blob: 1f79afd9ec394e712ee933a25d07886f85b2df52 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_MIPS.
#if defined(TARGET_ARCH_MIPS)
#include "vm/constants_mips.h"
#include "vm/cpu.h"
#include "vm/instructions.h"
#include "vm/object.h"
namespace dart {
CallPattern::CallPattern(uword pc, const Code& code)
: end_(reinterpret_cast<uword*>(pc)),
target_address_pool_index_(-1),
args_desc_load_end_(-1),
args_desc_(Array::Handle()),
ic_data_load_end_(-1),
ic_data_(ICData::Handle()),
object_pool_(Array::Handle(code.ObjectPool())) {
ASSERT(code.ContainsInstructionAt(pc));
ASSERT(Back(2) == 0x0020f809); // Last instruction: jalr RA, TMP(=R1)
Register reg;
// First end is 0 so that we begin from the delay slot of the jalr.
ic_data_load_end_ =
DecodeLoadWordFromPool(2, &reg, &target_address_pool_index_);
ASSERT(reg == TMP);
}
uword CallPattern::Back(int n) const {
ASSERT(n > 0);
return *(end_ - n);
}
// Decodes a load sequence ending at end. Returns the register being loaded and
// the loaded object.
// Returns the location of the load sequence, counting the number of
// instructions back from the end of the call pattern.
int CallPattern::DecodeLoadObject(int end, Register* reg, Object* obj) {
ASSERT(end > 0);
uword i = Back(end + 1);
Instr* instr = Instr::At(reinterpret_cast<uword>(&i));
if (instr->OpcodeField() == LW) {
int index = 0;
end = DecodeLoadWordFromPool(end, reg, &index);
*obj = object_pool_.At(index);
} else {
int value = 0;
end = DecodeLoadWordImmediate(end, reg, &value);
*obj = reinterpret_cast<RawObject*>(value);
}
return end;
}
// Decodes a load sequence ending at end. Returns the register being loaded and
// the loaded immediate value.
// Returns the location of the load sequence, counting the number of
// instructions back from the end of the call pattern.
int CallPattern::DecodeLoadWordImmediate(int end, Register* reg, int* value) {
ASSERT(end > 0);
int imm = 0;
uword i = Back(++end);
Instr* instr = Instr::At(reinterpret_cast<uword>(&i));
ASSERT(instr->OpcodeField() == ORI);
imm = instr->UImmField();
*reg = instr->RtField();
i = Back(++end);
instr = Instr::At(reinterpret_cast<uword>(&i));
ASSERT(instr->OpcodeField() == LUI);
ASSERT(instr->RtField() == *reg);
imm |= (instr->UImmField() << 16);
*value = imm;
return end;
}
// Decodes a load sequence ending at end. Returns the register being loaded and
// the index in the pool being read from.
// Returns the location of the load sequence, counting the number of
// instructions back from the end of the call pattern.
int CallPattern::DecodeLoadWordFromPool(int end, Register* reg, int* index) {
ASSERT(end > 0);
uword i = Back(++end);
Instr* instr = Instr::At(reinterpret_cast<uword>(&i));
int offset = 0;
if ((instr->OpcodeField() == LW) && (instr->RsField() == PP)) {
offset = instr->SImmField();
*reg = instr->RtField();
} else {
ASSERT(instr->OpcodeField() == LW);
offset = instr->SImmField();
*reg = instr->RtField();
i = Back(++end);
instr = Instr::At(reinterpret_cast<uword>(&i));
ASSERT(instr->OpcodeField() == SPECIAL);
ASSERT(instr->FunctionField() == ADDU);
ASSERT(instr->RdField() == *reg);
ASSERT(instr->RsField() == *reg);
ASSERT(instr->RtField() == PP);
i = Back(++end);
instr = Instr::At(reinterpret_cast<uword>(&i));
ASSERT(instr->OpcodeField() == LUI);
ASSERT(instr->RtField() == *reg);
// Offset is signed, so add the upper 16 bits.
offset += (instr->UImmField() << 16);
}
offset += kHeapObjectTag;
ASSERT(Utils::IsAligned(offset, 4));
*index = (offset - Array::data_offset())/4;
return end;
}
RawICData* CallPattern::IcData() {
if (ic_data_.IsNull()) {
Register reg;
args_desc_load_end_ = DecodeLoadObject(ic_data_load_end_, &reg, &ic_data_);
ASSERT(reg == S5);
}
return ic_data_.raw();
}
RawArray* CallPattern::ClosureArgumentsDescriptor() {
if (args_desc_.IsNull()) {
IcData(); // Loading of the ic_data must be decoded first, if not already.
Register reg;
DecodeLoadObject(args_desc_load_end_, &reg, &args_desc_);
ASSERT(reg == S4);
}
return args_desc_.raw();
}
uword CallPattern::TargetAddress() const {
ASSERT(target_address_pool_index_ >= 0);
const Object& target_address =
Object::Handle(object_pool_.At(target_address_pool_index_));
ASSERT(target_address.IsSmi());
// The address is stored in the object array as a RawSmi.
return reinterpret_cast<uword>(target_address.raw());
}
void CallPattern::SetTargetAddress(uword target_address) const {
ASSERT(Utils::IsAligned(target_address, 4));
// The address is stored in the object array as a RawSmi.
const Smi& smi = Smi::Handle(reinterpret_cast<RawSmi*>(target_address));
object_pool_.SetAt(target_address_pool_index_, smi);
// No need to flush the instruction cache, since the code is not modified.
}
void CallPattern::InsertAt(uword pc, uword target_address) {
Instr* lui = Instr::At(pc + (0 * Instr::kInstrSize));
Instr* ori = Instr::At(pc + (1 * Instr::kInstrSize));
Instr* jr = Instr::At(pc + (2 * Instr::kInstrSize));
Instr* nop = Instr::At(pc + (3 * Instr::kInstrSize));
uint16_t target_lo = target_address & 0xffff;
uint16_t target_hi = target_address >> 16;
lui->SetImmInstrBits(LUI, ZR, TMP1, target_hi);
ori->SetImmInstrBits(ORI, TMP1, TMP1, target_lo);
jr->SetSpecialInstrBits(JALR, TMP1, ZR, RA);
nop->SetInstructionBits(Instr::kNopInstruction);
ASSERT(kFixedLengthInBytes == 4 * Instr::kInstrSize);
CPU::FlushICache(pc, kFixedLengthInBytes);
}
JumpPattern::JumpPattern(uword pc) : pc_(pc) { }
bool JumpPattern::IsValid() const {
Instr* lui = Instr::At(pc_ + (0 * Instr::kInstrSize));
Instr* ori = Instr::At(pc_ + (1 * Instr::kInstrSize));
Instr* jr = Instr::At(pc_ + (2 * Instr::kInstrSize));
Instr* nop = Instr::At(pc_ + (3 * Instr::kInstrSize));
return (lui->OpcodeField() == LUI) &&
(ori->OpcodeField() == ORI) &&
(jr->OpcodeField() == SPECIAL) &&
(jr->FunctionField() == JR) &&
(nop->InstructionBits() == Instr::kNopInstruction);
}
uword JumpPattern::TargetAddress() const {
Instr* lui = Instr::At(pc_ + (0 * Instr::kInstrSize));
Instr* ori = Instr::At(pc_ + (1 * Instr::kInstrSize));
const uint16_t target_lo = ori->UImmField();
const uint16_t target_hi = lui->UImmField();
return (target_hi << 16) | target_lo;
}
void JumpPattern::SetTargetAddress(uword target_address) const {
Instr* lui = Instr::At(pc_ + (0 * Instr::kInstrSize));
Instr* ori = Instr::At(pc_ + (1 * Instr::kInstrSize));
const int32_t lui_bits = lui->InstructionBits();
const int32_t ori_bits = ori->InstructionBits();
const uint16_t target_lo = target_address & 0xffff;
const uint16_t target_hi = target_address >> 16;
lui->SetInstructionBits((lui_bits & 0xffff0000) | target_hi);
ori->SetInstructionBits((ori_bits & 0xffff0000) | target_lo);
}
} // namespace dart
#endif // defined TARGET_ARCH_MIPS