| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| // A combined disassembler for IA32 and X64. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_xxx. |
| #if defined(TARGET_ARCH_X64) || defined(TARGET_ARCH_IA32) |
| |
| #include "vm/compiler/assembler/disassembler.h" |
| |
| #include "platform/unaligned.h" |
| #include "platform/utils.h" |
| #include "vm/allocation.h" |
| #include "vm/constants_x86.h" |
| #include "vm/heap/heap.h" |
| #include "vm/instructions.h" |
| #include "vm/os.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| |
| namespace dart { |
| |
| #if !defined(PRODUCT) || defined(FORCE_INCLUDE_DISASSEMBLER) |
| |
| enum OperandType { |
| UNSET_OP_ORDER = 0, |
| // Operand size decides between 16, 32 and 64 bit operands. |
| REG_OPER_OP_ORDER = 1, // Register destination, operand source. |
| OPER_REG_OP_ORDER = 2, // Operand destination, register source. |
| // Fixed 8-bit operands. |
| BYTE_SIZE_OPERAND_FLAG = 4, |
| BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG, |
| BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG |
| }; |
| |
| //------------------------------------------------------------------ |
| // Tables |
| //------------------------------------------------------------------ |
| struct ByteMnemonic { |
| int b; // -1 terminates, otherwise must be in range (0..255) |
| OperandType op_order_; |
| const char* mnem; |
| }; |
| |
| #define ALU_ENTRY(name, code) \ |
| {code * 8 + 0, BYTE_OPER_REG_OP_ORDER, #name}, \ |
| {code * 8 + 1, OPER_REG_OP_ORDER, #name}, \ |
| {code * 8 + 2, BYTE_REG_OPER_OP_ORDER, #name}, \ |
| {code * 8 + 3, REG_OPER_OP_ORDER, #name}, |
| static const ByteMnemonic two_operands_instr[] = { |
| X86_ALU_CODES(ALU_ENTRY){0x63, REG_OPER_OP_ORDER, "movsxd"}, |
| {0x84, BYTE_REG_OPER_OP_ORDER, "test"}, |
| {0x85, REG_OPER_OP_ORDER, "test"}, |
| {0x86, BYTE_REG_OPER_OP_ORDER, "xchg"}, |
| {0x87, REG_OPER_OP_ORDER, "xchg"}, |
| {0x88, BYTE_OPER_REG_OP_ORDER, "mov"}, |
| {0x89, OPER_REG_OP_ORDER, "mov"}, |
| {0x8A, BYTE_REG_OPER_OP_ORDER, "mov"}, |
| {0x8B, REG_OPER_OP_ORDER, "mov"}, |
| {0x8D, REG_OPER_OP_ORDER, "lea"}, |
| {-1, UNSET_OP_ORDER, ""}}; |
| |
| #define ZERO_OPERAND_ENTRY(name, opcode) {opcode, UNSET_OP_ORDER, #name}, |
| static const ByteMnemonic zero_operands_instr[] = { |
| X86_ZERO_OPERAND_1_BYTE_INSTRUCTIONS(ZERO_OPERAND_ENTRY){-1, UNSET_OP_ORDER, |
| ""}}; |
| |
| static const ByteMnemonic call_jump_instr[] = {{0xE8, UNSET_OP_ORDER, "call"}, |
| {0xE9, UNSET_OP_ORDER, "jmp"}, |
| {-1, UNSET_OP_ORDER, ""}}; |
| |
| #define SHORT_IMMEDIATE_ENTRY(name, code) {code * 8 + 5, UNSET_OP_ORDER, #name}, |
| static const ByteMnemonic short_immediate_instr[] = { |
| X86_ALU_CODES(SHORT_IMMEDIATE_ENTRY){-1, UNSET_OP_ORDER, ""}}; |
| |
| static const char* const conditional_code_suffix[] = { |
| #define STRINGIFY(name, number) #name, |
| X86_CONDITIONAL_SUFFIXES(STRINGIFY) |
| #undef STRINGIFY |
| }; |
| |
| #define STRINGIFY_NAME(name, code) #name, |
| static const char* const xmm_conditional_code_suffix[] = { |
| XMM_CONDITIONAL_CODES(STRINGIFY_NAME)}; |
| #undef STRINGIFY_NAME |
| |
| enum InstructionType { |
| NO_INSTR, |
| ZERO_OPERANDS_INSTR, |
| TWO_OPERANDS_INSTR, |
| JUMP_CONDITIONAL_SHORT_INSTR, |
| REGISTER_INSTR, |
| PUSHPOP_INSTR, // Has implicit 64-bit operand size. |
| MOVE_REG_INSTR, |
| CALL_JUMP_INSTR, |
| SHORT_IMMEDIATE_INSTR |
| }; |
| |
| enum Prefixes { |
| ESCAPE_PREFIX = 0x0F, |
| OPERAND_SIZE_OVERRIDE_PREFIX = 0x66, |
| ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67, |
| REPNE_PREFIX = 0xF2, |
| REP_PREFIX = 0xF3, |
| REPEQ_PREFIX = REP_PREFIX |
| }; |
| |
| struct XmmMnemonic { |
| const char* ps_name; |
| const char* pd_name; |
| const char* ss_name; |
| const char* sd_name; |
| }; |
| |
| #define XMM_INSTRUCTION_ENTRY(name, code) \ |
| {#name "ps", #name "pd", #name "ss", #name "sd"}, |
| static const XmmMnemonic xmm_instructions[] = { |
| XMM_ALU_CODES(XMM_INSTRUCTION_ENTRY)}; |
| |
| struct InstructionDesc { |
| const char* mnem; |
| InstructionType type; |
| OperandType op_order_; |
| bool byte_size_operation; // Fixed 8-bit operation. |
| }; |
| |
| class InstructionTable : public ValueObject { |
| public: |
| InstructionTable(); |
| const InstructionDesc& Get(uint8_t x) const { return instructions_[x]; } |
| |
| private: |
| InstructionDesc instructions_[256]; |
| void Clear(); |
| void Init(); |
| void CopyTable(const ByteMnemonic bm[], InstructionType type); |
| void SetTableRange(InstructionType type, |
| uint8_t start, |
| uint8_t end, |
| bool byte_size, |
| const char* mnem); |
| void AddJumpConditionalShort(); |
| |
| DISALLOW_COPY_AND_ASSIGN(InstructionTable); |
| }; |
| |
| InstructionTable::InstructionTable() { |
| Clear(); |
| Init(); |
| } |
| |
| void InstructionTable::Clear() { |
| for (int i = 0; i < 256; i++) { |
| instructions_[i].mnem = "(bad)"; |
| instructions_[i].type = NO_INSTR; |
| instructions_[i].op_order_ = UNSET_OP_ORDER; |
| instructions_[i].byte_size_operation = false; |
| } |
| } |
| |
| void InstructionTable::Init() { |
| CopyTable(two_operands_instr, TWO_OPERANDS_INSTR); |
| CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR); |
| CopyTable(call_jump_instr, CALL_JUMP_INSTR); |
| CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR); |
| AddJumpConditionalShort(); |
| SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push"); |
| SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop"); |
| SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov"); |
| } |
| |
| void InstructionTable::CopyTable(const ByteMnemonic bm[], |
| InstructionType type) { |
| for (int i = 0; bm[i].b >= 0; i++) { |
| InstructionDesc* id = &instructions_[bm[i].b]; |
| id->mnem = bm[i].mnem; |
| OperandType op_order = bm[i].op_order_; |
| id->op_order_ = |
| static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG); |
| ASSERT(NO_INSTR == id->type); // Information not already entered |
| id->type = type; |
| id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0); |
| } |
| } |
| |
| void InstructionTable::SetTableRange(InstructionType type, |
| uint8_t start, |
| uint8_t end, |
| bool byte_size, |
| const char* mnem) { |
| for (uint8_t b = start; b <= end; b++) { |
| InstructionDesc* id = &instructions_[b]; |
| ASSERT(NO_INSTR == id->type); // Information not already entered |
| id->mnem = mnem; |
| id->type = type; |
| id->byte_size_operation = byte_size; |
| } |
| } |
| |
| void InstructionTable::AddJumpConditionalShort() { |
| for (uint8_t b = 0x70; b <= 0x7F; b++) { |
| InstructionDesc* id = &instructions_[b]; |
| ASSERT(NO_INSTR == id->type); // Information not already entered |
| id->mnem = NULL; // Computed depending on condition code. |
| id->type = JUMP_CONDITIONAL_SHORT_INSTR; |
| } |
| } |
| |
| static InstructionTable instruction_table; |
| |
| static const InstructionDesc cmov_instructions[16] = { |
| {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}, |
| {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}}; |
| |
| //------------------------------------------------- |
| // DisassemblerX64 implementation. |
| |
| static const int kMaxXmmRegisters = 16; |
| static const char* xmm_regs[kMaxXmmRegisters] = { |
| "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", |
| "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}; |
| |
| class DisassemblerX64 : public ValueObject { |
| public: |
| DisassemblerX64(char* buffer, intptr_t buffer_size) |
| : buffer_(buffer), |
| buffer_size_(buffer_size), |
| buffer_pos_(0), |
| rex_(0), |
| operand_size_(0), |
| group_1_prefix_(0), |
| byte_size_operand_(false) { |
| buffer_[buffer_pos_] = '\0'; |
| } |
| |
| virtual ~DisassemblerX64() {} |
| |
| int InstructionDecode(uword pc); |
| |
| private: |
| enum OperandSize { |
| BYTE_SIZE = 0, |
| WORD_SIZE = 1, |
| DOUBLEWORD_SIZE = 2, |
| QUADWORD_SIZE = 3 |
| }; |
| |
| void setRex(uint8_t rex) { |
| ASSERT(0x40 == (rex & 0xF0)); |
| rex_ = rex; |
| } |
| |
| bool rex() { return rex_ != 0; } |
| |
| bool rex_b() { return (rex_ & 0x01) != 0; } |
| |
| // Actual number of base register given the low bits and the rex.b state. |
| int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); } |
| |
| bool rex_x() { return (rex_ & 0x02) != 0; } |
| |
| bool rex_r() { return (rex_ & 0x04) != 0; } |
| |
| bool rex_w() { return (rex_ & 0x08) != 0; } |
| |
| OperandSize operand_size() { |
| if (byte_size_operand_) return BYTE_SIZE; |
| if (rex_w()) return QUADWORD_SIZE; |
| if (operand_size_ != 0) return WORD_SIZE; |
| return DOUBLEWORD_SIZE; |
| } |
| |
| const char* operand_size_code() { |
| #if defined(TARGET_ARCH_X64) |
| return &"b\0w\0l\0q\0"[2 * operand_size()]; |
| #else |
| // We omit the 'l' suffix on IA32. |
| return &"b\0w\0\0\0q\0"[2 * operand_size()]; |
| #endif |
| } |
| |
| // Disassembler helper functions. |
| void get_modrm(uint8_t data, int* mod, int* regop, int* rm) { |
| *mod = (data >> 6) & 3; |
| *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0); |
| *rm = (data & 7) | (rex_b() ? 8 : 0); |
| ASSERT(*rm < kNumberOfCpuRegisters); |
| } |
| |
| void get_sib(uint8_t data, int* scale, int* index, int* base) { |
| *scale = (data >> 6) & 3; |
| *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0); |
| *base = (data & 7) | (rex_b() ? 8 : 0); |
| ASSERT(*base < kNumberOfCpuRegisters); |
| } |
| |
| const char* NameOfCPURegister(int reg) const { |
| return RegisterNames::RegisterName(static_cast<Register>(reg)); |
| } |
| |
| const char* NameOfByteCPURegister(int reg) const { |
| return NameOfCPURegister(reg); |
| } |
| |
| // A way to get rax or eax's name. |
| const char* Rax() const { return NameOfCPURegister(0); } |
| |
| const char* NameOfXMMRegister(int reg) const { |
| ASSERT((0 <= reg) && (reg < kMaxXmmRegisters)); |
| return xmm_regs[reg]; |
| } |
| |
| void Print(const char* format, ...) PRINTF_ATTRIBUTE(2, 3); |
| void PrintJump(uint8_t* pc, int32_t disp); |
| void PrintAddress(uint8_t* addr); |
| |
| int PrintOperands(const char* mnem, OperandType op_order, uint8_t* data); |
| |
| typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const; |
| |
| int PrintRightOperandHelper(uint8_t* modrmp, |
| RegisterNameMapping register_name); |
| int PrintRightOperand(uint8_t* modrmp); |
| int PrintRightByteOperand(uint8_t* modrmp); |
| int PrintRightXMMOperand(uint8_t* modrmp); |
| void PrintDisp(int disp, const char* after); |
| int PrintImmediate(uint8_t* data, OperandSize size, bool sign_extend = false); |
| void PrintImmediateValue(int64_t value, |
| bool signed_value = false, |
| int byte_count = -1); |
| int PrintImmediateOp(uint8_t* data); |
| const char* TwoByteMnemonic(uint8_t opcode); |
| int TwoByteOpcodeInstruction(uint8_t* data); |
| int Print660F38Instruction(uint8_t* data); |
| |
| int F6F7Instruction(uint8_t* data); |
| int ShiftInstruction(uint8_t* data); |
| int JumpShort(uint8_t* data); |
| int JumpConditional(uint8_t* data); |
| int JumpConditionalShort(uint8_t* data); |
| int SetCC(uint8_t* data); |
| int FPUInstruction(uint8_t* data); |
| int MemoryFPUInstruction(int escape_opcode, int regop, uint8_t* modrm_start); |
| int RegisterFPUInstruction(int escape_opcode, uint8_t modrm_byte); |
| |
| bool DecodeInstructionType(uint8_t** data); |
| |
| void UnimplementedInstruction() { UNREACHABLE(); } |
| |
| char* buffer_; // Decode instructions into this buffer. |
| intptr_t buffer_size_; // The size of the buffer_. |
| intptr_t buffer_pos_; // Current character position in the buffer_. |
| |
| // Prefixes parsed |
| uint8_t rex_; |
| uint8_t operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0. |
| // 0xF2, 0xF3, or (if no group 1 prefix is present) 0. |
| uint8_t group_1_prefix_; |
| // Byte size operand override. |
| bool byte_size_operand_; |
| |
| DISALLOW_COPY_AND_ASSIGN(DisassemblerX64); |
| }; |
| |
| // Append the str to the output buffer. |
| void DisassemblerX64::Print(const char* format, ...) { |
| intptr_t available = buffer_size_ - buffer_pos_; |
| if (available <= 1) { |
| ASSERT(buffer_[buffer_pos_] == '\0'); |
| return; |
| } |
| char* buf = buffer_ + buffer_pos_; |
| va_list args; |
| va_start(args, format); |
| int length = Utils::VSNPrint(buf, available, format, args); |
| va_end(args); |
| buffer_pos_ = |
| (length >= available) ? (buffer_size_ - 1) : (buffer_pos_ + length); |
| ASSERT(buffer_pos_ < buffer_size_); |
| } |
| |
| int DisassemblerX64::PrintRightOperandHelper( |
| uint8_t* modrmp, |
| RegisterNameMapping direct_register_name) { |
| int mod, regop, rm; |
| get_modrm(*modrmp, &mod, ®op, &rm); |
| RegisterNameMapping register_name = |
| (mod == 3) ? direct_register_name : &DisassemblerX64::NameOfCPURegister; |
| switch (mod) { |
| case 0: |
| if ((rm & 7) == 5) { |
| int32_t disp = LoadUnaligned(reinterpret_cast<int32_t*>(modrmp + 1)); |
| Print("[rip"); |
| PrintDisp(disp, "]"); |
| return 5; |
| } else if ((rm & 7) == 4) { |
| // Codes for SIB byte. |
| uint8_t sib = *(modrmp + 1); |
| int scale, index, base; |
| get_sib(sib, &scale, &index, &base); |
| if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) { |
| // index == rsp means no index. Only use sib byte with no index for |
| // rsp and r12 base. |
| Print("[%s]", NameOfCPURegister(base)); |
| return 2; |
| } else if (base == 5) { |
| // base == rbp means no base register (when mod == 0). |
| int32_t disp = LoadUnaligned(reinterpret_cast<int32_t*>(modrmp + 2)); |
| Print("[%s*%d", NameOfCPURegister(index), 1 << scale); |
| PrintDisp(disp, "]"); |
| return 6; |
| } else if (index != 4 && base != 5) { |
| // [base+index*scale] |
| Print("[%s+%s*%d]", NameOfCPURegister(base), NameOfCPURegister(index), |
| 1 << scale); |
| return 2; |
| } else { |
| UnimplementedInstruction(); |
| return 1; |
| } |
| } else { |
| Print("[%s]", NameOfCPURegister(rm)); |
| return 1; |
| } |
| break; |
| case 1: |
| FALL_THROUGH; |
| case 2: |
| if ((rm & 7) == 4) { |
| uint8_t sib = *(modrmp + 1); |
| int scale, index, base; |
| get_sib(sib, &scale, &index, &base); |
| int disp = (mod == 2) |
| ? LoadUnaligned(reinterpret_cast<int32_t*>(modrmp + 2)) |
| : *reinterpret_cast<int8_t*>(modrmp + 2); |
| if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) { |
| Print("[%s", NameOfCPURegister(base)); |
| PrintDisp(disp, "]"); |
| } else { |
| Print("[%s+%s*%d", NameOfCPURegister(base), NameOfCPURegister(index), |
| 1 << scale); |
| PrintDisp(disp, "]"); |
| } |
| return mod == 2 ? 6 : 3; |
| } else { |
| // No sib. |
| int disp = (mod == 2) |
| ? LoadUnaligned(reinterpret_cast<int32_t*>(modrmp + 1)) |
| : *reinterpret_cast<int8_t*>(modrmp + 1); |
| Print("[%s", NameOfCPURegister(rm)); |
| PrintDisp(disp, "]"); |
| return (mod == 2) ? 5 : 2; |
| } |
| break; |
| case 3: |
| Print("%s", (this->*register_name)(rm)); |
| return 1; |
| default: |
| UnimplementedInstruction(); |
| return 1; |
| } |
| UNREACHABLE(); |
| } |
| |
| int DisassemblerX64::PrintImmediate(uint8_t* data, |
| OperandSize size, |
| bool sign_extend) { |
| int64_t value; |
| int count; |
| switch (size) { |
| case BYTE_SIZE: |
| if (sign_extend) { |
| value = *reinterpret_cast<int8_t*>(data); |
| } else { |
| value = *data; |
| } |
| count = 1; |
| break; |
| case WORD_SIZE: |
| if (sign_extend) { |
| value = LoadUnaligned(reinterpret_cast<int16_t*>(data)); |
| } else { |
| value = LoadUnaligned(reinterpret_cast<uint16_t*>(data)); |
| } |
| count = 2; |
| break; |
| case DOUBLEWORD_SIZE: |
| case QUADWORD_SIZE: |
| if (sign_extend) { |
| value = LoadUnaligned(reinterpret_cast<int32_t*>(data)); |
| } else { |
| value = LoadUnaligned(reinterpret_cast<uint32_t*>(data)); |
| } |
| count = 4; |
| break; |
| default: |
| UNREACHABLE(); |
| value = 0; // Initialize variables on all paths to satisfy the compiler. |
| count = 0; |
| } |
| PrintImmediateValue(value, sign_extend, count); |
| return count; |
| } |
| |
| void DisassemblerX64::PrintImmediateValue(int64_t value, |
| bool signed_value, |
| int byte_count) { |
| if ((value >= 0) && (value <= 9)) { |
| Print("%" Pd64, value); |
| } else if (signed_value && (value < 0) && (value >= -9)) { |
| Print("-%" Pd64, -value); |
| } else { |
| if (byte_count == 1) { |
| int8_t v8 = static_cast<int8_t>(value); |
| if (v8 < 0 && signed_value) { |
| Print("-%#" Px32, -static_cast<uint8_t>(v8)); |
| } else { |
| Print("%#" Px32, static_cast<uint8_t>(v8)); |
| } |
| } else if (byte_count == 2) { |
| int16_t v16 = static_cast<int16_t>(value); |
| if (v16 < 0 && signed_value) { |
| Print("-%#" Px32, -static_cast<uint16_t>(v16)); |
| } else { |
| Print("%#" Px32, static_cast<uint16_t>(v16)); |
| } |
| } else if (byte_count == 4) { |
| int32_t v32 = static_cast<int32_t>(value); |
| if (v32 < 0 && signed_value) { |
| Print("-%#010" Px32, -static_cast<uint32_t>(v32)); |
| } else { |
| if (v32 > 0xffff) { |
| Print("%#010" Px32, v32); |
| } else { |
| Print("%#" Px32, v32); |
| } |
| } |
| } else if (byte_count == 8) { |
| int64_t v64 = static_cast<int64_t>(value); |
| if (v64 < 0 && signed_value) { |
| Print("-%#018" Px64, -static_cast<uint64_t>(v64)); |
| } else { |
| if (v64 > 0xffffffffll) { |
| Print("%#018" Px64, v64); |
| } else { |
| Print("%#" Px64, v64); |
| } |
| } |
| } else { |
| // Natural-sized immediates. |
| #if defined(TARGET_ARCH_X64) |
| if (value < 0 && signed_value) { |
| Print("-%#" Px64, -value); |
| } else { |
| Print("%#" Px64, value); |
| } |
| #else |
| int32_t v32 = static_cast<int32_t>(value); |
| if (v32 < 0 && signed_value) { |
| Print("-%#" Px32, -v32); |
| } else { |
| Print("%#" Px32, v32); |
| } |
| #endif |
| } |
| } |
| } |
| |
| void DisassemblerX64::PrintDisp(int disp, const char* after) { |
| if (-disp > 0) { |
| Print("-%#x", -disp); |
| } else { |
| Print("+%#x", disp); |
| } |
| if (after != NULL) Print("%s", after); |
| } |
| |
| // Returns number of bytes used by machine instruction, including *data byte. |
| // Writes immediate instructions to 'tmp_buffer_'. |
| int DisassemblerX64::PrintImmediateOp(uint8_t* data) { |
| bool byte_size_immediate = (*data & 0x03) != 1; |
| uint8_t modrm = *(data + 1); |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| const char* mnem = "Imm???"; |
| switch (regop) { |
| case 0: |
| mnem = "add"; |
| break; |
| case 1: |
| mnem = "or"; |
| break; |
| case 2: |
| mnem = "adc"; |
| break; |
| case 3: |
| mnem = "sbb"; |
| break; |
| case 4: |
| mnem = "and"; |
| break; |
| case 5: |
| mnem = "sub"; |
| break; |
| case 6: |
| mnem = "xor"; |
| break; |
| case 7: |
| mnem = "cmp"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| Print("%s%s ", mnem, operand_size_code()); |
| int count = PrintRightOperand(data + 1); |
| Print(","); |
| OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size(); |
| count += |
| PrintImmediate(data + 1 + count, immediate_size, byte_size_immediate); |
| return 1 + count; |
| } |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::F6F7Instruction(uint8_t* data) { |
| ASSERT(*data == 0xF7 || *data == 0xF6); |
| uint8_t modrm = *(data + 1); |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| static const char* const mnemonics[] = {"test", NULL, "not", "neg", |
| "mul", "imul", "div", "idiv"}; |
| const char* mnem = mnemonics[regop]; |
| if (mod == 3 && regop != 0) { |
| if (regop > 3) { |
| // These are instructions like idiv that implicitly use EAX and EDX as a |
| // source and destination. We make this explicit in the disassembly. |
| Print("%s%s (%s,%s),%s", mnem, operand_size_code(), Rax(), |
| NameOfCPURegister(2), NameOfCPURegister(rm)); |
| } else { |
| Print("%s%s %s", mnem, operand_size_code(), NameOfCPURegister(rm)); |
| } |
| return 2; |
| } else if (regop == 0) { |
| Print("test%s ", operand_size_code()); |
| int count = PrintRightOperand(data + 1); // Use name of 64-bit register. |
| Print(","); |
| count += PrintImmediate(data + 1 + count, operand_size()); |
| return 1 + count; |
| } else if (regop >= 4) { |
| Print("%s%s (%s,%s),", mnem, operand_size_code(), Rax(), |
| NameOfCPURegister(2)); |
| return 1 + PrintRightOperand(data + 1); |
| } else { |
| UnimplementedInstruction(); |
| return 2; |
| } |
| } |
| |
| int DisassemblerX64::ShiftInstruction(uint8_t* data) { |
| // C0/C1: Shift Imm8 |
| // D0/D1: Shift 1 |
| // D2/D3: Shift CL |
| uint8_t op = *data & (~1); |
| if (op != 0xD0 && op != 0xD2 && op != 0xC0) { |
| UnimplementedInstruction(); |
| return 1; |
| } |
| uint8_t* modrm = data + 1; |
| int mod, regop, rm; |
| get_modrm(*modrm, &mod, ®op, &rm); |
| regop &= 0x7; // The REX.R bit does not affect the operation. |
| int num_bytes = 1; |
| const char* mnem = NULL; |
| switch (regop) { |
| case 0: |
| mnem = "rol"; |
| break; |
| case 1: |
| mnem = "ror"; |
| break; |
| case 2: |
| mnem = "rcl"; |
| break; |
| case 3: |
| mnem = "rcr"; |
| break; |
| case 4: |
| mnem = "shl"; |
| break; |
| case 5: |
| mnem = "shr"; |
| break; |
| case 7: |
| mnem = "sar"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| return num_bytes; |
| } |
| ASSERT(NULL != mnem); |
| Print("%s%s ", mnem, operand_size_code()); |
| if (byte_size_operand_) { |
| num_bytes += PrintRightByteOperand(modrm); |
| } else { |
| num_bytes += PrintRightOperand(modrm); |
| } |
| |
| if (op == 0xD0) { |
| Print(",1"); |
| } else if (op == 0xC0) { |
| uint8_t imm8 = *(data + num_bytes); |
| Print(",%d", imm8); |
| num_bytes++; |
| } else { |
| ASSERT(op == 0xD2); |
| Print(",cl"); |
| } |
| return num_bytes; |
| } |
| |
| int DisassemblerX64::PrintRightOperand(uint8_t* modrmp) { |
| return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfCPURegister); |
| } |
| |
| int DisassemblerX64::PrintRightByteOperand(uint8_t* modrmp) { |
| return PrintRightOperandHelper(modrmp, |
| &DisassemblerX64::NameOfByteCPURegister); |
| } |
| |
| int DisassemblerX64::PrintRightXMMOperand(uint8_t* modrmp) { |
| return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfXMMRegister); |
| } |
| |
| // Returns number of bytes used including the current *data. |
| // Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'. |
| int DisassemblerX64::PrintOperands(const char* mnem, |
| OperandType op_order, |
| uint8_t* data) { |
| uint8_t modrm = *data; |
| int mod, regop, rm; |
| get_modrm(modrm, &mod, ®op, &rm); |
| int advance = 0; |
| const char* register_name = byte_size_operand_ ? NameOfByteCPURegister(regop) |
| : NameOfCPURegister(regop); |
| switch (op_order) { |
| case REG_OPER_OP_ORDER: { |
| Print("%s%s %s,", mnem, operand_size_code(), register_name); |
| advance = byte_size_operand_ ? PrintRightByteOperand(data) |
| : PrintRightOperand(data); |
| break; |
| } |
| case OPER_REG_OP_ORDER: { |
| Print("%s%s ", mnem, operand_size_code()); |
| advance = byte_size_operand_ ? PrintRightByteOperand(data) |
| : PrintRightOperand(data); |
| Print(",%s", register_name); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| return advance; |
| } |
| |
| void DisassemblerX64::PrintJump(uint8_t* pc, int32_t disp) { |
| if (FLAG_disassemble_relative) { |
| Print("%+d", disp); |
| } else { |
| PrintAddress( |
| reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(pc) + disp)); |
| } |
| } |
| |
| void DisassemblerX64::PrintAddress(uint8_t* addr_byte_ptr) { |
| #if defined(TARGET_ARCH_X64) |
| Print("%#018" Px64 "", reinterpret_cast<uint64_t>(addr_byte_ptr)); |
| #else |
| Print("%#010" Px32 "", reinterpret_cast<uint32_t>(addr_byte_ptr)); |
| #endif |
| |
| // Try to print as stub name. |
| uword addr = reinterpret_cast<uword>(addr_byte_ptr); |
| const char* name_of_stub = StubCode::NameOfStub(addr); |
| if (name_of_stub != NULL) { |
| Print(" [stub: %s]", name_of_stub); |
| } |
| } |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpShort(uint8_t* data) { |
| ASSERT(0xEB == *data); |
| uint8_t b = *(data + 1); |
| int32_t disp = static_cast<int8_t>(b) + 2; |
| Print("jmp "); |
| PrintJump(data, disp); |
| return 2; |
| } |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpConditional(uint8_t* data) { |
| ASSERT(0x0F == *data); |
| uint8_t cond = *(data + 1) & 0x0F; |
| int32_t disp = LoadUnaligned(reinterpret_cast<int32_t*>(data + 2)) + 6; |
| const char* mnem = conditional_code_suffix[cond]; |
| Print("j%s ", mnem); |
| PrintJump(data, disp); |
| return 6; // includes 0x0F |
| } |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::JumpConditionalShort(uint8_t* data) { |
| uint8_t cond = *data & 0x0F; |
| uint8_t b = *(data + 1); |
| int32_t disp = static_cast<int8_t>(b) + 2; |
| const char* mnem = conditional_code_suffix[cond]; |
| Print("j%s ", mnem); |
| PrintJump(data, disp); |
| return 2; |
| } |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::SetCC(uint8_t* data) { |
| ASSERT(0x0F == *data); |
| uint8_t cond = *(data + 1) & 0x0F; |
| const char* mnem = conditional_code_suffix[cond]; |
| Print("set%s%s ", mnem, operand_size_code()); |
| PrintRightByteOperand(data + 2); |
| return 3; // includes 0x0F |
| } |
| |
| // Returns number of bytes used, including *data. |
| int DisassemblerX64::FPUInstruction(uint8_t* data) { |
| uint8_t escape_opcode = *data; |
| ASSERT(0xD8 == (escape_opcode & 0xF8)); |
| uint8_t modrm_byte = *(data + 1); |
| |
| if (modrm_byte >= 0xC0) { |
| return RegisterFPUInstruction(escape_opcode, modrm_byte); |
| } else { |
| return MemoryFPUInstruction(escape_opcode, modrm_byte, data + 1); |
| } |
| } |
| |
| int DisassemblerX64::MemoryFPUInstruction(int escape_opcode, |
| int modrm_byte, |
| uint8_t* modrm_start) { |
| const char* mnem = "?"; |
| int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte. |
| switch (escape_opcode) { |
| case 0xD9: |
| switch (regop) { |
| case 0: |
| mnem = "fld_s"; |
| break; |
| case 3: |
| mnem = "fstp_s"; |
| break; |
| case 5: |
| mnem = "fldcw"; |
| break; |
| case 7: |
| mnem = "fnstcw"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDB: |
| switch (regop) { |
| case 0: |
| mnem = "fild_s"; |
| break; |
| case 1: |
| mnem = "fisttp_s"; |
| break; |
| case 2: |
| mnem = "fist_s"; |
| break; |
| case 3: |
| mnem = "fistp_s"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDD: |
| switch (regop) { |
| case 0: |
| mnem = "fld_d"; |
| break; |
| case 3: |
| mnem = "fstp_d"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDF: |
| switch (regop) { |
| case 5: |
| mnem = "fild_d"; |
| break; |
| case 7: |
| mnem = "fistp_d"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| default: |
| UnimplementedInstruction(); |
| } |
| Print("%s ", mnem); |
| int count = PrintRightOperand(modrm_start); |
| return count + 1; |
| } |
| |
| int DisassemblerX64::RegisterFPUInstruction(int escape_opcode, |
| uint8_t modrm_byte) { |
| bool has_register = false; // Is the FPU register encoded in modrm_byte? |
| const char* mnem = "?"; |
| |
| switch (escape_opcode) { |
| case 0xD8: |
| UnimplementedInstruction(); |
| break; |
| |
| case 0xD9: |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: |
| mnem = "fld"; |
| has_register = true; |
| break; |
| case 0xC8: |
| mnem = "fxch"; |
| has_register = true; |
| break; |
| default: |
| switch (modrm_byte) { |
| case 0xE0: |
| mnem = "fchs"; |
| break; |
| case 0xE1: |
| mnem = "fabs"; |
| break; |
| case 0xE3: |
| mnem = "fninit"; |
| break; |
| case 0xE4: |
| mnem = "ftst"; |
| break; |
| case 0xE8: |
| mnem = "fld1"; |
| break; |
| case 0xEB: |
| mnem = "fldpi"; |
| break; |
| case 0xED: |
| mnem = "fldln2"; |
| break; |
| case 0xEE: |
| mnem = "fldz"; |
| break; |
| case 0xF0: |
| mnem = "f2xm1"; |
| break; |
| case 0xF1: |
| mnem = "fyl2x"; |
| break; |
| case 0xF2: |
| mnem = "fptan"; |
| break; |
| case 0xF5: |
| mnem = "fprem1"; |
| break; |
| case 0xF7: |
| mnem = "fincstp"; |
| break; |
| case 0xF8: |
| mnem = "fprem"; |
| break; |
| case 0xFB: |
| mnem = "fsincos"; |
| break; |
| case 0xFD: |
| mnem = "fscale"; |
| break; |
| case 0xFE: |
| mnem = "fsin"; |
| break; |
| case 0xFF: |
| mnem = "fcos"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| } |
| break; |
| |
| case 0xDA: |
| if (modrm_byte == 0xE9) { |
| mnem = "fucompp"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDB: |
| if ((modrm_byte & 0xF8) == 0xE8) { |
| mnem = "fucomi"; |
| has_register = true; |
| } else if (modrm_byte == 0xE2) { |
| mnem = "fclex"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDC: |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: |
| mnem = "fadd"; |
| break; |
| case 0xE8: |
| mnem = "fsub"; |
| break; |
| case 0xC8: |
| mnem = "fmul"; |
| break; |
| case 0xF8: |
| mnem = "fdiv"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDD: |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: |
| mnem = "ffree"; |
| break; |
| case 0xD8: |
| mnem = "fstp"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| break; |
| |
| case 0xDE: |
| if (modrm_byte == 0xD9) { |
| mnem = "fcompp"; |
| } else { |
| has_register = true; |
| switch (modrm_byte & 0xF8) { |
| case 0xC0: |
| mnem = "faddp"; |
| break; |
| case 0xE8: |
| mnem = "fsubp"; |
| break; |
| case 0xC8: |
| mnem = "fmulp"; |
| break; |
| case 0xF8: |
| mnem = "fdivp"; |
| break; |
| default: |
| UnimplementedInstruction(); |
| } |
| } |
| break; |
| |
| case 0xDF: |
| if (modrm_byte == 0xE0) { |
| mnem = "fnstsw_ax"; |
| } else if ((modrm_byte & 0xF8) == 0xE8) { |
| mnem = "fucomip"; |
| has_register = true; |
| } |
| break; |
| |
| default: |
| UnimplementedInstruction(); |
| } |
| |
| if (has_register) { |
| Print("%s st%d", mnem, modrm_byte & 0x7); |
| } else { |
| Print("%s", mnem); |
| } |
| return 2; |
| } |
| |
| // TODO(srdjan): Should we add a branch hint argument? |
| bool DisassemblerX64::DecodeInstructionType(uint8_t** data) { |
| uint8_t current; |
| |
| // Scan for prefixes. |
| while (true) { |
| current = **data; |
| if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix. |
| operand_size_ = current; |
| #if defined(TARGET_ARCH_X64) |
| } else if ((current & 0xF0) == 0x40) { |
| // REX prefix. |
| setRex(current); |
| // TODO(srdjan): Should we enable printing of REX.W? |
| // if (rex_w()) Print("REX.W "); |
| #endif |
| } else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3). |
| group_1_prefix_ = current; |
| } else if (current == 0xF0) { |
| Print("lock "); |
| } else { // Not a prefix - an opcode. |
| break; |
| } |
| (*data)++; |
| } |
| |
| const InstructionDesc& idesc = instruction_table.Get(current); |
| byte_size_operand_ = idesc.byte_size_operation; |
| |
| switch (idesc.type) { |
| case ZERO_OPERANDS_INSTR: |
| if (current >= 0xA4 && current <= 0xA7) { |
| // String move or compare operations. |
| if (group_1_prefix_ == REP_PREFIX) { |
| // REP. |
| Print("rep "); |
| } |
| if ((current & 0x01) == 0x01) { |
| // Operation size: word, dword or qword |
| switch (operand_size()) { |
| case WORD_SIZE: |
| Print("%sw", idesc.mnem); |
| break; |
| case DOUBLEWORD_SIZE: |
| Print("%sl", idesc.mnem); |
| break; |
| case QUADWORD_SIZE: |
| Print("%sq", idesc.mnem); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| // Operation size: byte |
| Print("%s", idesc.mnem); |
| } |
| } else if (current == 0x99 && rex_w()) { |
| Print("cqo"); // Cdql is called cdq and cdqq is called cqo. |
| } else { |
| Print("%s", idesc.mnem); |
| } |
| (*data)++; |
| break; |
| |
| case TWO_OPERANDS_INSTR: |
| (*data)++; |
| (*data) += PrintOperands(idesc.mnem, idesc.op_order_, *data); |
| break; |
| |
| case JUMP_CONDITIONAL_SHORT_INSTR: |
| (*data) += JumpConditionalShort(*data); |
| break; |
| |
| case REGISTER_INSTR: |
| Print("%s%s %s", idesc.mnem, operand_size_code(), |
| NameOfCPURegister(base_reg(current & 0x07))); |
| (*data)++; |
| break; |
| case PUSHPOP_INSTR: |
| Print("%s %s", idesc.mnem, NameOfCPURegister(base_reg(current & 0x07))); |
| (*data)++; |
| break; |
| case MOVE_REG_INSTR: { |
| intptr_t addr = 0; |
| int imm_bytes = 0; |
| switch (operand_size()) { |
| case WORD_SIZE: |
| addr = LoadUnaligned(reinterpret_cast<int16_t*>(*data + 1)); |
| imm_bytes = 2; |
| break; |
| case DOUBLEWORD_SIZE: |
| addr = LoadUnaligned(reinterpret_cast<int32_t*>(*data + 1)); |
| imm_bytes = 4; |
| break; |
| case QUADWORD_SIZE: |
| addr = LoadUnaligned(reinterpret_cast<int64_t*>(*data + 1)); |
| imm_bytes = 8; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| (*data) += 1 + imm_bytes; |
| Print("mov%s %s,", operand_size_code(), |
| NameOfCPURegister(base_reg(current & 0x07))); |
| PrintImmediateValue(addr, /* signed = */ false, imm_bytes); |
| break; |
| } |
| |
| case CALL_JUMP_INSTR: { |
| int32_t disp = LoadUnaligned(reinterpret_cast<int32_t*>(*data + 1)) + 5; |
| Print("%s ", idesc.mnem); |
| PrintJump(*data, disp); |
| (*data) += 5; |
| break; |
| } |
| |
| case SHORT_IMMEDIATE_INSTR: { |
| Print("%s%s %s,", idesc.mnem, operand_size_code(), Rax()); |
| PrintImmediate(*data + 1, DOUBLEWORD_SIZE); |
| (*data) += 5; |
| break; |
| } |
| |
| case NO_INSTR: |
| return false; |
| |
| default: |
| UNIMPLEMENTED(); // This type is not implemented. |
| } |
| return true; |
| } |
| |
| int DisassemblerX64::Print660F38Instruction(uint8_t* current) { |
| int mod, regop, rm; |
| if (*current == 0x25) { |
| get_modrm(*(current + 1), &mod, ®op, &rm); |
| Print("pmovsxdq %s,", NameOfXMMRegister(regop)); |
| return 1 + PrintRightXMMOperand(current + 1); |
| } else if (*current == 0x29) { |
| get_modrm(*(current + 1), &mod, ®op, &rm); |
| Print("pcmpeqq %s,", NameOfXMMRegister(regop)); |
| return 1 + PrintRightXMMOperand(current + 1); |
| } else { |
| UnimplementedInstruction(); |
| return 1; |
| } |
| } |
| |
| // Handle all two-byte opcodes, which start with 0x0F. |
| // These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix. |
| // We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A. |
| int DisassemblerX64::TwoByteOpcodeInstruction(uint8_t* data) { |
| uint8_t opcode = *(data + 1); |
| uint8_t* current = data + 2; |
| // At return, "current" points to the start of the next instruction. |
| const char* mnemonic = TwoByteMnemonic(opcode); |
| if (operand_size_ == 0x66) { |
| // 0x66 0x0F prefix. |
| int mod, regop, rm; |
| if (opcode == 0xC6) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("shufpd %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| Print(" [%x]", *current); |
| current++; |
| } else if (opcode == 0x3A) { |
| uint8_t third_byte = *current; |
| current = data + 3; |
| if (third_byte == 0x16) { |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("pextrd "); // reg/m32, xmm, imm8 |
| current += PrintRightOperand(current); |
| Print(",%s,%d", NameOfXMMRegister(regop), (*current) & 7); |
| current += 1; |
| } else if (third_byte == 0x17) { |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("extractps "); // reg/m32, xmm, imm8 |
| current += PrintRightOperand(current); |
| Print(", %s, %d", NameOfCPURegister(regop), (*current) & 3); |
| current += 1; |
| } else if (third_byte == 0x0b) { |
| get_modrm(*current, &mod, ®op, &rm); |
| // roundsd xmm, xmm/m64, imm8 |
| Print("roundsd %s, ", NameOfCPURegister(regop)); |
| current += PrintRightOperand(current); |
| Print(", %d", (*current) & 3); |
| current += 1; |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else { |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x1f) { |
| current++; |
| if (rm == 4) { // SIB byte present. |
| current++; |
| } |
| if (mod == 1) { // Byte displacement. |
| current += 1; |
| } else if (mod == 2) { // 32-bit displacement. |
| current += 4; |
| } // else no immediate displacement. |
| Print("nop"); |
| } else if (opcode == 0x28) { |
| Print("movapd %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x29) { |
| Print("movapd "); |
| current += PrintRightXMMOperand(current); |
| Print(", %s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x38) { |
| current += Print660F38Instruction(current); |
| } else if (opcode == 0x6E) { |
| Print("mov%c %s,", rex_w() ? 'q' : 'd', NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x6F) { |
| Print("movdqa %s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x7E) { |
| Print("mov%c ", rex_w() ? 'q' : 'd'); |
| current += PrintRightOperand(current); |
| Print(",%s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x7F) { |
| Print("movdqa "); |
| current += PrintRightXMMOperand(current); |
| Print(",%s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0xD6) { |
| Print("movq "); |
| current += PrintRightXMMOperand(current); |
| Print(",%s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x50) { |
| Print("movmskpd %s,", NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0xD7) { |
| Print("pmovmskb %s,", NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else { |
| const char* mnemonic = "?"; |
| if (opcode == 0x5A) { |
| mnemonic = "cvtpd2ps"; |
| } else if (0x51 <= opcode && opcode <= 0x5F) { |
| mnemonic = xmm_instructions[opcode & 0xF].pd_name; |
| } else if (opcode == 0x14) { |
| mnemonic = "unpcklpd"; |
| } else if (opcode == 0x15) { |
| mnemonic = "unpckhpd"; |
| } else if (opcode == 0x2E) { |
| mnemonic = "ucomisd"; |
| } else if (opcode == 0x2F) { |
| mnemonic = "comisd"; |
| } else if (opcode == 0xFE) { |
| mnemonic = "paddd"; |
| } else if (opcode == 0xFA) { |
| mnemonic = "psubd"; |
| } else if (opcode == 0xEF) { |
| mnemonic = "pxor"; |
| } else { |
| UnimplementedInstruction(); |
| } |
| Print("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } |
| } |
| } else if (group_1_prefix_ == 0xF2) { |
| // Beginning of instructions with prefix 0xF2. |
| |
| if (opcode == 0x11 || opcode == 0x10) { |
| // MOVSD: Move scalar double-precision fp to/from/between XMM registers. |
| Print("movsd "); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x11) { |
| current += PrintRightXMMOperand(current); |
| Print(",%s", NameOfXMMRegister(regop)); |
| } else { |
| Print("%s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } |
| } else if (opcode == 0x2A) { |
| // CVTSI2SD: integer to XMM double conversion. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("%sd %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x2C) { |
| // CVTTSD2SI: |
| // Convert with truncation scalar double-precision FP to integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("cvttsd2si%s %s,", operand_size_code(), NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x2D) { |
| // CVTSD2SI: Convert scalar double-precision FP to integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("cvtsd2si%s %s,", operand_size_code(), NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (0x51 <= opcode && opcode <= 0x5F) { |
| // XMM arithmetic. Get the F2 0F prefix version of the mnemonic. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| const char* mnemonic = |
| opcode == 0x5A ? "cvtsd2ss" : xmm_instructions[opcode & 0xF].sd_name; |
| Print("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else if (group_1_prefix_ == 0xF3) { |
| // Instructions with prefix 0xF3. |
| if (opcode == 0x11 || opcode == 0x10) { |
| // MOVSS: Move scalar double-precision fp to/from/between XMM registers. |
| Print("movss "); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0x11) { |
| current += PrintRightOperand(current); |
| Print(",%s", NameOfXMMRegister(regop)); |
| } else { |
| Print("%s,", NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } |
| } else if (opcode == 0x2A) { |
| // CVTSI2SS: integer to XMM single conversion. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("%ss %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightOperand(current); |
| } else if (opcode == 0x2C || opcode == 0x2D) { |
| bool truncating = (opcode & 1) == 0; |
| // CVTTSS2SI/CVTSS2SI: |
| // Convert (with truncation) scalar single-precision FP to dword integer. |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("cvt%sss2si%s %s,", truncating ? "t" : "", operand_size_code(), |
| NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (0x51 <= opcode && opcode <= 0x5F) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| const char* mnemonic = |
| opcode == 0x5A ? "cvtss2sd" : xmm_instructions[opcode & 0xF].ss_name; |
| Print("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x7E) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("movq %s, ", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0xE6) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("cvtdq2pd %s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0xB8) { |
| // POPCNT. |
| current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current); |
| } else if (opcode == 0xBD) { |
| // LZCNT (rep BSR encoding). |
| current += PrintOperands("lzcnt", REG_OPER_OP_ORDER, current); |
| } else { |
| UnimplementedInstruction(); |
| } |
| } else if (opcode == 0x1F) { |
| // NOP |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| current++; |
| if (rm == 4) { // SIB byte present. |
| current++; |
| } |
| if (mod == 1) { // Byte displacement. |
| current += 1; |
| } else if (mod == 2) { // 32-bit displacement. |
| current += 4; |
| } // else no immediate displacement. |
| Print("nop"); |
| |
| } else if (opcode == 0x28 || opcode == 0x2f) { |
| // ...s xmm, xmm/m128 |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| const char* mnemonic = opcode == 0x28 ? "movaps" : "comiss"; |
| Print("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0x29) { |
| // movaps xmm/m128, xmm |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("movaps "); |
| current += PrintRightXMMOperand(current); |
| Print(",%s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x11) { |
| // movups xmm/m128, xmm |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("movups "); |
| current += PrintRightXMMOperand(current); |
| Print(",%s", NameOfXMMRegister(regop)); |
| } else if (opcode == 0x50) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("movmskps %s,", NameOfCPURegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0xA2 || opcode == 0x31) { |
| // RDTSC or CPUID |
| Print("%s", mnemonic); |
| } else if ((opcode & 0xF0) == 0x40) { |
| // CMOVcc: conditional move. |
| int condition = opcode & 0x0F; |
| const InstructionDesc& idesc = cmov_instructions[condition]; |
| byte_size_operand_ = idesc.byte_size_operation; |
| current += PrintOperands(idesc.mnem, idesc.op_order_, current); |
| } else if (0x10 <= opcode && opcode <= 0x16) { |
| // ...ps xmm, xmm/m128 |
| static const char* const mnemonics[] = { |
| "movups", NULL, "movhlps", NULL, "unpcklps", "unpckhps", "movlhps"}; |
| const char* mnemonic = mnemonics[opcode - 0x10]; |
| if (mnemonic == NULL) { |
| UnimplementedInstruction(); |
| mnemonic = "???"; |
| } |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| Print("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (0x51 <= opcode && opcode <= 0x5F) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| const char* mnemonic = |
| opcode == 0x5A ? "cvtps2pd" : xmm_instructions[opcode & 0xF].ps_name; |
| Print("%s %s,", mnemonic, NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| } else if (opcode == 0xC2 || opcode == 0xC6) { |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| if (opcode == 0xC2) { |
| Print("cmpps %s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| Print(" [%s]", xmm_conditional_code_suffix[*current]); |
| } else { |
| ASSERT(opcode == 0xC6); |
| Print("shufps %s,", NameOfXMMRegister(regop)); |
| current += PrintRightXMMOperand(current); |
| Print(" [%x]", *current); |
| } |
| current++; |
| } else if ((opcode & 0xF0) == 0x80) { |
| // Jcc: Conditional jump (branch). |
| current = data + JumpConditional(data); |
| |
| } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 || |
| opcode == 0xB7 || opcode == 0xAF || opcode == 0xB0 || |
| opcode == 0xB1 || opcode == 0xBC || opcode == 0xBD) { |
| // Size-extending moves, IMUL, cmpxchg, BSF, BSR. |
| current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current); |
| } else if ((opcode & 0xF0) == 0x90) { |
| // SETcc: Set byte on condition. Needs pointer to beginning of instruction. |
| current = data + SetCC(data); |
| } else if (((opcode & 0xFE) == 0xA4) || ((opcode & 0xFE) == 0xAC) || |
| (opcode == 0xAB) || (opcode == 0xA3)) { |
| // SHLD, SHRD (double-prec. shift), BTS (bit test and set), BT (bit test). |
| Print("%s%s ", mnemonic, operand_size_code()); |
| int mod, regop, rm; |
| get_modrm(*current, &mod, ®op, &rm); |
| current += PrintRightOperand(current); |
| Print(",%s", NameOfCPURegister(regop)); |
| if ((opcode == 0xAB) || (opcode == 0xA3) || (opcode == 0xBD)) { |
| // Done. |
| } else if ((opcode == 0xA5) || (opcode == 0xAD)) { |
| Print(",cl"); |
| } else { |
| Print(","); |
| current += PrintImmediate(current, BYTE_SIZE); |
| } |
| } else if (opcode == 0xBA && (*current & 0x60) == 0x60) { |
| // bt? immediate instruction |
| int r = (*current >> 3) & 7; |
| static const char* const names[4] = {"bt", "bts", "btr", "btc"}; |
| Print("%s ", names[r - 4]); |
| current += PrintRightOperand(current); |
| uint8_t bit = *current++; |
| Print(",%d", bit); |
| } else { |
| UnimplementedInstruction(); |
| } |
| return static_cast<int>(current - data); |
| } |
| |
| // Mnemonics for two-byte opcode instructions starting with 0x0F. |
| // The argument is the second byte of the two-byte opcode. |
| // Returns NULL if the instruction is not handled here. |
| const char* DisassemblerX64::TwoByteMnemonic(uint8_t opcode) { |
| if (opcode == 0x5A) { |
| return "cvtps2pd"; |
| } else if (0x51 <= opcode && opcode <= 0x5F) { |
| return xmm_instructions[opcode & 0xF].ps_name; |
| } |
| if (0xA2 <= opcode && opcode <= 0xBF) { |
| static const char* const mnemonics[] = { |
| "cpuid", "bt", "shld", "shld", NULL, NULL, |
| NULL, NULL, NULL, "bts", "shrd", "shrd", |
| NULL, "imul", "cmpxchg", "cmpxchg", NULL, NULL, |
| NULL, NULL, "movzxb", "movzxw", "popcnt", NULL, |
| NULL, NULL, "bsf", "bsr", "movsxb", "movsxw"}; |
| return mnemonics[opcode - 0xA2]; |
| } |
| switch (opcode) { |
| case 0x12: |
| return "movhlps"; |
| case 0x16: |
| return "movlhps"; |
| case 0x1F: |
| return "nop"; |
| case 0x2A: // F2/F3 prefix. |
| return "cvtsi2s"; |
| case 0x31: |
| return "rdtsc"; |
| default: |
| return NULL; |
| } |
| } |
| |
| int DisassemblerX64::InstructionDecode(uword pc) { |
| uint8_t* data = reinterpret_cast<uint8_t*>(pc); |
| |
| const bool processed = DecodeInstructionType(&data); |
| |
| if (!processed) { |
| switch (*data) { |
| case 0xC2: |
| Print("ret "); |
| PrintImmediateValue(*reinterpret_cast<uint16_t*>(data + 1)); |
| data += 3; |
| break; |
| |
| case 0xC8: |
| Print("enter %d, %d", *reinterpret_cast<uint16_t*>(data + 1), data[3]); |
| data += 4; |
| break; |
| |
| case 0x69: |
| FALL_THROUGH; |
| case 0x6B: { |
| int mod, regop, rm; |
| get_modrm(*(data + 1), &mod, ®op, &rm); |
| int32_t imm = *data == 0x6B |
| ? *(data + 2) |
| : LoadUnaligned(reinterpret_cast<int32_t*>(data + 2)); |
| Print("imul%s %s,%s,", operand_size_code(), NameOfCPURegister(regop), |
| NameOfCPURegister(rm)); |
| PrintImmediateValue(imm); |
| data += 2 + (*data == 0x6B ? 1 : 4); |
| break; |
| } |
| |
| case 0x81: |
| FALL_THROUGH; |
| case 0x83: // 0x81 with sign extension bit set |
| data += PrintImmediateOp(data); |
| break; |
| |
| case 0x0F: |
| data += TwoByteOpcodeInstruction(data); |
| break; |
| |
| case 0x8F: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (regop == 0) { |
| Print("pop "); |
| data += PrintRightOperand(data); |
| } |
| } break; |
| |
| case 0xFF: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| const char* mnem = NULL; |
| switch (regop) { |
| case 0: |
| mnem = "inc"; |
| break; |
| case 1: |
| mnem = "dec"; |
| break; |
| case 2: |
| mnem = "call"; |
| break; |
| case 4: |
| mnem = "jmp"; |
| break; |
| case 6: |
| mnem = "push"; |
| break; |
| default: |
| mnem = "???"; |
| } |
| if (regop <= 1) { |
| Print("%s%s ", mnem, operand_size_code()); |
| } else { |
| Print("%s ", mnem); |
| } |
| data += PrintRightOperand(data); |
| } break; |
| |
| case 0xC7: // imm32, fall through |
| case 0xC6: // imm8 |
| { |
| bool is_byte = *data == 0xC6; |
| data++; |
| if (is_byte) { |
| Print("movb "); |
| data += PrintRightByteOperand(data); |
| Print(","); |
| data += PrintImmediate(data, BYTE_SIZE); |
| } else { |
| Print("mov%s ", operand_size_code()); |
| data += PrintRightOperand(data); |
| Print(","); |
| data += |
| PrintImmediate(data, operand_size(), /* sign extend = */ true); |
| } |
| } break; |
| |
| case 0x80: { |
| byte_size_operand_ = true; |
| data += PrintImmediateOp(data); |
| } break; |
| |
| case 0x88: // 8bit, fall through |
| case 0x89: // 32bit |
| { |
| bool is_byte = *data == 0x88; |
| int mod, regop, rm; |
| data++; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (is_byte) { |
| Print("movb "); |
| data += PrintRightByteOperand(data); |
| Print(",%s", NameOfByteCPURegister(regop)); |
| } else { |
| Print("mov%s ", operand_size_code()); |
| data += PrintRightOperand(data); |
| Print(",%s", NameOfCPURegister(regop)); |
| } |
| } break; |
| |
| case 0x90: |
| case 0x91: |
| case 0x92: |
| case 0x93: |
| case 0x94: |
| case 0x95: |
| case 0x96: |
| case 0x97: { |
| int reg = (*data & 0x7) | (rex_b() ? 8 : 0); |
| if (reg == 0) { |
| Print("nop"); // Common name for xchg rax,rax. |
| } else { |
| Print("xchg%s %s, %s", operand_size_code(), Rax(), |
| NameOfCPURegister(reg)); |
| } |
| data++; |
| } break; |
| case 0xB0: |
| case 0xB1: |
| case 0xB2: |
| case 0xB3: |
| case 0xB4: |
| case 0xB5: |
| case 0xB6: |
| case 0xB7: |
| case 0xB8: |
| case 0xB9: |
| case 0xBA: |
| case 0xBB: |
| case 0xBC: |
| case 0xBD: |
| case 0xBE: |
| case 0xBF: { |
| // mov reg8,imm8 or mov reg32,imm32 |
| uint8_t opcode = *data; |
| data++; |
| const bool is_not_8bit = opcode >= 0xB8; |
| int reg = (opcode & 0x7) | (rex_b() ? 8 : 0); |
| if (is_not_8bit) { |
| Print("mov%s %s,", operand_size_code(), NameOfCPURegister(reg)); |
| data += |
| PrintImmediate(data, operand_size(), /* sign extend = */ false); |
| } else { |
| Print("movb %s,", NameOfByteCPURegister(reg)); |
| data += PrintImmediate(data, BYTE_SIZE, /* sign extend = */ false); |
| } |
| break; |
| } |
| case 0xFE: { |
| data++; |
| int mod, regop, rm; |
| get_modrm(*data, &mod, ®op, &rm); |
| if (regop == 1) { |
| Print("decb "); |
| data += PrintRightByteOperand(data); |
| } else { |
| UnimplementedInstruction(); |
| } |
| break; |
| } |
| case 0x68: |
| Print("push "); |
| PrintImmediateValue( |
| LoadUnaligned(reinterpret_cast<int32_t*>(data + 1))); |
| data += 5; |
| break; |
| |
| case 0x6A: |
| Print("push "); |
| PrintImmediateValue(*reinterpret_cast<int8_t*>(data + 1)); |
| data += 2; |
| break; |
| |
| case 0xA1: |
| FALL_THROUGH; |
| case 0xA3: |
| switch (operand_size()) { |
| case DOUBLEWORD_SIZE: { |
| PrintAddress(reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int32_t*>(data + 1))); |
| if (*data == 0xA1) { // Opcode 0xA1 |
| Print("movzxlq %s,(", Rax()); |
| PrintAddress(reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int32_t*>(data + 1))); |
| Print(")"); |
| } else { // Opcode 0xA3 |
| Print("movzxlq ("); |
| PrintAddress(reinterpret_cast<uint8_t*>( |
| *reinterpret_cast<int32_t*>(data + 1))); |
| Print("),%s", Rax()); |
| } |
| data += 5; |
| break; |
| } |
| case QUADWORD_SIZE: { |
| // New x64 instruction mov rax,(imm_64). |
| if (*data == 0xA1) { // Opcode 0xA1 |
| Print("movq %s,(", Rax()); |
| PrintAddress(*reinterpret_cast<uint8_t**>(data + 1)); |
| Print(")"); |
| } else { // Opcode 0xA3 |
| Print("movq ("); |
| PrintAddress(*reinterpret_cast<uint8_t**>(data + 1)); |
| Print("),%s", Rax()); |
| } |
| data += 9; |
| break; |
| } |
| default: |
| UnimplementedInstruction(); |
| data += 2; |
| } |
| break; |
| |
| case 0xA8: |
| Print("test al,"); |
| PrintImmediateValue(*reinterpret_cast<uint8_t*>(data + 1)); |
| data += 2; |
| break; |
| |
| case 0xA9: { |
| data++; |
| Print("test%s %s,", operand_size_code(), Rax()); |
| data += PrintImmediate(data, operand_size()); |
| break; |
| } |
| case 0xD1: |
| FALL_THROUGH; |
| case 0xD3: |
| FALL_THROUGH; |
| case 0xC1: |
| data += ShiftInstruction(data); |
| break; |
| case 0xD0: |
| FALL_THROUGH; |
| case 0xD2: |
| FALL_THROUGH; |
| case 0xC0: |
| byte_size_operand_ = true; |
| data += ShiftInstruction(data); |
| break; |
| |
| case 0xD9: |
| FALL_THROUGH; |
| case 0xDA: |
| FALL_THROUGH; |
| case 0xDB: |
| FALL_THROUGH; |
| case 0xDC: |
| FALL_THROUGH; |
| case 0xDD: |
| FALL_THROUGH; |
| case 0xDE: |
| FALL_THROUGH; |
| case 0xDF: |
| data += FPUInstruction(data); |
| break; |
| |
| case 0xEB: |
| data += JumpShort(data); |
| break; |
| |
| case 0xF6: |
| byte_size_operand_ = true; |
| FALL_THROUGH; |
| case 0xF7: |
| data += F6F7Instruction(data); |
| break; |
| |
| // These encodings for inc and dec are IA32 only, but we don't get here |
| // on X64 - the REX prefix recoginizer catches them earlier. |
| case 0x40: |
| case 0x41: |
| case 0x42: |
| case 0x43: |
| case 0x44: |
| case 0x45: |
| case 0x46: |
| case 0x47: |
| Print("inc %s", NameOfCPURegister(*data & 7)); |
| data += 1; |
| break; |
| |
| case 0x48: |
| case 0x49: |
| case 0x4a: |
| case 0x4b: |
| case 0x4c: |
| case 0x4d: |
| case 0x4e: |
| case 0x4f: |
| Print("dec %s", NameOfCPURegister(*data & 7)); |
| data += 1; |
| break; |
| |
| #if defined(TARGET_ARCH_IA32) |
| case 0x61: |
| Print("popad"); |
| break; |
| |
| case 0x60: |
| Print("pushad"); |
| break; |
| #endif |
| |
| default: |
| UnimplementedInstruction(); |
| data += 1; |
| } |
| } // !processed |
| |
| ASSERT(buffer_[buffer_pos_] == '\0'); |
| |
| int instr_len = data - reinterpret_cast<uint8_t*>(pc); |
| ASSERT(instr_len > 0); // Ensure progress. |
| |
| return instr_len; |
| } |
| |
| void Disassembler::DecodeInstruction(char* hex_buffer, |
| intptr_t hex_size, |
| char* human_buffer, |
| intptr_t human_size, |
| int* out_instr_len, |
| const Code& code, |
| Object** object, |
| uword pc) { |
| ASSERT(hex_size > 0); |
| ASSERT(human_size > 0); |
| DisassemblerX64 decoder(human_buffer, human_size); |
| int instruction_length = decoder.InstructionDecode(pc); |
| uint8_t* pc_ptr = reinterpret_cast<uint8_t*>(pc); |
| int hex_index = 0; |
| int remaining_size = hex_size - hex_index; |
| for (int i = 0; (i < instruction_length) && (remaining_size > 2); ++i) { |
| Utils::SNPrint(&hex_buffer[hex_index], remaining_size, "%02x", pc_ptr[i]); |
| hex_index += 2; |
| remaining_size -= 2; |
| } |
| hex_buffer[hex_index] = '\0'; |
| if (out_instr_len != nullptr) { |
| *out_instr_len = instruction_length; |
| } |
| |
| *object = NULL; |
| #if defined(TARGET_ARCH_X64) |
| if (!code.IsNull()) { |
| *object = &Object::Handle(); |
| if (!DecodeLoadObjectFromPoolOrThread(pc, code, *object)) { |
| *object = NULL; |
| } |
| } |
| #else |
| if (!code.IsNull() && code.is_alive()) { |
| intptr_t offsets_length = code.pointer_offsets_length(); |
| for (intptr_t i = 0; i < offsets_length; i++) { |
| uword addr = code.GetPointerOffsetAt(i) + code.PayloadStart(); |
| if ((pc <= addr) && (addr < (pc + instruction_length))) { |
| *object = |
| &Object::Handle(LoadUnaligned(reinterpret_cast<ObjectPtr*>(addr))); |
| break; |
| } |
| } |
| } |
| #endif |
| } |
| |
| #endif // !defined(PRODUCT) || defined(FORCE_INCLUDE_DISASSEMBLER) |
| |
| } // namespace dart |
| |
| #endif // defined(TARGET_ARCH_X64) || defined (TARGET_ARCH_IA32) |