blob: 1c2de88081c8f4ef72b8a69952119ad719d6a519 [file] [log] [blame]
// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:typed_data';
import 'dart:_internal' as internal;
// Hash table with open addressing that separates the index from keys/values.
abstract class _HashFieldBase {
// Each occupied entry in _index is a fixed-size integer that encodes a pair:
// [ hash pattern for key | index of entry in _data ]
// The hash pattern is based on hashCode, but is guaranteed to be non-zero.
// The length of _index is always a power of two, and there is always at
// least one unoccupied entry.
// NOTE: When maps are deserialized, their _index and _hashMask is regenerated
// lazily by _regenerateIndex.
// TODO(koda): Consider also using null _index for tiny, linear-search tables.
Uint32List _index = new Uint32List(_HashBase._INITIAL_INDEX_SIZE);
// Cached in-place mask for the hash pattern component.
int _hashMask = _HashBase._indexSizeToHashMask(_HashBase._INITIAL_INDEX_SIZE);
// Fixed-length list of keys (set) or key/value at even/odd indices (map).
List _data;
// Length of _data that is used (i.e., keys + values for a map).
int _usedData = 0;
// Number of deleted keys.
int _deletedKeys = 0;
// Note: All fields are initialized in a single constructor so that the VM
// recognizes they cannot hold null values. This makes a big (20%) performance
// difference on some operations.
_HashFieldBase(int dataSize) : this._data = new List(dataSize);
}
// Base class for VM-internal classes; keep in sync with _HashFieldBase.
abstract class _HashVMBase {
Uint32List get _index native "LinkedHashMap_getIndex";
void set _index(Uint32List value) native "LinkedHashMap_setIndex";
int get _hashMask native "LinkedHashMap_getHashMask";
void set _hashMask(int value) native "LinkedHashMap_setHashMask";
List get _data native "LinkedHashMap_getData";
void set _data(List value) native "LinkedHashMap_setData";
int get _usedData native "LinkedHashMap_getUsedData";
void set _usedData(int value) native "LinkedHashMap_setUsedData";
int get _deletedKeys native "LinkedHashMap_getDeletedKeys";
void set _deletedKeys(int value) native "LinkedHashMap_setDeletedKeys";
}
// This mixin can be applied to _HashFieldBase or _HashVMBase (for
// normal and VM-internalized classes, respectivley), which provide the
// actual fields/accessors that this mixin assumes.
// TODO(koda): Consider moving field comments to _HashFieldBase.
abstract class _HashBase {
// The number of bits used for each component is determined by table size.
// The length of _index is twice the number of entries in _data, and both
// are doubled when _data is full. Thus, _index will have a max load factor
// of 1/2, which enables one more bit to be used for the hash.
// TODO(koda): Consider growing _data by factor sqrt(2), twice as often.
static const int _INITIAL_INDEX_BITS = 3;
static const int _INITIAL_INDEX_SIZE = 1 << (_INITIAL_INDEX_BITS + 1);
// Unused and deleted entries are marked by 0 and 1, respectively.
static const int _UNUSED_PAIR = 0;
static const int _DELETED_PAIR = 1;
// On 32-bit, the top bits are wasted to avoid Mint allocation.
// TODO(koda): Reclaim the bits by making the compiler treat hash patterns
// as unsigned words.
static int _indexSizeToHashMask(int indexSize) {
int indexBits = indexSize.bitLength - 2;
return internal.is64Bit ? (1 << (32 - indexBits)) - 1 :
(1 << (30 - indexBits)) - 1;
}
static int _hashPattern(int fullHash, int hashMask, int size) {
final int maskedHash = fullHash & hashMask;
// TODO(koda): Consider keeping bit length and use left shift.
return (maskedHash == 0) ? (size >> 1) : maskedHash * (size >> 1);
}
// Linear probing.
static int _firstProbe(int fullHash, int sizeMask) {
final int i = fullHash & sizeMask;
// Light, fast shuffle to mitigate bad hashCode (e.g., sequential).
return ((i << 1) + i) & sizeMask;
}
static int _nextProbe(int i, int sizeMask) => (i + 1) & sizeMask;
// A self-loop is used to mark a deleted key or value.
static bool _isDeleted(List data, Object keyOrValue) =>
identical(keyOrValue, data);
static void _setDeletedAt(List data, int d) {
data[d] = data;
}
// Concurrent modification detection relies on this checksum monotonically
// increasing between reallocations of _data.
int get _checkSum => _usedData + _deletedKeys;
bool _isModifiedSince(List oldData, int oldCheckSum) =>
!identical(_data, oldData) || (_checkSum != oldCheckSum);
}
class _OperatorEqualsAndHashCode {
int _hashCode(e) => e.hashCode;
bool _equals(e1, e2) => e1 == e2;
}
class _IdenticalAndIdentityHashCode {
int _hashCode(e) => identityHashCode(e);
bool _equals(e1, e2) => identical(e1, e2);
}
// VM-internalized implementation of a default-constructed LinkedHashMap.
class _InternalLinkedHashMap<K, V> extends _HashVMBase
with MapMixin<K, V>, _LinkedHashMapMixin<K, V>, _HashBase,
_OperatorEqualsAndHashCode
implements LinkedHashMap<K, V> {
factory _InternalLinkedHashMap() native "LinkedHashMap_allocate";
}
class _LinkedHashMapMixin<K, V> {
int get length => (_usedData >> 1) - _deletedKeys;
bool get isEmpty => length == 0;
bool get isNotEmpty => !isEmpty;
void _rehash() {
if ((_deletedKeys << 2) > _usedData) {
// TODO(koda): Consider shrinking.
// TODO(koda): Consider in-place compaction and more costly CME check.
_init(_index.length, _hashMask, _data, _usedData);
} else {
// TODO(koda): Support 32->64 bit transition (and adjust _hashMask).
_init(_index.length << 1, _hashMask >> 1, _data, _usedData);
}
}
void clear() {
if (!isEmpty) {
// Use _data.length, since _index might be null.
_init(_data.length, _hashMask, null, 0);
}
}
// Allocate new _index and _data, and optionally copy existing contents.
void _init(int size, int hashMask, List oldData, int oldUsed) {
assert(size & (size - 1) == 0);
assert(_HashBase._UNUSED_PAIR == 0);
_index = new Uint32List(size);
_hashMask = hashMask;
_data = new List(size);
_usedData = 0;
_deletedKeys = 0;
if (oldData != null) {
for (int i = 0; i < oldUsed; i += 2) {
var key = oldData[i];
if (!_HashBase._isDeleted(oldData, key)) {
// TODO(koda): While there are enough hash bits, avoid hashCode calls.
this[key] = oldData[i + 1];
}
}
}
}
int _getIndexLength() {
return (_index == null) ? _regenerateIndex() : _index.length;
}
int _regenerateIndex() {
assert(_index == null);
_index = new Uint32List(_data.length);
assert(_hashMask == 0);
_hashMask = _HashBase._indexSizeToHashMask(_index.length);
final int tmpUsed = _usedData;
_usedData = 0;
for (int i = 0; i < tmpUsed; i += 2) {
// TODO(koda): Avoid redundant equality tests and stores into _data.
this[_data[i]] = _data[i + 1];
}
return _index.length;
}
void _insert(K key, V value, int hashPattern, int i) {
if (_usedData == _data.length) {
_rehash();
this[key] = value;
} else {
assert(1 <= hashPattern && hashPattern < (1 << 32));
final int index = _usedData >> 1;
assert((index & hashPattern) == 0);
_index[i] = hashPattern | index;
_data[_usedData++] = key;
_data[_usedData++] = value;
}
}
// If key is present, returns the index of the value in _data, else returns
// the negated insertion point in _index.
int _findValueOrInsertPoint(K key, int fullHash, int hashPattern, int size) {
final int sizeMask = size - 1;
final int maxEntries = size >> 1;
int i = _HashBase._firstProbe(fullHash, sizeMask);
int firstDeleted = -1;
int pair = _index[i];
while (pair != _HashBase._UNUSED_PAIR) {
if (pair == _HashBase._DELETED_PAIR) {
if (firstDeleted < 0) {
firstDeleted = i;
}
} else {
final int entry = hashPattern ^ pair;
if (entry < maxEntries) {
final int d = entry << 1;
if (_equals(key, _data[d])) {
return d + 1;
}
}
}
i = _HashBase._nextProbe(i, sizeMask);
pair = _index[i];
}
return firstDeleted >= 0 ? -firstDeleted : -i;
}
void operator[]=(K key, V value) {
final int size = _getIndexLength();
final int sizeMask = size - 1;
final int fullHash = _hashCode(key);
final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size);
final int d = _findValueOrInsertPoint(key, fullHash, hashPattern, size);
if (d > 0) {
_data[d] = value;
} else {
final int i = -d;
_insert(key, value, hashPattern, i);
}
}
V putIfAbsent(K key, V ifAbsent()) {
final int size = _getIndexLength();
final int sizeMask = size - 1;
final int maxEntries = size >> 1;
final int fullHash = _hashCode(key);
final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size);
final int d = _findValueOrInsertPoint(key, fullHash, hashPattern, size);
if (d > 0) {
return _data[d];
}
// 'ifAbsent' is allowed to modify the map.
List oldData = _data;
int oldCheckSum = _checkSum;
V value = ifAbsent();
if (_isModifiedSince(oldData, oldCheckSum)) {
this[key] = value;
} else {
final int i = -d;
_insert(key, value, hashPattern, i);
}
return value;
}
V remove(Object key) {
final int size = _getIndexLength();
final int sizeMask = size - 1;
final int maxEntries = size >> 1;
final int fullHash = _hashCode(key);
final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size);
int i = _HashBase._firstProbe(fullHash, sizeMask);
int pair = _index[i];
while (pair != _HashBase._UNUSED_PAIR) {
if (pair != _HashBase._DELETED_PAIR) {
final int entry = hashPattern ^ pair;
if (entry < maxEntries) {
final int d = entry << 1;
if (_equals(key, _data[d])) {
_index[i] = _HashBase._DELETED_PAIR;
_HashBase._setDeletedAt(_data, d);
V value = _data[d + 1];
_HashBase._setDeletedAt(_data, d + 1);
++_deletedKeys;
return value;
}
}
}
i = _HashBase._nextProbe(i, sizeMask);
pair = _index[i];
}
return null;
}
// If key is absent, return _data (which is never a value).
Object _getValueOrData(Object key) {
final int size = _getIndexLength();
final int sizeMask = size - 1;
final int maxEntries = size >> 1;
final int fullHash = _hashCode(key);
final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size);
int i = _HashBase._firstProbe(fullHash, sizeMask);
int pair = _index[i];
while (pair != _HashBase._UNUSED_PAIR) {
if (pair != _HashBase._DELETED_PAIR) {
final int entry = hashPattern ^ pair;
if (entry < maxEntries) {
final int d = entry << 1;
if (_equals(key, _data[d])) {
return _data[d + 1];
}
}
}
i = _HashBase._nextProbe(i, sizeMask);
pair = _index[i];
}
return _data;
}
bool containsKey(Object key) => !identical(_data, _getValueOrData(key));
V operator[](Object key) {
var v = _getValueOrData(key);
return identical(_data, v) ? null : v;
}
bool containsValue(Object value) {
for (var v in values) {
// Spec. says this should always use "==", also for identity maps, etc.
if (v == value) {
return true;
}
}
return false;
}
void forEach(void f(K key, V value)) {
var ki = keys.iterator;
var vi = values.iterator;
while (ki.moveNext()) {
vi.moveNext();
f(ki.current, vi.current);
}
}
Iterable<K> get keys =>
new _CompactIterable<K>(this, _data, _usedData, -2, 2);
Iterable<V> get values =>
new _CompactIterable<V>(this, _data, _usedData, -1, 2);
}
class _CompactLinkedIdentityHashMap<K, V> extends _HashFieldBase
with MapMixin<K, V>, _LinkedHashMapMixin<K, V>, _HashBase,
_IdenticalAndIdentityHashCode
implements LinkedHashMap<K, V> {
_CompactLinkedIdentityHashMap() : super(_HashBase._INITIAL_INDEX_SIZE);
}
class _CompactLinkedCustomHashMap<K, V> extends _HashFieldBase
with MapMixin<K, V>, _LinkedHashMapMixin<K, V>, _HashBase
implements LinkedHashMap<K, V> {
final _equality;
final _hasher;
final _validKey;
// TODO(koda): Ask gbracha why I cannot have fields _equals/_hashCode.
int _hashCode(e) => _hasher(e);
bool _equals(e1, e2) => _equality(e1, e2);
bool containsKey(Object o) => _validKey(o) ? super.containsKey(o) : false;
V operator[](Object o) => _validKey(o) ? super[o] : null;
V remove(Object o) => _validKey(o) ? super.remove(o) : null;
_CompactLinkedCustomHashMap(this._equality, this._hasher, validKey)
: _validKey = (validKey != null) ? validKey : new _TypeTest<K>().test,
super(_HashBase._INITIAL_INDEX_SIZE);
}
// Iterates through _data[_offset + _step], _data[_offset + 2*_step], ...
// and checks for concurrent modification.
class _CompactIterable<E> extends IterableBase<E> {
final _table;
final List _data;
final int _len;
final int _offset;
final int _step;
_CompactIterable(this._table, this._data, this._len,
this._offset, this._step);
Iterator<E> get iterator =>
new _CompactIterator<E>(_table, _data, _len, _offset, _step);
int get length => _table.length;
bool get isEmpty => length == 0;
bool get isNotEmpty => !isEmpty;
}
class _CompactIterator<E> implements Iterator<E> {
final _table;
final List _data;
final int _len;
int _offset;
final int _step;
final int _checkSum;
E current;
_CompactIterator(table, this._data, this._len, this._offset, this._step) :
_table = table, _checkSum = table._checkSum;
bool moveNext() {
if (_table._isModifiedSince(_data, _checkSum)) {
throw new ConcurrentModificationError(_table);
}
do {
_offset += _step;
} while (_offset < _len && _HashBase._isDeleted(_data, _data[_offset]));
if (_offset < _len) {
current = _data[_offset];
return true;
} else {
current = null;
return false;
}
}
}
// Set implementation, analogous to _CompactLinkedHashMap.
class _CompactLinkedHashSet<E> extends _HashFieldBase
with _HashBase, _OperatorEqualsAndHashCode, SetMixin<E>
implements LinkedHashSet<E> {
_CompactLinkedHashSet() : super(_HashBase._INITIAL_INDEX_SIZE >> 1) {
assert(_HashBase._UNUSED_PAIR == 0);
}
int get length => _usedData - _deletedKeys;
void _rehash() {
if ((_deletedKeys << 1) > _usedData) {
_init(_index.length, _hashMask, _data, _usedData);
} else {
_init(_index.length << 1, _hashMask >> 1, _data, _usedData);
}
}
void clear() {
if (!isEmpty) {
_init(_index.length, _hashMask, null, 0);
}
}
void _init(int size, int hashMask, List oldData, int oldUsed) {
_index = new Uint32List(size);
_hashMask = hashMask;
_data = new List(size >> 1);
_usedData = 0;
_deletedKeys = 0;
if (oldData != null) {
for (int i = 0; i < oldUsed; i += 1) {
var key = oldData[i];
if (!_HashBase._isDeleted(oldData, key)) {
add(key);
}
}
}
}
bool add(E key) {
final int size = _index.length;
final int sizeMask = size - 1;
final int maxEntries = size >> 1;
final int fullHash = _hashCode(key);
final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size);
int i = _HashBase._firstProbe(fullHash, sizeMask);
int firstDeleted = -1;
int pair = _index[i];
while (pair != _HashBase._UNUSED_PAIR) {
if (pair == _HashBase._DELETED_PAIR) {
if (firstDeleted < 0) {
firstDeleted = i;
}
} else {
final int d = hashPattern ^ pair;
if (d < maxEntries && _equals(key, _data[d])) {
return false;
}
}
i = _HashBase._nextProbe(i, sizeMask);
pair = _index[i];
}
if (_usedData == _data.length) {
_rehash();
add(key);
} else {
final int insertionPoint = (firstDeleted >= 0) ? firstDeleted : i;
assert(1 <= hashPattern && hashPattern < (1 << 32));
assert((hashPattern & _usedData) == 0);
_index[insertionPoint] = hashPattern | _usedData;
_data[_usedData++] = key;
}
return true;
}
// If key is absent, return _data (which is never a value).
Object _getKeyOrData(Object key) {
final int size = _index.length;
final int sizeMask = size - 1;
final int maxEntries = size >> 1;
final int fullHash = _hashCode(key);
final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size);
int i = _HashBase._firstProbe(fullHash, sizeMask);
int pair = _index[i];
while (pair != _HashBase._UNUSED_PAIR) {
if (pair != _HashBase._DELETED_PAIR) {
final int d = hashPattern ^ pair;
if (d < maxEntries && _equals(key, _data[d])) {
return _data[d]; // Note: Must return the existing key.
}
}
i = _HashBase._nextProbe(i, sizeMask);
pair = _index[i];
}
return _data;
}
E lookup(Object key) {
var k = _getKeyOrData(key);
return identical(_data, k) ? null : k;
}
bool contains(Object key) => !identical(_data, _getKeyOrData(key));
bool remove(Object key) {
final int size = _index.length;
final int sizeMask = size - 1;
final int maxEntries = size >> 1;
final int fullHash = _hashCode(key);
final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size);
int i = _HashBase._firstProbe(fullHash, sizeMask);
int pair = _index[i];
while (pair != _HashBase._UNUSED_PAIR) {
if (pair != _HashBase._DELETED_PAIR) {
final int d = hashPattern ^ pair;
if (d < maxEntries && _equals(key, _data[d])) {
_index[i] = _HashBase._DELETED_PAIR;
_HashBase._setDeletedAt(_data, d);
++_deletedKeys;
return true;
}
}
i = _HashBase._nextProbe(i, sizeMask);
pair = _index[i];
}
return false;
}
Iterator<E> get iterator =>
new _CompactIterator<E>(this, _data, _usedData, -1, 1);
// Returns a set of the same type, although this
// is not required by the spec. (For instance, always using an identity set
// would be technically correct, albeit surprising.)
Set<E> toSet() => new _CompactLinkedHashSet<E>()..addAll(this);
}
class _CompactLinkedIdentityHashSet<E>
extends _CompactLinkedHashSet<E> with _IdenticalAndIdentityHashCode {
Set<E> toSet() => new _CompactLinkedIdentityHashSet<E>()..addAll(this);
}
class _CompactLinkedCustomHashSet<E>
extends _CompactLinkedHashSet<E> {
final _equality;
final _hasher;
final _validKey;
int _hashCode(e) => _hasher(e);
bool _equals(e1, e2) => _equality(e1, e2);
bool contains(Object o) => _validKey(o) ? super.contains(o) : false;
E lookup(Object o) => _validKey(o) ? super.lookup(o) : null;
bool remove(Object o) => _validKey(o) ? super.remove(o) : false;
_CompactLinkedCustomHashSet(this._equality, this._hasher, validKey)
: _validKey = (validKey != null) ? validKey : new _TypeTest<E>().test;
Set<E> toSet() =>
new _CompactLinkedCustomHashSet<E>(_equality, _hasher, _validKey)
..addAll(this);
}