blob: 45e6a6f87c0ae7ed31a5b58eed3a6206cd6c8510 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/compiler/assembler/assembler_base.h"
#include "platform/utils.h"
#include "vm/compiler/backend/slot.h"
#include "vm/cpu.h"
#include "vm/heap/heap.h"
#include "vm/memory_region.h"
#include "vm/os.h"
#include "vm/zone.h"
namespace dart {
DEFINE_FLAG(bool,
check_code_pointer,
false,
"Verify instructions offset in code object."
"NOTE: This breaks the profiler.");
#if defined(TARGET_ARCH_ARM)
DEFINE_FLAG(bool, use_far_branches, false, "Enable far branches for ARM.");
#endif
namespace compiler {
AssemblerBase::~AssemblerBase() {}
void AssemblerBase::LoadFromSlot(Register dst,
Register base,
const Slot& slot) {
auto const rep = slot.representation();
const FieldAddress address(base, slot.offset_in_bytes());
if (rep != kTagged) {
auto const sz = RepresentationUtils::OperandSize(rep);
return LoadFromOffset(dst, address, sz);
}
if (slot.is_compressed()) {
return LoadCompressedField(dst, address);
}
return LoadField(dst, address);
}
void AssemblerBase::StoreToSlot(Register src, Register base, const Slot& slot) {
auto const rep = slot.representation();
const FieldAddress address(base, slot.offset_in_bytes());
if (rep != kTagged) {
auto const sz = RepresentationUtils::OperandSize(rep);
return StoreToOffset(src, address, sz);
}
if (slot.is_compressed()) {
return StoreCompressedIntoObject(
base, address, src,
slot.ComputeCompileType().CanBeSmi() ? kValueCanBeSmi : kValueIsNotSmi);
}
return StoreIntoObject(
base, address, src,
slot.ComputeCompileType().CanBeSmi() ? kValueCanBeSmi : kValueIsNotSmi);
}
void AssemblerBase::StoreToSlotNoBarrier(Register src,
Register base,
const Slot& slot) {
auto const rep = slot.representation();
const FieldAddress address(base, slot.offset_in_bytes());
if (rep != kTagged) {
auto const sz = RepresentationUtils::OperandSize(rep);
return StoreToOffset(src, address, sz);
}
if (slot.is_compressed()) {
return StoreCompressedIntoObjectNoBarrier(base, address, src);
}
return StoreIntoObjectNoBarrier(base, address, src);
}
intptr_t AssemblerBase::InsertAlignedRelocation(BSS::Relocation reloc) {
// We cannot put a relocation at the very start (it's not a valid
// instruction)!
ASSERT(CodeSize() != 0);
// Align to a target word boundary.
const intptr_t offset =
Utils::RoundUp(CodeSize(), compiler::target::kWordSize);
while (CodeSize() < offset) {
Breakpoint();
}
ASSERT(CodeSize() == offset);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<compiler::target::word>(BSS::RelocationIndex(reloc) *
compiler::target::kWordSize);
ASSERT(CodeSize() == (offset + compiler::target::kWordSize));
return offset;
}
#if defined(DEBUG)
static void InitializeMemoryWithBreakpoints(uword data, intptr_t length) {
#if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64)
ASSERT(Utils::IsAligned(data, 4));
ASSERT(Utils::IsAligned(length, 4));
const uword end = data + length;
while (data < end) {
*reinterpret_cast<int32_t*>(data) = Instr::kBreakPointInstruction;
data += 4;
}
#else
memset(reinterpret_cast<void*>(data), Instr::kBreakPointInstruction, length);
#endif
}
#endif
static uword NewContents(intptr_t capacity) {
Zone* zone = Thread::Current()->zone();
uword result = zone->AllocUnsafe(capacity);
#if defined(DEBUG)
// Initialize the buffer with kBreakPointInstruction to force a break
// point if we ever execute an uninitialized part of the code buffer.
InitializeMemoryWithBreakpoints(result, capacity);
#endif
return result;
}
#if defined(DEBUG)
AssemblerBuffer::EnsureCapacity::EnsureCapacity(AssemblerBuffer* buffer) {
if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity();
// In debug mode, we save the assembler buffer along with the gap
// size before we start emitting to the buffer. This allows us to
// check that any single generated instruction doesn't overflow the
// limit implied by the minimum gap size.
buffer_ = buffer;
gap_ = ComputeGap();
// Make sure that extending the capacity leaves a big enough gap
// for any kind of instruction.
ASSERT(gap_ >= kMinimumGap);
// Mark the buffer as having ensured the capacity.
ASSERT(!buffer->HasEnsuredCapacity()); // Cannot nest.
buffer->has_ensured_capacity_ = true;
}
AssemblerBuffer::EnsureCapacity::~EnsureCapacity() {
// Unmark the buffer, so we cannot emit after this.
buffer_->has_ensured_capacity_ = false;
// Make sure the generated instruction doesn't take up more
// space than the minimum gap.
intptr_t delta = gap_ - ComputeGap();
ASSERT(delta <= kMinimumGap);
}
#endif
AssemblerBuffer::AssemblerBuffer()
: pointer_offsets_(new ZoneGrowableArray<intptr_t>(16)) {
static const intptr_t kInitialBufferCapacity = 4 * KB;
contents_ = NewContents(kInitialBufferCapacity);
cursor_ = contents_;
limit_ = ComputeLimit(contents_, kInitialBufferCapacity);
fixup_ = NULL;
#if defined(DEBUG)
has_ensured_capacity_ = false;
fixups_processed_ = false;
#endif
// Verify internal state.
ASSERT(Capacity() == kInitialBufferCapacity);
ASSERT(Size() == 0);
}
AssemblerBuffer::~AssemblerBuffer() {}
void AssemblerBuffer::ProcessFixups(const MemoryRegion& region) {
AssemblerFixup* fixup = fixup_;
while (fixup != NULL) {
fixup->Process(region, fixup->position());
fixup = fixup->previous();
}
}
void AssemblerBuffer::FinalizeInstructions(const MemoryRegion& instructions) {
// Copy the instructions from the buffer.
MemoryRegion from(reinterpret_cast<void*>(contents()), Size());
instructions.CopyFrom(0, from);
// Process fixups in the instructions.
ProcessFixups(instructions);
#if defined(DEBUG)
fixups_processed_ = true;
#endif
}
void AssemblerBuffer::ExtendCapacity() {
intptr_t old_size = Size();
intptr_t old_capacity = Capacity();
intptr_t new_capacity =
Utils::Minimum(old_capacity * 2, old_capacity + 1 * MB);
if (new_capacity < old_capacity) {
FATAL("Unexpected overflow in AssemblerBuffer::ExtendCapacity");
}
// Allocate the new data area and copy contents of the old one to it.
uword new_contents = NewContents(new_capacity);
memmove(reinterpret_cast<void*>(new_contents),
reinterpret_cast<void*>(contents_), old_size);
// Compute the relocation delta and switch to the new contents area.
intptr_t delta = new_contents - contents_;
contents_ = new_contents;
// Update the cursor and recompute the limit.
cursor_ += delta;
limit_ = ComputeLimit(new_contents, new_capacity);
// Verify internal state.
ASSERT(Capacity() == new_capacity);
ASSERT(Size() == old_size);
}
class PatchCodeWithHandle : public AssemblerFixup {
public:
PatchCodeWithHandle(ZoneGrowableArray<intptr_t>* pointer_offsets,
const Object& object)
: pointer_offsets_(pointer_offsets), object_(object) {}
void Process(const MemoryRegion& region, intptr_t position) {
// Patch the handle into the code. Once the instructions are installed into
// a raw code object and the pointer offsets are setup, the handle is
// resolved.
region.StoreUnaligned<const Object*>(position, &object_);
pointer_offsets_->Add(position);
}
virtual bool IsPointerOffset() const { return true; }
private:
ZoneGrowableArray<intptr_t>* pointer_offsets_;
const Object& object_;
};
intptr_t AssemblerBuffer::CountPointerOffsets() const {
intptr_t count = 0;
AssemblerFixup* current = fixup_;
while (current != NULL) {
if (current->IsPointerOffset()) ++count;
current = current->previous_;
}
return count;
}
#if defined(TARGET_ARCH_IA32)
void AssemblerBuffer::EmitObject(const Object& object) {
// Since we are going to store the handle as part of the fixup information
// the handle needs to be a zone handle.
ASSERT(IsNotTemporaryScopedHandle(object));
ASSERT(IsInOldSpace(object));
EmitFixup(new PatchCodeWithHandle(pointer_offsets_, object));
cursor_ += target::kWordSize; // Reserve space for pointer.
}
#endif
// Shared macros are implemented here.
void AssemblerBase::Unimplemented(const char* message) {
const char* format = "Unimplemented: %s";
const intptr_t len = Utils::SNPrint(NULL, 0, format, message);
char* buffer = reinterpret_cast<char*>(malloc(len + 1));
Utils::SNPrint(buffer, len + 1, format, message);
Stop(buffer);
}
void AssemblerBase::Untested(const char* message) {
const char* format = "Untested: %s";
const intptr_t len = Utils::SNPrint(NULL, 0, format, message);
char* buffer = reinterpret_cast<char*>(malloc(len + 1));
Utils::SNPrint(buffer, len + 1, format, message);
Stop(buffer);
}
void AssemblerBase::Unreachable(const char* message) {
const char* format = "Unreachable: %s";
const intptr_t len = Utils::SNPrint(NULL, 0, format, message);
char* buffer = reinterpret_cast<char*>(malloc(len + 1));
Utils::SNPrint(buffer, len + 1, format, message);
Stop(buffer);
}
void AssemblerBase::Comment(const char* format, ...) {
if (EmittingComments()) {
char buffer[1024];
va_list args;
va_start(args, format);
Utils::VSNPrint(buffer, sizeof(buffer), format, args);
va_end(args);
comments_.Add(
new CodeComment(buffer_.GetPosition(), AllocateString(buffer)));
}
}
bool AssemblerBase::EmittingComments() {
return FLAG_code_comments || FLAG_disassemble || FLAG_disassemble_optimized;
}
void AssemblerBase::Stop(const char* message) {
Comment("Stop: %s", message);
Breakpoint();
}
uword ObjIndexPair::Hash(Key key) {
if (key.type() != ObjectPoolBuilderEntry::kTaggedObject) {
return key.raw_value_;
}
return ObjectHash(*key.obj_);
}
void ObjectPoolBuilder::Reset() {
// Null out the handles we've accumulated.
for (intptr_t i = 0; i < object_pool_.length(); ++i) {
if (object_pool_[i].type() == ObjectPoolBuilderEntry::kTaggedObject) {
SetToNull(const_cast<Object*>(object_pool_[i].obj_));
SetToNull(const_cast<Object*>(object_pool_[i].equivalence_));
}
}
object_pool_.Clear();
object_pool_index_table_.Clear();
}
intptr_t ObjectPoolBuilder::AddObject(
const Object& obj,
ObjectPoolBuilderEntry::Patchability patchable) {
ASSERT(IsNotTemporaryScopedHandle(obj));
return AddObject(ObjectPoolBuilderEntry(&obj, patchable));
}
intptr_t ObjectPoolBuilder::AddImmediate(uword imm) {
return AddObject(
ObjectPoolBuilderEntry(imm, ObjectPoolBuilderEntry::kImmediate,
ObjectPoolBuilderEntry::kNotPatchable));
}
intptr_t ObjectPoolBuilder::AddObject(ObjectPoolBuilderEntry entry) {
ASSERT((entry.type() != ObjectPoolBuilderEntry::kTaggedObject) ||
(IsNotTemporaryScopedHandle(*entry.obj_) &&
(entry.equivalence_ == NULL ||
IsNotTemporaryScopedHandle(*entry.equivalence_))));
if (entry.type() == ObjectPoolBuilderEntry::kTaggedObject) {
// If the owner of the object pool wrapper specified a specific zone we
// should use we'll do so.
if (zone_ != NULL) {
entry.obj_ = &NewZoneHandle(zone_, *entry.obj_);
if (entry.equivalence_ != NULL) {
entry.equivalence_ = &NewZoneHandle(zone_, *entry.equivalence_);
}
}
}
const intptr_t idx = base_index_ + object_pool_.length();
object_pool_.Add(entry);
if (entry.patchable() == ObjectPoolBuilderEntry::kNotPatchable) {
// The object isn't patchable. Record the index for fast lookup.
object_pool_index_table_.Insert(ObjIndexPair(entry, idx));
}
return idx;
}
intptr_t ObjectPoolBuilder::FindObject(ObjectPoolBuilderEntry entry) {
// If the object is not patchable, check if we've already got it in the
// object pool.
if (entry.patchable() == ObjectPoolBuilderEntry::kNotPatchable) {
// First check in the parent pool if we have one.
if (parent_ != nullptr) {
const intptr_t idx = parent_->object_pool_index_table_.LookupValue(entry);
if (idx != ObjIndexPair::kNoIndex) {
used_from_parent_.Add(idx);
return idx;
}
}
const intptr_t idx = object_pool_index_table_.LookupValue(entry);
if (idx != ObjIndexPair::kNoIndex) {
return idx;
}
}
return AddObject(entry);
}
intptr_t ObjectPoolBuilder::FindObject(
const Object& obj,
ObjectPoolBuilderEntry::Patchability patchable) {
return FindObject(ObjectPoolBuilderEntry(&obj, patchable));
}
intptr_t ObjectPoolBuilder::FindObject(const Object& obj,
const Object& equivalence) {
return FindObject(ObjectPoolBuilderEntry(
&obj, &equivalence, ObjectPoolBuilderEntry::kNotPatchable));
}
intptr_t ObjectPoolBuilder::FindImmediate(uword imm) {
return FindObject(
ObjectPoolBuilderEntry(imm, ObjectPoolBuilderEntry::kImmediate,
ObjectPoolBuilderEntry::kNotPatchable));
}
intptr_t ObjectPoolBuilder::FindNativeFunction(
const ExternalLabel* label,
ObjectPoolBuilderEntry::Patchability patchable) {
return FindObject(ObjectPoolBuilderEntry(
label->address(), ObjectPoolBuilderEntry::kNativeFunction, patchable));
}
intptr_t ObjectPoolBuilder::FindNativeFunctionWrapper(
const ExternalLabel* label,
ObjectPoolBuilderEntry::Patchability patchable) {
return FindObject(ObjectPoolBuilderEntry(
label->address(), ObjectPoolBuilderEntry::kNativeFunctionWrapper,
patchable));
}
bool ObjectPoolBuilder::TryCommitToParent() {
ASSERT(parent_ != nullptr);
if (parent_->CurrentLength() != base_index_) {
return false;
}
for (intptr_t i = 0; i < object_pool_.length(); i++) {
intptr_t idx = parent_->AddObject(object_pool_[i]);
ASSERT(idx == (base_index_ + i));
}
return true;
}
} // namespace compiler
} // namespace dart