blob: 115bd845367897a63995ac1b07bd88102f5f7bb1 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_ARCH_MIPS)
#include "vm/assembler.h"
#include "vm/code_generator.h"
#include "vm/compiler.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/heap.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#define __ assembler->
namespace dart {
DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects.");
DEFINE_FLAG(bool, use_slow_path, false,
"Set to true for debugging & verifying the slow paths.");
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, trace_optimized_ic_calls);
// Input parameters:
// RA : return address.
// SP : address of last argument in argument array.
// SP + 4*S4 - 4 : address of first argument in argument array.
// SP + 4*S4 : address of return value.
// S5 : address of the runtime function to call.
// S4 : number of arguments to the call.
void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) {
const intptr_t isolate_offset = NativeArguments::isolate_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ SetPrologueOffset();
__ TraceSimMsg("CallToRuntimeStub");
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(RA, Address(SP, 1 * kWordSize));
__ sw(FP, Address(SP, 0 * kWordSize));
__ mov(FP, SP);
// Load current Isolate pointer from Context structure into A0.
__ lw(A0, FieldAddress(CTX, Context::isolate_offset()));
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ sw(SP, Address(A0, Isolate::top_exit_frame_info_offset()));
// Save current Context pointer into Isolate structure.
__ sw(CTX, Address(A0, Isolate::top_context_offset()));
// Cache Isolate pointer into CTX while executing runtime code.
__ mov(CTX, A0);
// Reserve space for arguments and align frame before entering C++ world.
// NativeArguments are passed in registers.
ASSERT(sizeof(NativeArguments) == 4 * kWordSize);
__ ReserveAlignedFrameSpace(4 * kWordSize); // Reserve space for arguments.
// Pass NativeArguments structure by value and call runtime.
// Registers A0, A1, A2, and A3 are used.
ASSERT(isolate_offset == 0 * kWordSize);
// Set isolate in NativeArgs: A0 already contains CTX.
// There are no runtime calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
ASSERT(argc_tag_offset == 1 * kWordSize);
__ mov(A1, S4); // Set argc in NativeArguments.
ASSERT(argv_offset == 2 * kWordSize);
__ sll(A2, S4, 2);
__ addu(A2, FP, A2); // Compute argv.
__ addiu(A2, A2, Immediate(kWordSize)); // Set argv in NativeArguments.
ASSERT(retval_offset == 3 * kWordSize);
// Call runtime or redirection via simulator.
__ jalr(S5);
// Retval is next to 1st argument.
__ delay_slot()->addiu(A3, A2, Immediate(kWordSize));
__ TraceSimMsg("CallToRuntimeStub return");
// Reset exit frame information in Isolate structure.
__ sw(ZR, Address(CTX, Isolate::top_exit_frame_info_offset()));
// Load Context pointer from Isolate structure into A2.
__ lw(A2, Address(CTX, Isolate::top_context_offset()));
// Load null.
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
// Reset Context pointer in Isolate structure.
__ sw(TMP, Address(CTX, Isolate::top_context_offset()));
// Cache Context pointer into CTX while executing Dart code.
__ mov(CTX, A2);
__ mov(SP, FP);
__ lw(RA, Address(SP, 1 * kWordSize));
__ lw(FP, Address(SP, 0 * kWordSize));
__ Ret();
__ delay_slot()->addiu(SP, SP, Immediate(2 * kWordSize));
}
// Print the stop message.
DEFINE_LEAF_RUNTIME_ENTRY(void, PrintStopMessage, 1, const char* message) {
OS::Print("Stop message: %s\n", message);
}
END_LEAF_RUNTIME_ENTRY
// Input parameters:
// A0 : stop message (const char*).
// Must preserve all registers.
void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) {
__ EnterCallRuntimeFrame(0);
// Call the runtime leaf function. A0 already contains the parameter.
__ CallRuntime(kPrintStopMessageRuntimeEntry);
__ LeaveCallRuntimeFrame();
__ Ret();
}
// Input parameters:
// RA : return address.
// SP : address of return value.
// T5 : address of the native function to call.
// A2 : address of first argument in argument array.
// A1 : argc_tag including number of arguments and function kind.
void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) {
const intptr_t isolate_offset = NativeArguments::isolate_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ SetPrologueOffset();
__ TraceSimMsg("CallNativeCFunctionStub");
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(RA, Address(SP, 1 * kWordSize));
__ sw(FP, Address(SP, 0 * kWordSize));
__ mov(FP, SP);
// Load current Isolate pointer from Context structure into A0.
__ lw(A0, FieldAddress(CTX, Context::isolate_offset()));
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ sw(SP, Address(A0, Isolate::top_exit_frame_info_offset()));
// Save current Context pointer into Isolate structure.
__ sw(CTX, Address(A0, Isolate::top_context_offset()));
// Cache Isolate pointer into CTX while executing native code.
__ mov(CTX, A0);
// Initialize NativeArguments structure and call native function.
// Registers A0, A1, A2, and A3 are used.
ASSERT(isolate_offset == 0 * kWordSize);
// Set isolate in NativeArgs: A0 already contains CTX.
// There are no native calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
ASSERT(argc_tag_offset == 1 * kWordSize);
// Set argc in NativeArguments: A1 already contains argc.
ASSERT(argv_offset == 2 * kWordSize);
// Set argv in NativeArguments: A2 already contains argv.
ASSERT(retval_offset == 3 * kWordSize);
__ addiu(A3, FP, Immediate(2 * kWordSize)); // Set retval in NativeArgs.
// TODO(regis): Should we pass the structure by value as in runtime calls?
// It would require changing Dart API for native functions.
// For now, space is reserved on the stack and we pass a pointer to it.
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(A3, Address(SP, 3 * kWordSize));
__ sw(A2, Address(SP, 2 * kWordSize));
__ sw(A1, Address(SP, 1 * kWordSize));
__ sw(A0, Address(SP, 0 * kWordSize));
__ mov(A0, SP); // Pass the pointer to the NativeArguments.
__ ReserveAlignedFrameSpace(kWordSize); // Just passing A0.
// Call native function or redirection via simulator.
__ jalr(T5);
__ TraceSimMsg("CallNativeCFunctionStub return");
// Reset exit frame information in Isolate structure.
__ sw(ZR, Address(CTX, Isolate::top_exit_frame_info_offset()));
// Load Context pointer from Isolate structure into A2.
__ lw(A2, Address(CTX, Isolate::top_context_offset()));
// Load null.
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
// Reset Context pointer in Isolate structure.
__ sw(TMP, Address(CTX, Isolate::top_context_offset()));
// Cache Context pointer into CTX while executing Dart code.
__ mov(CTX, A2);
__ mov(SP, FP);
__ lw(RA, Address(SP, 1 * kWordSize));
__ lw(FP, Address(SP, 0 * kWordSize));
__ Ret();
__ delay_slot()->addiu(SP, SP, Immediate(2 * kWordSize));
}
// Input parameters:
// S4: arguments descriptor array.
void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) {
__ TraceSimMsg("CallStaticFunctionStub");
__ EnterStubFrame();
// Setup space on stack for return value and preserve arguments descriptor.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S4, Address(SP, 1 * kWordSize));
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 0 * kWordSize));
__ CallRuntime(kPatchStaticCallRuntimeEntry);
__ TraceSimMsg("CallStaticFunctionStub return");
// Get Code object result and restore arguments descriptor array.
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(S4, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ lw(T0, FieldAddress(T0, Code::instructions_offset()));
__ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag);
// Remove the stub frame as we are about to jump to the dart function.
__ LeaveStubFrameAndReturn(T0);
}
// Called from a static call only when an invalid code has been entered
// (invalid because its function was optimized or deoptimized).
// S4: arguments descriptor array.
void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) {
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ TraceSimMsg("FixCallersTarget");
__ EnterStubFrame();
// Setup space on stack for return value and preserve arguments descriptor.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S4, Address(SP, 1 * kWordSize));
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 0 * kWordSize));
__ CallRuntime(kFixCallersTargetRuntimeEntry);
// Get Code object result and restore arguments descriptor array.
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(S4, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
// Jump to the dart function.
__ lw(T0, FieldAddress(T0, Code::instructions_offset()));
__ AddImmediate(T0, T0, Instructions::HeaderSize() - kHeapObjectTag);
// Remove the stub frame.
__ LeaveStubFrameAndReturn(T0);
}
// Input parameters:
// A1: Smi-tagged argument count, may be zero.
// FP[kParamEndSlotFromFp + 1]: Last argument.
static void PushArgumentsArray(Assembler* assembler) {
__ TraceSimMsg("PushArgumentsArray");
// Allocate array to store arguments of caller.
__ LoadImmediate(A0, reinterpret_cast<intptr_t>(Object::null()));
// A0: Null element type for raw Array.
// A1: Smi-tagged argument count, may be zero.
__ BranchLink(&StubCode::AllocateArrayLabel());
__ TraceSimMsg("PushArgumentsArray return");
// V0: newly allocated array.
// A1: Smi-tagged argument count, may be zero (was preserved by the stub).
__ Push(V0); // Array is in V0 and on top of stack.
__ sll(T1, A1, 1);
__ addu(T1, FP, T1);
__ AddImmediate(T1, kParamEndSlotFromFp * kWordSize);
// T1: address of first argument on stack.
// T2: address of first argument in array.
Label loop, loop_exit;
__ blez(A1, &loop_exit);
__ delay_slot()->addiu(T2, V0,
Immediate(Array::data_offset() - kHeapObjectTag));
__ Bind(&loop);
__ lw(T3, Address(T1));
__ addiu(A1, A1, Immediate(-Smi::RawValue(1)));
__ addiu(T1, T1, Immediate(-kWordSize));
__ addiu(T2, T2, Immediate(kWordSize));
__ bgez(A1, &loop);
__ delay_slot()->sw(T3, Address(T2, -kWordSize));
__ Bind(&loop_exit);
}
// Input parameters:
// S5: ic-data.
// S4: arguments descriptor array.
// Note: The receiver object is the first argument to the function being
// called, the stub accesses the receiver from this location directly
// when trying to resolve the call.
void StubCode::GenerateInstanceFunctionLookupStub(Assembler* assembler) {
__ TraceSimMsg("InstanceFunctionLookupStub");
__ EnterStubFrame();
// Load the receiver.
__ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ sll(TMP1, A1, 1); // A1 is Smi.
__ addu(TMP1, FP, TMP1);
__ lw(T1, Address(TMP1, kParamEndSlotFromFp * kWordSize));
// Push space for the return value.
// Push the receiver.
// Push TMP1 data object.
// Push arguments descriptor array.
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 3 * kWordSize));
__ sw(T1, Address(SP, 2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize));
__ sw(S4, Address(SP, 0 * kWordSize));
// A1: Smi-tagged arguments array length.
PushArgumentsArray(assembler);
__ TraceSimMsg("InstanceFunctionLookupStub return");
__ CallRuntime(kInstanceFunctionLookupRuntimeEntry);
__ lw(V0, Address(SP, 4 * kWordSize)); // Get result into V0.
__ addiu(SP, SP, Immediate(5 * kWordSize)); // Remove arguments.
__ LeaveStubFrameAndReturn();
}
DECLARE_LEAF_RUNTIME_ENTRY(intptr_t, DeoptimizeCopyFrame,
intptr_t deopt_reason,
uword saved_registers_address);
DECLARE_LEAF_RUNTIME_ENTRY(void, DeoptimizeFillFrame, uword last_fp);
// Used by eager and lazy deoptimization. Preserve result in V0 if necessary.
// This stub translates optimized frame into unoptimized frame. The optimized
// frame can contain values in registers and on stack, the unoptimized
// frame contains all values on stack.
// Deoptimization occurs in following steps:
// - Push all registers that can contain values.
// - Call C routine to copy the stack and saved registers into temporary buffer.
// - Adjust caller's frame to correct unoptimized frame size.
// - Fill the unoptimized frame.
// - Materialize objects that require allocation (e.g. Double instances).
// GC can occur only after frame is fully rewritten.
// Stack after EnterFrame(...) below:
// +------------------+
// | Saved PP | <- TOS
// +------------------+
// | Saved FP | <- FP of stub
// +------------------+
// | Saved LR | (deoptimization point)
// +------------------+
// | PC marker |
// +------------------+
// | ... | <- SP of optimized frame
//
// Parts of the code cannot GC, part of the code can GC.
static void GenerateDeoptimizationSequence(Assembler* assembler,
bool preserve_result) {
const intptr_t kPushedRegistersSize =
kNumberOfCpuRegisters * kWordSize +
4 * kWordSize + // PP, FP, RA, PC marker.
kNumberOfFRegisters * kWordSize;
__ SetPrologueOffset();
__ TraceSimMsg("GenerateDeoptimizationSequence");
// DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ addiu(SP, SP, Immediate(-kPushedRegistersSize * kWordSize));
__ sw(ZR, Address(SP, kPushedRegistersSize - 1 * kWordSize));
__ sw(RA, Address(SP, kPushedRegistersSize - 2 * kWordSize));
__ sw(FP, Address(SP, kPushedRegistersSize - 3 * kWordSize));
__ sw(PP, Address(SP, kPushedRegistersSize - 4 * kWordSize));
__ addiu(FP, SP, Immediate(kPushedRegistersSize - 3 * kWordSize));
// The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry
// and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls.
const intptr_t saved_result_slot_from_fp =
kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - V0);
// Result in V0 is preserved as part of pushing all registers below.
// TODO(regis): Should we align the stack before pushing the fpu registers?
// If we do, saved_result_slot_from_fp is not constant anymore.
// Push registers in their enumeration order: lowest register number at
// lowest address.
for (int i = 0; i < kNumberOfCpuRegisters; i++) {
const int slot = 4 + kNumberOfCpuRegisters - i;
Register reg = static_cast<Register>(i);
__ sw(reg, Address(SP, kPushedRegistersSize - slot * kWordSize));
}
for (int i = 0; i < kNumberOfFRegisters; i++) {
// These go below the CPU registers.
const int slot = 4 + kNumberOfCpuRegisters + kNumberOfFRegisters - i;
FRegister reg = static_cast<FRegister>(i);
__ swc1(reg, Address(SP, kPushedRegistersSize - slot * kWordSize));
}
__ mov(A0, SP); // Pass address of saved registers block.
__ ReserveAlignedFrameSpace(1 * kWordSize);
__ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry);
// Result (V0) is stack-size (FP - SP) in bytes, incl. the return address.
if (preserve_result) {
// Restore result into T1 temporarily.
__ lw(T1, Address(FP, saved_result_slot_from_fp * kWordSize));
}
__ addiu(SP, FP, Immediate(-kWordSize));
__ lw(RA, Address(SP, 2 * kWordSize));
__ lw(FP, Address(SP, 1 * kWordSize));
__ lw(PP, Address(SP, 0 * kWordSize));
__ subu(SP, FP, V0);
// DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there
// is no need to set the correct PC marker or load PP, since they get patched.
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(ZR, Address(SP, 3 * kWordSize));
__ sw(RA, Address(SP, 2 * kWordSize));
__ sw(FP, Address(SP, 1 * kWordSize));
__ sw(PP, Address(SP, 0 * kWordSize));
__ addiu(FP, SP, Immediate(kWordSize));
__ mov(A0, FP); // Get last FP address.
if (preserve_result) {
__ Push(T1); // Preserve result as first local.
}
__ ReserveAlignedFrameSpace(1 * kWordSize);
__ CallRuntime(kDeoptimizeFillFrameRuntimeEntry); // Pass last FP in A0.
if (preserve_result) {
// Restore result into T1.
__ lw(T1, Address(FP, kFirstLocalSlotFromFp * kWordSize));
}
// Code above cannot cause GC.
__ addiu(SP, FP, Immediate(-kWordSize));
__ lw(RA, Address(SP, 2 * kWordSize));
__ lw(FP, Address(SP, 1 * kWordSize));
__ lw(PP, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(4 * kWordSize));
// Frame is fully rewritten at this point and it is safe to perform a GC.
// Materialize any objects that were deferred by FillFrame because they
// require allocation.
__ EnterStubFrame();
if (preserve_result) {
__ Push(T1); // Preserve result, it will be GC-d here.
}
__ PushObject(Smi::ZoneHandle()); // Space for the result.
__ CallRuntime(kDeoptimizeMaterializeRuntimeEntry);
// Result tells stub how many bytes to remove from the expression stack
// of the bottom-most frame. They were used as materialization arguments.
__ Pop(T1);
if (preserve_result) {
__ Pop(V0); // Restore result.
}
__ LeaveStubFrame();
// Remove materialization arguments.
__ SmiUntag(T1);
__ addu(SP, SP, T1);
__ Ret();
}
void StubCode::GenerateDeoptimizeLazyStub(Assembler* assembler) {
// Correct return address to point just after the call that is being
// deoptimized.
__ AddImmediate(RA, -CallPattern::kFixedLengthInBytes);
GenerateDeoptimizationSequence(assembler, true); // Preserve V0.
}
void StubCode::GenerateDeoptimizeStub(Assembler* assembler) {
GenerateDeoptimizationSequence(assembler, false); // Don't preserve V0.
}
void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ lw(T2, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ sll(T2, T2, 1); // T2 is a Smi.
__ addu(TMP, FP, T2);
__ lw(T6, Address(TMP, kParamEndSlotFromFp * kWordSize));
// Preserve IC data and arguments descriptor.
__ addiu(SP, SP, Immediate(-6 * kWordSize));
__ sw(S5, Address(SP, 5 * kWordSize));
__ sw(S4, Address(SP, 4 * kWordSize));
// Push space for the return value.
// Push the receiver.
// Push IC data object.
// Push arguments descriptor array.
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 3 * kWordSize));
__ sw(T6, Address(SP, 2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize));
__ sw(S4, Address(SP, 0 * kWordSize));
__ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry);
__ lw(T0, Address(SP, 3 * kWordSize)); // Get result.
__ lw(S4, Address(SP, 4 * kWordSize)); // Restore argument descriptor.
__ lw(S5, Address(SP, 5 * kWordSize)); // Restore IC data.
__ addiu(SP, SP, Immediate(6 * kWordSize));
__ LeaveStubFrame();
Label nonnull;
__ BranchNotEqual(T0, reinterpret_cast<int32_t>(Object::null()), &nonnull);
__ Branch(&StubCode::InstanceFunctionLookupLabel());
__ Bind(&nonnull);
__ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag);
__ jr(T0);
}
// Called for inline allocation of arrays.
// Input parameters:
// RA: return address.
// A1: Array length as Smi.
// A0: array element type (either NULL or an instantiated type).
// NOTE: A1 cannot be clobbered here as the caller relies on it being saved.
// The newly allocated object is returned in V0.
void StubCode::GenerateAllocateArrayStub(Assembler* assembler) {
__ TraceSimMsg("AllocateArrayStub");
Label slow_case;
if (FLAG_inline_alloc) {
// Compute the size to be allocated, it is based on the array length
// and is computed as:
// RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)).
// Assert that length is a Smi.
__ andi(CMPRES, A1, Immediate(kSmiTagMask));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ bne(CMPRES, ZR, &slow_case);
}
__ lw(T0, FieldAddress(CTX, Context::isolate_offset()));
__ lw(T0, Address(T0, Isolate::heap_offset()));
__ lw(T0, Address(T0, Heap::new_space_offset()));
// Calculate and align allocation size.
// Load new object start and calculate next object start.
// A0: array element type.
// A1: Array length as Smi.
// T0: Points to new space object.
__ lw(V0, Address(T0, Scavenger::top_offset()));
intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1;
__ LoadImmediate(T3, fixed_size);
__ sll(TMP1, A1, 1); // A1 is Smi.
__ addu(T3, T3, TMP1);
ASSERT(kSmiTagShift == 1);
__ LoadImmediate(TMP1, ~(kObjectAlignment - 1));
__ and_(T3, T3, TMP1);
__ addu(T2, T3, V0);
// Check if the allocation fits into the remaining space.
// V0: potential new object start.
// A0: array element type.
// A1: array length as Smi.
// T0: points to new space object.
// T2: potential next object start.
// T3: array size.
__ lw(CMPRES1, Address(T0, Scavenger::end_offset()));
__ BranchUnsignedGreaterEqual(T2, CMPRES1, &slow_case);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
// V0: potential new object start.
// T2: potential next object start.
// T0: Points to new space object.
__ sw(T2, Address(T0, Scavenger::top_offset()));
__ addiu(V0, V0, Immediate(kHeapObjectTag));
// V0: new object start as a tagged pointer.
// A0: array element type.
// A1: Array length as Smi.
// T2: new object end address.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(
V0,
FieldAddress(V0, Array::type_arguments_offset()),
A0);
// Set the length field.
__ StoreIntoObjectNoBarrier(
V0,
FieldAddress(V0, Array::length_offset()),
A1);
// Calculate the size tag.
// V0: new object start as a tagged pointer.
// A1: Array length as Smi.
// T2: new object end address.
// T3: array size.
const intptr_t shift = RawObject::kSizeTagBit - kObjectAlignmentLog2;
// If no size tag overflow, shift T3 left, else set T3 to zero.
__ LoadImmediate(T4, RawObject::SizeTag::kMaxSizeTag);
__ sltu(CMPRES, T4, T3); // CMPRES = T4 < T3 ? 1 : 0
__ sll(TMP1, T3, shift); // TMP1 = T3 << shift;
__ movz(T3, TMP1, CMPRES); // T3 = T4 >= T3 ? 0 : T3
__ movn(T3, ZR, CMPRES); // T3 = T4 < T3 ? TMP1 : T3
// Get the class index and insert it into the tags.
__ LoadImmediate(TMP1, RawObject::ClassIdTag::encode(kArrayCid));
__ or_(T3, T3, TMP1);
__ sw(T3, FieldAddress(V0, Array::tags_offset()));
// Initialize all array elements to raw_null.
// V0: new object start as a tagged pointer.
// T2: new object end address.
// A1: Array length as Smi.
__ AddImmediate(T3, V0, Array::data_offset() - kHeapObjectTag);
// T3: iterator which initially points to the start of the variable
// data area to be initialized.
__ LoadImmediate(T7, reinterpret_cast<intptr_t>(Object::null()));
Label loop, loop_exit;
__ BranchUnsignedGreaterEqual(T3, T2, &loop_exit);
__ Bind(&loop);
__ addiu(T3, T3, Immediate(kWordSize));
__ bne(T3, T2, &loop);
__ delay_slot()->sw(T7, Address(T3, -kWordSize));
__ Bind(&loop_exit);
// Done allocating and initializing the array.
// V0: new object.
// A1: Array length as Smi (preserved for the caller.)
__ Ret();
}
// Unable to allocate the array using the fast inline code, just call
// into the runtime.
__ Bind(&slow_case);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value.
// Push array length as Smi and element type.
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 2 * kWordSize));
__ sw(A1, Address(SP, 1 * kWordSize));
__ sw(A0, Address(SP, 0 * kWordSize));
__ CallRuntime(kAllocateArrayRuntimeEntry);
__ TraceSimMsg("AllocateArrayStub return");
// Pop arguments; result is popped in IP.
__ lw(V0, Address(SP, 2 * kWordSize));
__ lw(A1, Address(SP, 1 * kWordSize));
__ lw(A0, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(3 * kWordSize));
__ LeaveStubFrameAndReturn();
}
// Input parameters:
// RA: return address.
// SP: address of last argument.
// S4: Arguments descriptor array.
// Return: V0.
// Note: The closure object is the first argument to the function being
// called, the stub accesses the closure from this location directly
// when trying to resolve the call.
void StubCode::GenerateCallClosureFunctionStub(Assembler* assembler) {
// Load num_args.
__ TraceSimMsg("GenerateCallClosureFunctionStub");
__ lw(T0, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ LoadImmediate(TMP1, Smi::RawValue(1));
__ subu(T0, T0, TMP1);
// Load closure object in T1.
__ sll(T1, T0, 1); // T0 (num_args - 1) is a Smi.
__ addu(T1, SP, T1);
__ lw(T1, Address(T1));
// Verify that T1 is a closure by checking its class.
Label not_closure;
__ LoadImmediate(T7, reinterpret_cast<intptr_t>(Object::null()));
// See if it is not a closure, but null object.
__ beq(T1, T7, &not_closure);
__ andi(CMPRES, T1, Immediate(kSmiTagMask));
__ beq(CMPRES, ZR, &not_closure); // Not a closure, but a smi.
// Verify that the class of the object is a closure class by checking that
// class.signature_function() is not null.
__ LoadClass(T0, T1);
__ lw(T0, FieldAddress(T0, Class::signature_function_offset()));
// See if actual class is not a closure class.
__ beq(T0, T7, &not_closure);
// T0 is just the signature function. Load the actual closure function.
__ lw(T2, FieldAddress(T1, Closure::function_offset()));
// Load closure context in CTX; note that CTX has already been preserved.
__ lw(CTX, FieldAddress(T1, Closure::context_offset()));
Label function_compiled;
// Load closure function code in T0.
__ lw(T0, FieldAddress(T2, Function::code_offset()));
__ bne(T0, T7, &function_compiled);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Preserve arguments descriptor array and read-only function object argument.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S4, Address(SP, 1 * kWordSize));
__ sw(T2, Address(SP, 0 * kWordSize));
__ CallRuntime(kCompileFunctionRuntimeEntry);
__ TraceSimMsg("GenerateCallClosureFunctionStub return");
// Restore arguments descriptor array and read-only function object argument.
__ lw(T2, Address(SP, 0 * kWordSize));
__ lw(S4, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
// Restore T0.
__ lw(T0, FieldAddress(T2, Function::code_offset()));
// Remove the stub frame as we are about to jump to the closure function.
__ LeaveStubFrame();
__ Bind(&function_compiled);
// T0: Code.
// S4: Arguments descriptor array.
__ lw(T0, FieldAddress(T0, Code::instructions_offset()));
__ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag);
__ jr(T0);
__ Bind(&not_closure);
// Call runtime to attempt to resolve and invoke a call method on a
// non-closure object, passing the non-closure object and its arguments array,
// returning here.
// If no call method exists, throw a NoSuchMethodError.
// T1: non-closure object.
// S4: arguments descriptor array.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for result from error reporting.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
// Arguments descriptor and raw null.
__ sw(T7, Address(SP, 1 * kWordSize));
__ sw(S4, Address(SP, 0 * kWordSize));
// Load smi-tagged arguments array length, including the non-closure.
__ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
PushArgumentsArray(assembler);
// Stack:
// TOS + 0: Argument array.
// TOS + 1: Arguments descriptor array.
// TOS + 2: Place for result from the call.
// TOS + 3: Saved FP of previous frame.
// TOS + 4: Dart code return address.
// TOS + 5: PC marker (0 for stub).
// TOS + 6: Last argument of caller.
// ....
__ CallRuntime(kInvokeNonClosureRuntimeEntry);
__ lw(V0, Address(SP, 2 * kWordSize)); // Get result into V0.
__ addiu(SP, SP, Immediate(3 * kWordSize)); // Remove arguments.
// Remove the stub frame as we are about to return.
__ LeaveStubFrameAndReturn();
}
// Called when invoking Dart code from C++ (VM code).
// Input parameters:
// RA : points to return address.
// A0 : entrypoint of the Dart function to call.
// A1 : arguments descriptor array.
// A2 : arguments array.
// A3 : new context containing the current isolate pointer.
void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) {
// Save frame pointer coming in.
__ TraceSimMsg("InvokeDartCodeStub");
__ EnterStubFrame();
// Save new context and C++ ABI callee-saved registers.
const intptr_t kNewContextOffset =
-(1 + kAbiPreservedCpuRegCount) * kWordSize;
__ addiu(SP, SP, Immediate(-(3 + kAbiPreservedCpuRegCount) * kWordSize));
for (int i = S0; i <= S7; i++) {
Register r = static_cast<Register>(i);
__ sw(r, Address(SP, (i - S0 + 3) * kWordSize));
}
__ sw(A3, Address(SP, 2 * kWordSize));
// The new Context structure contains a pointer to the current Isolate
// structure. Cache the Context pointer in the CTX register so that it is
// available in generated code and calls to Isolate::Current() need not be
// done. The assumption is that this register will never be clobbered by
// compiled or runtime stub code.
// Cache the new Context pointer into CTX while executing Dart code.
__ lw(CTX, Address(A3, VMHandles::kOffsetOfRawPtrInHandle));
// Load Isolate pointer from Context structure into temporary register R8.
__ lw(T2, FieldAddress(CTX, Context::isolate_offset()));
// Save the top exit frame info. Use T0 as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
__ lw(T0, Address(T2, Isolate::top_exit_frame_info_offset()));
__ sw(ZR, Address(T2, Isolate::top_exit_frame_info_offset()));
// Save the old Context pointer. Use T1 as a temporary register.
// Note that VisitObjectPointers will find this saved Context pointer during
// GC marking, since it traverses any information between SP and
// FP - kExitLinkSlotFromEntryFp.
// EntryFrame::SavedContext reads the context saved in this frame.
__ lw(T1, Address(T2, Isolate::top_context_offset()));
// The constants kSavedContextSlotFromEntryFp and
// kExitLinkSlotFromEntryFp must be kept in sync with the code below.
ASSERT(kExitLinkSlotFromEntryFp == -10);
ASSERT(kSavedContextSlotFromEntryFp == -11);
__ sw(T0, Address(SP, 1 * kWordSize));
__ sw(T1, Address(SP, 0 * kWordSize));
// After the call, The stack pointer is restored to this location.
// Pushed A3, S0-7, T0, T1 = 11.
// Load arguments descriptor array into S4, which is passed to Dart code.
__ lw(S4, Address(A1, VMHandles::kOffsetOfRawPtrInHandle));
// Load number of arguments into S5.
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ SmiUntag(T1);
// Compute address of 'arguments array' data area into A2.
__ lw(A2, Address(A2, VMHandles::kOffsetOfRawPtrInHandle));
// Set up arguments for the Dart call.
Label push_arguments;
Label done_push_arguments;
__ beq(T1, ZR, &done_push_arguments); // check if there are arguments.
__ delay_slot()->addiu(A2, A2,
Immediate(Array::data_offset() - kHeapObjectTag));
__ mov(A1, ZR);
__ Bind(&push_arguments);
__ lw(A3, Address(A2));
__ Push(A3);
__ addiu(A1, A1, Immediate(1));
__ BranchSignedLess(A1, T1, &push_arguments);
__ delay_slot()->addiu(A2, A2, Immediate(kWordSize));
__ Bind(&done_push_arguments);
// Call the Dart code entrypoint.
__ jalr(A0); // S4 is the arguments descriptor array.
__ TraceSimMsg("InvokeDartCodeStub return");
// Read the saved new Context pointer.
__ lw(CTX, Address(FP, kNewContextOffset));
__ lw(CTX, Address(CTX, VMHandles::kOffsetOfRawPtrInHandle));
// Get rid of arguments pushed on the stack.
__ AddImmediate(SP, FP, kSavedContextSlotFromEntryFp * kWordSize);
// Load Isolate pointer from Context structure into CTX. Drop Context.
__ lw(CTX, FieldAddress(CTX, Context::isolate_offset()));
// Restore the saved Context pointer into the Isolate structure.
// Uses T1 as a temporary register for this.
// Restore the saved top exit frame info back into the Isolate structure.
// Uses T0 as a temporary register for this.
__ lw(T1, Address(SP, 0 * kWordSize));
__ lw(T0, Address(SP, 1 * kWordSize));
__ sw(T1, Address(CTX, Isolate::top_context_offset()));
__ sw(T0, Address(CTX, Isolate::top_exit_frame_info_offset()));
// Restore C++ ABI callee-saved registers.
for (int i = S0; i <= S7; i++) {
Register r = static_cast<Register>(i);
__ lw(r, Address(SP, (i - S0 + 3) * kWordSize));
}
__ lw(A3, Address(SP, 2 * kWordSize));
__ addiu(SP, SP, Immediate((3 + kAbiPreservedCpuRegCount) * kWordSize));
// Restore the frame pointer and return.
__ LeaveStubFrameAndReturn();
}
// Called for inline allocation of contexts.
// Input:
// T1: number of context variables.
// Output:
// V0: new allocated RawContext object.
void StubCode::GenerateAllocateContextStub(Assembler* assembler) {
__ TraceSimMsg("AllocateContext");
if (FLAG_inline_alloc) {
const Class& context_class = Class::ZoneHandle(Object::context_class());
Label slow_case;
Heap* heap = Isolate::Current()->heap();
// First compute the rounded instance size.
// T1: number of context variables.
intptr_t fixed_size = sizeof(RawContext) + kObjectAlignment - 1;
__ LoadImmediate(T2, fixed_size);
__ sll(T0, T1, 2);
__ addu(T2, T2, T0);
ASSERT(kSmiTagShift == 1);
__ LoadImmediate(T0, ~((kObjectAlignment) - 1));
__ and_(T2, T2, T0);
// Now allocate the object.
// T1: number of context variables.
// T2: object size.
__ LoadImmediate(T5, heap->TopAddress());
__ lw(V0, Address(T5, 0));
__ addu(T3, T2, V0);
// Check if the allocation fits into the remaining space.
// V0: potential new object.
// T1: number of context variables.
// T2: object size.
// T3: potential next object start.
__ LoadImmediate(TMP1, heap->EndAddress());
__ lw(CMPRES1, Address(TMP1, 0));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ BranchUnsignedGreaterEqual(T3, CMPRES1, &slow_case);
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
// V0: new object.
// T1: number of context variables.
// T2: object size.
// T3: next object start.
__ sw(T3, Address(T5, 0));
__ addiu(V0, V0, Immediate(kHeapObjectTag));
// Calculate the size tag.
// V0: new object.
// T1: number of context variables.
// T2: object size.
const intptr_t shift = RawObject::kSizeTagBit - kObjectAlignmentLog2;
__ LoadImmediate(TMP1, RawObject::SizeTag::kMaxSizeTag);
__ sltu(CMPRES, TMP1, T2); // CMPRES = T2 > TMP1 ? 1 : 0.
__ movn(T2, ZR, CMPRES); // T2 = CMPRES != 0 ? 0 : T2.
__ sll(TMP1, T2, shift); // TMP1 = T2 << shift.
__ movz(T2, TMP1, CMPRES); // T2 = CMPRES == 0 ? TMP1 : T2.
// Get the class index and insert it into the tags.
// T2: size and bit tags.
__ LoadImmediate(TMP1, RawObject::ClassIdTag::encode(context_class.id()));
__ or_(T2, T2, TMP1);
__ sw(T2, FieldAddress(V0, Context::tags_offset()));
// Setup up number of context variables field.
// V0: new object.
// T1: number of context variables as integer value (not object).
__ sw(T1, FieldAddress(V0, Context::num_variables_offset()));
// Setup isolate field.
// Load Isolate pointer from Context structure into R2.
// V0: new object.
// T1: number of context variables.
__ lw(T2, FieldAddress(CTX, Context::isolate_offset()));
// T2: isolate, not an object.
__ sw(T2, FieldAddress(V0, Context::isolate_offset()));
__ LoadImmediate(T7, reinterpret_cast<intptr_t>(Object::null()));
// Initialize the context variables.
// V0: new object.
// T1: number of context variables.
Label loop, loop_exit;
__ blez(T1, &loop_exit);
// Setup the parent field.
__ delay_slot()->sw(T7, FieldAddress(V0, Context::parent_offset()));
__ AddImmediate(T3, V0, Context::variable_offset(0) - kHeapObjectTag);
__ sll(T1, T1, 2);
__ Bind(&loop);
__ addiu(T1, T1, Immediate(-kWordSize));
__ addu(T4, T3, T1);
__ bgtz(T1, &loop);
__ delay_slot()->sw(T7, Address(T4));
__ Bind(&loop_exit);
// Done allocating and initializing the context.
// V0: new object.
__ Ret();
__ Bind(&slow_case);
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Setup space on stack for return value.
__ SmiTag(T1);
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 1 * kWordSize)); // Store null.
__ sw(T1, Address(SP, 0 * kWordSize));
__ CallRuntime(kAllocateContextRuntimeEntry); // Allocate context.
__ lw(V0, Address(SP, 1 * kWordSize)); // Get the new context.
__ addiu(SP, SP, Immediate(2 * kWordSize)); // Pop argument and return.
// V0: new object
// Restore the frame pointer.
__ LeaveStubFrameAndReturn();
}
DECLARE_LEAF_RUNTIME_ENTRY(void, StoreBufferBlockProcess, Isolate* isolate);
// Helper stub to implement Assembler::StoreIntoObject.
// Input parameters:
// T0: Address (i.e. object) being stored into.
void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) {
// Save values being destroyed.
__ TraceSimMsg("UpdateStoreBufferStub");
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ sw(T3, Address(SP, 2 * kWordSize));
__ sw(T2, Address(SP, 1 * kWordSize));
__ sw(T1, Address(SP, 0 * kWordSize));
Label add_to_buffer;
// Check whether this object has already been remembered. Skip adding to the
// store buffer if the object is in the store buffer already.
// Spilled: T1, T2, T3.
// T0: Address being stored.
__ lw(T2, FieldAddress(T0, Object::tags_offset()));
__ andi(CMPRES, T2, Immediate(1 << RawObject::kRememberedBit));
__ beq(CMPRES, ZR, &add_to_buffer);
__ lw(T1, Address(SP, 0 * kWordSize));
__ lw(T2, Address(SP, 1 * kWordSize));
__ lw(T3, Address(SP, 2 * kWordSize));
__ addiu(SP, SP, Immediate(3 * kWordSize));
__ Ret();
__ Bind(&add_to_buffer);
__ ori(T2, T2, Immediate(1 << RawObject::kRememberedBit));
__ sw(T2, FieldAddress(T0, Object::tags_offset()));
// Load the isolate out of the context.
// Spilled: T1, T2, T3.
// T0: Address being stored.
__ lw(T1, FieldAddress(CTX, Context::isolate_offset()));
// Load the StoreBuffer block out of the isolate. Then load top_ out of the
// StoreBufferBlock and add the address to the pointers_.
// T1: Isolate.
__ lw(T1, Address(T1, Isolate::store_buffer_offset()));
__ lw(T2, Address(T1, StoreBufferBlock::top_offset()));
__ sll(T3, T2, 2);
__ addu(T3, T1, T3);
__ sw(T0, Address(T3, StoreBufferBlock::pointers_offset()));
// Increment top_ and check for overflow.
// T2: top_
// T1: StoreBufferBlock
Label L;
__ addiu(T2, T2, Immediate(1));
__ sw(T2, Address(T1, StoreBufferBlock::top_offset()));
__ addiu(CMPRES, T2, Immediate(-StoreBufferBlock::kSize));
// Restore values.
__ lw(T1, Address(SP, 0 * kWordSize));
__ lw(T2, Address(SP, 1 * kWordSize));
__ lw(T3, Address(SP, 2 * kWordSize));
__ beq(CMPRES, ZR, &L);
__ delay_slot()->addiu(SP, SP, Immediate(3 * kWordSize));
__ Ret();
// Handle overflow: Call the runtime leaf function.
__ Bind(&L);
// Setup frame, push callee-saved registers.
__ EnterCallRuntimeFrame(1 * kWordSize);
__ lw(A0, FieldAddress(CTX, Context::isolate_offset()));
__ CallRuntime(kStoreBufferBlockProcessRuntimeEntry);
__ TraceSimMsg("UpdateStoreBufferStub return");
// Restore callee-saved registers, tear down frame.
__ LeaveCallRuntimeFrame();
__ Ret();
}
// Called for inline allocation of objects.
// Input parameters:
// RA : return address.
// SP + 4 : type arguments object (only if class is parameterized).
// SP + 0 : type arguments of instantiator (only if class is parameterized).
void StubCode::GenerateAllocationStubForClass(Assembler* assembler,
const Class& cls) {
__ TraceSimMsg("AllocationStubForClass");
// The generated code is different if the class is parameterized.
const bool is_cls_parameterized = cls.HasTypeArguments();
ASSERT(!cls.HasTypeArguments() ||
(cls.type_arguments_field_offset() != Class::kNoTypeArguments));
// kInlineInstanceSize is a constant used as a threshold for determining
// when the object initialization should be done as a loop or as
// straight line code.
const int kInlineInstanceSize = 12;
const intptr_t instance_size = cls.instance_size();
ASSERT(instance_size > 0);
const intptr_t type_args_size = InstantiatedTypeArguments::InstanceSize();
if (FLAG_inline_alloc &&
Heap::IsAllocatableInNewSpace(instance_size + type_args_size)) {
Label slow_case;
Heap* heap = Isolate::Current()->heap();
__ LoadImmediate(T5, heap->TopAddress());
__ lw(T2, Address(T5));
__ LoadImmediate(T4, instance_size);
__ addu(T3, T2, T4);
if (is_cls_parameterized) {
Label no_instantiator;
__ lw(T1, Address(SP, 1 * kWordSize));
__ lw(T0, Address(SP, 0 * kWordSize));
// A new InstantiatedTypeArguments object only needs to be allocated if
// the instantiator is provided (not kNoInstantiator, but may be null).
__ BranchEqual(T0, Smi::RawValue(StubCode::kNoInstantiator),
&no_instantiator);
__ delay_slot()->mov(T4, T3);
__ AddImmediate(T3, type_args_size);
__ Bind(&no_instantiator);
// T4: potential new object end and, if T4 != T3, potential new
// InstantiatedTypeArguments object start.
}
// Check if the allocation fits into the remaining space.
// T2: potential new object start.
// T3: potential next object start.
__ LoadImmediate(TMP1, heap->EndAddress());
__ lw(CMPRES1, Address(TMP1));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ BranchUnsignedGreaterEqual(T3, CMPRES1, &slow_case);
}
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ sw(T3, Address(T5));
if (is_cls_parameterized) {
// Initialize the type arguments field in the object.
// T2: new object start.
// T4: potential new object end and, if T4 != T3, potential new
// InstantiatedTypeArguments object start.
// T3: next object start.
Label type_arguments_ready;
__ beq(T4, T3, &type_arguments_ready);
// Initialize InstantiatedTypeArguments object at T4.
__ sw(T1, Address(T4,
InstantiatedTypeArguments::uninstantiated_type_arguments_offset()));
__ sw(T0, Address(T4,
InstantiatedTypeArguments::instantiator_type_arguments_offset()));
const Class& ita_cls =
Class::ZoneHandle(Object::instantiated_type_arguments_class());
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(type_args_size, tags);
tags = RawObject::ClassIdTag::update(ita_cls.id(), tags);
__ LoadImmediate(T0, tags);
__ sw(T0, Address(T4, Instance::tags_offset()));
// Set the new InstantiatedTypeArguments object (T4) as the type
// arguments (T1) of the new object (T2).
__ addiu(T1, T4, Immediate(kHeapObjectTag));
// Set T3 to new object end.
__ mov(T3, T4);
__ Bind(&type_arguments_ready);
// T2: new object.
// T1: new object type arguments.
}
// T2: new object start.
// T3: next object start.
// T1: new object type arguments (if is_cls_parameterized).
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(instance_size, tags);
ASSERT(cls.id() != kIllegalCid);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ LoadImmediate(T0, tags);
__ sw(T0, Address(T2, Instance::tags_offset()));
__ LoadImmediate(T7, reinterpret_cast<intptr_t>(Object::null()));
// Initialize the remaining words of the object.
// T2: new object start.
// T3: next object start.
// T1: new object type arguments (if is_cls_parameterized).
// First try inlining the initialization without a loop.
if (instance_size < (kInlineInstanceSize * kWordSize)) {
// Check if the object contains any non-header fields.
// Small objects are initialized using a consecutive set of writes.
for (intptr_t current_offset = sizeof(RawObject);
current_offset < instance_size;
current_offset += kWordSize) {
__ sw(T7, Address(T2, current_offset));
}
} else {
__ addiu(T4, T2, Immediate(sizeof(RawObject)));
// Loop until the whole object is initialized.
// T2: new object.
// T3: next object start.
// T4: next word to be initialized.
// T1: new object type arguments (if is_cls_parameterized).
Label loop, loop_exit;
__ BranchUnsignedGreaterEqual(T4, T3, &loop_exit);
__ Bind(&loop);
__ addiu(T4, T4, Immediate(kWordSize));
__ bne(T4, T3, &loop);
__ delay_slot()->sw(T7, Address(T4, -kWordSize));
__ Bind(&loop_exit);
}
if (is_cls_parameterized) {
// R1: new object type arguments.
// Set the type arguments in the new object.
__ sw(T1, Address(T2, cls.type_arguments_field_offset()));
}
// Done allocating and initializing the instance.
// T2: new object still missing its heap tag.
__ Ret();
__ delay_slot()->addiu(V0, T2, Immediate(kHeapObjectTag));
__ Bind(&slow_case);
}
if (is_cls_parameterized) {
__ lw(T1, Address(SP, 1 * kWordSize));
__ lw(T0, Address(SP, 0 * kWordSize));
}
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame(true); // Uses pool pointer to pass cls to runtime.
__ LoadObject(TMP1, cls);
__ addiu(SP, SP, Immediate(-4 * kWordSize));
// Space on stack for return value.
__ LoadImmediate(T7, reinterpret_cast<intptr_t>(Object::null()));
__ sw(T7, Address(SP, 3 * kWordSize));
__ sw(TMP1, Address(SP, 2 * kWordSize)); // Class of object to be allocated.
if (is_cls_parameterized) {
// Push type arguments of object to be allocated and of instantiator.
__ sw(T1, Address(SP, 1 * kWordSize));
__ sw(T0, Address(SP, 0 * kWordSize));
} else {
// Push null type arguments and kNoInstantiator.
__ LoadImmediate(T1, Smi::RawValue(StubCode::kNoInstantiator));
__ sw(T7, Address(SP, 1 * kWordSize));
__ sw(T1, Address(SP, 0 * kWordSize));
}
__ CallRuntime(kAllocateObjectRuntimeEntry); // Allocate object.
__ TraceSimMsg("AllocationStubForClass return");
// Pop result (newly allocated object).
__ lw(V0, Address(SP, 3 * kWordSize));
__ addiu(SP, SP, Immediate(4 * kWordSize)); // Pop arguments.
// V0: new object
// Restore the frame pointer and return.
__ LeaveStubFrameAndReturn(RA, true);
}
// Called for inline allocation of closures.
// Input parameters:
// RA: return address.
// SP + 4 : receiver (null if not an implicit instance closure).
// SP + 0 : type arguments object (null if class is no parameterized).
void StubCode::GenerateAllocationStubForClosure(Assembler* assembler,
const Function& func) {
ASSERT(func.IsClosureFunction());
ASSERT(!func.IsImplicitStaticClosureFunction());
const bool is_implicit_instance_closure =
func.IsImplicitInstanceClosureFunction();
const Class& cls = Class::ZoneHandle(func.signature_class());
const bool has_type_arguments = cls.HasTypeArguments();
__ TraceSimMsg("AllocationStubForClosure");
__ EnterStubFrame(true); // Uses pool pointer to refer to function.
const intptr_t kTypeArgumentsFPOffset = 3 * kWordSize;
const intptr_t kReceiverFPOffset = 4 * kWordSize;
const intptr_t closure_size = Closure::InstanceSize();
const intptr_t context_size = Context::InstanceSize(1); // Captured receiver.
if (FLAG_inline_alloc &&
Heap::IsAllocatableInNewSpace(closure_size + context_size)) {
Label slow_case;
Heap* heap = Isolate::Current()->heap();
__ LoadImmediate(T5, heap->TopAddress());
__ lw(T2, Address(T5));
__ AddImmediate(T3, T2, closure_size);
if (is_implicit_instance_closure) {
__ mov(T4, T3); // T4: new context address.
__ AddImmediate(T3, context_size);
}
// Check if the allocation fits into the remaining space.
// T2: potential new closure object.
// T3: address of top of heap.
// T4: potential new context object (only if is_implicit_closure).
__ LoadImmediate(TMP1, heap->EndAddress());
__ lw(CMPRES1, Address(TMP1));
if (FLAG_use_slow_path) {
__ b(&slow_case);
} else {
__ BranchUnsignedGreaterEqual(T3, CMPRES1, &slow_case);
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
__ sw(T3, Address(T5));
// T2: new closure object.
// T4: new context object (only if is_implicit_closure).
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(closure_size, tags);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ LoadImmediate(T0, tags);
__ sw(T0, Address(T2, Instance::tags_offset()));
// Initialize the function field in the object.
// T2: new closure object.
// T4: new context object (only if is_implicit_closure).
__ LoadObject(T0, func); // Load function of closure to be allocated.
__ sw(T0, Address(T2, Closure::function_offset()));
// Setup the context for this closure.
if (is_implicit_instance_closure) {
// Initialize the new context capturing the receiver.
const Class& context_class = Class::ZoneHandle(Object::context_class());
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(context_size, tags);
tags = RawObject::ClassIdTag::update(context_class.id(), tags);
__ LoadImmediate(T0, tags);
__ sw(T0, Address(T4, Context::tags_offset()));
// Set number of variables field to 1 (for captured receiver).
__ LoadImmediate(T0, 1);
__ sw(T0, Address(T4, Context::num_variables_offset()));
// Set isolate field to isolate of current context.
__ lw(T0, FieldAddress(CTX, Context::isolate_offset()));
__ sw(T0, Address(T4, Context::isolate_offset()));
// Set the parent to null.
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(T4, Context::parent_offset()));
// Initialize the context variable to the receiver.
__ lw(T0, Address(FP, kReceiverFPOffset));
__ sw(T0, Address(T4, Context::variable_offset(0)));
// Set the newly allocated context in the newly allocated closure.
__ AddImmediate(T1, T4, kHeapObjectTag);
__ sw(T1, Address(T2, Closure::context_offset()));
} else {
__ sw(CTX, Address(T2, Closure::context_offset()));
}
// Set the type arguments field in the newly allocated closure.
__ lw(T0, Address(FP, kTypeArgumentsFPOffset));
__ sw(T0, Address(T2, Closure::type_arguments_offset()));
// Done allocating and initializing the instance.
// V0: new object.
__ addiu(V0, T2, Immediate(kHeapObjectTag));
__ LeaveStubFrameAndReturn(RA, true);
__ Bind(&slow_case);
}
// If it's an implicit instance closure we need 4 stack slots, o/w only 3.
intptr_t num_slots = is_implicit_instance_closure ? 4 : 3;
__ addiu(SP, SP, Immediate(-num_slots * kWordSize));
// Setup space on stack for return value.
__ LoadImmediate(T7, reinterpret_cast<intptr_t>(Object::null()));
__ sw(T7, Address(SP, (num_slots - 1) * kWordSize));
__ LoadObject(TMP1, func);
__ sw(TMP1, Address(SP, (num_slots - 2) * kWordSize));
__ mov(T2, T7);
if (is_implicit_instance_closure) {
__ lw(T1, Address(FP, kReceiverFPOffset));
__ sw(T1, Address(SP, (num_slots - 3) * kWordSize)); // Receiver.
}
if (has_type_arguments) {
__ lw(T2, Address(FP, kTypeArgumentsFPOffset));
}
__ sw(T2, Address(SP, 0 * kWordSize));
if (is_implicit_instance_closure) {
__ CallRuntime(kAllocateImplicitInstanceClosureRuntimeEntry);
__ TraceSimMsg("AllocationStubForClosure return");
} else {
ASSERT(func.IsNonImplicitClosureFunction());
__ CallRuntime(kAllocateClosureRuntimeEntry);
__ TraceSimMsg("AllocationStubForClosure return");
}
__ lw(V0, Address(SP, (num_slots - 1) * kWordSize)); // Pop function object.
__ addiu(SP, SP, Immediate(num_slots * kWordSize));
// V0: new object
// Restore the frame pointer.
__ LeaveStubFrameAndReturn(RA, true);
}
// Called for invoking "dynamic noSuchMethod(Invocation invocation)" function
// from the entry code of a dart function after an error in passed argument
// name or number is detected.
// Input parameters:
// RA : return address.
// SP : address of last argument.
// S5: inline cache data object.
// S4: arguments descriptor array.
void StubCode::GenerateCallNoSuchMethodFunctionStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver.
__ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ sll(TMP, A1, 1); // A1 is a Smi.
__ addu(TMP, FP, TMP);
__ lw(T6, Address(TMP, kParamEndSlotFromFp * kWordSize));
// Push space for the return value.
// Push the receiver.
// Push IC data object.
// Push arguments descriptor array.
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 3 * kWordSize));
__ sw(T6, Address(SP, 2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize));
__ sw(S4, Address(SP, 0 * kWordSize));
// A1: Smi-tagged arguments array length.
PushArgumentsArray(assembler);
__ CallRuntime(kInvokeNoSuchMethodFunctionRuntimeEntry);
__ lw(V0, Address(SP, 4 * kWordSize)); // Get result into V0.
__ LeaveStubFrameAndReturn();
}
// T0: function object.
// S5: inline cache data object.
// Cannot use function object from ICData as it may be the inlined
// function and not the top-scope function.
void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) {
__ TraceSimMsg("OptimizedUsageCounterIncrement");
Register ic_reg = S5;
Register func_reg = T0;
if (FLAG_trace_optimized_ic_calls) {
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(T0, Address(SP, 3 * kWordSize));
__ sw(S5, Address(SP, 2 * kWordSize));
__ sw(ic_reg, Address(SP, 1 * kWordSize)); // Argument.
__ sw(func_reg, Address(SP, 0 * kWordSize)); // Argument.
__ CallRuntime(kTraceICCallRuntimeEntry);
__ lw(S5, Address(SP, 2 * kWordSize));
__ lw(T0, Address(SP, 3 * kWordSize));
__ addiu(SP, SP, Immediate(4 * kWordSize)); // Discard argument;
__ LeaveStubFrame();
}
__ lw(T7, FieldAddress(func_reg, Function::usage_counter_offset()));
__ addiu(T7, T7, Immediate(1));
__ sw(T7, FieldAddress(func_reg, Function::usage_counter_offset()));
}
// Loads function into 'temp_reg'.
void StubCode::GenerateUsageCounterIncrement(Assembler* assembler,
Register temp_reg) {
__ TraceSimMsg("UsageCounterIncrement");
Register ic_reg = S5;
Register func_reg = temp_reg;
ASSERT(temp_reg == T0);
__ lw(func_reg, FieldAddress(ic_reg, ICData::function_offset()));
__ lw(T1, FieldAddress(func_reg, Function::usage_counter_offset()));
__ addiu(T1, T1, Immediate(1));
__ sw(T1, FieldAddress(func_reg, Function::usage_counter_offset()));
}
// Generate inline cache check for 'num_args'.
// RA: return address
// S5: Inline cache data object.
// Control flow:
// - If receiver is null -> jump to IC miss.
// - If receiver is Smi -> load Smi class.
// - If receiver is not-Smi -> load receiver's class.
// - Check if 'num_args' (including receiver) match any IC data group.
// - Match found -> jump to target.
// - Match not found -> jump to IC miss.
void StubCode::GenerateNArgsCheckInlineCacheStub(
Assembler* assembler,
intptr_t num_args,
const RuntimeEntry& handle_ic_miss) {
__ TraceSimMsg("NArgsCheckInlineCacheStub");
ASSERT(num_args > 0);
#if defined(DEBUG)
{ Label ok;
// Check that the IC data array has NumberOfArgumentsChecked() == num_args.
// 'num_args_tested' is stored as an untagged int.
__ lw(T0, FieldAddress(S5, ICData::num_args_tested_offset()));
__ BranchEqual(T0, num_args, &ok);
__ Stop("Incorrect stub for IC data");
__ Bind(&ok);
}
#endif // DEBUG
// Check single stepping.
Label not_stepping;
__ lw(T0, FieldAddress(CTX, Context::isolate_offset()));
__ lbu(T0, Address(T0, Isolate::single_step_offset()));
__ BranchEqual(T0, 0, &not_stepping);
// Call single step callback in debugger.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize)); // Preserve IC data.
__ sw(RA, Address(SP, 0 * kWordSize)); // Return address.
__ CallRuntime(kSingleStepHandlerRuntimeEntry);
__ lw(RA, Address(SP, 0 * kWordSize));
__ lw(S5, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ Bind(&not_stepping);
// Load argument descriptor into S4.
__ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset()));
// Preserve return address, since RA is needed for subroutine call.
__ mov(T2, RA);
// Loop that checks if there is an IC data match.
Label loop, update, test, found, get_class_id_as_smi;
// S5: IC data object (preserved).
__ lw(T0, FieldAddress(S5, ICData::ic_data_offset()));
// T0: ic_data_array with check entries: classes and target functions.
__ AddImmediate(T0, Array::data_offset() - kHeapObjectTag);
// T0: points directly to the first ic data array element.
// Get the receiver's class ID (first read number of arguments from
// arguments descriptor array and then access the receiver from the stack).
__ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset()));
__ LoadImmediate(TMP1, Smi::RawValue(1));
__ subu(T1, T1, TMP1);
__ sll(T3, T1, 1); // T1 (argument_count - 1) is smi.
__ addu(T3, T3, SP);
__ bal(&get_class_id_as_smi);
__ delay_slot()->lw(T3, Address(T3));
// T1: argument_count - 1 (smi).
// T3: receiver's class ID (smi).
__ b(&test);
__ delay_slot()->lw(T4, Address(T0)); // First class id (smi) to check.
__ Bind(&loop);
for (int i = 0; i < num_args; i++) {
if (i > 0) {
// If not the first, load the next argument's class ID.
__ LoadImmediate(T3, Smi::RawValue(-i));
__ addu(T3, T1, T3);
__ sll(T3, T3, 1);
__ addu(T3, SP, T3);
__ bal(&get_class_id_as_smi);
__ delay_slot()->lw(T3, Address(T3));
// T3: next argument class ID (smi).
__ lw(T4, Address(T0, i * kWordSize));
// T4: next class ID to check (smi).
}
if (i < (num_args - 1)) {
__ bne(T3, T4, &update); // Continue.
} else {
// Last check, all checks before matched.
Label skip;
__ bne(T3, T4, &skip);
__ b(&found); // Break.
__ delay_slot()->mov(RA, T2); // Restore return address if found.
__ Bind(&skip);
}
}
__ Bind(&update);
// Reload receiver class ID. It has not been destroyed when num_args == 1.
if (num_args > 1) {
__ sll(T3, T1, 1);
__ addu(T3, T3, SP);
__ bal(&get_class_id_as_smi);
__ delay_slot()->lw(T3, Address(T3));
}
const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize;
__ AddImmediate(T0, entry_size); // Next entry.
__ lw(T4, Address(T0)); // Next class ID.
__ Bind(&test);
__ BranchNotEqual(T4, Smi::RawValue(kIllegalCid), &loop); // Done?
// IC miss.
// Restore return address.
__ mov(RA, T2);
// Compute address of arguments (first read number of arguments from
// arguments descriptor array and then compute address on the stack).
// T1: argument_count - 1 (smi).
__ sll(T1, T1, 1); // T1 is Smi.
__ addu(T1, SP, T1);
// T1: address of receiver.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Preserve IC data object and arguments descriptor array and
// setup space on stack for result (target code object).
int num_slots = num_args + 4;
__ addiu(SP, SP, Immediate(-num_slots * kWordSize));
__ sw(S5, Address(SP, (num_slots - 1) * kWordSize));
__ sw(S4, Address(SP, (num_slots - 2) * kWordSize));
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, (num_slots - 3) * kWordSize));
// Push call arguments.
for (intptr_t i = 0; i < num_args; i++) {
__ lw(TMP1, Address(T1, -i * kWordSize));
__ sw(TMP1, Address(SP, (num_slots - i - 4) * kWordSize));
}
// Pass IC data object.
__ sw(S5, Address(SP, (num_slots - num_args - 4) * kWordSize));
__ CallRuntime(handle_ic_miss);
__ TraceSimMsg("NArgsCheckInlineCacheStub return");
// Pop returned code object into T3 (null if not found).
// Restore arguments descriptor array and IC data array.
__ lw(T3, Address(SP, (num_slots - 3) * kWordSize));
__ lw(S4, Address(SP, (num_slots - 2) * kWordSize));
__ lw(S5, Address(SP, (num_slots - 1) * kWordSize));
// Remove the call arguments pushed earlier, including the IC data object
// and the arguments descriptor array.
__ addiu(SP, SP, Immediate(num_slots * kWordSize));
__ LeaveStubFrame();
Label call_target_function;
__ BranchNotEqual(T3, reinterpret_cast<int32_t>(Object::null()),
&call_target_function);
// NoSuchMethod or closure.
// Mark IC call that it may be a closure call that does not collect
// type feedback.
__ LoadImmediate(T6, 1);
__ Branch(&StubCode::InstanceFunctionLookupLabel());
__ delay_slot()->sb(T6, FieldAddress(S5, ICData::is_closure_call_offset()));
__ Bind(&found);
// T0: Pointer to an IC data check group.
const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize;
__ lw(T3, Address(T0, target_offset));
__ lw(T4, Address(T0, count_offset));
__ AddImmediateDetectOverflow(T4, T4, Smi::RawValue(1), T5, T6);
__ bgez(T5, &call_target_function); // No overflow.
__ delay_slot()->sw(T4, Address(T0, count_offset));
__ LoadImmediate(T1, Smi::RawValue(Smi::kMaxValue));
__ sw(T1, Address(T0, count_offset));
__ Bind(&call_target_function);
// T3: Target function.
__ lw(T3, FieldAddress(T3, Function::code_offset()));
__ lw(T3, FieldAddress(T3, Code::instructions_offset()));
__ AddImmediate(T3, Instructions::HeaderSize() - kHeapObjectTag);
__ jr(T3);
// Instance in T3, return its class-id in T3 as Smi.
__ Bind(&get_class_id_as_smi);
Label not_smi;
// Test if Smi -> load Smi class for comparison.
__ andi(CMPRES1, T3, Immediate(kSmiTagMask));
__ bne(CMPRES1, ZR, &not_smi);
__ jr(RA);
__ delay_slot()->addiu(T3, ZR, Immediate(Smi::RawValue(kSmiCid)));
__ Bind(&not_smi);
__ LoadClassId(T3, T3);
__ jr(RA);
__ delay_slot()->SmiTag(T3);
}
// Use inline cache data array to invoke the target or continue in inline
// cache miss handler. Stub for 1-argument check (receiver class).
// RA: Return address.
// S5: Inline cache data object.
// Inline cache data object structure:
// 0: function-name
// 1: N, number of arguments checked.
// 2 .. (length - 1): group of checks, each check containing:
// - N classes.
// - 1 target function.
void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry);
}
void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry);
}
void StubCode::GenerateThreeArgsCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 3, kInlineCacheMissHandlerThreeArgsRuntimeEntry);
}
void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry);
}
void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry);
}
void StubCode::GenerateThreeArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(
assembler, 3, kInlineCacheMissHandlerThreeArgsRuntimeEntry);
}
void StubCode::GenerateClosureCallInlineCacheStub(Assembler* assembler) {
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry);
}
void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) {
GenerateNArgsCheckInlineCacheStub(
assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry);
}
// Intermediary stub between a static call and its target. ICData contains
// the target function and the call count.
// S5: ICData
void StubCode::GenerateZeroArgsUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
__ TraceSimMsg("UnoptimizedStaticCallStub");
#if defined(DEBUG)
{ Label ok;
// Check that the IC data array has NumberOfArgumentsChecked() == 0.
// 'num_args_tested' is stored as an untagged int.
__ lw(T0, FieldAddress(S5, ICData::num_args_tested_offset()));
__ beq(T0, ZR, &ok);
__ Stop("Incorrect IC data for unoptimized static call");
__ Bind(&ok);
}
#endif // DEBUG
// Check single stepping.
Label not_stepping;
__ lw(T0, FieldAddress(CTX, Context::isolate_offset()));
__ lbu(T0, Address(T0, Isolate::single_step_offset()));
__ BranchEqual(T0, 0, &not_stepping);
// Call single step callback in debugger.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize)); // Preserve IC data.
__ sw(RA, Address(SP, 0 * kWordSize)); // Return address.
__ CallRuntime(kSingleStepHandlerRuntimeEntry);
__ lw(RA, Address(SP, 0 * kWordSize));
__ lw(S5, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ Bind(&not_stepping);
// S5: IC data object (preserved).
__ lw(T0, FieldAddress(S5, ICData::ic_data_offset()));
// T0: ic_data_array with entries: target functions and count.
__ AddImmediate(T0, Array::data_offset() - kHeapObjectTag);
// T0: points directly to the first ic data array element.
const intptr_t target_offset = ICData::TargetIndexFor(0) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(0) * kWordSize;
// Increment count for this call.
Label increment_done;
__ lw(T4, Address(T0, count_offset));
__ AddImmediateDetectOverflow(T4, T4, Smi::RawValue(1), T5, T6);
__ bgez(T5, &increment_done); // No overflow.
__ delay_slot()->sw(T4, Address(T0, count_offset));
__ LoadImmediate(T1, Smi::RawValue(Smi::kMaxValue));
__ sw(T1, Address(T0, count_offset));
__ Bind(&increment_done);
Label target_is_compiled;
// Get function and call it, if possible.
__ lw(T3, Address(T0, target_offset));
__ lw(T4, FieldAddress(T3, Function::code_offset()));
__ LoadImmediate(CMPRES1, reinterpret_cast<intptr_t>(Object::null()));
__ bne(T4, CMPRES1, &target_is_compiled);
__ EnterStubFrame();
// Preserve target function and IC data object.
// Two preserved registers, one argument (function) => 3 slots.
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ sw(S5, Address(SP, 2 * kWordSize)); // Preserve IC data.
__ sw(T3, Address(SP, 1 * kWordSize)); // Preserve function.
__ sw(T3, Address(SP, 0 * kWordSize)); // Function argument.
__ CallRuntime(kCompileFunctionRuntimeEntry);
__ lw(T3, Address(SP, 1 * kWordSize)); // Restore function.
__ lw(S5, Address(SP, 2 * kWordSize)); // Restore IC data.
__ addiu(SP, SP, Immediate(3 * kWordSize));
// T3: target function.
__ lw(T4, FieldAddress(T3, Function::code_offset()));
__ LeaveStubFrame();
__ Bind(&target_is_compiled);
// T4: target code.
__ lw(T3, FieldAddress(T4, Code::instructions_offset()));
__ AddImmediate(T3, Instructions::HeaderSize() - kHeapObjectTag);
__ jr(T3);
// Load arguments descriptor into S4.
__ delay_slot()->
lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset()));
}
void StubCode::GenerateTwoArgsUnoptimizedStaticCallStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, T0);
GenerateNArgsCheckInlineCacheStub(
assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry);
}
void StubCode::GenerateBreakpointRuntimeStub(Assembler* assembler) {
__ Unimplemented("BreakpointRuntime stub");
}
// RA: return address (Dart code).
// S5: IC data (unoptimized static call).
void StubCode::GenerateBreakpointStaticStub(Assembler* assembler) {
__ TraceSimMsg("BreakpointStaticStub");
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
// Preserve arguments descriptor and make room for result.
__ addiu(SP, SP, Immediate(-2 * kWordSize));
__ sw(S5, Address(SP, 1 * kWordSize));
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 0 * kWordSize));
__ CallRuntime(kBreakpointStaticHandlerRuntimeEntry);
// Pop code object result and restore arguments descriptor.
__ lw(T0, Address(SP, 0 * kWordSize));
__ lw(S5, Address(SP, 1 * kWordSize));
__ addiu(SP, SP, Immediate(2 * kWordSize));
__ LeaveStubFrame();
// Now call the static function. The breakpoint handler function
// ensures that the call target is compiled.
__ lw(T0, FieldAddress(T0, Code::instructions_offset()));
__ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag);
// Load arguments descriptor into S4.
__ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset()));
__ jr(T0);
}
// V0: return value.
void StubCode::GenerateBreakpointReturnStub(Assembler* assembler) {
__ TraceSimMsg("BreakpoingReturnStub");
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ Push(V0);
__ CallRuntime(kBreakpointReturnHandlerRuntimeEntry);
__ Pop(V0);
__ LeaveStubFrame();
// Instead of returning to the patched Dart function, emulate the
// smashed return code pattern and return to the function's caller.
__ LeaveDartFrameAndReturn();
}
// RA: return address (Dart code).
// S5: Inline cache data array.
void StubCode::GenerateBreakpointDynamicStub(Assembler* assembler) {
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ TraceSimMsg("BreakpointDynamicStub");
__ EnterStubFrame();
__ Push(S5);
__ CallRuntime(kBreakpointDynamicHandlerRuntimeEntry);
__ Pop(S5);
__ LeaveStubFrame();
// Find out which dispatch stub to call.
__ lw(T1, FieldAddress(S5, ICData::num_args_tested_offset()));
Label one_arg, two_args, three_args;
__ BranchEqual(T1, 1, &one_arg);
__ BranchEqual(T1, 2, &two_args);
__ BranchEqual(T1, 3, &three_args);
__ Stop("Unsupported number of arguments tested.");
__ Bind(&one_arg);
__ Branch(&StubCode::OneArgCheckInlineCacheLabel());
__ Bind(&two_args);
__ Branch(&StubCode::TwoArgsCheckInlineCacheLabel());
__ Bind(&three_args);
__ Branch(&StubCode::ThreeArgsCheckInlineCacheLabel());
__ break_(0);
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) {
__ TraceSimMsg("SubtypeNTestCacheStub");
ASSERT((1 <= n) && (n <= 3));
if (n > 1) {
// Get instance type arguments.
__ LoadClass(T0, A0);
// Compute instance type arguments into R4.
Label has_no_type_arguments;
__ lw(T2, FieldAddress(T0,
Class::type_arguments_field_offset_in_words_offset()));
__ BranchEqual(T2, Class::kNoTypeArguments, &has_no_type_arguments);
__ sll(T2, T2, 2);
__ addu(T2, A0, T2); // T2 <- A0 + T2 * 4
__ lw(T1, FieldAddress(T2, 0));
__ Bind(&has_no_type_arguments);
}
__ LoadClassId(T0, A0);
// A0: instance.
// A1: instantiator type arguments or NULL.
// A2: SubtypeTestCache.
// T0: instance class id.
// T1: instance type arguments (null if none), used only if n > 1.
__ lw(T2, FieldAddress(A2, SubtypeTestCache::cache_offset()));
__ AddImmediate(T2, Array::data_offset() - kHeapObjectTag);
__ LoadImmediate(T7, reinterpret_cast<intptr_t>(Object::null()));
Label loop, found, not_found, next_iteration;
// T0: instance class id.
// T1: instance type arguments.
// T2: Entry start.
// T7: null.
__ SmiTag(T0);
__ Bind(&loop);
__ lw(T3, Address(T2, kWordSize * SubtypeTestCache::kInstanceClassId));
__ beq(T3, T7, &not_found);
if (n == 1) {
__ beq(T3, T0, &found);
} else {
__ bne(T3, T0, &next_iteration);
__ lw(T3,
Address(T2, kWordSize * SubtypeTestCache::kInstanceTypeArguments));
if (n == 2) {
__ beq(T3, T1, &found);
} else {
__ bne(T3, T1, &next_iteration);
__ lw(T3, Address(T2, kWordSize *
SubtypeTestCache::kInstantiatorTypeArguments));
__ beq(T3, A1, &found);
}
}
__ Bind(&next_iteration);
__ b(&loop);
__ delay_slot()->addiu(T2, T2,
Immediate(kWordSize * SubtypeTestCache::kTestEntryLength));
// Fall through to not found.
__ Bind(&not_found);
__ Ret();
__ delay_slot()->mov(V0, T7);
__ Bind(&found);
__ Ret();
__ delay_slot()->lw(V0,
Address(T2, kWordSize * SubtypeTestCache::kTestResult));
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 1);
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 2);
}
// Used to check class and type arguments. Arguments passed in registers:
// RA: return address.
// A0: instance (must be preserved).
// A1: instantiator type arguments or NULL.
// A2: cache array.
// Result in V0: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 3);
}
// Return the current stack pointer address, used to stack alignment
// checks.
void StubCode::GenerateGetStackPointerStub(Assembler* assembler) {
__ Ret();
__ delay_slot()->mov(V0, SP);
}
// Jump to the exception or error handler.
// RA: return address.
// A0: program_counter.
// A1: stack_pointer.
// A2: frame_pointer.
// A3: error object.
// SP: address of stacktrace object.
// Does not return.
void StubCode::GenerateJumpToExceptionHandlerStub(Assembler* assembler) {
ASSERT(kExceptionObjectReg == V0);
ASSERT(kStackTraceObjectReg == V1);
__ mov(V0, A3); // Exception object.
__ lw(V1, Address(SP, 0)); // StackTrace object.
__ mov(FP, A2); // Frame_pointer.
__ jr(A0); // Jump to the exception handler code.
__ delay_slot()->mov(SP, A1); // Stack pointer.
}
// Implements equality operator when one of the arguments is null
// (identity check) and updates ICData if necessary.
// RA: return address.
// A1: left argument.
// A0: right argument.
// T0: ICData.
// V0: result.
// TODO(srdjan): Move to VM stubs once Boolean objects become VM objects.
void StubCode::GenerateEqualityWithNullArgStub(Assembler* assembler) {
__ TraceSimMsg("EqualityWithNullArgStub");
__ Comment("EqualityWithNullArgStub");
__ EnterStubFrame();
static const intptr_t kNumArgsTested = 2;
#if defined(DEBUG)
{ Label ok;
__ lw(CMPRES1, FieldAddress(T0, ICData::num_args_tested_offset()));
__ BranchEqual(CMPRES1, kNumArgsTested, &ok);
__ Stop("Incorrect ICData for equality");
__ Bind(&ok);
}
#endif // DEBUG
// Check IC data, update if needed.
// T0: IC data object (preserved).
__ lw(T6, FieldAddress(T0, ICData::ic_data_offset()));
// T6: ic_data_array with check entries: classes and target functions.
__ AddImmediate(T6, Array::data_offset() - kHeapObjectTag);
// T6: points directly to the first ic data array element.
Label get_class_id_as_smi, no_match, loop, found;
__ Bind(&loop);
// Check left.
__ bal(&get_class_id_as_smi);
__ delay_slot()->mov(T2, A1);
__ lw(T3, Address(T6, 0 * kWordSize));
__ bne(T2, T3, &no_match); // Class id match?
// Check right.
__ bal(&get_class_id_as_smi);
__ delay_slot()->mov(T2, A0);
__ lw(T3, Address(T6, 1 * kWordSize));
__ beq(T2, T3, &found); // Class id match?
__ Bind(&no_match);
// Next check group.
intptr_t entry_bytes = kWordSize * ICData::TestEntryLengthFor(kNumArgsTested);
if (Utils::IsInt(kImmBits, entry_bytes)) {
__ BranchNotEqual(T3, Smi::RawValue(kIllegalCid), &loop); // Done?
__ delay_slot()->addiu(T6, T6, Immediate(entry_bytes));
} else {
__ AddImmediate(T6, entry_bytes);
__ BranchNotEqual(T3, Smi::RawValue(kIllegalCid), &loop); // Done?
}
Label update_ic_data;
__ b(&update_ic_data);
__ Bind(&found);
const intptr_t count_offset =
ICData::CountIndexFor(kNumArgsTested) * kWordSize;
Label no_overflow;
__ lw(T1, Address(T6, count_offset));
__ AddImmediateDetectOverflow(T1, T1, Smi::RawValue(1), CMPRES, T5);
__ bgez(CMPRES, &no_overflow);
__ delay_slot()->sw(T1, Address(T6, count_offset));
__ LoadImmediate(TMP1, Smi::RawValue(Smi::kMaxValue));
__ sw(TMP1, Address(T6, count_offset)); // If overflow.
__ Bind(&no_overflow);
Label compute_result;
__ Bind(&compute_result);
__ LoadObject(T4, Bool::True());
__ LoadObject(T5, Bool::False());
__ subu(CMPRES, A0, A1);
__ movz(V0, T4, CMPRES);
__ movn(V0, T5, CMPRES);
__ LeaveStubFrameAndReturn();
__ Bind(&get_class_id_as_smi);
// Test if Smi -> load Smi class for comparison.
Label not_smi;
__ andi(CMPRES, T2, Immediate(kSmiTagMask));
__ bne(CMPRES, ZR, &not_smi);
__ jr(RA);
__ delay_slot()->addiu(T2, ZR, Immediate(Smi::RawValue(kSmiCid)));
__ Bind(&not_smi);
__ LoadClassId(T2, T2);
__ jr(RA);
__ delay_slot()->SmiTag(T2);
__ Bind(&update_ic_data);
// T0: ICData
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(A1, Address(SP, 3 * kWordSize));
__ sw(A0, Address(SP, 2 * kWordSize));
__ LoadObject(TMP1, Symbols::EqualOperator()); // Target's name.
__ sw(TMP1, Address(SP, 1 * kWordSize));
__ sw(T0, Address(SP, 0 * kWordSize)); // ICData.
__ CallRuntime(kUpdateICDataTwoArgsRuntimeEntry);
__ lw(A0, Address(SP, 2 * kWordSize));
__ lw(A1, Address(SP, 3 * kWordSize));
__ b(&compute_result);
__ delay_slot()->addiu(SP, SP, Immediate(4 * kWordSize));
}
// Calls to the runtime to optimize the given function.
// T0: function to be reoptimized.
// S4: argument descriptor (preserved).
void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) {
__ TraceSimMsg("OptimizeFunctionStub");
__ EnterStubFrame();
__ addiu(SP, SP, Immediate(-3 * kWordSize));
__ sw(S4, Address(SP, 2 * kWordSize));
// Setup space on stack for return value.
__ LoadImmediate(TMP, reinterpret_cast<intptr_t>(Object::null()));
__ sw(TMP, Address(SP, 1 * kWordSize));
__ sw(T0, Address(SP, 0 * kWordSize));
__ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry);
__ TraceSimMsg("OptimizeFunctionStub return");
__ lw(T0, Address(SP, 1 * kWordSize)); // Get Code object
__ lw(S4, Address(SP, 2 * kWordSize)); // Restore argument descriptor.
__ addiu(SP, SP, Immediate(3 * kWordSize)); // Discard argument.
__ lw(T0, FieldAddress(T0, Code::instructions_offset()));
__ AddImmediate(T0, Instructions::HeaderSize() - kHeapObjectTag);
__ LeaveStubFrameAndReturn(T0);
__ break_(0);
}
DECLARE_LEAF_RUNTIME_ENTRY(intptr_t,
BigintCompare,
RawBigint* left,
RawBigint* right);
// Does identical check (object references are equal or not equal) with special
// checks for boxed numbers.
// Returns: CMPRES is zero if equal, non-zero otherwise.
// Note: A Mint cannot contain a value that would fit in Smi, a Bigint
// cannot contain a value that fits in Mint or Smi.
void StubCode::GenerateIdenticalWithNumberCheckStub(Assembler* assembler,
const Register left,
const Register right,
const Register temp1,
const Register temp2) {
__ TraceSimMsg("IdenticalWithNumberCheckStub");
__ Comment("IdenticalWithNumberCheckStub");
Label reference_compare, done, check_mint, check_bigint;
// If any of the arguments is Smi do reference compare.
__ andi(temp1, left, Immediate(kSmiTagMask));
__ beq(temp1, ZR, &reference_compare);
__ andi(temp1, right, Immediate(kSmiTagMask));
__ beq(temp1, ZR, &reference_compare);
// Value compare for two doubles.
__ LoadImmediate(temp1, kDoubleCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &check_mint);
__ LoadClassId(temp2, right);
__ subu(CMPRES, temp1, temp2);
__ bne(CMPRES, ZR, &done);
// Double values bitwise compare.
__ lw(temp1, FieldAddress(left, Double::value_offset() + 0 * kWordSize));
__ lw(temp2, FieldAddress(right, Double::value_offset() + 0 * kWordSize));
__ subu(CMPRES, temp1, temp2);
__ bne(CMPRES, ZR, &done);
__ lw(temp1, FieldAddress(left, Double::value_offset() + 1 * kWordSize));
__ lw(temp2, FieldAddress(right, Double::value_offset() + 1 * kWordSize));
__ b(&done);
__ delay_slot()->subu(CMPRES, temp1, temp2);
__ Bind(&check_mint);
__ LoadImmediate(temp1, kMintCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &check_bigint);
__ LoadClassId(temp2, right);
__ subu(CMPRES, temp1, temp2);
__ bne(CMPRES, ZR, &done);
__ lw(temp1, FieldAddress(left, Mint::value_offset() + 0 * kWordSize));
__ lw(temp2, FieldAddress(right, Mint::value_offset() + 0 * kWordSize));
__ subu(CMPRES, temp1, temp2);
__ bne(CMPRES, ZR, &done);
__ lw(temp1, FieldAddress(left, Mint::value_offset() + 1 * kWordSize));
__ lw(temp2, FieldAddress(right, Mint::value_offset() + 1 * kWordSize));
__ b(&done);
__ delay_slot()->subu(CMPRES, temp1, temp2);
__ Bind(&check_bigint);
__ LoadImmediate(temp1, kBigintCid);
__ LoadClassId(temp2, left);
__ bne(temp1, temp2, &reference_compare);
__ LoadClassId(temp2, right);
__ subu(CMPRES, temp1, temp2);
__ bne(CMPRES, ZR, &done);
__ EnterStubFrame();
__ ReserveAlignedFrameSpace(2 * kWordSize);
__ sw(left, Address(SP, 1 * kWordSize));
__ sw(right, Address(SP, 0 * kWordSize));
__ mov(A0, left);
__ mov(A1, right);
__ CallRuntime(kBigintCompareRuntimeEntry);
__ TraceSimMsg("IdenticalWithNumberCheckStub return");
// Result in V0, 0 means equal.
__ LeaveStubFrame();
__ b(&done);
__ delay_slot()->mov(CMPRES, V0);
__ Bind(&reference_compare);
__ subu(CMPRES, left, right);
__ Bind(&done);
// A branch or test after this comparison will check CMPRES1 == CMPRES2.
__ mov(CMPRES2, ZR);
}
// Called only from unoptimized code. All relevant registers have been saved.
// RA: return address.
// SP + 4: left operand.
// SP + 0: right operand.
// Returns: CMPRES is zero if equal, non-zero otherwise.
void StubCode::GenerateUnoptimizedIdenticalWithNumberCheckStub(
Assembler* assembler) {
// Check single stepping.
Label not_stepping;
__ lw(T0, FieldAddress(CTX, Context::isolate_offset()));
__ lbu(T0, Address(T0, Isolate::single_step_offset()));
__ BranchEqual(T0, 0, &not_stepping);
// Call single step callback in debugger.
__ addiu(SP, SP, Immediate(-1 * kWordSize));
__ sw(RA, Address(SP, 0 * kWordSize)); // Return address.
__ CallRuntime(kSingleStepHandlerRuntimeEntry);
__ lw(RA, Address(SP, 0 * kWordSize));
__ addiu(SP, SP, Immediate(1 * kWordSize));
__ Bind(&not_stepping);
const Register temp1 = T2;
const Register temp2 = T3;
const Register left = T1;
const Register right = T0;
// Preserve left, right.
__ lw(left, Address(SP, 1 * kWordSize));
__ lw(right, Address(SP, 0 * kWordSize));
GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp1, temp2);
__ Ret();
}
// Called from otpimzied code only. Must preserve any registers that are
// destroyed.
// SP + 4: left operand.
// SP + 0: right operand.
// Returns: CMPRES is zero if equal, non-zero otherwise.
void StubCode::GenerateOptimizedIdenticalWithNumberCheckStub(
Assembler* assembler) {
const Register temp1 = T2;
const Register temp2 = T3;
const Register left = T1;
const Register right = T0;
// Preserve left, right.
__ addiu(SP, SP, Immediate(-4 * kWordSize));
__ sw(temp1, Address(SP, 3 * kWordSize));
__ sw(temp2, Address(SP, 2 * kWordSize));
__ sw(left, Address(SP, 1 * kWordSize));
__ sw(right, Address(SP, 0 * kWordSize));
__ lw(left, Address(SP, 5 * kWordSize));
__ lw(right, Address(SP, 4 * kWordSize));
GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp1, temp2);
__ lw(right, Address(SP, 0 * kWordSize));
__ lw(left, Address(SP, 1 * kWordSize));
__ lw(temp2, Address(SP, 2 * kWordSize));
__ lw(temp1, Address(SP, 3 * kWordSize));
__ Ret();
__ delay_slot()->addiu(SP, SP, Immediate(4 * kWordSize));
}
} // namespace dart
#endif // defined TARGET_ARCH_MIPS