blob: f23c23ad59ae34aeebda376cbbc2d9d11cfea4bd [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/globals.h"
#if defined(DART_HOST_OS_LINUX)
#include "bin/socket_base.h"
#include <errno.h> // NOLINT
#include <ifaddrs.h> // NOLINT
#include <net/if.h> // NOLINT
#include <netinet/tcp.h> // NOLINT
#include <stdio.h> // NOLINT
#include <stdlib.h> // NOLINT
#include <string.h> // NOLINT
#include <sys/stat.h> // NOLINT
#include <unistd.h> // NOLINT
#include "bin/fdutils.h"
#include "bin/file.h"
#include "bin/socket_base_linux.h"
#include "bin/thread.h"
#include "platform/signal_blocker.h"
namespace dart {
namespace bin {
SocketAddress::SocketAddress(struct sockaddr* sa, bool unnamed_unix_socket) {
if (unnamed_unix_socket) {
// This is an unnamed unix domain socket.
as_string_[0] = 0;
} else if (sa->sa_family == AF_UNIX) {
struct sockaddr_un* un = ((struct sockaddr_un*)sa);
memmove(as_string_, un->sun_path, sizeof(un->sun_path));
} else {
ASSERT(INET6_ADDRSTRLEN >= INET_ADDRSTRLEN);
if (!SocketBase::FormatNumericAddress(*reinterpret_cast<RawAddr*>(sa),
as_string_, INET6_ADDRSTRLEN)) {
as_string_[0] = 0;
}
}
socklen_t salen =
GetAddrLength(*reinterpret_cast<RawAddr*>(sa), unnamed_unix_socket);
memmove(reinterpret_cast<void*>(&addr_), sa, salen);
}
bool SocketBase::Initialize() {
// Nothing to do on Linux.
return true;
}
bool SocketBase::FormatNumericAddress(const RawAddr& addr,
char* address,
int len) {
socklen_t salen = SocketAddress::GetAddrLength(addr);
return (NO_RETRY_EXPECTED(getnameinfo(&addr.addr, salen, address, len, NULL,
0, NI_NUMERICHOST) == 0)) != 0;
}
bool SocketBase::IsBindError(intptr_t error_number) {
return error_number == EADDRINUSE || error_number == EADDRNOTAVAIL ||
error_number == EINVAL;
}
intptr_t SocketBase::Available(intptr_t fd) {
return FDUtils::AvailableBytes(fd);
}
intptr_t SocketBase::Read(intptr_t fd,
void* buffer,
intptr_t num_bytes,
SocketOpKind sync) {
ASSERT(fd >= 0);
ssize_t read_bytes = TEMP_FAILURE_RETRY(read(fd, buffer, num_bytes));
ASSERT(EAGAIN == EWOULDBLOCK);
if ((sync == kAsync) && (read_bytes == -1) && (errno == EWOULDBLOCK)) {
// If the read would block we need to retry and therefore return 0
// as the number of bytes written.
read_bytes = 0;
}
return read_bytes;
}
intptr_t SocketBase::RecvFrom(intptr_t fd,
void* buffer,
intptr_t num_bytes,
RawAddr* addr,
SocketOpKind sync) {
ASSERT(fd >= 0);
socklen_t addr_len = sizeof(addr->ss);
ssize_t read_bytes = TEMP_FAILURE_RETRY(
recvfrom(fd, buffer, num_bytes, 0, &addr->addr, &addr_len));
if ((sync == kAsync) && (read_bytes == -1) && (errno == EWOULDBLOCK)) {
// If the read would block we need to retry and therefore return 0
// as the number of bytes written.
read_bytes = 0;
}
return read_bytes;
}
bool SocketControlMessage::is_file_descriptors_control_message() {
return level_ == SOL_SOCKET && type_ == SCM_RIGHTS;
}
// /proc/sys/net/core/optmem_max is corresponding kernel setting.
const size_t kMaxSocketMessageControlLength = 2048;
// if return value is positive or zero - it's number of messages read
// if it's negative - it's error code
intptr_t SocketBase::ReceiveMessage(intptr_t fd,
void* buffer,
int64_t* p_buffer_num_bytes,
SocketControlMessage** p_messages,
SocketOpKind sync,
OSError* p_oserror) {
ASSERT(fd >= 0);
ASSERT(p_messages != nullptr);
ASSERT(p_buffer_num_bytes != nullptr);
struct iovec iov[1];
memset(iov, 0, sizeof(iov));
iov[0].iov_base = buffer;
iov[0].iov_len = *p_buffer_num_bytes;
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
msg.msg_iov = iov;
msg.msg_iovlen = 1; // number of elements in iov
uint8_t control_buffer[kMaxSocketMessageControlLength];
msg.msg_control = control_buffer;
msg.msg_controllen = sizeof(control_buffer);
ssize_t read_bytes = TEMP_FAILURE_RETRY(recvmsg(fd, &msg, MSG_CMSG_CLOEXEC));
if ((sync == kAsync) && (read_bytes == -1) && (errno == EWOULDBLOCK)) {
// If the read would block we need to retry and therefore return 0
// as the number of bytes read.
return 0;
}
if (read_bytes < 0) {
p_oserror->Reload();
return read_bytes;
}
*p_buffer_num_bytes = read_bytes;
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
size_t num_messages = 0;
while (cmsg != nullptr) {
num_messages++;
cmsg = CMSG_NXTHDR(&msg, cmsg);
}
(*p_messages) = reinterpret_cast<SocketControlMessage*>(
Dart_ScopeAllocate(sizeof(SocketControlMessage) * num_messages));
SocketControlMessage* control_message = *p_messages;
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != nullptr;
cmsg = CMSG_NXTHDR(&msg, cmsg), control_message++) {
void* data = CMSG_DATA(cmsg);
size_t data_length = cmsg->cmsg_len - (reinterpret_cast<uint8_t*>(data) -
reinterpret_cast<uint8_t*>(cmsg));
void* copied_data = Dart_ScopeAllocate(data_length);
ASSERT(copied_data != nullptr);
memmove(copied_data, data, data_length);
ASSERT(cmsg->cmsg_level == SOL_SOCKET);
ASSERT(cmsg->cmsg_type == SCM_RIGHTS);
new (control_message) SocketControlMessage(
cmsg->cmsg_level, cmsg->cmsg_type, copied_data, data_length);
}
return num_messages;
}
bool SocketBase::AvailableDatagram(intptr_t fd,
void* buffer,
intptr_t num_bytes) {
ASSERT(fd >= 0);
ssize_t read_bytes =
TEMP_FAILURE_RETRY(recvfrom(fd, buffer, num_bytes, MSG_PEEK, NULL, NULL));
return read_bytes >= 0;
}
intptr_t SocketBase::Write(intptr_t fd,
const void* buffer,
intptr_t num_bytes,
SocketOpKind sync) {
ASSERT(fd >= 0);
ssize_t written_bytes = TEMP_FAILURE_RETRY(write(fd, buffer, num_bytes));
ASSERT(EAGAIN == EWOULDBLOCK);
if ((sync == kAsync) && (written_bytes == -1) && (errno == EWOULDBLOCK)) {
// If the would block we need to retry and therefore return 0 as
// the number of bytes written.
written_bytes = 0;
}
return written_bytes;
}
intptr_t SocketBase::SendTo(intptr_t fd,
const void* buffer,
intptr_t num_bytes,
const RawAddr& addr,
SocketOpKind sync) {
ASSERT(fd >= 0);
ssize_t written_bytes =
TEMP_FAILURE_RETRY(sendto(fd, buffer, num_bytes, 0, &addr.addr,
SocketAddress::GetAddrLength(addr)));
ASSERT(EAGAIN == EWOULDBLOCK);
if ((sync == kAsync) && (written_bytes == -1) && (errno == EWOULDBLOCK)) {
// If the would block we need to retry and therefore return 0 as
// the number of bytes written.
written_bytes = 0;
}
return written_bytes;
}
intptr_t SocketBase::SendMessage(intptr_t fd,
void* buffer,
size_t num_bytes,
SocketControlMessage* messages,
intptr_t num_messages,
SocketOpKind sync,
OSError* p_oserror) {
ASSERT(fd >= 0);
struct iovec iov = {
.iov_base = buffer,
.iov_len = num_bytes,
};
struct msghdr msg;
memset(&msg, 0, sizeof(msg));
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
if (messages != nullptr && num_messages > 0) {
SocketControlMessage* message = messages;
size_t total_length = 0;
for (intptr_t i = 0; i < num_messages; i++, message++) {
total_length += CMSG_SPACE(message->data_length());
}
uint8_t* control_buffer =
reinterpret_cast<uint8_t*>(Dart_ScopeAllocate(total_length));
memset(control_buffer, 0, total_length);
msg.msg_control = control_buffer;
msg.msg_controllen = total_length;
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
message = messages;
for (intptr_t i = 0; i < num_messages;
i++, message++, cmsg = CMSG_NXTHDR(&msg, cmsg)) {
ASSERT(message->is_file_descriptors_control_message());
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
intptr_t data_length = message->data_length();
cmsg->cmsg_len = CMSG_LEN(data_length);
memmove(CMSG_DATA(cmsg), message->data(), data_length);
}
msg.msg_controllen = total_length;
}
ssize_t written_bytes = TEMP_FAILURE_RETRY(sendmsg(fd, &msg, 0));
ASSERT(EAGAIN == EWOULDBLOCK);
if ((sync == kAsync) && (written_bytes == -1) && (errno == EWOULDBLOCK)) {
// If the would block we need to retry and therefore return 0 as
// the number of bytes written.
written_bytes = 0;
}
if (written_bytes < 0) {
p_oserror->Reload();
}
return written_bytes;
}
bool SocketBase::GetSocketName(intptr_t fd, SocketAddress* p_sa) {
ASSERT(fd >= 0);
ASSERT(p_sa != nullptr);
RawAddr raw;
socklen_t size = sizeof(raw);
if (NO_RETRY_EXPECTED(getsockname(fd, &raw.addr, &size))) {
return false;
}
// sockaddr_un contains sa_family_t sun_family and char[] sun_path.
// If size is the size of sa_family_t, this is an unnamed socket and
// sun_path contains garbage.
new (p_sa) SocketAddress(&raw.addr,
/*unnamed_unix_socket=*/size == sizeof(sa_family_t));
return true;
}
intptr_t SocketBase::GetPort(intptr_t fd) {
ASSERT(fd >= 0);
RawAddr raw;
socklen_t size = sizeof(raw);
if (NO_RETRY_EXPECTED(getsockname(fd, &raw.addr, &size))) {
return 0;
}
return SocketAddress::GetAddrPort(raw);
}
SocketAddress* SocketBase::GetRemotePeer(intptr_t fd, intptr_t* port) {
ASSERT(fd >= 0);
RawAddr raw;
socklen_t size = sizeof(raw);
if (NO_RETRY_EXPECTED(getpeername(fd, &raw.addr, &size))) {
return NULL;
}
// sockaddr_un contains sa_family_t sun_family and char[] sun_path.
// If size is the size of sa_family_t, this is an unnamed socket and
// sun_path contains garbage.
if (size == sizeof(sa_family_t)) {
*port = 0;
return new SocketAddress(&raw.addr, /*unnamed_unix_socket=*/true);
}
*port = SocketAddress::GetAddrPort(raw);
return new SocketAddress(&raw.addr);
}
void SocketBase::GetError(intptr_t fd, OSError* os_error) {
int len = sizeof(errno);
int err = 0;
VOID_NO_RETRY_EXPECTED(getsockopt(fd, SOL_SOCKET, SO_ERROR, &err,
reinterpret_cast<socklen_t*>(&len)));
errno = err;
os_error->SetCodeAndMessage(OSError::kSystem, errno);
}
int SocketBase::GetType(intptr_t fd) {
struct stat64 buf;
int result = TEMP_FAILURE_RETRY(fstat64(fd, &buf));
if (result == -1) {
return -1;
}
if (S_ISCHR(buf.st_mode)) {
return File::kTerminal;
}
if (S_ISFIFO(buf.st_mode)) {
return File::kPipe;
}
if (S_ISREG(buf.st_mode)) {
return File::kFile;
}
return File::kOther;
}
intptr_t SocketBase::GetStdioHandle(intptr_t num) {
return num;
}
AddressList<SocketAddress>* SocketBase::LookupAddress(const char* host,
int type,
OSError** os_error) {
// Perform a name lookup for a host name.
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = SocketAddress::FromType(type);
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_ADDRCONFIG;
hints.ai_protocol = IPPROTO_TCP;
struct addrinfo* info = NULL;
int status = NO_RETRY_EXPECTED(getaddrinfo(host, 0, &hints, &info));
if (status != 0) {
// We failed, try without AI_ADDRCONFIG. This can happen when looking up
// e.g. '::1', when there are no global IPv6 addresses.
hints.ai_flags = 0;
status = NO_RETRY_EXPECTED(getaddrinfo(host, 0, &hints, &info));
if (status != 0) {
ASSERT(*os_error == NULL);
*os_error =
new OSError(status, gai_strerror(status), OSError::kGetAddressInfo);
return NULL;
}
}
intptr_t count = 0;
for (struct addrinfo* c = info; c != NULL; c = c->ai_next) {
if ((c->ai_family == AF_INET) || (c->ai_family == AF_INET6)) {
count++;
}
}
intptr_t i = 0;
AddressList<SocketAddress>* addresses = new AddressList<SocketAddress>(count);
for (struct addrinfo* c = info; c != NULL; c = c->ai_next) {
if ((c->ai_family == AF_INET) || (c->ai_family == AF_INET6)) {
addresses->SetAt(i, new SocketAddress(c->ai_addr));
i++;
}
}
freeaddrinfo(info);
return addresses;
}
bool SocketBase::ReverseLookup(const RawAddr& addr,
char* host,
intptr_t host_len,
OSError** os_error) {
ASSERT(host_len >= NI_MAXHOST);
int status = NO_RETRY_EXPECTED(
getnameinfo(&addr.addr, SocketAddress::GetAddrLength(addr), host,
host_len, NULL, 0, NI_NAMEREQD));
if (status != 0) {
ASSERT(*os_error == NULL);
*os_error =
new OSError(status, gai_strerror(status), OSError::kGetAddressInfo);
return false;
}
return true;
}
bool SocketBase::ParseAddress(int type, const char* address, RawAddr* addr) {
int result;
if (type == SocketAddress::TYPE_IPV4) {
result = NO_RETRY_EXPECTED(inet_pton(AF_INET, address, &addr->in.sin_addr));
} else {
ASSERT(type == SocketAddress::TYPE_IPV6);
result =
NO_RETRY_EXPECTED(inet_pton(AF_INET6, address, &addr->in6.sin6_addr));
}
return (result == 1);
}
bool SocketBase::RawAddrToString(RawAddr* addr, char* str) {
if (addr->addr.sa_family == AF_INET) {
return inet_ntop(AF_INET, &addr->in.sin_addr, str, INET_ADDRSTRLEN) != NULL;
} else {
ASSERT(addr->addr.sa_family == AF_INET6);
return inet_ntop(AF_INET6, &addr->in6.sin6_addr, str, INET6_ADDRSTRLEN) !=
NULL;
}
}
static bool ShouldIncludeIfaAddrs(struct ifaddrs* ifa, int lookup_family) {
if (ifa->ifa_addr == NULL) {
// OpenVPN's virtual device tun0.
return false;
}
int family = ifa->ifa_addr->sa_family;
return ((lookup_family == family) ||
(((lookup_family == AF_UNSPEC) &&
((family == AF_INET) || (family == AF_INET6)))));
}
bool SocketBase::ListInterfacesSupported() {
return true;
}
AddressList<InterfaceSocketAddress>* SocketBase::ListInterfaces(
int type,
OSError** os_error) {
struct ifaddrs* ifaddr;
int status = NO_RETRY_EXPECTED(getifaddrs(&ifaddr));
if (status != 0) {
ASSERT(*os_error == NULL);
*os_error =
new OSError(status, gai_strerror(status), OSError::kGetAddressInfo);
return NULL;
}
int lookup_family = SocketAddress::FromType(type);
intptr_t count = 0;
for (struct ifaddrs* ifa = ifaddr; ifa != NULL; ifa = ifa->ifa_next) {
if (ShouldIncludeIfaAddrs(ifa, lookup_family)) {
count++;
}
}
AddressList<InterfaceSocketAddress>* addresses =
new AddressList<InterfaceSocketAddress>(count);
int i = 0;
for (struct ifaddrs* ifa = ifaddr; ifa != NULL; ifa = ifa->ifa_next) {
if (ShouldIncludeIfaAddrs(ifa, lookup_family)) {
char* ifa_name = DartUtils::ScopedCopyCString(ifa->ifa_name);
addresses->SetAt(
i, new InterfaceSocketAddress(ifa->ifa_addr, ifa_name,
if_nametoindex(ifa->ifa_name)));
i++;
}
}
freeifaddrs(ifaddr);
return addresses;
}
void SocketBase::Close(intptr_t fd) {
ASSERT(fd >= 0);
close(fd);
}
bool SocketBase::GetNoDelay(intptr_t fd, bool* enabled) {
int on;
socklen_t len = sizeof(on);
int err = NO_RETRY_EXPECTED(getsockopt(fd, IPPROTO_TCP, TCP_NODELAY,
reinterpret_cast<void*>(&on), &len));
if (err == 0) {
*enabled = (on == 1);
}
return (err == 0);
}
bool SocketBase::SetNoDelay(intptr_t fd, bool enabled) {
int on = enabled ? 1 : 0;
return NO_RETRY_EXPECTED(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY,
reinterpret_cast<char*>(&on),
sizeof(on))) == 0;
}
bool SocketBase::GetMulticastLoop(intptr_t fd,
intptr_t protocol,
bool* enabled) {
uint8_t on;
socklen_t len = sizeof(on);
int level = protocol == SocketAddress::TYPE_IPV4 ? IPPROTO_IP : IPPROTO_IPV6;
int optname = protocol == SocketAddress::TYPE_IPV4 ? IP_MULTICAST_LOOP
: IPV6_MULTICAST_LOOP;
if (NO_RETRY_EXPECTED(getsockopt(fd, level, optname,
reinterpret_cast<char*>(&on), &len)) == 0) {
*enabled = (on == 1);
return true;
}
return false;
}
bool SocketBase::SetMulticastLoop(intptr_t fd,
intptr_t protocol,
bool enabled) {
int on = enabled ? 1 : 0;
int level = protocol == SocketAddress::TYPE_IPV4 ? IPPROTO_IP : IPPROTO_IPV6;
int optname = protocol == SocketAddress::TYPE_IPV4 ? IP_MULTICAST_LOOP
: IPV6_MULTICAST_LOOP;
return NO_RETRY_EXPECTED(setsockopt(
fd, level, optname, reinterpret_cast<char*>(&on), sizeof(on))) ==
0;
}
bool SocketBase::GetMulticastHops(intptr_t fd, intptr_t protocol, int* value) {
uint8_t v;
socklen_t len = sizeof(v);
int level = protocol == SocketAddress::TYPE_IPV4 ? IPPROTO_IP : IPPROTO_IPV6;
int optname = protocol == SocketAddress::TYPE_IPV4 ? IP_MULTICAST_TTL
: IPV6_MULTICAST_HOPS;
if (NO_RETRY_EXPECTED(getsockopt(fd, level, optname,
reinterpret_cast<char*>(&v), &len)) == 0) {
*value = v;
return true;
}
return false;
}
bool SocketBase::SetMulticastHops(intptr_t fd, intptr_t protocol, int value) {
int v = value;
int level = protocol == SocketAddress::TYPE_IPV4 ? IPPROTO_IP : IPPROTO_IPV6;
int optname = protocol == SocketAddress::TYPE_IPV4 ? IP_MULTICAST_TTL
: IPV6_MULTICAST_HOPS;
return NO_RETRY_EXPECTED(setsockopt(
fd, level, optname, reinterpret_cast<char*>(&v), sizeof(v))) == 0;
}
bool SocketBase::GetBroadcast(intptr_t fd, bool* enabled) {
int on;
socklen_t len = sizeof(on);
int err = NO_RETRY_EXPECTED(getsockopt(fd, SOL_SOCKET, SO_BROADCAST,
reinterpret_cast<char*>(&on), &len));
if (err == 0) {
*enabled = (on == 1);
}
return (err == 0);
}
bool SocketBase::SetBroadcast(intptr_t fd, bool enabled) {
int on = enabled ? 1 : 0;
return NO_RETRY_EXPECTED(setsockopt(fd, SOL_SOCKET, SO_BROADCAST,
reinterpret_cast<char*>(&on),
sizeof(on))) == 0;
}
bool SocketBase::SetOption(intptr_t fd,
int level,
int option,
const char* data,
int length) {
return NO_RETRY_EXPECTED(setsockopt(fd, level, option, data, length)) == 0;
}
bool SocketBase::GetOption(intptr_t fd,
int level,
int option,
char* data,
unsigned int* length) {
socklen_t optlen = static_cast<socklen_t>(*length);
auto result = NO_RETRY_EXPECTED(getsockopt(fd, level, option, data, &optlen));
*length = static_cast<unsigned int>(optlen);
return result == 0;
}
bool SocketBase::JoinMulticast(intptr_t fd,
const RawAddr& addr,
const RawAddr&,
int interfaceIndex) {
int proto = addr.addr.sa_family == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
struct group_req mreq;
mreq.gr_interface = interfaceIndex;
memmove(&mreq.gr_group, &addr.ss, SocketAddress::GetAddrLength(addr));
return NO_RETRY_EXPECTED(
setsockopt(fd, proto, MCAST_JOIN_GROUP, &mreq, sizeof(mreq))) == 0;
}
bool SocketBase::LeaveMulticast(intptr_t fd,
const RawAddr& addr,
const RawAddr&,
int interfaceIndex) {
int proto = addr.addr.sa_family == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
struct group_req mreq;
mreq.gr_interface = interfaceIndex;
memmove(&mreq.gr_group, &addr.ss, SocketAddress::GetAddrLength(addr));
return NO_RETRY_EXPECTED(setsockopt(fd, proto, MCAST_LEAVE_GROUP, &mreq,
sizeof(mreq))) == 0;
}
} // namespace bin
} // namespace dart
#endif // defined(DART_HOST_OS_LINUX)