blob: 6b62e40feb022081045d6cc0b662be4d8fc69f35 [file] [log] [blame]
// Copyright (c) 2017, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// This file contains two helper functions MakeLocationSummaryFromEmitter
// and InvokeEmitter which simplify the definition of MakeLocationSummary
// and EmitNativeCode methods for instructions.
//
// Canonical way to define instruction backend would be to override:
//
// A) MakeLocationSummary method that creates and fills LocationSummary object
// with location constraints for register allocator;
//
// B) EmitNativeCode method that unpacks results of register allocation from
// LocationSummary and uses them to generate native code.
//
// Helpers contained in this file allow to "autogenerate" both of these methods
// from a single *emitter* function that has the following signature:
//
// void Emitter(FlowGraphCompiler*,
// Instr* instr,
// OutType out,
// InputType1 v1, ...)
//
// Here Instr is the type of the instruction, OutType is a type of an output
// register and InputType1, InputType2, etc are register types for inputs or
// temps.
//
// To create LocationSummary from emitter's signature invoke
//
// MakeLocationSummaryFromEmitter(zone, instr, &Emitter);
//
// To unpack allocation results from LocationSummary and call emitter write
//
// InvokeEmitter(zone, instr, &Emitter)
//
// See DEFINE_BACKEND macro below that can be used to do that.
//
// In addition to supporting Register and FpuRegister types several markers can
// be used to denote various register constraints, e.g. SameAsFirstInput, Fixed
// and Temp. See below.
//
#ifndef RUNTIME_VM_COMPILER_BACKEND_LOCATIONS_HELPERS_H_
#define RUNTIME_VM_COMPILER_BACKEND_LOCATIONS_HELPERS_H_
#if defined(DART_PRECOMPILED_RUNTIME)
#error "AOT runtime should not use compiler sources (including header files)"
#endif // defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/backend/locations.h"
namespace dart {
// Forward declarations.
class FlowGraphCompiler;
#define DEFINE_BACKEND(Name, Args) \
static void EmitterFor##Name(FlowGraphCompiler* compiler, \
Name##Instr* instr, PP_APPLY(PP_UNPACK, Args)); \
LocationSummary* Name##Instr::MakeLocationSummary(Zone* zone, bool opt) \
const { \
return MakeLocationSummaryFromEmitter(zone, this, &EmitterFor##Name); \
} \
void Name##Instr::EmitNativeCode(FlowGraphCompiler* compiler) { \
InvokeEmitter(compiler, this, &EmitterFor##Name); \
} \
static void EmitterFor##Name(FlowGraphCompiler* compiler, \
Name##Instr* instr, PP_APPLY(PP_UNPACK, Args))
#define PP_UNPACK(...) __VA_ARGS__
#define PP_APPLY(a, b) a b
// Trait that specifies how different types of locations (e.g. Register,
// FpuRegister) can be extracted from Location objects and how register
// constraints can be created for different location types and markers like
// Temp, Fixed and SameAsFirstInput.
template <typename T>
struct LocationTrait;
// Marker type used to signal that output has SameAsFirstInput register
// constraint, which means that the first input needs to be in a writable
// register and the instruction will produce output in the same register.
struct SameAsFirstInput {};
// Marker type used to signal that output has NoLocation register
// constraint.
struct NoLocation {};
// Marker type used to signal that this input, output or temp needs to
// be in a fixed register `reg` of type `R` (either Register or FpuRegister).
template <typename R, R reg>
struct Fixed {
// Allow implicit coercion of Fixed<R, ...> to R.
operator R() { return reg; }
};
// Marker type to signal that emitter needs a temporary register of type R.
template <typename R>
class Temp {
private:
typedef typename LocationTrait<R>::RegisterType RegisterType;
public:
explicit Temp(R reg) : reg_(reg) {}
operator RegisterType() { return reg_; }
private:
R reg_;
};
// Implementation of MakeLocationSummaryFromEmitter and InvokeEmitter.
template <>
struct LocationTrait<Register> {
typedef Register RegisterType;
static const bool kIsTemp = false; // This is not a temporary.
static Register Unwrap(const Location& loc) { return loc.reg(); }
template <intptr_t arity, intptr_t index>
static Register UnwrapInput(LocationSummary* locs) {
return Unwrap(locs->in(index));
}
template <intptr_t arity, intptr_t index>
static void SetInputConstraint(LocationSummary* locs) {
locs->set_in(index, ToConstraint());
}
static Location ToConstraint() { return Location::RequiresRegister(); }
static Location ToFixedConstraint(Register reg) {
return Location::RegisterLocation(reg);
}
};
template <>
struct LocationTrait<FpuRegister> {
typedef FpuRegister RegisterType;
static const bool kIsTemp = false; // This is not a temporary.
static FpuRegister Unwrap(const Location& loc) { return loc.fpu_reg(); }
template <intptr_t arity, intptr_t index>
static FpuRegister UnwrapInput(LocationSummary* locs) {
return Unwrap(locs->in(index));
}
template <intptr_t arity, intptr_t index>
static void SetInputConstraint(LocationSummary* locs) {
locs->set_in(index, ToConstraint());
}
static Location ToConstraint() { return Location::RequiresFpuRegister(); }
static Location ToFixedConstraint(FpuRegister reg) {
return Location::FpuRegisterLocation(reg);
}
};
template <typename R, R reg>
struct LocationTrait<Fixed<R, reg> > {
typedef R RegisterType;
static const bool kIsTemp = false; // This is not a temporary.
static Fixed<R, reg> Unwrap(const Location& loc) {
ASSERT(LocationTrait<R>::Unwrap(loc) == reg);
return Fixed<R, reg>();
}
template <intptr_t arity, intptr_t index>
static Fixed<R, reg> UnwrapInput(LocationSummary* locs) {
return Unwrap(locs->in(index));
}
template <intptr_t arity, intptr_t index>
static void SetInputConstraint(LocationSummary* locs) {
locs->set_in(index, ToConstraint());
}
static Location ToConstraint() {
return LocationTrait<R>::ToFixedConstraint(reg);
}
};
template <typename RegisterType>
struct LocationTrait<Temp<RegisterType> > {
static const bool kIsTemp = true; // This is a temporary.
static Temp<RegisterType> Unwrap(const Location& loc) {
return Temp<RegisterType>(LocationTrait<RegisterType>::Unwrap(loc));
}
template <intptr_t arity, intptr_t index>
static Temp<RegisterType> UnwrapInput(LocationSummary* locs) {
return Unwrap(locs->temp(index - arity));
}
template <intptr_t arity, intptr_t index>
static void SetInputConstraint(LocationSummary* locs) {
locs->set_temp(index - arity, ToConstraint());
}
static Location ToConstraint() {
return LocationTrait<RegisterType>::ToConstraint();
}
};
template <>
struct LocationTrait<SameAsFirstInput> {
static const bool kIsTemp = false; // This is not a temporary.
static SameAsFirstInput Unwrap(const Location& loc) {
return SameAsFirstInput();
}
static Location ToConstraint() { return Location::SameAsFirstInput(); }
};
template <>
struct LocationTrait<NoLocation> {
static const bool kIsTemp = false; // This is not a temporary.
static NoLocation Unwrap(const Location& loc) { return NoLocation(); }
static Location ToConstraint() { return Location::NoLocation(); }
};
// Auxiliary types and macro helpers to construct lists of types.
// TODO(vegorov) rewrite this using variadic templates when we enable C++11
struct Nil;
template <typename T, typename U>
struct Cons {};
#define TYPE_LIST_0() Nil
#define TYPE_LIST_1(T0) Cons<T0, TYPE_LIST_0()>
#define TYPE_LIST_2(T0, T1) Cons<T0, TYPE_LIST_1(T1)>
#define TYPE_LIST_3(T0, T1, T2) Cons<T0, TYPE_LIST_2(T1, T2)>
#define TYPE_LIST_4(T0, T1, T2, T3) Cons<T0, TYPE_LIST_3(T1, T2, T3)>
#define TYPE_LIST_5(T0, T1, T2, T3, T4) Cons<T0, TYPE_LIST_4(T1, T2, T3, T4)>
// SignatureTrait is a recursively defined type that calculates InputCount and
// TempCount for a signature and can be used to invoke SetInputConstraint for
// each type in a signature to populate location summary with correct
// constraints.
#define SIGNATURE_TRAIT(Arity, Args) \
SignatureTrait<PP_APPLY(TYPE_LIST_##Arity, Args)>
template <typename T>
struct SignatureTrait;
template <>
struct SignatureTrait<Nil> {
enum { kArity = 0, kTempCount = 0, kInputCount = kArity - kTempCount };
template <intptr_t kArity, intptr_t kOffset>
static void SetConstraints(LocationSummary* locs) {}
};
template <typename T0, typename Tx>
struct SignatureTrait<Cons<T0, Tx> > {
typedef SignatureTrait<Tx> Tail;
enum {
kArity = 1 + Tail::kArity,
kTempCount = (LocationTrait<T0>::kIsTemp ? 1 : 0) + Tail::kTempCount,
kInputCount = kArity - kTempCount
};
template <intptr_t kArity, intptr_t kOffset>
static void SetConstraints(LocationSummary* locs) {
LocationTrait<T0>::template SetInputConstraint<kArity, kOffset>(locs);
Tail::template SetConstraints<kArity, kOffset + 1>(locs);
}
};
// MakeLocationSummaryFromEmitter overloadings below.
template <typename Instr, typename Out>
LocationSummary* MakeLocationSummaryFromEmitter(Zone* zone,
const Instr* instr,
void (*Emit)(FlowGraphCompiler*,
Instr*,
Out)) {
typedef SIGNATURE_TRAIT(0, ()) S;
ASSERT(instr->InputCount() == S::kInputCount);
LocationSummary* summary = new (zone) LocationSummary(
zone, S::kInputCount, S::kTempCount, LocationSummary::kNoCall);
summary->set_out(0, LocationTrait<Out>::ToConstraint());
return summary;
}
#define DEFINE_MAKE_LOCATION_SUMMARY_SPECIALIZATION(Arity, Types) \
LocationSummary* MakeLocationSummaryFromEmitter( \
Zone* zone, const Instr* instr, \
void (*Emit)(FlowGraphCompiler*, Instr*, Out, \
PP_APPLY(PP_UNPACK, Types))) { \
typedef SIGNATURE_TRAIT(Arity, Types) S; \
ASSERT(instr->InputCount() == S::kInputCount); \
LocationSummary* summary = new (zone) LocationSummary( \
zone, S::kInputCount, S::kTempCount, LocationSummary::kNoCall); \
S::template SetConstraints<S::kInputCount, 0>(summary); \
summary->set_out(0, LocationTrait<Out>::ToConstraint()); \
return summary; \
}
template <typename Instr, typename Out, typename T0>
DEFINE_MAKE_LOCATION_SUMMARY_SPECIALIZATION(1, (T0));
template <typename Instr, typename Out, typename T0, typename T1>
DEFINE_MAKE_LOCATION_SUMMARY_SPECIALIZATION(2, (T0, T1));
template <typename Instr, typename Out, typename T0, typename T1, typename T2>
DEFINE_MAKE_LOCATION_SUMMARY_SPECIALIZATION(3, (T0, T1, T2));
template <typename Instr,
typename Out,
typename T0,
typename T1,
typename T2,
typename T3>
DEFINE_MAKE_LOCATION_SUMMARY_SPECIALIZATION(4, (T0, T1, T2, T3));
template <typename Instr,
typename Out,
typename T0,
typename T1,
typename T2,
typename T3,
typename T4>
DEFINE_MAKE_LOCATION_SUMMARY_SPECIALIZATION(5, (T0, T1, T2, T3, T4));
// InvokeEmitter overloadings below.
template <typename Instr, typename Out>
void InvokeEmitter(FlowGraphCompiler* compiler,
Instr* instr,
void (*Emit)(FlowGraphCompiler*, Instr*, Out)) {
typedef SIGNATURE_TRAIT(0, ()) S;
ASSERT(instr->InputCount() == S::kInputCount);
LocationSummary* locs = instr->locs();
Emit(compiler, instr, LocationTrait<Out>::Unwrap(locs->out(0)));
}
template <typename Instr, typename Out, typename T0>
void InvokeEmitter(FlowGraphCompiler* compiler,
Instr* instr,
void (*Emit)(FlowGraphCompiler*, Instr*, Out, T0)) {
typedef SIGNATURE_TRAIT(1, (T0)) S;
ASSERT(instr->InputCount() == S::kInputCount);
LocationSummary* locs = instr->locs();
Emit(compiler, instr, LocationTrait<Out>::Unwrap(locs->out(0)),
LocationTrait<T0>::template UnwrapInput<S::kInputCount, 0>(locs));
}
template <typename Instr, typename Out, typename T0, typename T1>
void InvokeEmitter(FlowGraphCompiler* compiler,
Instr* instr,
void (*Emit)(FlowGraphCompiler*, Instr*, Out, T0, T1)) {
typedef SIGNATURE_TRAIT(2, (T0, T1)) S;
ASSERT(instr->InputCount() == S::kInputCount);
LocationSummary* locs = instr->locs();
Emit(compiler, instr, LocationTrait<Out>::Unwrap(locs->out(0)),
LocationTrait<T0>::template UnwrapInput<S::kInputCount, 0>(locs),
LocationTrait<T1>::template UnwrapInput<S::kInputCount, 1>(locs));
}
template <typename Instr, typename Out, typename T0, typename T1, typename T2>
void InvokeEmitter(FlowGraphCompiler* compiler,
Instr* instr,
void (*Emit)(FlowGraphCompiler*, Instr*, Out, T0, T1, T2)) {
typedef SIGNATURE_TRAIT(3, (T0, T1, T2)) S;
ASSERT(instr->InputCount() == S::kInputCount);
LocationSummary* locs = instr->locs();
Emit(compiler, instr, LocationTrait<Out>::Unwrap(locs->out(0)),
LocationTrait<T0>::template UnwrapInput<S::kInputCount, 0>(locs),
LocationTrait<T1>::template UnwrapInput<S::kInputCount, 1>(locs),
LocationTrait<T2>::template UnwrapInput<S::kInputCount, 2>(locs));
}
template <typename Instr,
typename Out,
typename T0,
typename T1,
typename T2,
typename T3>
void InvokeEmitter(
FlowGraphCompiler* compiler,
Instr* instr,
void (*Emit)(FlowGraphCompiler*, Instr*, Out, T0, T1, T2, T3)) {
typedef SIGNATURE_TRAIT(4, (T0, T1, T2, T3)) S;
ASSERT(instr->InputCount() == S::kInputCount);
LocationSummary* locs = instr->locs();
Emit(compiler, instr, LocationTrait<Out>::Unwrap(locs->out(0)),
LocationTrait<T0>::template UnwrapInput<S::kInputCount, 0>(locs),
LocationTrait<T1>::template UnwrapInput<S::kInputCount, 1>(locs),
LocationTrait<T2>::template UnwrapInput<S::kInputCount, 2>(locs),
LocationTrait<T3>::template UnwrapInput<S::kInputCount, 3>(locs));
}
template <typename Instr,
typename Out,
typename T0,
typename T1,
typename T2,
typename T3,
typename T4>
void InvokeEmitter(
FlowGraphCompiler* compiler,
Instr* instr,
void (*Emit)(FlowGraphCompiler*, Instr*, Out, T0, T1, T2, T3, T4)) {
typedef SIGNATURE_TRAIT(5, (T0, T1, T2, T3, T4)) S;
ASSERT(instr->InputCount() == S::kInputCount);
LocationSummary* locs = instr->locs();
Emit(compiler, instr, LocationTrait<Out>::Unwrap(locs->out(0)),
LocationTrait<T0>::template UnwrapInput<S::kInputCount, 0>(locs),
LocationTrait<T1>::template UnwrapInput<S::kInputCount, 1>(locs),
LocationTrait<T2>::template UnwrapInput<S::kInputCount, 2>(locs),
LocationTrait<T3>::template UnwrapInput<S::kInputCount, 3>(locs),
LocationTrait<T4>::template UnwrapInput<S::kInputCount, 4>(locs));
}
} // namespace dart
#if defined(TARGET_ARCH_IA32)
#elif defined(TARGET_ARCH_X64)
#elif defined(TARGET_ARCH_ARM)
#include "vm/compiler/backend/locations_helpers_arm.h"
#elif defined(TARGET_ARCH_ARM64)
#else
#error Unknown architecture.
#endif
#endif // RUNTIME_VM_COMPILER_BACKEND_LOCATIONS_HELPERS_H_