blob: bae68fd66fdfb7ca71ca8cd8fa6699772c51f2dd [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/class_finalizer.h"
#include "vm/flags.h"
#include "vm/heap.h"
#include "vm/isolate.h"
#include "vm/longjump.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(bool, error_on_malformed_type, false,
"Report error for malformed types.");
DEFINE_FLAG(bool, print_classes, false, "Prints details about loaded classes.");
DEFINE_FLAG(bool, trace_class_finalization, false, "Trace class finalization.");
DEFINE_FLAG(bool, trace_type_finalization, false, "Trace type finalization.");
DECLARE_FLAG(bool, enable_type_checks);
DECLARE_FLAG(bool, use_cha);
bool ClassFinalizer::AllClassesFinalized() {
ObjectStore* object_store = Isolate::Current()->object_store();
const GrowableObjectArray& classes =
GrowableObjectArray::Handle(object_store->pending_classes());
return classes.Length() == 0;
}
// Removes optimized code once we load more classes, since --use_cha based
// optimizations may have become invalid.
// Only methods which owner classes where subclasses can be invalid.
// TODO(srdjan): Be even more precise by recording the exact CHA optimization.
static void RemoveOptimizedCode(
const GrowableArray<intptr_t>& added_subclasses_to_cids) {
ASSERT(FLAG_use_cha);
if (added_subclasses_to_cids.is_empty()) return;
// Deoptimize all live frames.
DeoptimizeIfOwner(added_subclasses_to_cids);
// Switch all functions' code to unoptimized.
const ClassTable& class_table = *Isolate::Current()->class_table();
Class& cls = Class::Handle();
Array& array = Array::Handle();
Function& function = Function::Handle();
for (intptr_t i = 0; i < added_subclasses_to_cids.length(); i++) {
intptr_t cid = added_subclasses_to_cids[i];
cls = class_table.At(cid);
ASSERT(!cls.IsNull());
array = cls.functions();
intptr_t num_functions = array.IsNull() ? 0 : array.Length();
for (intptr_t f = 0; f < num_functions; f++) {
function ^= array.At(f);
ASSERT(!function.IsNull());
if (function.HasOptimizedCode()) {
function.SwitchToUnoptimizedCode();
}
}
}
}
void AddSuperType(const Type& type,
GrowableArray<intptr_t>* finalized_super_classes) {
ASSERT(type.HasResolvedTypeClass());
if (type.IsObjectType()) {
return;
}
const Class& cls = Class::Handle(type.type_class());
ASSERT(cls.is_finalized());
const intptr_t cid = cls.id();
for (intptr_t i = 0; i < finalized_super_classes->length(); i++) {
if ((*finalized_super_classes)[i] == cid) {
// Already added.
return;
}
}
finalized_super_classes->Add(cid);
const Type& super_type = Type::Handle(cls.super_type());
AddSuperType(super_type, finalized_super_classes);
}
// Use array instead of set since we expect very few subclassed classes
// to occur.
static void CollectFinalizedSuperClasses(
const GrowableObjectArray& pending_classes,
GrowableArray<intptr_t>* finalized_super_classes) {
Class& cls = Class::Handle();
Type& super_type = Type::Handle();
for (intptr_t i = 0; i < pending_classes.Length(); i++) {
cls ^= pending_classes.At(i);
ASSERT(!cls.is_finalized());
super_type ^= cls.super_type();
if (!super_type.IsNull()) {
if (super_type.HasResolvedTypeClass() &&
Class::Handle(super_type.type_class()).is_finalized()) {
AddSuperType(super_type, finalized_super_classes);
}
}
}
}
// Class finalization occurs:
// a) when bootstrap process completes (VerifyBootstrapClasses).
// b) after the user classes are loaded (dart_api).
bool ClassFinalizer::FinalizePendingClasses() {
bool retval = true;
Isolate* isolate = Isolate::Current();
ASSERT(isolate != NULL);
ObjectStore* object_store = isolate->object_store();
const Error& error = Error::Handle(object_store->sticky_error());
if (!error.IsNull()) {
return false;
}
if (AllClassesFinalized()) {
return true;
}
GrowableArray<intptr_t> added_subclasses_to_cids;
LongJump* base = isolate->long_jump_base();
LongJump jump;
isolate->set_long_jump_base(&jump);
if (setjmp(*jump.Set()) == 0) {
GrowableObjectArray& class_array = GrowableObjectArray::Handle();
class_array = object_store->pending_classes();
ASSERT(!class_array.IsNull());
// Collect superclasses that were already finalized before this run of
// finalization.
CollectFinalizedSuperClasses(class_array, &added_subclasses_to_cids);
Class& cls = Class::Handle();
// First resolve all superclasses.
for (intptr_t i = 0; i < class_array.Length(); i++) {
cls ^= class_array.At(i);
if (FLAG_trace_class_finalization) {
OS::Print("Resolving super and interfaces: %s\n", cls.ToCString());
}
ResolveSuperType(cls);
if (cls.is_interface()) {
ResolveFactoryClass(cls);
}
GrowableArray<intptr_t> visited_interfaces;
ResolveInterfaces(cls, &visited_interfaces);
}
// Finalize all classes.
for (intptr_t i = 0; i < class_array.Length(); i++) {
cls ^= class_array.At(i);
FinalizeClass(cls);
}
if (FLAG_print_classes) {
for (intptr_t i = 0; i < class_array.Length(); i++) {
cls ^= class_array.At(i);
PrintClassInformation(cls);
}
}
// Clear pending classes array.
class_array = GrowableObjectArray::New();
object_store->set_pending_classes(class_array);
} else {
retval = false;
}
isolate->set_long_jump_base(base);
if (FLAG_use_cha) {
RemoveOptimizedCode(added_subclasses_to_cids);
}
return retval;
}
// Adds all interfaces of cls into 'collected'. Duplicate entries may occur.
// No cycles are allowed.
void ClassFinalizer::CollectInterfaces(const Class& cls,
const GrowableObjectArray& collected) {
const Array& interface_array = Array::ZoneHandle(cls.interfaces());
AbstractType& interface = AbstractType::Handle();
Class& interface_class = Class::Handle();
for (intptr_t i = 0; i < interface_array.Length(); i++) {
interface ^= interface_array.At(i);
interface_class = interface.type_class();
collected.Add(interface_class);
CollectInterfaces(interface_class, collected);
}
}
void ClassFinalizer::VerifyBootstrapClasses() {
if (FLAG_trace_class_finalization) {
OS::Print("VerifyBootstrapClasses START.\n");
}
ObjectStore* object_store = Isolate::Current()->object_store();
Class& cls = Class::Handle();
#if defined(DEBUG)
// Basic checking.
cls = object_store->object_class();
ASSERT(Instance::InstanceSize() == cls.instance_size());
cls = object_store->integer_implementation_class();
ASSERT(Integer::InstanceSize() == cls.instance_size());
cls = object_store->smi_class();
ASSERT(Smi::InstanceSize() == cls.instance_size());
cls = object_store->mint_class();
ASSERT(Mint::InstanceSize() == cls.instance_size());
cls = object_store->bigint_class();
ASSERT(Bigint::InstanceSize() == cls.instance_size());
cls = object_store->one_byte_string_class();
ASSERT(OneByteString::InstanceSize() == cls.instance_size());
cls = object_store->two_byte_string_class();
ASSERT(TwoByteString::InstanceSize() == cls.instance_size());
cls = object_store->external_one_byte_string_class();
ASSERT(ExternalOneByteString::InstanceSize() == cls.instance_size());
cls = object_store->external_two_byte_string_class();
ASSERT(ExternalTwoByteString::InstanceSize() == cls.instance_size());
cls = object_store->double_class();
ASSERT(Double::InstanceSize() == cls.instance_size());
cls = object_store->bool_class();
ASSERT(Bool::InstanceSize() == cls.instance_size());
cls = object_store->array_class();
ASSERT(Array::InstanceSize() == cls.instance_size());
cls = object_store->immutable_array_class();
ASSERT(ImmutableArray::InstanceSize() == cls.instance_size());
cls = object_store->uint8_array_class();
ASSERT(Uint8Array::InstanceSize() == cls.instance_size());
cls = object_store->int16_array_class();
ASSERT(Int16Array::InstanceSize() == cls.instance_size());
cls = object_store->uint16_array_class();
ASSERT(Uint16Array::InstanceSize() == cls.instance_size());
cls = object_store->int32_array_class();
ASSERT(Int32Array::InstanceSize() == cls.instance_size());
cls = object_store->uint32_array_class();
ASSERT(Uint32Array::InstanceSize() == cls.instance_size());
cls = object_store->int64_array_class();
ASSERT(Int64Array::InstanceSize() == cls.instance_size());
cls = object_store->uint64_array_class();
ASSERT(Uint64Array::InstanceSize() == cls.instance_size());
cls = object_store->float32_array_class();
ASSERT(Float32Array::InstanceSize() == cls.instance_size());
cls = object_store->float64_array_class();
ASSERT(Float64Array::InstanceSize() == cls.instance_size());
cls = object_store->external_int8_array_class();
ASSERT(ExternalInt8Array::InstanceSize() == cls.instance_size());
cls = object_store->external_uint8_array_class();
ASSERT(ExternalUint8Array::InstanceSize() == cls.instance_size());
cls = object_store->external_int16_array_class();
ASSERT(ExternalInt16Array::InstanceSize() == cls.instance_size());
cls = object_store->external_uint16_array_class();
ASSERT(ExternalUint16Array::InstanceSize() == cls.instance_size());
cls = object_store->external_int32_array_class();
ASSERT(ExternalInt32Array::InstanceSize() == cls.instance_size());
cls = object_store->external_uint32_array_class();
ASSERT(ExternalUint32Array::InstanceSize() == cls.instance_size());
cls = object_store->external_int64_array_class();
ASSERT(ExternalInt64Array::InstanceSize() == cls.instance_size());
cls = object_store->external_uint64_array_class();
ASSERT(ExternalUint64Array::InstanceSize() == cls.instance_size());
cls = object_store->external_float32_array_class();
ASSERT(ExternalFloat32Array::InstanceSize() == cls.instance_size());
cls = object_store->external_float64_array_class();
ASSERT(ExternalFloat64Array::InstanceSize() == cls.instance_size());
cls = object_store->weak_property_class();
ASSERT(WeakProperty::InstanceSize() == cls.instance_size());
#endif // defined(DEBUG)
// Remember the currently pending classes.
const GrowableObjectArray& class_array =
GrowableObjectArray::Handle(object_store->pending_classes());
for (intptr_t i = 0; i < class_array.Length(); i++) {
// TODO(iposva): Add real checks.
cls ^= class_array.At(i);
if (cls.is_finalized() || cls.is_prefinalized()) {
// Pre-finalized bootstrap classes must not define any fields.
ASSERT(!cls.HasInstanceFields());
}
}
// Finalize classes that aren't pre-finalized by Object::Init().
if (!FinalizePendingClasses()) {
// TODO(srdjan): Exit like a real VM instead.
const Error& err = Error::Handle(object_store->sticky_error());
OS::PrintErr("Could not verify bootstrap classes : %s\n",
err.ToErrorCString());
OS::Exit(255);
}
if (FLAG_trace_class_finalization) {
OS::Print("VerifyBootstrapClasses END.\n");
}
Isolate::Current()->heap()->Verify();
}
// Resolve unresolved_class in the library of cls, or return null.
RawClass* ClassFinalizer::ResolveClass(
const Class& cls, const UnresolvedClass& unresolved_class) {
const String& class_name = String::Handle(unresolved_class.ident());
Library& lib = Library::Handle();
Class& resolved_class = Class::Handle();
if (unresolved_class.library_prefix() == LibraryPrefix::null()) {
lib = cls.library();
ASSERT(!lib.IsNull());
resolved_class = lib.LookupClass(class_name);
} else {
LibraryPrefix& lib_prefix = LibraryPrefix::Handle();
lib_prefix = unresolved_class.library_prefix();
ASSERT(!lib_prefix.IsNull());
resolved_class = lib_prefix.LookupLocalClass(class_name);
}
return resolved_class.raw();
}
// Resolve unresolved supertype (String -> Class).
void ClassFinalizer::ResolveSuperType(const Class& cls) {
if (cls.is_finalized()) {
return;
}
Type& super_type = Type::Handle(cls.super_type());
if (super_type.IsNull()) {
return;
}
// Resolve failures lead to a longjmp.
ResolveType(cls, super_type, kCanonicalizeWellFormed);
const Class& super_class = Class::Handle(super_type.type_class());
if (cls.is_interface() != super_class.is_interface()) {
String& class_name = String::Handle(cls.Name());
String& super_class_name = String::Handle(super_class.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"class '%s' and superclass '%s' are not "
"both classes or both interfaces",
class_name.ToCString(),
super_class_name.ToCString());
}
// If cls belongs to core lib or to core lib's implementation, restrictions
// about allowed interfaces are lifted.
if (cls.library() != Library::CoreLibrary()) {
// Prevent extending core implementation classes.
bool is_error = false;
switch (super_class.id()) {
case kNumberCid:
case kIntegerCid:
case kSmiCid:
case kMintCid:
case kBigintCid:
case kDoubleCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kExternalOneByteStringCid:
case kExternalTwoByteStringCid:
case kBoolCid:
case kArrayCid:
case kImmutableArrayCid:
case kGrowableObjectArrayCid:
case kInt8ArrayCid:
case kExternalInt8ArrayCid:
case kUint8ArrayCid:
case kExternalUint8ArrayCid:
case kInt16ArrayCid:
case kExternalInt16ArrayCid:
case kUint16ArrayCid:
case kExternalUint16ArrayCid:
case kInt32ArrayCid:
case kExternalInt32ArrayCid:
case kUint32ArrayCid:
case kExternalUint32ArrayCid:
case kInt64ArrayCid:
case kExternalInt64ArrayCid:
case kUint64ArrayCid:
case kExternalUint64ArrayCid:
case kFloat32ArrayCid:
case kExternalFloat32ArrayCid:
case kFloat64ArrayCid:
case kExternalFloat64ArrayCid:
case kDartFunctionCid:
case kWeakPropertyCid:
is_error = true;
break;
default: {
// Special case: classes for which we don't have a known class id.
// TODO(regis): Why isn't comparing to kIntegerCid enough?
if (Type::Handle(Type::Double()).type_class() == super_class.raw() ||
Type::Handle(Type::IntType()).type_class() == super_class.raw() ||
Type::Handle(
Type::StringType()).type_class() == super_class.raw()) {
is_error = true;
}
break;
}
}
if (is_error) {
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"'%s' is not allowed to extend '%s'",
String::Handle(cls.Name()).ToCString(),
String::Handle(super_class.Name()).ToCString());
}
}
return;
}
void ClassFinalizer::ResolveFactoryClass(const Class& interface) {
ASSERT(interface.is_interface());
if (interface.is_finalized() ||
!interface.HasFactoryClass() ||
interface.HasResolvedFactoryClass()) {
return;
}
const UnresolvedClass& unresolved_factory_class =
UnresolvedClass::Handle(interface.UnresolvedFactoryClass());
// Lookup the factory class.
const Class& factory_class =
Class::Handle(ResolveClass(interface, unresolved_factory_class));
if (factory_class.IsNull()) {
const Script& script = Script::Handle(interface.script());
ReportError(script, unresolved_factory_class.token_pos(),
"cannot resolve factory class name '%s' from '%s'",
String::Handle(unresolved_factory_class.Name()).ToCString(),
String::Handle(interface.Name()).ToCString());
}
if (factory_class.is_interface()) {
const String& interface_name = String::Handle(interface.Name());
const String& factory_name = String::Handle(factory_class.Name());
const Script& script = Script::Handle(interface.script());
ReportError(script, unresolved_factory_class.token_pos(),
"default clause of interface '%s' names non-class '%s'",
interface_name.ToCString(),
factory_name.ToCString());
}
interface.set_factory_class(factory_class);
// It is not necessary to finalize the bounds before comparing them between
// the expected and actual factory class.
const Class& factory_signature_class = Class::Handle(
unresolved_factory_class.factory_signature_class());
ASSERT(!factory_signature_class.IsNull());
// If a type parameter list is included in the default factory clause (it
// can be omitted), verify that it matches the list of type parameters of
// the factory class in number, names, and bounds.
if (factory_signature_class.NumTypeParameters() > 0) {
const TypeArguments& expected_type_parameters =
TypeArguments::Handle(factory_signature_class.type_parameters());
const TypeArguments& actual_type_parameters =
TypeArguments::Handle(factory_class.type_parameters());
const bool check_type_parameter_bounds = true;
if (!AbstractTypeArguments::AreIdentical(expected_type_parameters,
actual_type_parameters,
check_type_parameter_bounds)) {
const String& interface_name = String::Handle(interface.Name());
const String& factory_name = String::Handle(factory_class.Name());
const Script& script = Script::Handle(interface.script());
ReportError(script, unresolved_factory_class.token_pos(),
"mismatch in number, names, or bounds of type parameters "
"between default clause of interface '%s' and actual factory "
"class '%s'",
interface_name.ToCString(),
factory_name.ToCString());
}
}
// Verify that the type parameters of the factory class and of the interface
// have identical names, but not necessarily identical bounds.
const TypeArguments& interface_type_parameters =
TypeArguments::Handle(interface.type_parameters());
const TypeArguments& factory_type_parameters =
TypeArguments::Handle(factory_class.type_parameters());
const bool check_type_parameter_bounds = false;
if (!AbstractTypeArguments::AreIdentical(interface_type_parameters,
factory_type_parameters,
check_type_parameter_bounds)) {
const String& interface_name = String::Handle(interface.Name());
const String& factory_name = String::Handle(factory_class.Name());
const Script& script = Script::Handle(interface.script());
ReportError(script, unresolved_factory_class.token_pos(),
"mismatch in number or names of type parameters between "
"interface '%s' and default factory class '%s'",
interface_name.ToCString(),
factory_name.ToCString());
}
}
void ClassFinalizer::ResolveRedirectingFactoryTarget(
const Class& cls,
const Function& factory,
const GrowableObjectArray& visited_factories) {
ASSERT(factory.IsRedirectingFactory());
// Check for redirection cycle.
for (int i = 0; i < visited_factories.Length(); i++) {
if (visited_factories.At(i) == factory.raw()) {
// A redirection cycle is reported as a compile-time error.
const Script& script = Script::Handle(cls.script());
ReportError(script, factory.token_pos(),
"factory '%s' illegally redirects to itself",
String::Handle(factory.name()).ToCString());
}
}
visited_factories.Add(factory);
// Check if target is already resolved.
Type& type = Type::Handle(factory.RedirectionType());
Function& target = Function::Handle(factory.RedirectionTarget());
if (type.IsMalformed()) {
// Already resolved to a malformed type. Will throw on usage.
ASSERT(target.IsNull());
return;
}
if (!target.IsNull()) {
// Already resolved.
return;
}
// Target is not resolved yet.
if (FLAG_trace_class_finalization) {
OS::Print("Resolving redirecting factory: %s\n",
String::Handle(factory.name()).ToCString());
}
ResolveType(cls, type, kCanonicalize);
type ^= FinalizeType(cls, type, kCanonicalize);
factory.SetRedirectionType(type);
if (type.IsMalformed()) {
ASSERT(factory.RedirectionTarget() == Function::null());
return;
}
const Class& target_class = Class::Handle(type.type_class());
String& target_class_name = String::Handle(target_class.Name());
const String& period = String::Handle(Symbols::Dot());
String& target_name = String::Handle(
String::Concat(target_class_name, period));
const String& identifier = String::Handle(factory.RedirectionIdentifier());
if (!identifier.IsNull()) {
target_name = String::Concat(target_name, identifier);
}
// Verify that the target constructor of the redirection exists.
target = target_class.LookupConstructor(target_name);
if (target.IsNull()) {
target = target_class.LookupFactory(target_name);
}
if (target.IsNull()) {
const String& user_visible_target_name =
identifier.IsNull() ? target_class_name : target_name;
// Replace the type with a malformed type and compile a throw when called.
type = NewFinalizedMalformedType(
Error::Handle(), // No previous error.
cls,
factory.token_pos(),
kTryResolve, // No compile-time error.
"class '%s' has no constructor or factory named '%s'",
target_class_name.ToCString(),
user_visible_target_name.ToCString());
factory.SetRedirectionType(type);
ASSERT(factory.RedirectionTarget() == Function::null());
return;
}
// Verify that the target is compatible with the redirecting factory.
if (!target.HasCompatibleParametersWith(factory)) {
type = NewFinalizedMalformedType(
Error::Handle(), // No previous error.
cls,
factory.token_pos(),
kTryResolve, // No compile-time error.
"constructor '%s' has incompatible parameters with "
"redirecting factory '%s'",
String::Handle(target.name()).ToCString(),
String::Handle(factory.name()).ToCString());
factory.SetRedirectionType(type);
ASSERT(factory.RedirectionTarget() == Function::null());
return;
}
// Verify that the target is const if the the redirecting factory is const.
if (factory.is_const() && !target.is_const()) {
const Script& script = Script::Handle(cls.script());
ReportError(script, factory.token_pos(),
"constructor '%s' must be const as required by redirecting"
"const factory '%s'",
String::Handle(target.name()).ToCString(),
String::Handle(factory.name()).ToCString());
}
// Update redirection data with resolved target.
factory.SetRedirectionTarget(target);
factory.SetRedirectionIdentifier(String::Handle()); // Not needed anymore.
if (!target.IsRedirectingFactory()) {
return;
}
// The target is itself a redirecting factory. Recursively resolve its own
// target and update the current redirection data to point to the end target
// of the redirection chain.
ResolveRedirectingFactoryTarget(target_class, target, visited_factories);
Type& target_type = Type::Handle(target.RedirectionType());
Function& target_target = Function::Handle(target.RedirectionTarget());
if (target_target.IsNull()) {
ASSERT(target_type.IsMalformed());
} else {
// If the target type refers to type parameters, substitute them with the
// type arguments of the redirection type.
if (!target_type.IsInstantiated()) {
const AbstractTypeArguments& type_args = AbstractTypeArguments::Handle(
type.arguments());
target_type ^= target_type.InstantiateFrom(type_args);
// TODO(regis): Check bounds in checked mode.
target_type ^= FinalizeType(cls, target_type, kCanonicalize);
if (target_type.IsMalformed()) {
target_target = Function::null();
}
}
}
factory.SetRedirectionType(target_type);
factory.SetRedirectionTarget(target_target);
}
void ClassFinalizer::ResolveType(const Class& cls,
const AbstractType& type,
FinalizationKind finalization) {
if (type.IsResolved() || type.IsFinalized()) {
if ((finalization == kCanonicalizeWellFormed) && type.IsMalformed()) {
ReportError(Error::Handle(type.malformed_error()));
}
return;
}
if (FLAG_trace_type_finalization) {
OS::Print("Resolve type '%s'\n", String::Handle(type.Name()).ToCString());
}
// Resolve the type class.
if (!type.HasResolvedTypeClass()) {
// Type parameters are always resolved in the parser in the correct
// non-static scope or factory scope. That resolution scope is unknown here.
// Being able to resolve a type parameter from class cls here would indicate
// that the type parameter appeared in a static scope. Leaving the type as
// unresolved is the correct thing to do.
// Lookup the type class.
const UnresolvedClass& unresolved_class =
UnresolvedClass::Handle(type.unresolved_class());
const Class& type_class =
Class::Handle(ResolveClass(cls, unresolved_class));
// Replace unresolved class with resolved type class.
const Type& parameterized_type = Type::Cast(type);
if (!type_class.IsNull()) {
parameterized_type.set_type_class(Object::Handle(type_class.raw()));
} else {
// The type class could not be resolved. The type is malformed.
FinalizeMalformedType(Error::Handle(), // No previous error.
cls, parameterized_type, finalization,
"cannot resolve class name '%s' from '%s'",
String::Handle(unresolved_class.Name()).ToCString(),
String::Handle(cls.Name()).ToCString());
return;
}
}
// Resolve type arguments, if any.
const AbstractTypeArguments& arguments =
AbstractTypeArguments::Handle(type.arguments());
if (!arguments.IsNull()) {
intptr_t num_arguments = arguments.Length();
AbstractType& type_argument = AbstractType::Handle();
for (intptr_t i = 0; i < num_arguments; i++) {
type_argument = arguments.TypeAt(i);
ResolveType(cls, type_argument, finalization);
}
}
}
void ClassFinalizer::FinalizeTypeParameters(const Class& cls) {
const TypeArguments& type_parameters =
TypeArguments::Handle(cls.type_parameters());
if (!type_parameters.IsNull()) {
TypeParameter& type_parameter = TypeParameter::Handle();
const intptr_t num_types = type_parameters.Length();
for (intptr_t i = 0; i < num_types; i++) {
type_parameter ^= type_parameters.TypeAt(i);
type_parameter ^= FinalizeType(cls,
type_parameter,
kCanonicalizeWellFormed);
type_parameters.SetTypeAt(i, type_parameter);
}
}
}
// Finalize the type argument vector 'arguments' of the type defined by the
// class 'cls' parameterized with the type arguments 'cls_args'.
// The vector 'cls_args' is already initialized as a subvector at the correct
// position in the passed in 'arguments' vector.
// The subvector 'cls_args' has length cls.NumTypeParameters() and starts at
// offset cls.NumTypeArguments() - cls.NumTypeParameters() of the 'arguments'
// vector.
// Example:
// Declared: class C<K, V> extends B<V> { ... }
// class B<T> extends A<int> { ... }
// Input: C<String, double> expressed as
// cls = C, arguments = [null, null, String, double],
// i.e. cls_args = [String, double], offset = 2, length = 2.
// Output: arguments = [int, double, String, double]
void ClassFinalizer::FinalizeTypeArguments(
const Class& cls,
const AbstractTypeArguments& arguments,
FinalizationKind finalization) {
ASSERT(arguments.Length() >= cls.NumTypeArguments());
if (!cls.is_finalized()) {
FinalizeTypeParameters(cls);
}
Type& super_type = Type::Handle(cls.super_type());
if (!super_type.IsNull()) {
const Class& super_class = Class::Handle(super_type.type_class());
AbstractTypeArguments& super_type_args = AbstractTypeArguments::Handle();
if (super_type.IsBeingFinalized()) {
// This type references itself via its type arguments. This is legal, but
// we must avoid endless recursion. We therefore map the innermost
// super type to dynamic.
// Note that a direct self-reference via the super class chain is illegal
// and reported as an error earlier.
// Such legal self-references occur with F-bounded quantification.
// Example 1: class Derived extends Base<Derived>.
// The type 'Derived' forms a cycle by pointing to itself via its
// flattened type argument vector: Derived[Base[Derived[Base[...]]]]
// We break the cycle as follows: Derived[Base[Derived[dynamic]]]
// Example 2: class Derived extends Base<Middle<Derived>> results in
// Derived[Base[Middle[Derived[dynamic]]]]
// Example 3: class Derived<T> extends Base<Derived<T>> results in
// Derived[Base[Derived[dynamic]], T].
ASSERT(super_type_args.IsNull()); // Same as a vector of dynamic.
} else {
super_type ^= FinalizeType(cls, super_type, finalization);
cls.set_super_type(super_type);
super_type_args = super_type.arguments();
}
const intptr_t num_super_type_params = super_class.NumTypeParameters();
const intptr_t offset = super_class.NumTypeArguments();
const intptr_t super_offset = offset - num_super_type_params;
ASSERT(offset == (cls.NumTypeArguments() - cls.NumTypeParameters()));
AbstractType& super_type_arg = AbstractType::Handle(Type::DynamicType());
for (intptr_t i = 0; i < num_super_type_params; i++) {
if (!super_type_args.IsNull()) {
super_type_arg = super_type_args.TypeAt(super_offset + i);
if (!super_type_arg.IsInstantiated()) {
super_type_arg = super_type_arg.InstantiateFrom(arguments);
}
if (finalization >= kCanonicalize) {
super_type_arg = super_type_arg.Canonicalize();
}
}
arguments.SetTypeAt(super_offset + i, super_type_arg);
}
FinalizeTypeArguments(super_class, arguments, finalization);
}
}
RawAbstractType* ClassFinalizer::FinalizeType(const Class& cls,
const AbstractType& type,
FinalizationKind finalization) {
if (type.IsFinalized()) {
// Ensure type is canonical if canonicalization is requested, unless type is
// malformed.
if (finalization >= kCanonicalize) {
if (type.IsMalformed()) {
if (finalization == kCanonicalizeWellFormed) {
ReportError(Error::Handle(type.malformed_error()));
}
} else {
return type.Canonicalize();
}
}
return type.raw();
}
ASSERT(type.IsResolved());
ASSERT(finalization >= kFinalize);
if (FLAG_trace_type_finalization) {
OS::Print("Finalize type '%s'\n", String::Handle(type.Name()).ToCString());
}
if (type.IsTypeParameter()) {
const TypeParameter& type_parameter = TypeParameter::Cast(type);
const Class& parameterized_class =
Class::Handle(type_parameter.parameterized_class());
ASSERT(!parameterized_class.IsNull());
// The index must reflect the position of this type parameter in the type
// arguments vector of its parameterized class. The offset to add is the
// number of type arguments in the super type, which is equal to the
// difference in number of type arguments and type parameters of the
// parameterized class.
const intptr_t offset = parameterized_class.NumTypeArguments() -
parameterized_class.NumTypeParameters();
type_parameter.set_index(type_parameter.index() + offset);
type_parameter.set_is_finalized();
// TODO(regis): We are not able to finalize the bound here without getting
// into cycles. Revisit.
// We do not canonicalize type parameters.
return type_parameter.raw();
}
// At this point, we can only have a parameterized_type.
const Type& parameterized_type = Type::Cast(type);
if (parameterized_type.IsBeingFinalized()) {
// Self reference detected. The type is malformed.
FinalizeMalformedType(
Error::Handle(), // No previous error.
cls, parameterized_type, finalization,
"type '%s' illegally refers to itself",
String::Handle(parameterized_type.UserVisibleName()).ToCString());
return parameterized_type.raw();
}
// Mark type as being finalized in order to detect illegal self reference.
parameterized_type.set_is_being_finalized();
// The type class does not need to be finalized in order to finalize the type,
// however, it must at least be resolved (this was done as part of resolving
// the type itself, a precondition to calling FinalizeType).
// Also, the interfaces of the type class must be resolved and the type
// parameters of the type class must be finalized.
Class& type_class = Class::Handle(parameterized_type.type_class());
if (!type_class.is_finalized()) {
FinalizeTypeParameters(type_class);
}
// Finalize the current type arguments of the type, which are still the
// parsed type arguments.
AbstractTypeArguments& arguments =
AbstractTypeArguments::Handle(parameterized_type.arguments());
if (!arguments.IsNull()) {
intptr_t num_arguments = arguments.Length();
AbstractType& type_argument = AbstractType::Handle();
for (intptr_t i = 0; i < num_arguments; i++) {
type_argument = arguments.TypeAt(i);
type_argument = FinalizeType(cls, type_argument, finalization);
if (type_argument.IsMalformed()) {
// In production mode, malformed type arguments are mapped to dynamic.
// In checked mode, a type with malformed type arguments is malformed.
if (FLAG_enable_type_checks || FLAG_error_on_malformed_type) {
const Error& error = Error::Handle(type_argument.malformed_error());
const String& type_name =
String::Handle(parameterized_type.UserVisibleName());
FinalizeMalformedType(error, cls, parameterized_type, finalization,
"type '%s' has malformed type argument",
type_name.ToCString());
return parameterized_type.raw();
} else {
type_argument = Type::DynamicType();
}
}
arguments.SetTypeAt(i, type_argument);
}
}
// The finalized type argument vector needs num_type_arguments types.
const intptr_t num_type_arguments = type_class.NumTypeArguments();
// The type class has num_type_parameters type parameters.
const intptr_t num_type_parameters = type_class.NumTypeParameters();
// Initialize the type argument vector.
// Check the number of parsed type arguments, if any.
// Specifying no type arguments indicates a raw type, which is not an error.
// However, type parameter bounds are checked below, even for a raw type.
if (!arguments.IsNull() && (arguments.Length() != num_type_parameters)) {
// Wrong number of type arguments. The type is malformed.
if (finalization >= kCanonicalizeExpression) {
const Script& script = Script::Handle(cls.script());
const String& type_name =
String::Handle(parameterized_type.UserVisibleName());
ReportError(script, parameterized_type.token_pos(),
"wrong number of type arguments in type '%s'",
type_name.ToCString());
}
FinalizeMalformedType(
Error::Handle(), // No previous error.
cls, parameterized_type, finalization,
"wrong number of type arguments in type '%s'",
String::Handle(parameterized_type.UserVisibleName()).ToCString());
return parameterized_type.raw();
}
// The full type argument vector consists of the type arguments of the
// super types of type_class, which may be initialized from the parsed
// type arguments, followed by the parsed type arguments.
TypeArguments& full_arguments = TypeArguments::Handle();
if (num_type_arguments > 0) {
// If no type arguments were parsed and if the super types do not prepend
// type arguments to the vector, we can leave the vector as null.
if (!arguments.IsNull() || (num_type_arguments > num_type_parameters)) {
full_arguments = TypeArguments::New(num_type_arguments);
// Copy the parsed type arguments at the correct offset in the full type
// argument vector.
const intptr_t offset = num_type_arguments - num_type_parameters;
AbstractType& type_arg = AbstractType::Handle(Type::DynamicType());
for (intptr_t i = 0; i < num_type_parameters; i++) {
// If no type parameters were provided, a raw type is desired, so we
// create a vector of DynamicType.
if (!arguments.IsNull()) {
type_arg = arguments.TypeAt(i);
}
ASSERT(type_arg.IsFinalized()); // Index of type parameter is adjusted.
full_arguments.SetTypeAt(offset + i, type_arg);
}
if (type_class.IsSignatureClass()) {
const Function& signature_fun =
Function::Handle(type_class.signature_function());
ASSERT(!signature_fun.is_static());
const Class& sig_fun_owner = Class::Handle(signature_fun.Owner());
FinalizeTypeArguments(sig_fun_owner, full_arguments, finalization);
} else {
FinalizeTypeArguments(type_class, full_arguments, finalization);
}
if (full_arguments.IsRaw(num_type_arguments)) {
// The parameterized_type is raw. Set its argument vector to null, which
// is more efficient in type tests.
full_arguments = TypeArguments::null();
} else if (finalization >= kCanonicalize) {
// FinalizeTypeArguments can modify 'full_arguments',
// canonicalize afterwards.
full_arguments ^= full_arguments.Canonicalize();
}
parameterized_type.set_arguments(full_arguments);
} else {
ASSERT(full_arguments.IsNull()); // Use null vector for raw type.
}
}
// Self referencing types may get finalized indirectly.
if (!parameterized_type.IsFinalized()) {
// Mark the type as finalized.
if (parameterized_type.IsInstantiated()) {
parameterized_type.set_is_finalized_instantiated();
} else {
parameterized_type.set_is_finalized_uninstantiated();
}
}
// Upper bounds of the finalized type arguments are only verified in checked
// mode, since bound errors are never reported by the vm in production mode.
if (FLAG_enable_type_checks &&
!full_arguments.IsNull() &&
full_arguments.IsInstantiated()) {
ResolveAndFinalizeUpperBounds(type_class);
Error& malformed_error = Error::Handle();
// Pass the full type argument vector as the bounds instantiator.
if (!full_arguments.IsWithinBoundsOf(type_class,
full_arguments,
&malformed_error)) {
ASSERT(!malformed_error.IsNull());
// The type argument vector of the type is not within bounds. The type
// is malformed. Prepend malformed_error to new malformed type error in
// order to report both locations.
// Note that malformed bounds never result in a compile time error, even
// in checked mode. Therefore, overwrite finalization with kFinalize
// when finalizing the malformed type.
FinalizeMalformedType(
malformed_error,
cls, parameterized_type, kFinalize,
"type arguments of type '%s' are not within bounds",
String::Handle(parameterized_type.UserVisibleName()).ToCString());
return parameterized_type.raw();
}
}
// If the type class is a signature class, we are currently finalizing a
// signature type, i.e. finalizing the result type and parameter types of the
// signature function of this signature type.
// We do this after marking this type as finalized in order to allow a
// function type to refer to itself via its parameter types and result type.
if (type_class.IsSignatureClass()) {
// Signature classes are finalized upon creation, except function type
// aliases.
if (type_class.IsCanonicalSignatureClass()) {
ASSERT(type_class.is_finalized());
// Resolve and finalize the result and parameter types of the signature
// function of this signature class.
ASSERT(type_class.SignatureType() == type.raw());
ResolveAndFinalizeSignature(
type_class, Function::Handle(type_class.signature_function()));
} else {
// This type is a function type alias. Its class may need to be finalized
// and checked for illegal self reference.
FinalizeClass(type_class);
// Finalizing the signature function here (as in the canonical case above)
// would not mark the canonical signature type as finalized.
const Type& signature_type = Type::Handle(type_class.SignatureType());
FinalizeType(cls, signature_type, finalization);
}
}
if (finalization >= kCanonicalize) {
return parameterized_type.Canonicalize();
} else {
return parameterized_type.raw();
}
}
void ClassFinalizer::ResolveAndFinalizeSignature(const Class& cls,
const Function& function) {
// Resolve result type.
AbstractType& type = AbstractType::Handle(function.result_type());
// TODO(regis): Remove this code once the parser checks the factory name and
// once the core library is fixed. See issue 6641.
// In case of a factory, the parser sets the factory result type to a type
// with an unresolved class whose name matches the factory name and no type
// arguments. We resolve the class and specify type arguments in case the
// class is generic.
if (function.IsFactory()) {
Type& factory_result_type = Type::Handle();
factory_result_type ^= type.raw();
ASSERT(factory_result_type.arguments() == TypeArguments::null());
const UnresolvedClass& unresolved_factory_class =
UnresolvedClass::Handle(factory_result_type.unresolved_class());
const Class& factory_class =
Class::Handle(ResolveClass(cls, unresolved_factory_class));
if (factory_class.IsNull()) {
type = NewFinalizedMalformedType(
Error::Handle(), // No previous error.
cls,
unresolved_factory_class.token_pos(),
kTryResolve, // No compile-time error.
"cannot resolve factory class name '%s' from '%s'",
String::Handle(unresolved_factory_class.Name()).ToCString(),
String::Handle(cls.Name()).ToCString());
} else {
type = Type::New(factory_class,
TypeArguments::Handle(factory_class.type_parameters()),
unresolved_factory_class.token_pos());
}
}
// It is not a compile time error if this name does not resolve to a class or
// interface.
ResolveType(cls, type, kCanonicalize);
type = FinalizeType(cls, type, kCanonicalize);
// In production mode, a malformed result type is mapped to dynamic.
if (!FLAG_enable_type_checks && type.IsMalformed()) {
type = Type::DynamicType();
}
function.set_result_type(type);
// Resolve formal parameter types.
const intptr_t num_parameters = function.NumParameters();
for (intptr_t i = 0; i < num_parameters; i++) {
type = function.ParameterTypeAt(i);
ResolveType(cls, type, kCanonicalize);
type = FinalizeType(cls, type, kCanonicalize);
// In production mode, a malformed parameter type is mapped to dynamic.
if (!FLAG_enable_type_checks && type.IsMalformed()) {
type = Type::DynamicType();
}
function.SetParameterTypeAt(i, type);
}
}
// Check if an instance field or method of same name exists
// in any super class.
static RawClass* FindSuperOwnerOfInstanceMember(const Class& cls,
const String& name) {
Class& super_class = Class::Handle();
Function& function = Function::Handle();
Field& field = Field::Handle();
super_class = cls.SuperClass();
while (!super_class.IsNull()) {
function = super_class.LookupFunction(name);
if (!function.IsNull() && !function.is_static()) {
return super_class.raw();
}
field = super_class.LookupField(name);
if (!field.IsNull() && !field.is_static()) {
return super_class.raw();
}
super_class = super_class.SuperClass();
}
return Class::null();
}
// Check if an instance method of same name exists in any super class.
static RawClass* FindSuperOwnerOfFunction(const Class& cls,
const String& name) {
Class& super_class = Class::Handle();
Function& function = Function::Handle();
super_class = cls.SuperClass();
while (!super_class.IsNull()) {
function = super_class.LookupFunction(name);
if (!function.IsNull() && !function.is_static()) {
return super_class.raw();
}
super_class = super_class.SuperClass();
}
return Class::null();
}
// Resolve and finalize the upper bounds of the type parameters of class cls.
void ClassFinalizer::ResolveAndFinalizeUpperBounds(const Class& cls) {
const intptr_t num_type_params = cls.NumTypeParameters();
TypeParameter& type_param = TypeParameter::Handle();
AbstractType& bound = AbstractType::Handle();
const AbstractTypeArguments& type_params =
AbstractTypeArguments::Handle(cls.type_parameters());
ASSERT((type_params.IsNull() && (num_type_params == 0)) ||
(type_params.Length() == num_type_params));
for (intptr_t i = 0; i < num_type_params; i++) {
type_param ^= type_params.TypeAt(i);
bound = type_param.bound();
if (bound.IsFinalized()) {
continue;
}
ResolveType(cls, bound, kCanonicalize);
bound = FinalizeType(cls, bound, kCanonicalize);
type_param.set_bound(bound);
}
}
void ClassFinalizer::ResolveAndFinalizeMemberTypes(const Class& cls) {
// Note that getters and setters are explicitly listed as such in the list of
// functions of a class, so we do not need to consider fields as implicitly
// generating getters and setters.
// The only compile errors we report are therefore:
// - a getter having the same name as a method (but not a getter) in a super
// class or in a subclass.
// - a static field, instance field, or static method (but not an instance
// method) having the same name as an instance member in a super class.
// Resolve type of fields and check for conflicts in super classes.
Array& array = Array::Handle(cls.fields());
Field& field = Field::Handle();
AbstractType& type = AbstractType::Handle();
String& name = String::Handle();
Class& super_class = Class::Handle();
intptr_t num_fields = array.Length();
for (intptr_t i = 0; i < num_fields; i++) {
field ^= array.At(i);
type = field.type();
ResolveType(cls, type, kCanonicalize);
type = FinalizeType(cls, type, kCanonicalize);
field.set_type(type);
name = field.name();
if (field.is_static()) {
super_class = FindSuperOwnerOfInstanceMember(cls, name);
if (!super_class.IsNull()) {
const String& class_name = String::Handle(cls.Name());
const String& super_class_name = String::Handle(super_class.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, field.token_pos(),
"static field '%s' of class '%s' conflicts with "
"instance member '%s' of super class '%s'",
name.ToCString(),
class_name.ToCString(),
name.ToCString(),
super_class_name.ToCString());
}
} else {
// Instance field. Check whether the field overrides a method
// (but not getter).
super_class = FindSuperOwnerOfFunction(cls, name);
if (!super_class.IsNull()) {
const String& class_name = String::Handle(cls.Name());
const String& super_class_name = String::Handle(super_class.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, field.token_pos(),
"field '%s' of class '%s' conflicts with method '%s' "
"of super class '%s'",
name.ToCString(),
class_name.ToCString(),
name.ToCString(),
super_class_name.ToCString());
}
}
}
// Collect interfaces, super interfaces, and super classes of this class.
const GrowableObjectArray& interfaces =
GrowableObjectArray::Handle(GrowableObjectArray::New());
CollectInterfaces(cls, interfaces);
// Include superclasses in list of interfaces and super interfaces.
super_class = cls.SuperClass();
while (!super_class.IsNull()) {
interfaces.Add(super_class);
super_class = super_class.SuperClass();
}
// Resolve function signatures and check for conflicts in super classes and
// interfaces.
array = cls.functions();
Function& function = Function::Handle();
Function& overridden_function = Function::Handle();
intptr_t num_functions = array.Length();
String& function_name = String::Handle();
for (intptr_t i = 0; i < num_functions; i++) {
function ^= array.At(i);
ResolveAndFinalizeSignature(cls, function);
function_name = function.name();
if (function.is_static()) {
super_class = FindSuperOwnerOfInstanceMember(cls, function_name);
if (!super_class.IsNull()) {
const String& class_name = String::Handle(cls.Name());
const String& super_class_name = String::Handle(super_class.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, function.token_pos(),
"static function '%s' of class '%s' conflicts with "
"instance member '%s' of super class '%s'",
function_name.ToCString(),
class_name.ToCString(),
function_name.ToCString(),
super_class_name.ToCString());
}
if (function.IsRedirectingFactory()) {
const GrowableObjectArray& redirecting_factories =
GrowableObjectArray::Handle(GrowableObjectArray::New());
ResolveRedirectingFactoryTarget(cls, function, redirecting_factories);
}
} else {
for (int i = 0; i < interfaces.Length(); i++) {
super_class ^= interfaces.At(i);
overridden_function = super_class.LookupDynamicFunction(function_name);
if (!overridden_function.IsNull() &&
!function.HasCompatibleParametersWith(overridden_function)) {
// Function types are purposely not checked for subtyping.
const String& class_name = String::Handle(cls.Name());
const String& super_class_name = String::Handle(super_class.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, function.token_pos(),
"class '%s' overrides function '%s' of %s '%s' "
"with incompatible parameters",
class_name.ToCString(),
function_name.ToCString(),
super_class.is_interface() ? "interface" : "super class",
super_class_name.ToCString());
}
}
}
if (function.IsGetterFunction()) {
name = Field::NameFromGetter(function_name);
super_class = FindSuperOwnerOfFunction(cls, name);
if (!super_class.IsNull()) {
const String& class_name = String::Handle(cls.Name());
const String& super_class_name = String::Handle(super_class.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, function.token_pos(),
"getter '%s' of class '%s' conflicts with "
"function '%s' of super class '%s'",
name.ToCString(),
class_name.ToCString(),
name.ToCString(),
super_class_name.ToCString());
}
} else if (!function.IsSetterFunction()) {
// A function cannot conflict with a setter, since they cannot
// have the same name. Thus, we do not need to check setters.
name = Field::GetterName(function_name);
super_class = FindSuperOwnerOfFunction(cls, name);
if (!super_class.IsNull()) {
const String& class_name = String::Handle(cls.Name());
const String& super_class_name = String::Handle(super_class.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, function.token_pos(),
"function '%s' of class '%s' conflicts with "
"getter '%s' of super class '%s'",
function_name.ToCString(),
class_name.ToCString(),
function_name.ToCString(),
super_class_name.ToCString());
}
}
}
}
void ClassFinalizer::FinalizeClass(const Class& cls) {
if (cls.is_finalized()) {
return;
}
if (FLAG_trace_class_finalization) {
OS::Print("Finalize %s\n", cls.ToCString());
}
if (!IsSuperCycleFree(cls)) {
const String& name = String::Handle(cls.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"class '%s' has a cycle in its superclass relationship",
name.ToCString());
}
// Finalize super class.
const Class& super_class = Class::Handle(cls.SuperClass());
if (!super_class.IsNull()) {
FinalizeClass(super_class);
}
// Finalize type parameters before finalizing the super type.
FinalizeTypeParameters(cls);
// Finalize super type.
Type& super_type = Type::Handle(cls.super_type());
if (!super_type.IsNull()) {
super_type ^= FinalizeType(cls, super_type, kCanonicalizeWellFormed);
cls.set_super_type(super_type);
}
// Signature classes are finalized upon creation, except function type
// aliases.
if (cls.IsSignatureClass()) {
ASSERT(!cls.IsCanonicalSignatureClass());
// Check for illegal self references.
GrowableArray<intptr_t> visited_aliases;
if (!IsAliasCycleFree(cls, &visited_aliases)) {
const String& name = String::Handle(cls.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"typedef '%s' illegally refers to itself",
name.ToCString());
}
cls.Finalize();
// Signature classes extend Object. No need to add this class to the direct
// subclasses of Object.
ASSERT(super_type.IsNull() || super_type.IsObjectType());
return;
}
// Finalize factory class, if any.
if (cls.is_interface()) {
if (cls.HasFactoryClass()) {
const Class& factory_class = Class::Handle(cls.FactoryClass());
if (!factory_class.is_finalized()) {
FinalizeClass(factory_class);
// Finalizing the factory class may indirectly finalize this interface.
if (cls.is_finalized()) {
return;
}
}
}
}
// Finalize interface types (but not necessarily interface classes).
Array& interface_types = Array::Handle(cls.interfaces());
AbstractType& interface_type = AbstractType::Handle();
for (intptr_t i = 0; i < interface_types.Length(); i++) {
interface_type ^= interface_types.At(i);
interface_type = FinalizeType(cls, interface_type, kCanonicalizeWellFormed);
interface_types.SetAt(i, interface_type);
}
// Mark as finalized before resolving type parameter upper bounds and member
// types in order to break cycles.
cls.Finalize();
ResolveAndFinalizeUpperBounds(cls);
ResolveAndFinalizeMemberTypes(cls);
// Run additional checks after all types are finalized.
if (cls.is_const()) {
CheckForLegalConstClass(cls);
}
// Add this class to the direct subclasses of the superclass, unless the
// superclass is Object.
if (!super_type.IsNull() && !super_type.IsObjectType()) {
ASSERT(!super_class.IsNull());
super_class.AddDirectSubclass(cls);
}
}
bool ClassFinalizer::IsSuperCycleFree(const Class& cls) {
Class& test1 = Class::Handle(cls.raw());
Class& test2 = Class::Handle(cls.SuperClass());
// A finalized class has been checked for cycles.
// Using the hare and tortoise algorithm for locating cycles.
while (!test1.is_finalized() &&
!test2.IsNull() && !test2.is_finalized()) {
if (test1.raw() == test2.raw()) {
// Found a cycle.
return false;
}
test1 = test1.SuperClass();
test2 = test2.SuperClass();
if (!test2.IsNull()) {
test2 = test2.SuperClass();
}
}
// No cycles.
return true;
}
// Returns false if the function type alias illegally refers to itself.
bool ClassFinalizer::IsAliasCycleFree(const Class& cls,
GrowableArray<intptr_t>* visited) {
ASSERT(cls.IsSignatureClass());
ASSERT(!cls.IsCanonicalSignatureClass());
ASSERT(!cls.is_finalized());
ASSERT(visited != NULL);
const intptr_t cls_index = cls.id();
for (int i = 0; i < visited->length(); i++) {
if ((*visited)[i] == cls_index) {
// We have already visited alias 'cls'. We found a cycle.
return false;
}
}
// Visit the result type and parameter types of this signature type.
visited->Add(cls.id());
const Function& function = Function::Handle(cls.signature_function());
// Check class of result type.
AbstractType& type = AbstractType::Handle(function.result_type());
ResolveType(cls, type, kCanonicalize);
if (type.IsType() && !type.IsMalformed()) {
const Class& type_class = Class::Handle(type.type_class());
if (!type_class.is_finalized() &&
type_class.IsSignatureClass() &&
!type_class.IsCanonicalSignatureClass()) {
if (!IsAliasCycleFree(type_class, visited)) {
return false;
}
}
}
// Check classes of formal parameter types.
const intptr_t num_parameters = function.NumParameters();
for (intptr_t i = 0; i < num_parameters; i++) {
type = function.ParameterTypeAt(i);
ResolveType(cls, type, kCanonicalize);
if (type.IsType() && !type.IsMalformed()) {
const Class& type_class = Class::Handle(type.type_class());
if (!type_class.is_finalized() &&
type_class.IsSignatureClass() &&
!type_class.IsCanonicalSignatureClass()) {
if (!IsAliasCycleFree(type_class, visited)) {
return false;
}
}
}
}
visited->RemoveLast();
return true;
}
// Walks the graph of explicitly declared interfaces of classes and
// interfaces recursively. Resolves unresolved interfaces.
// Returns false if there is an interface reference that cannot be
// resolved, or if there is a cycle in the graph. We detect cycles by
// remembering interfaces we've visited in each path through the
// graph. If we visit an interface a second time on a given path,
// we found a loop.
void ClassFinalizer::ResolveInterfaces(const Class& cls,
GrowableArray<intptr_t>* visited) {
ASSERT(visited != NULL);
const intptr_t cls_index = cls.id();
for (int i = 0; i < visited->length(); i++) {
if ((*visited)[i] == cls_index) {
// We have already visited interface class 'cls'. We found a cycle.
const String& interface_name = String::Handle(cls.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"cyclic reference found for interface '%s'",
interface_name.ToCString());
}
}
// If the class/interface has no explicit interfaces, we are done.
Array& super_interfaces = Array::Handle(cls.interfaces());
if (super_interfaces.Length() == 0) {
return;
}
// If cls belongs to core lib or to core lib's implementation, restrictions
// about allowed interfaces are lifted.
const bool cls_belongs_to_core_lib = cls.library() == Library::CoreLibrary();
// Resolve and check the interfaces of cls.
visited->Add(cls_index);
AbstractType& interface = AbstractType::Handle();
Class& interface_class = Class::Handle();
for (intptr_t i = 0; i < super_interfaces.Length(); i++) {
interface ^= super_interfaces.At(i);
ResolveType(cls, interface, kCanonicalizeWellFormed);
if (interface.IsTypeParameter()) {
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"type parameter '%s' cannot be used as interface",
String::Handle(interface.Name()).ToCString());
}
interface_class = interface.type_class();
if (interface_class.IsSignatureClass()) {
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"'%s' is used where an interface or class name is expected",
String::Handle(interface_class.Name()).ToCString());
}
// Verify that unless cls belongs to core lib, it cannot extend or implement
// any of bool, num, int, double, String, Function, dynamic.
// The exception is signature classes, which are compiler generated and
// represent a function type, therefore implementing the Function interface.
if (!cls_belongs_to_core_lib) {
if (interface.IsBoolType() ||
interface.IsNumberType() ||
interface.IsIntType() ||
interface.IsDoubleType() ||
interface.IsStringType() ||
(interface.IsFunctionType() && !cls.IsSignatureClass()) ||
interface.IsDynamicType()) {
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"'%s' is not allowed to extend or implement '%s'",
String::Handle(cls.Name()).ToCString(),
String::Handle(interface_class.Name()).ToCString());
}
}
// Now resolve the super interfaces.
ResolveInterfaces(interface_class, visited);
}
visited->RemoveLast();
}
// A class is marked as constant if it has one constant constructor.
// A constant class:
// - may extend only const classes.
// - has only const instance fields.
// Note: we must check for cycles before checking for const properties.
void ClassFinalizer::CheckForLegalConstClass(const Class& cls) {
ASSERT(cls.is_const());
const Class& super = Class::Handle(cls.SuperClass());
if (!super.IsNull() && !super.is_const()) {
String& name = String::Handle(super.Name());
const Script& script = Script::Handle(cls.script());
ReportError(script, cls.token_pos(),
"superclass '%s' must be const", name.ToCString());
}
const Array& fields_array = Array::Handle(cls.fields());
intptr_t len = fields_array.Length();
Field& field = Field::Handle();
for (intptr_t i = 0; i < len; i++) {
field ^= fields_array.At(i);
if (!field.is_static() && !field.is_final()) {
const String& class_name = String::Handle(cls.Name());
const String& field_name = String::Handle(field.name());
const Script& script = Script::Handle(cls.script());
ReportError(script, field.token_pos(),
"const class '%s' has non-final field '%s'",
class_name.ToCString(), field_name.ToCString());
}
}
}
void ClassFinalizer::PrintClassInformation(const Class& cls) {
HANDLESCOPE(Isolate::Current());
const String& class_name = String::Handle(cls.Name());
OS::Print("%s '%s'",
cls.is_interface() ? "interface" : "class",
class_name.ToCString());
const Library& library = Library::Handle(cls.library());
if (!library.IsNull()) {
OS::Print(" library '%s%s':\n",
String::Handle(library.url()).ToCString(),
String::Handle(library.private_key()).ToCString());
} else {
OS::Print(" (null library):\n");
}
const Type& super_type = Type::Handle(cls.super_type());
if (super_type.IsNull()) {
OS::Print(" Super: NULL");
} else {
const String& super_name = String::Handle(super_type.Name());
OS::Print(" Super: %s", super_name.ToCString());
}
const Array& interfaces_array = Array::Handle(cls.interfaces());
if (interfaces_array.Length() > 0) {
OS::Print("; interfaces: ");
AbstractType& interface = AbstractType::Handle();
intptr_t len = interfaces_array.Length();
for (intptr_t i = 0; i < len; i++) {
interface ^= interfaces_array.At(i);
OS::Print(" %s ", interface.ToCString());
}
}
OS::Print("\n");
const Array& functions_array = Array::Handle(cls.functions());
Function& function = Function::Handle();
intptr_t len = functions_array.Length();
for (intptr_t i = 0; i < len; i++) {
function ^= functions_array.At(i);
OS::Print(" %s\n", function.ToCString());
}
const Array& fields_array = Array::Handle(cls.fields());
Field& field = Field::Handle();
len = fields_array.Length();
for (intptr_t i = 0; i < len; i++) {
field ^= fields_array.At(i);
OS::Print(" %s\n", field.ToCString());
}
}
// Either report an error or mark the type as malformed.
void ClassFinalizer::ReportMalformedType(const Error& prev_error,
const Class& cls,
const Type& type,
FinalizationKind finalization,
const char* format,
va_list args) {
LanguageError& error = LanguageError::Handle();
if (FLAG_enable_type_checks ||
!type.HasResolvedTypeClass() ||
(finalization == kCanonicalizeWellFormed) ||
FLAG_error_on_malformed_type) {
const Script& script = Script::Handle(cls.script());
if (prev_error.IsNull()) {
error ^= Parser::FormatError(
script, type.token_pos(), "Error", format, args);
} else {
error ^= Parser::FormatErrorWithAppend(
prev_error, script, type.token_pos(), "Error", format, args);
}
if ((finalization == kCanonicalizeWellFormed) ||
FLAG_error_on_malformed_type) {
ReportError(error);
}
}
if (FLAG_enable_type_checks || !type.HasResolvedTypeClass()) {
// In check mode, always mark the type as malformed.
// In production mode, mark the type as malformed only if its type class is
// not resolved.
type.set_malformed_error(error);
} else {
// In production mode, do not mark the type with a resolved type class as
// malformed, but make it raw.
ASSERT(type.HasResolvedTypeClass());
type.set_arguments(AbstractTypeArguments::Handle());
}
if (!type.IsFinalized()) {
type.set_is_finalized_instantiated();
// Do not canonicalize malformed types, since they may not be resolved.
} else {
// The only case where the malformed type was already finalized is when its
// type arguments are not within bounds. In that case, we have a prev_error.
ASSERT(!prev_error.IsNull());
}
}
RawType* ClassFinalizer::NewFinalizedMalformedType(
const Error& prev_error,
const Class& cls,
intptr_t type_pos,
FinalizationKind finalization,
const char* format, ...) {
va_list args;
va_start(args, format);
const String& no_name = String::Handle(Symbols::Empty());
const UnresolvedClass& unresolved_class = UnresolvedClass::Handle(
UnresolvedClass::New(LibraryPrefix::Handle(), no_name, type_pos));
const Type& type = Type::Handle(
Type::New(unresolved_class, TypeArguments::Handle(), type_pos));
ReportMalformedType(prev_error, cls, type, finalization, format, args);
va_end(args);
ASSERT(type.IsMalformed());
return type.raw();
}
void ClassFinalizer::FinalizeMalformedType(const Error& prev_error,
const Class& cls,
const Type& type,
FinalizationKind finalization,
const char* format, ...) {
va_list args;
va_start(args, format);
ReportMalformedType(prev_error, cls, type, finalization, format, args);
va_end(args);
}
void ClassFinalizer::ReportError(const Error& error) {
Isolate::Current()->long_jump_base()->Jump(1, error);
UNREACHABLE();
}
void ClassFinalizer::ReportError(const Script& script,
intptr_t token_pos,
const char* format, ...) {
va_list args;
va_start(args, format);
const Error& error = Error::Handle(
Parser::FormatError(script, token_pos, "Error", format, args));
va_end(args);
ReportError(error);
}
void ClassFinalizer::ReportError(const char* format, ...) {
va_list args;
va_start(args, format);
const Error& error = Error::Handle(
Parser::FormatError(Script::Handle(), -1, "Error", format, args));
va_end(args);
ReportError(error);
}
} // namespace dart