocal(variable);
Array& argument_names = Array::ZoneHandle(Z);
intptr_t argument_count;
instructions += BuildArguments(
&argument_names, &argument_count,
/* positional_argument_count = */ NULL); // read arguments.
const Function& target = Function::ZoneHandle(
Z, H.LookupConstructorByKernelConstructor(klass, kernel_name));
++argument_count;
instructions += StaticCall(position, target, argument_count, argument_names,
ICData::kStatic, /* result_type = */ NULL);
return instructions + Drop();
}
Fragment StreamingFlowGraphBuilder::BuildNot(TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
TokenPosition operand_position = TokenPosition::kNoSource;
Fragment instructions =
BuildExpression(&operand_position); // read expression.
instructions += CheckBoolean(operand_position);
instructions += BooleanNegate();
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildNullCheck(TokenPosition* p) {
const TokenPosition position = ReadPosition(); // read position.
if (p != nullptr) *p = position;
TokenPosition operand_position = TokenPosition::kNoSource;
Fragment instructions = BuildExpression(&operand_position);
LocalVariable* expr_temp = MakeTemporary();
instructions += CheckNull(position, expr_temp, String::null_string(),
/* clear_the_temp = */ false);
return instructions;
}
// Translate the logical expression (lhs && rhs or lhs || rhs) in a context
// where a value is required.
//
// Translation accumulates short-circuit exits from logical
// subexpressions in the side_exits. These exits are expected to store
// true and false into :expr_temp.
//
// The result of evaluating the last
// expression in chain would be stored in :expr_temp directly to avoid
// generating graph like:
//
// if (v) :expr_temp = true; else :expr_temp = false;
//
// Outer negations are stripped and instead negation is passed down via
// negated parameter.
Fragment StreamingFlowGraphBuilder::TranslateLogicalExpressionForValue(
bool negated,
TestFragment* side_exits) {
TestFragment left = TranslateConditionForControl().Negate(negated);
LogicalOperator op = static_cast<LogicalOperator>(ReadByte());
if (negated) {
op = (op == kAnd) ? kOr : kAnd;
}
// Short circuit the control flow after the left hand side condition.
if (op == kAnd) {
side_exits->false_successor_addresses->AddArray(
*left.false_successor_addresses);
} else {
side_exits->true_successor_addresses->AddArray(
*left.true_successor_addresses);
}
// Skip negations of the right hand side.
while (PeekTag() == kNot) {
SkipBytes(1);
negated = !negated;
}
Fragment right_value(op == kAnd
? left.CreateTrueSuccessor(flow_graph_builder_)
: left.CreateFalseSuccessor(flow_graph_builder_));
if (PeekTag() == kLogicalExpression) {
SkipBytes(1);
// Handle nested logical expressions specially to avoid materializing
// intermediate boolean values.
right_value += TranslateLogicalExpressionForValue(negated, side_exits);
} else {
// Arbitrary expression on the right hand side. Translate it for value.
TokenPosition position = TokenPosition::kNoSource;
right_value += BuildExpression(&position); // read expression.
// Check if the top of the stack is known to be a non-nullable boolean.
// Note that in strong mode we know that any value that reaches here
// is at least a nullable boolean - so there is no need to compare
// with true like in Dart 1.
Definition* top = stack()->definition();
const bool is_bool = top->IsStrictCompare() || top->IsBooleanNegate();
if (!is_bool) {
right_value += CheckBoolean(position);
}
if (negated) {
right_value += BooleanNegate();
}
right_value += StoreLocal(TokenPosition::kNoSource,
parsed_function()->expression_temp_var());
right_value += Drop();
}
return Fragment(left.entry, right_value.current);
}
Fragment StreamingFlowGraphBuilder::BuildLogicalExpression(
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
TestFragment exits;
exits.true_successor_addresses = new TestFragment::SuccessorAddressArray(2);
exits.false_successor_addresses = new TestFragment::SuccessorAddressArray(2);
JoinEntryInstr* join = BuildJoinEntry();
Fragment instructions =
TranslateLogicalExpressionForValue(/*negated=*/false, &exits);
instructions += Goto(join);
// Generate :expr_temp = true if needed and connect it to true side-exits.
if (!exits.true_successor_addresses->is_empty()) {
Fragment constant_fragment(exits.CreateTrueSuccessor(flow_graph_builder_));
constant_fragment += Constant(Bool::Get(true));
constant_fragment += StoreLocal(TokenPosition::kNoSource,
parsed_function()->expression_temp_var());
constant_fragment += Drop();
constant_fragment += Goto(join);
}
// Generate :expr_temp = false if needed and connect it to false side-exits.
if (!exits.false_successor_addresses->is_empty()) {
Fragment constant_fragment(exits.CreateFalseSuccessor(flow_graph_builder_));
constant_fragment += Constant(Bool::Get(false));
constant_fragment += StoreLocal(TokenPosition::kNoSource,
parsed_function()->expression_temp_var());
constant_fragment += Drop();
constant_fragment += Goto(join);
}
return Fragment(instructions.entry, join) +
LoadLocal(parsed_function()->expression_temp_var());
}
Fragment StreamingFlowGraphBuilder::BuildConditionalExpression(
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
TestFragment condition = TranslateConditionForControl(); // read condition.
Value* top = stack();
Fragment then_fragment(condition.CreateTrueSuccessor(flow_graph_builder_));
then_fragment += BuildExpression(); // read then.
then_fragment += StoreLocal(TokenPosition::kNoSource,
parsed_function()->expression_temp_var());
then_fragment += Drop();
ASSERT(stack() == top);
Fragment otherwise_fragment(
condition.CreateFalseSuccessor(flow_graph_builder_));
otherwise_fragment += BuildExpression(); // read otherwise.
otherwise_fragment += StoreLocal(TokenPosition::kNoSource,
parsed_function()->expression_temp_var());
otherwise_fragment += Drop();
ASSERT(stack() == top);
JoinEntryInstr* join = BuildJoinEntry();
then_fragment += Goto(join);
otherwise_fragment += Goto(join);
SkipOptionalDartType(); // read unused static type.
return Fragment(condition.entry, join) +
LoadLocal(parsed_function()->expression_temp_var());
}
void StreamingFlowGraphBuilder::FlattenStringConcatenation(
PiecesCollector* collector) {
const auto length = ReadListLength();
for (intptr_t i = 0; i < length; ++i) {
const auto offset = reader_.offset();
switch (PeekTag()) {
case kStringLiteral: {
ReadTag();
const String& s = H.DartSymbolPlain(ReadStringReference());
// Skip empty strings.
if (!s.Equals("")) {
collector->Add({-1, &s});
}
break;
}
case kStringConcatenation: {
// Flatten by hoisting nested expressions up into the outer concat.
ReadTag();
ReadPosition();
FlattenStringConcatenation(collector);
break;
}
default: {
collector->Add({offset, nullptr});
SkipExpression();
}
}
}
}
Fragment StreamingFlowGraphBuilder::BuildStringConcatenation(TokenPosition* p) {
TokenPosition position = ReadPosition();
if (p != nullptr) {
*p = position;
}
// Collect and flatten all pieces of this and any nested StringConcats.
// The result is a single sequence of pieces, potentially flattened to
// a single String.
// The collector will hold concatenated strings and Reader offsets of
// non-string pieces.
PiecesCollector collector(Z, &H);
FlattenStringConcatenation(&collector);
collector.FlushRun();
if (collector.pieces.length() == 1) {
// No need to Interp. a single string, so return string as a Constant:
if (collector.pieces[0].literal != nullptr) {
return Constant(*collector.pieces[0].literal);
}
// A single non-string piece is handle by StringInterpolateSingle:
AlternativeReadingScope scope(&reader_, collector.pieces[0].offset);
Fragment instructions;
instructions += BuildExpression();
instructions += StringInterpolateSingle(position);
return instructions;
}
Fragment instructions;
instructions += Constant(TypeArguments::ZoneHandle(Z));
instructions += IntConstant(collector.pieces.length());
instructions += CreateArray();
LocalVariable* array = MakeTemporary();
for (intptr_t i = 0; i < collector.pieces.length(); ++i) {
// All pieces are now either a concat'd string or an expression we can
// read at a given offset.
if (collector.pieces[i].literal != nullptr) {
instructions += LoadLocal(array);
instructions += IntConstant(i);
instructions += Constant(*collector.pieces[i].literal);
} else {
AlternativeReadingScope scope(&reader_, collector.pieces[i].offset);
instructions += LoadLocal(array);
instructions += IntConstant(i);
instructions += BuildExpression();
}
instructions += StoreIndexed(kArrayCid);
}
instructions += StringInterpolate(position);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildIsExpression(TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
if (translation_helper_.info().kernel_binary_version() >= 38) {
// We do not use the library mode for the type test, which is indicated by
// the flag kIsExpressionFlagForNonNullableByDefault.
ReadFlags();
}
Fragment instructions = BuildExpression(); // read operand.
const AbstractType& type = T.BuildType(); // read type.
// The VM does not like an instanceOf call with a dynamic type. We need to
// special case this situation by detecting a top type.
if (type.IsTopTypeForInstanceOf()) {
// Evaluate the expression on the left but ignore its result.
instructions += Drop();
// Let condition be always true.
instructions += Constant(Bool::True());
} else {
// See if simple instanceOf is applicable.
if (dart::SimpleInstanceOfType(type)) {
instructions += Constant(type);
instructions += InstanceCall(
position, Library::PrivateCoreLibName(Symbols::_simpleInstanceOf()),
Token::kIS, 2, 2); // 2 checked arguments.
return instructions;
}
if (!type.IsInstantiated(kCurrentClass)) {
instructions += LoadInstantiatorTypeArguments();
} else {
instructions += NullConstant();
}
if (!type.IsInstantiated(kFunctions)) {
instructions += LoadFunctionTypeArguments();
} else {
instructions += NullConstant();
}
instructions += Constant(type);
instructions += InstanceCall(
position, Library::PrivateCoreLibName(Symbols::_instanceOf()),
Token::kIS, 4);
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildAsExpression(TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const uint8_t flags = ReadFlags(); // read flags.
const bool is_type_error = (flags & kAsExpressionFlagTypeError) != 0;
Fragment instructions = BuildExpression(); // read operand.
const AbstractType& type = T.BuildType(); // read type.
if (type.IsInstantiated() && type.IsTopTypeForSubtyping()) {
// We already evaluated the operand on the left and just leave it there as
// the result of the `obj as dynamic` expression.
} else {
// We do not care whether the 'as' cast as implicitly added by the frontend
// or explicitly written by the user, in both cases we use an assert
// assignable.
instructions += LoadLocal(MakeTemporary());
instructions += B->AssertAssignableLoadTypeArguments(
position, type,
is_type_error ? Symbols::Empty() : Symbols::InTypeCast(),
AssertAssignableInstr::kInsertedByFrontend);
instructions += Drop();
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildTypeLiteral(TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
const AbstractType& type = T.BuildType(); // read type.
Fragment instructions;
if (type.IsInstantiated()) {
instructions += Constant(type);
} else {
if (!type.IsInstantiated(kCurrentClass)) {
instructions += LoadInstantiatorTypeArguments();
} else {
instructions += NullConstant();
}
if (!type.IsInstantiated(kFunctions)) {
instructions += LoadFunctionTypeArguments();
} else {
instructions += NullConstant();
}
instructions += InstantiateType(type);
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildThisExpression(
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
return LoadLocal(parsed_function()->receiver_var());
}
Fragment StreamingFlowGraphBuilder::BuildRethrow(TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
Fragment instructions = DebugStepCheck(position);
instructions += LoadLocal(catch_block()->exception_var());
instructions += LoadLocal(catch_block()->stack_trace_var());
instructions += RethrowException(position, catch_block()->catch_try_index());
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildThrow(TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
Fragment instructions;
instructions += BuildExpression(); // read expression.
if (NeedsDebugStepCheck(stack(), position)) {
instructions = DebugStepCheck(position) + instructions;
}
instructions += ThrowException(position);
ASSERT(instructions.is_closed());
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildListLiteral(TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const TypeArguments& type_arguments = T.BuildTypeArguments(1); // read type.
intptr_t length = ReadListLength(); // read list length.
// Note: there will be "length" expressions.
// The type argument for the factory call.
Fragment instructions = TranslateInstantiatedTypeArguments(type_arguments);
if (length == 0) {
instructions += IntConstant(0);
instructions += StaticCall(
position,
Function::ZoneHandle(Z, I->object_store()->growable_list_factory()), 2,
ICData::kStatic);
return instructions;
}
LocalVariable* type = MakeTemporary();
instructions += LoadLocal(type);
// The type arguments for CreateArray.
instructions += LoadLocal(type);
instructions += IntConstant(length);
instructions += CreateArray();
LocalVariable* array = MakeTemporary();
for (intptr_t i = 0; i < length; ++i) {
instructions += LoadLocal(array);
instructions += IntConstant(i);
instructions += BuildExpression(); // read ith expression.
instructions += StoreIndexed(kArrayCid);
}
const Class& factory_class =
Class::Handle(Z, Library::LookupCoreClass(Symbols::List()));
const Function& factory_method = Function::ZoneHandle(
Z, factory_class.LookupFactory(
Library::PrivateCoreLibName(Symbols::ListLiteralFactory())));
instructions += StaticCall(position, factory_method, 2, ICData::kStatic);
instructions += DropTempsPreserveTop(1); // Instantiated type_arguments.
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildMapLiteral(TokenPosition* p) {
TokenPosition position = ReadPosition(); // read position.
if (p != NULL) *p = position;
const TypeArguments& type_arguments =
T.BuildTypeArguments(2); // read key_type and value_type.
// The type argument for the factory call `new Map<K, V>._fromLiteral(List)`.
Fragment instructions = TranslateInstantiatedTypeArguments(type_arguments);
intptr_t length = ReadListLength(); // read list length.
// Note: there will be "length" map entries (i.e. key and value expressions).
if (length == 0) {
instructions += Constant(Object::empty_array());
} else {
// The type arguments for `new List<X>(int len)`.
instructions += Constant(TypeArguments::ZoneHandle(Z));
// We generate a list of tuples, i.e. [key1, value1, ..., keyN, valueN].
instructions += IntConstant(2 * length);
instructions += CreateArray();
LocalVariable* array = MakeTemporary();
for (intptr_t i = 0; i < length; ++i) {
instructions += LoadLocal(array);
instructions += IntConstant(2 * i);
instructions += BuildExpression(); // read ith key.
instructions += StoreIndexed(kArrayCid);
instructions += LoadLocal(array);
instructions += IntConstant(2 * i + 1);
instructions += BuildExpression(); // read ith value.
instructions += StoreIndexed(kArrayCid);
}
}
const Class& map_class =
Class::Handle(Z, Library::LookupCoreClass(Symbols::Map()));
Function& factory_method = Function::ZoneHandle(Z);
if (map_class.EnsureIsFinalized(H.thread()) == Error::null()) {
factory_method = map_class.LookupFactory(
Library::PrivateCoreLibName(Symbols::MapLiteralFactory()));
}
return instructions +
StaticCall(position, factory_method, 2, ICData::kStatic);
}
Fragment StreamingFlowGraphBuilder::BuildFunctionExpression() {
ReadPosition(); // read position.
return BuildFunctionNode(TokenPosition::kNoSource, StringIndex());
}
Fragment StreamingFlowGraphBuilder::BuildLet(TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
Fragment instructions = BuildVariableDeclaration(); // read variable.
instructions += BuildExpression(); // read body.
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildBlockExpression() {
block_expression_depth_inc();
const intptr_t offset = ReaderOffset() - 1; // Include the tag.
Fragment instructions;
instructions += EnterScope(offset);
const intptr_t list_length = ReadListLength(); // read number of statements.
for (intptr_t i = 0; i < list_length; ++i) {
instructions += BuildStatement(); // read ith statement.
}
instructions += BuildExpression(); // read expression (inside scope).
instructions += ExitScope(offset);
block_expression_depth_dec();
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildBigIntLiteral(
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
const String& value =
H.DartString(ReadStringReference()); // read index into string table.
const Integer& integer = Integer::ZoneHandle(Z, Integer::NewCanonical(value));
if (integer.IsNull()) {
H.ReportError(script_, TokenPosition::kNoSource,
"Integer literal %s is out of range", value.ToCString());
UNREACHABLE();
}
return Constant(integer);
}
Fragment StreamingFlowGraphBuilder::BuildStringLiteral(
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
return Constant(H.DartSymbolPlain(
ReadStringReference())); // read index into string table.
}
Fragment StreamingFlowGraphBuilder::BuildIntLiteral(uint8_t payload,
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
int64_t value = static_cast<int32_t>(payload) - SpecializedIntLiteralBias;
return IntConstant(value);
}
Fragment StreamingFlowGraphBuilder::BuildIntLiteral(bool is_negative,
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
int64_t value = is_negative ? -static_cast<int64_t>(ReadUInt())
: ReadUInt(); // read value.
return IntConstant(value);
}
Fragment StreamingFlowGraphBuilder::BuildDoubleLiteral(
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
Double& constant = Double::ZoneHandle(
Z, Double::NewCanonical(ReadDouble())); // read double.
return Constant(constant);
}
Fragment StreamingFlowGraphBuilder::BuildBoolLiteral(bool value,
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
return Constant(Bool::Get(value));
}
Fragment StreamingFlowGraphBuilder::BuildNullLiteral(TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
return Constant(Instance::ZoneHandle(Z, Instance::null()));
}
Fragment StreamingFlowGraphBuilder::BuildFutureNullValue(
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
const Class& future = Class::Handle(Z, I->object_store()->future_class());
ASSERT(!future.IsNull());
const auto& error = future.EnsureIsFinalized(thread());
ASSERT(error == Error::null());
const Function& constructor =
Function::ZoneHandle(Z, future.LookupFunction(Symbols::FutureValue()));
ASSERT(!constructor.IsNull());
Fragment instructions;
instructions += BuildNullLiteral(position);
instructions += StaticCall(TokenPosition::kNoSource, constructor,
/* argument_count = */ 1, ICData::kStatic);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildConstantExpression(
TokenPosition* position,
Tag tag) {
TokenPosition p = TokenPosition::kNoSource;
if (tag == kConstantExpression) {
p = ReadPosition();
SkipDartType();
}
if (position != nullptr) *position = p;
const intptr_t constant_offset = ReadUInt();
Fragment result = Constant(
Object::ZoneHandle(Z, constant_reader_.ReadConstant(constant_offset)));
return result;
}
Fragment StreamingFlowGraphBuilder::BuildPartialTearoffInstantiation(
TokenPosition* position) {
if (position != NULL) *position = TokenPosition::kNoSource;
// Create a copy of the closure.
Fragment instructions = BuildExpression();
LocalVariable* original_closure = MakeTemporary();
instructions += AllocateObject(
TokenPosition::kNoSource,
Class::ZoneHandle(Z, I->object_store()->closure_class()), 0);
LocalVariable* new_closure = MakeTemporary();
intptr_t num_type_args = ReadListLength();
const TypeArguments& type_args = T.BuildTypeArguments(num_type_args);
instructions += TranslateInstantiatedTypeArguments(type_args);
LocalVariable* type_args_vec = MakeTemporary();
// Check the bounds.
//
// TODO(sjindel): We should be able to skip this check in many cases, e.g.
// when the closure is coming from a tearoff of a top-level method or from a
// local closure.
instructions += LoadLocal(original_closure);
instructions += LoadLocal(type_args_vec);
const Library& dart_internal = Library::Handle(Z, Library::InternalLibrary());
const Function& bounds_check_function = Function::ZoneHandle(
Z, dart_internal.LookupFunctionAllowPrivate(
Symbols::BoundsCheckForPartialInstantiation()));
ASSERT(!bounds_check_function.IsNull());
instructions += StaticCall(TokenPosition::kNoSource, bounds_check_function, 2,
ICData::kStatic);
instructions += Drop();
instructions += LoadLocal(new_closure);
instructions += LoadLocal(type_args_vec);
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_delayed_type_arguments(),
StoreInstanceFieldInstr::Kind::kInitializing);
instructions += Drop(); // Drop type args.
// Copy over the target function.
instructions += LoadLocal(new_closure);
instructions += LoadLocal(original_closure);
instructions +=
flow_graph_builder_->LoadNativeField(Slot::Closure_function());
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_function(),
StoreInstanceFieldInstr::Kind::kInitializing);
// Copy over the instantiator type arguments.
instructions += LoadLocal(new_closure);
instructions += LoadLocal(original_closure);
instructions += flow_graph_builder_->LoadNativeField(
Slot::Closure_instantiator_type_arguments());
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_instantiator_type_arguments(),
StoreInstanceFieldInstr::Kind::kInitializing);
// Copy over the function type arguments.
instructions += LoadLocal(new_closure);
instructions += LoadLocal(original_closure);
instructions += flow_graph_builder_->LoadNativeField(
Slot::Closure_function_type_arguments());
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_function_type_arguments(),
StoreInstanceFieldInstr::Kind::kInitializing);
// Copy over the context.
instructions += LoadLocal(new_closure);
instructions += LoadLocal(original_closure);
instructions += flow_graph_builder_->LoadNativeField(Slot::Closure_context());
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_context(),
StoreInstanceFieldInstr::Kind::kInitializing);
instructions += DropTempsPreserveTop(1); // Drop old closure.
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildLibraryPrefixAction(
TokenPosition* position,
const String& selector) {
const intptr_t dependency_index = ReadUInt();
const Library& current_library = Library::Handle(
Z, Class::Handle(Z, parsed_function()->function().origin()).library());
const Array& dependencies = Array::Handle(Z, current_library.dependencies());
const LibraryPrefix& prefix =
LibraryPrefix::CheckedZoneHandle(Z, dependencies.At(dependency_index));
const Function& function =
Function::ZoneHandle(Z, Library::Handle(Z, Library::CoreLibrary())
.LookupFunctionAllowPrivate(selector));
ASSERT(!function.IsNull());
Fragment instructions;
instructions += Constant(prefix);
instructions +=
StaticCall(TokenPosition::kNoSource, function, 1, ICData::kStatic);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildExpressionStatement() {
Fragment instructions = BuildExpression(); // read expression.
instructions += Drop();
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildBlock() {
intptr_t offset = ReaderOffset() - 1; // Include the tag.
Fragment instructions;
instructions += EnterScope(offset);
intptr_t list_length = ReadListLength(); // read number of statements.
for (intptr_t i = 0; i < list_length; ++i) {
if (instructions.is_open()) {
instructions += BuildStatement(); // read ith statement.
} else {
SkipStatement(); // read ith statement.
}
}
instructions += ExitScope(offset);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildEmptyStatement() {
return Fragment();
}
Fragment StreamingFlowGraphBuilder::BuildAssertBlock() {
if (!I->asserts()) {
SkipStatementList();
return Fragment();
}
intptr_t offset = ReaderOffset() - 1; // Include the tag.
Fragment instructions;
instructions += EnterScope(offset);
intptr_t list_length = ReadListLength(); // read number of statements.
for (intptr_t i = 0; i < list_length; ++i) {
if (instructions.is_open()) {
instructions += BuildStatement(); // read ith statement.
} else {
SkipStatement(); // read ith statement.
}
}
instructions += ExitScope(offset);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildAssertStatement() {
if (!I->asserts()) {
SetOffset(ReaderOffset() - 1); // Include the tag.
SkipStatement(); // read this statement.
return Fragment();
}
TargetEntryInstr* then;
TargetEntryInstr* otherwise;
Fragment instructions;
// Asserts can be of the following two kinds:
//
// * `assert(expr)`
// * `assert(() { ... })`
//
// The call to `_AssertionError._evaluateAssertion()` will take care of both
// and returns a boolean.
instructions += BuildExpression(); // read condition.
const TokenPosition condition_start_offset =
ReadPosition(); // read condition start offset.
const TokenPosition condition_end_offset =
ReadPosition(); // read condition end offset.
instructions += EvaluateAssertion();
instructions += CheckBoolean(condition_start_offset);
instructions += Constant(Bool::True());
instructions += BranchIfEqual(&then, &otherwise, false);
const Class& klass =
Class::ZoneHandle(Z, Library::LookupCoreClass(Symbols::AssertionError()));
ASSERT(!klass.IsNull());
const Function& target = Function::ZoneHandle(
Z, klass.LookupStaticFunctionAllowPrivate(Symbols::ThrowNew()));
ASSERT(!target.IsNull());
// Build equivalent of `throw _AssertionError._throwNew(start, end, message)`
// expression. We build throw (even through _throwNew already throws) because
// call is not a valid last instruction for the block. Blocks can only
// terminate with explicit control flow instructions (Branch, Goto, Return
// or Throw).
Fragment otherwise_fragment(otherwise);
otherwise_fragment += IntConstant(condition_start_offset.Pos());
otherwise_fragment += IntConstant(condition_end_offset.Pos());
Tag tag = ReadTag(); // read (first part of) message.
if (tag == kSomething) {
otherwise_fragment += BuildExpression(); // read (rest of) message.
} else {
otherwise_fragment += Constant(Instance::ZoneHandle(Z)); // null.
}
// Note: condition_start_offset points to the first token after the opening
// paren, not the beginning of 'assert'.
otherwise_fragment +=
StaticCall(condition_start_offset, target, 3, ICData::kStatic);
otherwise_fragment += ThrowException(TokenPosition::kNoSource);
otherwise_fragment += Drop();
return Fragment(instructions.entry, then);
}
Fragment StreamingFlowGraphBuilder::BuildLabeledStatement() {
// There can be serveral cases:
//
// * the body contains a break
// * the body doesn't contain a break
//
// * translating the body results in a closed fragment
// * translating the body results in a open fragment
//
// => We will only know which case we are in after the body has been
// traversed.
BreakableBlock block(flow_graph_builder_);
Fragment instructions = BuildStatement(); // read body.
if (block.HadJumper()) {
if (instructions.is_open()) {
instructions += Goto(block.destination());
}
return Fragment(instructions.entry, block.destination());
} else {
return instructions;
}
}
Fragment StreamingFlowGraphBuilder::BuildBreakStatement() {
TokenPosition position = ReadPosition(); // read position.
intptr_t target_index = ReadUInt(); // read target index.
TryFinallyBlock* outer_finally = NULL;
intptr_t target_context_depth = -1;
JoinEntryInstr* destination = breakable_block()->BreakDestination(
target_index, &outer_finally, &target_context_depth);
Fragment instructions;
// Break statement should pause before manipulation of context, which
// will possibly cause debugger having incorrect context object.
if (NeedsDebugStepCheck(parsed_function()->function(), position)) {
instructions += DebugStepCheck(position);
}
instructions +=
TranslateFinallyFinalizers(outer_finally, target_context_depth);
if (instructions.is_open()) {
instructions += Goto(destination);
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildWhileStatement() {
ASSERT(block_expression_depth() == 0); // no while in block-expr
loop_depth_inc();
const TokenPosition position = ReadPosition(); // read position.
TestFragment condition = TranslateConditionForControl(); // read condition.
const Fragment body = BuildStatement(); // read body
Fragment body_entry(condition.CreateTrueSuccessor(flow_graph_builder_));
body_entry += body;
Instruction* entry;
if (body_entry.is_open()) {
JoinEntryInstr* join = BuildJoinEntry();
body_entry += Goto(join);
Fragment loop(join);
ASSERT(B->GetStackDepth() == 0);
loop += CheckStackOverflow(position);
loop.current->LinkTo(condition.entry);
entry = Goto(join).entry;
} else {
entry = condition.entry;
}
loop_depth_dec();
return Fragment(entry, condition.CreateFalseSuccessor(flow_graph_builder_));
}
Fragment StreamingFlowGraphBuilder::BuildDoStatement() {
ASSERT(block_expression_depth() == 0); // no do-while in block-expr
loop_depth_inc();
const TokenPosition position = ReadPosition(); // read position.
Fragment body = BuildStatement(); // read body.
if (body.is_closed()) {
SkipExpression(); // read condition.
loop_depth_dec();
return body;
}
TestFragment condition = TranslateConditionForControl();
JoinEntryInstr* join = BuildJoinEntry();
Fragment loop(join);
ASSERT(B->GetStackDepth() == 0);
loop += CheckStackOverflow(position);
loop += body;
loop <<= condition.entry;
condition.IfTrueGoto(flow_graph_builder_, join);
loop_depth_dec();
return Fragment(
new (Z) GotoInstr(join, CompilerState::Current().GetNextDeoptId()),
condition.CreateFalseSuccessor(flow_graph_builder_));
}
Fragment StreamingFlowGraphBuilder::BuildForStatement() {
intptr_t offset = ReaderOffset() - 1; // Include the tag.
const TokenPosition position = ReadPosition(); // read position.
Fragment declarations;
loop_depth_inc();
const LocalScope* context_scope = nullptr;
declarations += EnterScope(offset, &context_scope);
intptr_t list_length = ReadListLength(); // read number of variables.
for (intptr_t i = 0; i < list_length; ++i) {
declarations += BuildVariableDeclaration(); // read ith variable.
}
Tag tag = ReadTag(); // Read first part of condition.
TestFragment condition;
BlockEntryInstr* body_entry;
BlockEntryInstr* loop_exit;
if (tag != kNothing) {
condition = TranslateConditionForControl();
body_entry = condition.CreateTrueSuccessor(flow_graph_builder_);
loop_exit = condition.CreateFalseSuccessor(flow_graph_builder_);
} else {
body_entry = BuildJoinEntry();
loop_exit = BuildJoinEntry();
}
Fragment updates;
list_length = ReadListLength(); // read number of updates.
for (intptr_t i = 0; i < list_length; ++i) {
updates += BuildExpression(); // read ith update.
updates += Drop();
}
Fragment body(body_entry);
body += BuildStatement(); // read body.
if (body.is_open()) {
// We allocated a fresh context before the loop which contains captured
// [ForStatement] variables. Before jumping back to the loop entry we clone
// the context object (at same depth) which ensures the next iteration of
// the body gets a fresh set of [ForStatement] variables (with the old
// (possibly updated) values).
if (context_scope->num_context_variables() > 0) {
body += CloneContext(context_scope->context_slots());
}
body += updates;
JoinEntryInstr* join = BuildJoinEntry();
declarations += Goto(join);
body += Goto(join);
Fragment loop(join);
loop += CheckStackOverflow(position); // may have non-empty stack
if (condition.entry != nullptr) {
loop <<= condition.entry;
} else {
loop += Goto(body_entry->AsJoinEntry());
}
} else {
if (condition.entry != nullptr) {
declarations <<= condition.entry;
} else {
declarations += Goto(body_entry->AsJoinEntry());
}
}
Fragment loop(declarations.entry, loop_exit);
loop += ExitScope(offset);
loop_depth_dec();
return loop;
}
Fragment StreamingFlowGraphBuilder::BuildForInStatement(bool async) {
intptr_t offset = ReaderOffset() - 1; // Include the tag.
const TokenPosition position = ReadPosition(); // read position.
TokenPosition body_position = ReadPosition(); // read body position.
intptr_t variable_kernel_position = ReaderOffset() + data_program_offset_;
SkipVariableDeclaration(); // read variable.
TokenPosition iterable_position = TokenPosition::kNoSource;
Fragment instructions =
BuildExpression(&iterable_position); // read iterable.
const String& iterator_getter =
String::ZoneHandle(Z, Field::GetterSymbol(Symbols::Iterator()));
instructions +=
InstanceCall(iterable_position, iterator_getter, Token::kGET, 1);
LocalVariable* iterator = scopes()->iterator_variables[for_in_depth()];
instructions += StoreLocal(TokenPosition::kNoSource, iterator);
instructions += Drop();
for_in_depth_inc();
loop_depth_inc();
Fragment condition = LoadLocal(iterator);
condition +=
InstanceCall(iterable_position, Symbols::MoveNext(), Token::kILLEGAL, 1);
TargetEntryInstr* body_entry;
TargetEntryInstr* loop_exit;
condition += BranchIfTrue(&body_entry, &loop_exit, false);
Fragment body(body_entry);
body += EnterScope(offset);
body += LoadLocal(iterator);
const String& current_getter =
String::ZoneHandle(Z, Field::GetterSymbol(Symbols::Current()));
body += InstanceCall(body_position, current_getter, Token::kGET, 1);
body += StoreLocal(TokenPosition::kNoSource,
LookupVariable(variable_kernel_position));
body += Drop();
body += BuildStatement(); // read body.
body += ExitScope(offset);
if (body.is_open()) {
JoinEntryInstr* join = BuildJoinEntry();
instructions += Goto(join);
body += Goto(join);
Fragment loop(join);
loop += CheckStackOverflow(position); // may have non-empty stack
loop += condition;
} else {
instructions += condition;
}
loop_depth_dec();
for_in_depth_dec();
return Fragment(instructions.entry, loop_exit);
}
Fragment StreamingFlowGraphBuilder::BuildSwitchStatement() {
ReadPosition(); // read position.
// We need the number of cases. So start by getting that, then go back.
intptr_t offset = ReaderOffset();
SkipExpression(); // temporarily skip condition
int case_count = ReadListLength(); // read number of cases.
SetOffset(offset);
SwitchBlock block(flow_graph_builder_, case_count);
// Instead of using a variable we should reuse the expression on the stack,
// since it won't be assigned again, we don't need phi nodes.
Fragment head_instructions = BuildExpression(); // read condition.
head_instructions +=
StoreLocal(TokenPosition::kNoSource, scopes()->switch_variable);
head_instructions += Drop();
case_count = ReadListLength(); // read number of cases.
// Phase 1: Generate bodies and try to find out whether a body will be target
// of a jump due to:
// * `continue case_label`
// * `case e1: case e2: body`
Fragment* body_fragments = Z->Alloc<Fragment>(case_count);
intptr_t* case_expression_offsets = Z->Alloc<intptr_t>(case_count);
int default_case = -1;
for (intptr_t i = 0; i < case_count; ++i) {
case_expression_offsets[i] = ReaderOffset();
int expression_count = ReadListLength(); // read number of expressions.
for (intptr_t j = 0; j < expression_count; ++j) {
ReadPosition(); // read jth position.
SkipExpression(); // read jth expression.
}
bool is_default = ReadBool(); // read is_default.
if (is_default) default_case = i;
Fragment& body_fragment = body_fragments[i] =
BuildStatement(); // read body.
if (body_fragment.entry == NULL) {
// Make a NOP in order to ensure linking works properly.
body_fragment = NullConstant();
body_fragment += Drop();
}
// The Dart language specification mandates fall-throughs in [SwitchCase]es
// to be runtime errors.
if (!is_default && body_fragment.is_open() && (i < (case_count - 1))) {
const Class& klass = Class::ZoneHandle(
Z, Library::LookupCoreClass(Symbols::FallThroughError()));
ASSERT(!klass.IsNull());
const auto& error = klass.EnsureIsFinalized(thread());
ASSERT(error == Error::null());
GrowableHandlePtrArray<const String> pieces(Z, 3);
pieces.Add(Symbols::FallThroughError());
pieces.Add(Symbols::Dot());
pieces.Add(H.DartSymbolObfuscate("_create"));
const Function& constructor = Function::ZoneHandle(
Z, klass.LookupConstructorAllowPrivate(String::ZoneHandle(
Z, Symbols::FromConcatAll(H.thread(), pieces))));
ASSERT(!constructor.IsNull());
const String& url = H.DartSymbolPlain(
parsed_function()->function().ToLibNamePrefixedQualifiedCString());
// Create instance of _FallThroughError
body_fragment += AllocateObject(TokenPosition::kNoSource, klass, 0);
LocalVariable* instance = MakeTemporary();
// Call _FallThroughError._create constructor.
body_fragment += LoadLocal(instance); // this
body_fragment += Constant(url); // url
body_fragment += NullConstant(); // line
body_fragment +=
StaticCall(TokenPosition::kNoSource, constructor, 3, ICData::kStatic);
body_fragment += Drop();
// Throw the exception
body_fragment += ThrowException(TokenPosition::kNoSource);
body_fragment += Drop();
}
// If there is an implicit fall-through we have one [SwitchCase] and
// multiple expressions, e.g.
//
// switch(expr) {
// case a:
// case b:
// <stmt-body>
// }
//
// This means that the <stmt-body> will have more than 1 incoming edge (one
// from `a == expr` and one from `a != expr && b == expr`). The
// `block.Destination()` records the additional jump.
if (expression_count > 1) {
block.DestinationDirect(i);
}
}
intptr_t end_offset = ReaderOffset();
// Phase 2: Generate everything except the real bodies:
// * jump directly to a body (if there is no jumper)
// * jump to a wrapper block which jumps to the body (if there is a jumper)
Fragment current_instructions = head_instructions;
for (intptr_t i = 0; i < case_count; ++i) {
SetOffset(case_expression_offsets[i]);
int expression_count = ReadListLength(); // read length of expressions.
if (i == default_case) {
ASSERT(i == (case_count - 1));
if (block.HadJumper(i)) {
// There are several branches to the body, so we will make a goto to
// the join block (and prepend a join instruction to the real body).
JoinEntryInstr* join = block.DestinationDirect(i);
current_instructions += Goto(join);
current_instructions = Fragment(current_instructions.entry, join);
current_instructions += body_fragments[i];
} else {
current_instructions += body_fragments[i];
}
} else {
JoinEntryInstr* body_join = NULL;
if (block.HadJumper(i)) {
body_join = block.DestinationDirect(i);
body_fragments[i] = Fragment(body_join) + body_fragments[i];
}
for (intptr_t j = 0; j < expression_count; ++j) {
TargetEntryInstr* then;
TargetEntryInstr* otherwise;
TokenPosition position = ReadPosition(); // read jth position.
current_instructions += Constant(
Instance::ZoneHandle(Z, constant_reader_.ReadConstantExpression()));
current_instructions += LoadLocal(scopes()->switch_variable);
current_instructions +=
InstanceCall(position, Symbols::EqualOperator(), Token::kEQ,
/*argument_count=*/2,
/*checked_argument_count=*/2);
current_instructions += BranchIfTrue(&then, &otherwise, false);
Fragment then_fragment(then);
if (body_join != NULL) {
// There are several branches to the body, so we will make a goto to
// the join block (the real body has already been prepended with a
// join instruction).
then_fragment += Goto(body_join);
} else {
// There is only a signle branch to the body, so we will just append
// the body fragment.
then_fragment += body_fragments[i];
}
current_instructions = Fragment(otherwise);
}
}
}
if (case_count > 0 && default_case < 0) {
// There is no default, which means we have an open [current_instructions]
// (which is a [TargetEntryInstruction] for the last "otherwise" branch).
//
// Furthermore the last [SwitchCase] can be open as well. If so, we need
// to join these two.
Fragment& last_body = body_fragments[case_count - 1];
if (last_body.is_open()) {
ASSERT(current_instructions.is_open());
ASSERT(current_instructions.current->IsTargetEntry());
// Join the last "otherwise" branch and the last [SwitchCase] fragment.
JoinEntryInstr* join = BuildJoinEntry();
current_instructions += Goto(join);
last_body += Goto(join);
current_instructions = Fragment(join);
}
} else {
// All non-default cases will be closed (i.e. break/continue/throw/return)
// So it is fine to just let more statements after the switch append to the
// default case.
}
SetOffset(end_offset);
return Fragment(head_instructions.entry, current_instructions.current);
}
Fragment StreamingFlowGraphBuilder::BuildContinueSwitchStatement() {
TokenPosition position = ReadPosition(); // read position.
intptr_t target_index = ReadUInt(); // read target index.
TryFinallyBlock* outer_finally = NULL;
intptr_t target_context_depth = -1;
JoinEntryInstr* entry = switch_block()->Destination(
target_index, &outer_finally, &target_context_depth);
Fragment instructions;
instructions +=
TranslateFinallyFinalizers(outer_finally, target_context_depth);
if (instructions.is_open()) {
if (NeedsDebugStepCheck(parsed_function()->function(), position)) {
instructions += DebugStepCheck(position);
}
instructions += Goto(entry);
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildIfStatement() {
ReadPosition(); // read position.
TestFragment condition = TranslateConditionForControl();
Fragment then_fragment(condition.CreateTrueSuccessor(flow_graph_builder_));
then_fragment += BuildStatement(); // read then.
Fragment otherwise_fragment(
condition.CreateFalseSuccessor(flow_graph_builder_));
otherwise_fragment += BuildStatement(); // read otherwise.
if (then_fragment.is_open()) {
if (otherwise_fragment.is_open()) {
JoinEntryInstr* join = BuildJoinEntry();
then_fragment += Goto(join);
otherwise_fragment += Goto(join);
return Fragment(condition.entry, join);
} else {
return Fragment(condition.entry, then_fragment.current);
}
} else if (otherwise_fragment.is_open()) {
return Fragment(condition.entry, otherwise_fragment.current);
} else {
return Fragment(condition.entry, nullptr);
}
}
Fragment StreamingFlowGraphBuilder::BuildReturnStatement() {
TokenPosition position = ReadPosition(); // read position.
Tag tag = ReadTag(); // read first part of expression.
bool inside_try_finally = try_finally_block() != NULL;
Fragment instructions = tag == kNothing
? NullConstant()
: BuildExpression(); // read rest of expression.
if (instructions.is_open()) {
if (inside_try_finally) {
ASSERT(scopes()->finally_return_variable != NULL);
const Function& function = parsed_function()->function();
if (NeedsDebugStepCheck(function, position)) {
instructions += DebugStepCheck(position);
}
instructions += StoreLocal(position, scopes()->finally_return_variable);
instructions += Drop();
instructions += TranslateFinallyFinalizers(NULL, -1);
if (instructions.is_open()) {
instructions += LoadLocal(scopes()->finally_return_variable);
instructions += Return(TokenPosition::kNoSource);
}
} else {
instructions += Return(position);
}
} else {
Pop();
}
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildTryCatch() {
ASSERT(block_expression_depth() == 0); // no try-catch in block-expr
InlineBailout("kernel::FlowgraphBuilder::VisitTryCatch");
intptr_t try_handler_index = AllocateTryIndex();
Fragment try_body = TryCatch(try_handler_index);
JoinEntryInstr* after_try = BuildJoinEntry();
// Fill in the body of the try.
try_depth_inc();
{
TryCatchBlock block(flow_graph_builder_, try_handler_index);
try_body += BuildStatement(); // read body.
try_body += Goto(after_try);
}
try_depth_dec();
const int kNeedsStracktraceBit = 1 << 0;
const int kIsSyntheticBit = 1 << 1;
uint8_t flags = ReadByte();
bool needs_stacktrace =
(flags & kNeedsStracktraceBit) == kNeedsStracktraceBit;
bool is_synthetic = (flags & kIsSyntheticBit) == kIsSyntheticBit;
catch_depth_inc();
intptr_t catch_count = ReadListLength(); // read number of catches.
const Array& handler_types =
Array::ZoneHandle(Z, Array::New(catch_count, Heap::kOld));
Fragment catch_body = CatchBlockEntry(handler_types, try_handler_index,
needs_stacktrace, is_synthetic);
// Fill in the body of the catch.
for (intptr_t i = 0; i < catch_count; ++i) {
intptr_t catch_offset = ReaderOffset(); // Catch has no tag.
TokenPosition position = ReadPosition(); // read position.
const AbstractType& type_guard = T.BuildType(); // read guard.
handler_types.SetAt(i, type_guard);
Fragment catch_handler_body = EnterScope(catch_offset);
Tag tag = ReadTag(); // read first part of exception.
if (tag == kSomething) {
catch_handler_body += LoadLocal(CurrentException());
catch_handler_body +=
StoreLocal(TokenPosition::kNoSource,
LookupVariable(ReaderOffset() + data_program_offset_));
catch_handler_body += Drop();
SkipVariableDeclaration(); // read exception.
}
tag = ReadTag(); // read first part of stack trace.
if (tag == kSomething) {
catch_handler_body += LoadLocal(CurrentStackTrace());
catch_handler_body +=
StoreLocal(TokenPosition::kNoSource,
LookupVariable(ReaderOffset() + data_program_offset_));
catch_handler_body += Drop();
SkipVariableDeclaration(); // read stack trace.
}
{
CatchBlock block(flow_graph_builder_, CurrentException(),
CurrentStackTrace(), try_handler_index);
catch_handler_body += BuildStatement(); // read body.
// Note: ExitScope adjusts context_depth_ so even if catch_handler_body
// is closed we still need to execute ExitScope for its side effect.
catch_handler_body += ExitScope(catch_offset);
if (catch_handler_body.is_open()) {
catch_handler_body += Goto(after_try);
}
}
if (!type_guard.IsCatchAllType()) {
catch_body += LoadLocal(CurrentException());
if (!type_guard.IsInstantiated(kCurrentClass)) {
catch_body += LoadInstantiatorTypeArguments();
} else {
catch_body += NullConstant();
}
if (!type_guard.IsInstantiated(kFunctions)) {
catch_body += LoadFunctionTypeArguments();
} else {
catch_body += NullConstant();
}
catch_body += Constant(type_guard);
catch_body += InstanceCall(
position, Library::PrivateCoreLibName(Symbols::_instanceOf()),
Token::kIS, 4);
TargetEntryInstr* catch_entry;
TargetEntryInstr* next_catch_entry;
catch_body += BranchIfTrue(&catch_entry, &next_catch_entry, false);
Fragment(catch_entry) + catch_handler_body;
catch_body = Fragment(next_catch_entry);
} else {
catch_body += catch_handler_body;
}
}
// In case the last catch body was not handling the exception and branching to
// after the try block, we will rethrow the exception (i.e. no default catch
// handler).
if (catch_body.is_open()) {
catch_body += LoadLocal(CurrentException());
catch_body += LoadLocal(CurrentStackTrace());
catch_body += RethrowException(TokenPosition::kNoSource, try_handler_index);
Drop();
}
catch_depth_dec();
return Fragment(try_body.entry, after_try);
}
Fragment StreamingFlowGraphBuilder::BuildTryFinally() {
ASSERT(block_expression_depth() == 0); // no try-finally in block-expr
// Note on streaming:
// We only stream this TryFinally if we can stream everything inside it,
// so creating a "TryFinallyBlock" with a kernel binary offset instead of an
// AST node isn't a problem.
InlineBailout("kernel::FlowgraphBuilder::VisitTryFinally");
// There are 5 different cases where we need to execute the finally block:
//
// a) 1/2/3th case: Special control flow going out of `node->body()`:
//
// * [BreakStatement] transfers control to a [LabeledStatement]
// * [ContinueSwitchStatement] transfers control to a [SwitchCase]
// * [ReturnStatement] returns a value
//
// => All three cases will automatically append all finally blocks
// between the branching point and the destination (so we don't need to
// do anything here).
//
// b) 4th case: Translating the body resulted in an open fragment (i.e. body
// executes without any control flow out of it)
//
// => We are responsible for jumping out of the body to a new block (with
// different try index) and execute the finalizer.
//
// c) 5th case: An exception occurred inside the body.
//
// => We are responsible for catching it, executing the finally block and
// rethrowing the exception.
intptr_t try_handler_index = AllocateTryIndex();
Fragment try_body = TryCatch(try_handler_index);
JoinEntryInstr* after_try = BuildJoinEntry();
intptr_t offset = ReaderOffset();
SkipStatement(); // temporarily read body.
intptr_t finalizer_offset = ReaderOffset();
SetOffset(offset);
// Fill in the body of the try.
try_depth_inc();
{
TryFinallyBlock tfb(flow_graph_builder_, finalizer_offset);
TryCatchBlock tcb(flow_graph_builder_, try_handler_index);
try_body += BuildStatement(); // read body.
}
try_depth_dec();
if (try_body.is_open()) {
// Please note: The try index will be on level out of this block,
// thereby ensuring if there's an exception in the finally block we
// won't run it twice.
JoinEntryInstr* finally_entry = BuildJoinEntry();
try_body += Goto(finally_entry);
Fragment finally_body(finally_entry);
finally_body += BuildStatement(); // read finalizer.
finally_body += Goto(after_try);
}
// Fill in the body of the catch.
catch_depth_inc();
const Array& handler_types = Array::ZoneHandle(Z, Array::New(1, Heap::kOld));
handler_types.SetAt(0, Object::dynamic_type());
// Note: rethrow will actually force mark the handler as needing a stacktrace.
Fragment finally_body = CatchBlockEntry(handler_types, try_handler_index,
/* needs_stacktrace = */ false,
/* is_synthesized = */ true);
SetOffset(finalizer_offset);
finally_body += BuildStatement(); // read finalizer
if (finally_body.is_open()) {
finally_body += LoadLocal(CurrentException());
finally_body += LoadLocal(CurrentStackTrace());
finally_body +=
RethrowException(TokenPosition::kNoSource, try_handler_index);
Drop();
}
catch_depth_dec();
return Fragment(try_body.entry, after_try);
}
Fragment StreamingFlowGraphBuilder::BuildYieldStatement() {
TokenPosition position = ReadPosition(); // read position.
uint8_t flags = ReadByte(); // read flags.
ASSERT(flags == kNativeYieldFlags); // Must have been desugared.
// Setup yield/continue point:
//
// ...
// :await_jump_var = index;
// :await_ctx_var = :current_context_var
// return <expr>
//
// Continuation<index>:
// Drop(1)
// ...
//
// BuildGraphOfFunction will create a dispatch that jumps to
// Continuation<:await_jump_var> upon entry to the function.
//
const intptr_t new_yield_pos = yield_continuations().length() + 1;
Fragment instructions = IntConstant(new_yield_pos);
instructions +=
StoreLocal(TokenPosition::kNoSource, scopes()->yield_jump_variable);
instructions += Drop();
instructions += LoadLocal(parsed_function()->current_context_var());
instructions +=
StoreLocal(TokenPosition::kNoSource, scopes()->yield_context_variable);
instructions += Drop();
instructions += BuildExpression(); // read expression.
instructions += Return(position, new_yield_pos);
// Note: DropTempsInstr serves as an anchor instruction. It will not
// be linked into the resulting graph.
DropTempsInstr* anchor = new (Z) DropTempsInstr(0, NULL);
yield_continuations().Add(YieldContinuation(anchor, CurrentTryIndex()));
Fragment continuation(instructions.entry, anchor);
if (parsed_function()->function().IsAsyncClosure() ||
parsed_function()->function().IsAsyncGenClosure()) {
// If function is async closure or async gen closure it takes three
// parameters where the second and the third are exception and stack_trace.
// Check if exception is non-null and rethrow it.
//
// :async_op([:result, :exception, :stack_trace]) {
// ...
// Continuation<index>:
// if (:exception != null) rethrow(:exception, :stack_trace);
// ...
// }
//
LocalVariable* exception_var = parsed_function()->ParameterVariable(2);
LocalVariable* stack_trace_var = parsed_function()->ParameterVariable(3);
ASSERT(exception_var->name().raw() == Symbols::ExceptionParameter().raw());
ASSERT(stack_trace_var->name().raw() ==
Symbols::StackTraceParameter().raw());
TargetEntryInstr* no_error;
TargetEntryInstr* error;
continuation += LoadLocal(exception_var);
continuation += BranchIfNull(&no_error, &error);
Fragment rethrow(error);
rethrow += LoadLocal(exception_var);
rethrow += LoadLocal(stack_trace_var);
rethrow += RethrowException(position, kInvalidTryIndex);
Drop();
continuation = Fragment(continuation.entry, no_error);
}
return continuation;
}
Fragment StreamingFlowGraphBuilder::BuildVariableDeclaration() {
intptr_t kernel_position_no_tag = ReaderOffset() + data_program_offset_;
LocalVariable* variable = LookupVariable(kernel_position_no_tag);
VariableDeclarationHelper helper(this);
helper.ReadUntilExcluding(VariableDeclarationHelper::kType);
T.BuildType(); // read type.
bool has_initializer = (ReadTag() != kNothing);
Fragment instructions;
if (variable->is_late()) {
// TODO(liama): Treat the field as non-late if the initializer is trivial.
if (has_initializer) {
SkipExpression();
}
instructions += Constant(Object::sentinel());
} else if (!has_initializer) {
instructions += NullConstant();
} else if (helper.IsConst()) {
// Read const initializer form current position.
const Instance& constant_value =
Instance::ZoneHandle(Z, constant_reader_.ReadConstantExpression());
variable->SetConstValue(constant_value);
instructions += Constant(constant_value);
} else {
// Initializer
instructions += BuildExpression(); // read (actual) initializer.
}
// Use position of equal sign if it exists. If the equal sign does not exist
// use the position of the identifier.
TokenPosition debug_position =
Utils::Maximum(helper.position_, helper.equals_position_);
if (NeedsDebugStepCheck(stack(), debug_position)) {
instructions = DebugStepCheck(debug_position) + instructions;
}
instructions += StoreLocal(helper.position_, variable);
instructions += Drop();
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildFunctionDeclaration() {
TokenPosition position = ReadPosition(); // read position.
intptr_t variable_offset = ReaderOffset() + data_program_offset_;
// read variable declaration.
VariableDeclarationHelper helper(this);
helper.ReadUntilExcluding(VariableDeclarationHelper::kEnd);
Fragment instructions = DebugStepCheck(position);
instructions += BuildFunctionNode(position, helper.name_index_);
instructions += StoreLocal(position, LookupVariable(variable_offset));
instructions += Drop();
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildFunctionNode(
TokenPosition parent_position,
StringIndex name_index) {
intptr_t offset = ReaderOffset();
FunctionNodeHelper function_node_helper(this);
function_node_helper.ReadUntilExcluding(FunctionNodeHelper::kTypeParameters);
TokenPosition position = function_node_helper.position_;
bool declaration = name_index >= 0;
if (declaration) {
position = parent_position;
}
if (!position.IsReal()) {
// Positions has to be unique in regards to the parent.
// A non-real at this point is probably -1, we cannot blindly use that
// as others might use it too. Create a new dummy non-real TokenPosition.
position = TokenPosition(offset).ToSynthetic();
}
// The VM has a per-isolate table of functions indexed by the enclosing
// function and token position.
Function& function = Function::ZoneHandle(Z);
// NOTE: This is not TokenPosition in the general sense!
function = I->LookupClosureFunction(parsed_function()->function(), position);
if (function.IsNull()) {
for (intptr_t i = 0; i < scopes()->function_scopes.length(); ++i) {
if (scopes()->function_scopes[i].kernel_offset != offset) {
continue;
}
const String* name;
if (declaration) {
name = &H.DartSymbolObfuscate(name_index);
} else {
name = &Symbols::AnonymousClosure();
}
// NOTE: This is not TokenPosition in the general sense!
if (!closure_owner_.IsNull()) {
function = Function::NewClosureFunctionWithKind(
FunctionLayout::kClosureFunction, *name,
parsed_function()->function(), position, closure_owner_);
} else {
function = Function::NewClosureFunction(
*name, parsed_function()->function(), position);
}
function.set_is_debuggable(function_node_helper.dart_async_marker_ ==
FunctionNodeHelper::kSync);
switch (function_node_helper.dart_async_marker_) {
case FunctionNodeHelper::kSyncStar:
function.set_modifier(FunctionLayout::kSyncGen);
break;
case FunctionNodeHelper::kAsync:
function.set_modifier(FunctionLayout::kAsync);
function.set_is_inlinable(!FLAG_causal_async_stacks);
break;
case FunctionNodeHelper::kAsyncStar:
function.set_modifier(FunctionLayout::kAsyncGen);
function.set_is_inlinable(!FLAG_causal_async_stacks);
break;
default:
// no special modifier
break;
}
function.set_is_generated_body(function_node_helper.async_marker_ ==
FunctionNodeHelper::kSyncYielding);
if (function.IsAsyncClosure() || function.IsAsyncGenClosure()) {
function.set_is_inlinable(!FLAG_causal_async_stacks &&
!FLAG_lazy_async_stacks);
}
function.set_end_token_pos(function_node_helper.end_position_);
LocalScope* scope = scopes()->function_scopes[i].scope;
const ContextScope& context_scope = ContextScope::Handle(
Z, scope->PreserveOuterScope(flow_graph_builder_->context_depth_));
function.set_context_scope(context_scope);
function.set_kernel_offset(offset);
type_translator_.SetupFunctionParameters(Class::Handle(Z), function,
false, // is_method
true, // is_closure
&function_node_helper);
// type_translator_.SetupUnboxingInfoMetadata is not called here at the
// moment because closures do not have unboxed parameters and return value
function_node_helper.ReadUntilExcluding(FunctionNodeHelper::kEnd);
// Finalize function type.
Type& signature_type = Type::Handle(Z, function.SignatureType());
signature_type ^=
ClassFinalizer::FinalizeType(*active_class()->klass, signature_type);
function.SetSignatureType(signature_type);
I->AddClosureFunction(function);
break;
}
}
function_node_helper.ReadUntilExcluding(FunctionNodeHelper::kEnd);
Fragment instructions =
flow_graph_builder_->AllocateClosure(TokenPosition::kNoSource, function);
LocalVariable* closure = MakeTemporary();
// The function signature can have uninstantiated class type parameters.
if (!function.HasInstantiatedSignature(kCurrentClass)) {
instructions += LoadLocal(closure);
instructions += LoadInstantiatorTypeArguments();
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_instantiator_type_arguments(),
StoreInstanceFieldInstr::Kind::kInitializing);
}
// TODO(30455): We only need to save these if the closure uses any captured
// type parameters.
instructions += LoadLocal(closure);
instructions += LoadFunctionTypeArguments();
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_function_type_arguments(),
StoreInstanceFieldInstr::Kind::kInitializing);
if (function.IsGeneric()) {
// Only generic functions need to have properly initialized
// delayed_type_arguments.
instructions += LoadLocal(closure);
instructions += Constant(Object::empty_type_arguments());
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_delayed_type_arguments(),
StoreInstanceFieldInstr::Kind::kInitializing);
}
// Store the function and the context in the closure.
instructions += LoadLocal(closure);
instructions += Constant(function);
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_function(),
StoreInstanceFieldInstr::Kind::kInitializing);
instructions += LoadLocal(closure);
instructions += LoadLocal(parsed_function()->current_context_var());
instructions += flow_graph_builder_->StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_context(),
StoreInstanceFieldInstr::Kind::kInitializing);
return instructions;
}
Fragment StreamingFlowGraphBuilder::BuildFfiAsFunctionInternal() {
const intptr_t argc = ReadUInt(); // read argument count.
ASSERT(argc == 1); // pointer
const intptr_t list_length = ReadListLength(); // read types list length.
ASSERT(list_length == 2); // dart signature, then native signature
const TypeArguments& type_arguments =
T.BuildTypeArguments(list_length); // read types.
Fragment code;
const intptr_t positional_count =
ReadListLength(); // read positional argument count
ASSERT(positional_count == 1);
code += BuildExpression(); // build first positional argument (pointer)
const intptr_t named_args_len =
ReadListLength(); // skip (empty) named arguments list
ASSERT(named_args_len == 0);
code += B->BuildFfiAsFunctionInternalCall(type_arguments);
return code;
}
Fragment StreamingFlowGraphBuilder::BuildFfiNativeCallbackFunction() {
// The call-site must look like this (guaranteed by the FE which inserts it):
//
// _nativeCallbackFunction<NativeSignatureType>(target, exceptionalReturn)
//
// The FE also guarantees that all three arguments are constants.
const intptr_t argc = ReadUInt(); // read argument count
ASSERT(argc == 2); // target, exceptionalReturn
const intptr_t list_length = ReadListLength(); // read types list length
ASSERT(list_length == 1); // native signature
const TypeArguments& type_arguments =
T.BuildTypeArguments(list_length); // read types.
ASSERT(type_arguments.Length() == 1 && type_arguments.IsInstantiated());
const Function& native_sig = Function::Handle(
Z, Type::CheckedHandle(Z, type_arguments.TypeAt(0)).signature());
Fragment code;
const intptr_t positional_count =
ReadListLength(); // read positional argument count
ASSERT(positional_count == 2);
// Read target expression and extract the target function.
code += BuildExpression(); // build first positional argument (target)
Definition* target_def = B->Peek();
ASSERT(target_def->IsConstant());
const Closure& target_closure =
Closure::Cast(target_def->AsConstant()->value());
ASSERT(!target_closure.IsNull());
Function& target = Function::Handle(Z, target_closure.function());
ASSERT(!target.IsNull() && target.IsImplicitClosureFunction());
target = target.parent_function();
code += Drop();
// Build second positional argument (exceptionalReturn).
code += BuildExpression();
Definition* exceptional_return_def = B->Peek();
ASSERT(exceptional_return_def->IsConstant());
const Instance& exceptional_return =
Instance::Cast(exceptional_return_def->AsConstant()->value());
code += Drop();
const intptr_t named_args_len =
ReadListLength(); // skip (empty) named arguments list
ASSERT(named_args_len == 0);
const Function& result =
Function::ZoneHandle(Z, compiler::ffi::NativeCallbackFunction(
native_sig, target, exceptional_return));
code += Constant(result);
auto& ffi_callback_functions = GrowableObjectArray::Handle(Z);
ffi_callback_functions ^= I->object_store()->ffi_callback_functions();
if (ffi_callback_functions.IsNull()) {
ffi_callback_functions ^= GrowableObjectArray::New();
I->object_store()->set_ffi_callback_functions(ffi_callback_functions);
}
ffi_callback_functions.Add(result);
return code;
}
} // namespace kernel
} // namespace dart