blob: d7951853620463e6dda2243a8aa079b335a43eec [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM.
#if defined(TARGET_ARCH_ARM)
#include "vm/compiler/backend/il.h"
#include "vm/compiler/backend/flow_graph.h"
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/compiler/backend/locations.h"
#include "vm/compiler/backend/locations_helpers.h"
#include "vm/compiler/backend/range_analysis.h"
#include "vm/compiler/compiler_state.h"
#include "vm/compiler/ffi/native_calling_convention.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/cpu.h"
#include "vm/dart_entry.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/simulator.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#include "vm/type_testing_stubs.h"
#define __ compiler->assembler()->
#define Z (compiler->zone())
namespace dart {
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed location depending on
// the return value (R0, Location::Pair(R0, R1) or Q0).
LocationSummary* Instruction::MakeCallSummary(Zone* zone,
const Instruction* instr,
LocationSummary* locs) {
ASSERT(locs == nullptr || locs->always_calls());
LocationSummary* result =
((locs == nullptr)
? (new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall))
: locs);
const auto representation = instr->representation();
switch (representation) {
case kTagged:
result->set_out(
0, Location::RegisterLocation(CallingConventions::kReturnReg));
break;
case kUnboxedInt64:
result->set_out(
0, Location::Pair(
Location::RegisterLocation(CallingConventions::kReturnReg),
Location::RegisterLocation(
CallingConventions::kSecondReturnReg)));
break;
case kUnboxedDouble:
result->set_out(
0, Location::FpuRegisterLocation(CallingConventions::kReturnFpuReg));
break;
default:
UNREACHABLE();
break;
}
return result;
}
LocationSummary* LoadIndexedUnsafeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = ((representation() == kUnboxedDouble) ? 1 : 0);
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
switch (representation()) {
case kTagged:
locs->set_out(0, Location::RequiresRegister());
break;
case kUnboxedInt64:
locs->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
break;
case kUnboxedDouble:
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
break;
}
return locs;
}
void LoadIndexedUnsafeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(RequiredInputRepresentation(0) == kTagged); // It is a Smi.
ASSERT(kSmiTag == 0);
ASSERT(kSmiTagSize == 1);
const Register index = locs()->in(0).reg();
switch (representation()) {
case kTagged: {
const auto out = locs()->out(0).reg();
__ add(out, base_reg(), compiler::Operand(index, LSL, 1));
__ LoadFromOffset(out, out, offset());
break;
}
case kUnboxedInt64: {
const auto out_lo = locs()->out(0).AsPairLocation()->At(0).reg();
const auto out_hi = locs()->out(0).AsPairLocation()->At(1).reg();
__ add(out_hi, base_reg(), compiler::Operand(index, LSL, 1));
__ LoadFromOffset(out_lo, out_hi, offset());
__ LoadFromOffset(out_hi, out_hi, offset() + compiler::target::kWordSize);
break;
}
case kUnboxedDouble: {
const auto tmp = locs()->temp(0).reg();
const auto out = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ add(tmp, base_reg(), compiler::Operand(index, LSL, 1));
__ LoadDFromOffset(out, tmp, offset());
break;
}
default:
UNREACHABLE();
break;
}
}
DEFINE_BACKEND(StoreIndexedUnsafe,
(NoLocation, Register index, Register value)) {
ASSERT(instr->RequiredInputRepresentation(
StoreIndexedUnsafeInstr::kIndexPos) == kTagged); // It is a Smi.
__ add(TMP, instr->base_reg(), compiler::Operand(index, LSL, 1));
__ str(value, compiler::Address(TMP, instr->offset()));
ASSERT(kSmiTag == 0);
ASSERT(kSmiTagSize == 1);
}
DEFINE_BACKEND(TailCall,
(NoLocation,
Fixed<Register, ARGS_DESC_REG>,
Temp<Register> temp)) {
compiler->EmitTailCallToStub(instr->code());
// Even though the TailCallInstr will be the last instruction in a basic
// block, the flow graph compiler will emit native code for other blocks after
// the one containing this instruction and needs to be able to use the pool.
// (The `LeaveDartFrame` above disables usages of the pool.)
__ set_constant_pool_allowed(true);
}
LocationSummary* MemoryCopyInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 5;
const intptr_t kNumTemps =
element_size_ == 16 ? 4 : element_size_ == 8 ? 2 : 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(kSrcPos, Location::WritableRegister());
locs->set_in(kDestPos, Location::WritableRegister());
locs->set_in(kSrcStartPos, Location::RequiresRegister());
locs->set_in(kDestStartPos, Location::RequiresRegister());
locs->set_in(kLengthPos, Location::WritableRegister());
for (intptr_t i = 0; i < kNumTemps; i++) {
locs->set_temp(i, Location::RequiresRegister());
}
return locs;
}
void MemoryCopyInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register src_reg = locs()->in(kSrcPos).reg();
const Register dest_reg = locs()->in(kDestPos).reg();
const Register src_start_reg = locs()->in(kSrcStartPos).reg();
const Register dest_start_reg = locs()->in(kDestStartPos).reg();
const Register length_reg = locs()->in(kLengthPos).reg();
const Register temp_reg = locs()->temp(0).reg();
RegList temp_regs = 0;
for (intptr_t i = 0; i < locs()->temp_count(); i++) {
temp_regs |= 1 << locs()->temp(i).reg();
}
EmitComputeStartPointer(compiler, src_cid_, src_start(), src_reg,
src_start_reg);
EmitComputeStartPointer(compiler, dest_cid_, dest_start(), dest_reg,
dest_start_reg);
compiler::Label loop, done;
compiler::Address src_address =
compiler::Address(src_reg, element_size_, compiler::Address::PostIndex);
compiler::Address dest_address =
compiler::Address(dest_reg, element_size_, compiler::Address::PostIndex);
// Untag length and skip copy if length is zero.
__ movs(length_reg, compiler::Operand(length_reg, ASR, 1));
__ b(&done, ZERO);
__ Bind(&loop);
switch (element_size_) {
case 1:
__ ldrb(temp_reg, src_address);
__ strb(temp_reg, dest_address);
break;
case 2:
__ ldrh(temp_reg, src_address);
__ strh(temp_reg, dest_address);
break;
case 4:
__ ldr(temp_reg, src_address);
__ str(temp_reg, dest_address);
break;
case 8:
case 16:
__ ldm(BlockAddressMode::IA_W, src_reg, temp_regs);
__ stm(BlockAddressMode::IA_W, dest_reg, temp_regs);
break;
}
__ subs(length_reg, length_reg, compiler::Operand(1));
__ b(&loop, NOT_ZERO);
__ Bind(&done);
}
void MemoryCopyInstr::EmitComputeStartPointer(FlowGraphCompiler* compiler,
classid_t array_cid,
Value* start,
Register array_reg,
Register start_reg) {
if (IsTypedDataBaseClassId(array_cid)) {
__ ldr(
array_reg,
compiler::FieldAddress(
array_reg, compiler::target::TypedDataBase::data_field_offset()));
} else {
switch (array_cid) {
case kOneByteStringCid:
__ add(
array_reg, array_reg,
compiler::Operand(compiler::target::OneByteString::data_offset() -
kHeapObjectTag));
break;
case kTwoByteStringCid:
__ add(
array_reg, array_reg,
compiler::Operand(compiler::target::OneByteString::data_offset() -
kHeapObjectTag));
break;
case kExternalOneByteStringCid:
__ ldr(array_reg,
compiler::FieldAddress(array_reg,
compiler::target::ExternalOneByteString::
external_data_offset()));
break;
case kExternalTwoByteStringCid:
__ ldr(array_reg,
compiler::FieldAddress(array_reg,
compiler::target::ExternalTwoByteString::
external_data_offset()));
break;
default:
UNREACHABLE();
break;
}
}
intptr_t shift = Utils::ShiftForPowerOfTwo(element_size_) - 1;
if (shift < 0) {
__ add(array_reg, array_reg, compiler::Operand(start_reg, ASR, -shift));
} else {
__ add(array_reg, array_reg, compiler::Operand(start_reg, LSL, shift));
}
}
LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (representation() == kUnboxedDouble) {
locs->set_in(0, Location::RequiresFpuRegister());
} else if (representation() == kUnboxedInt64) {
locs->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
} else {
locs->set_in(0, LocationAnyOrConstant(value()));
}
return locs;
}
// Buffers registers to use STMDB in order to push
// multiple registers at once.
class ArgumentsPusher : public ValueObject {
public:
ArgumentsPusher() {}
// Flush all buffered registers.
void Flush(FlowGraphCompiler* compiler) {
if (pending_regs_ != 0) {
if (is_single_register_) {
__ Push(lowest_register_);
} else {
__ PushList(pending_regs_);
}
pending_regs_ = 0;
lowest_register_ = kNoRegister;
is_single_register_ = false;
}
}
// Buffer given register. May push previously buffered registers if needed.
void PushRegister(FlowGraphCompiler* compiler, Register reg) {
if (pending_regs_ != 0) {
ASSERT(lowest_register_ != kNoRegister);
// STMDB pushes higher registers first, so we can only buffer
// lower registers.
if (reg < lowest_register_) {
pending_regs_ |= (1 << reg);
lowest_register_ = reg;
is_single_register_ = false;
return;
}
Flush(compiler);
}
pending_regs_ = (1 << reg);
lowest_register_ = reg;
is_single_register_ = true;
}
// Return a register which can be used to hold a value of an argument.
Register FindFreeRegister(FlowGraphCompiler* compiler,
Instruction* push_arg) {
// Dart calling conventions do not have callee-save registers,
// so arguments pushing can clobber all allocatable registers
// except registers used in arguments which were not pushed yet,
// as well as ParallelMove and inputs of a call instruction.
intptr_t busy = kReservedCpuRegisters;
for (Instruction* instr = push_arg;; instr = instr->next()) {
ASSERT(instr != nullptr);
if (ParallelMoveInstr* parallel_move = instr->AsParallelMove()) {
for (intptr_t i = 0, n = parallel_move->NumMoves(); i < n; ++i) {
const auto src_loc = parallel_move->MoveOperandsAt(i)->src();
if (src_loc.IsRegister()) {
busy |= (1 << src_loc.reg());
} else if (src_loc.IsPairLocation()) {
busy |= (1 << src_loc.AsPairLocation()->At(0).reg());
busy |= (1 << src_loc.AsPairLocation()->At(1).reg());
}
}
} else {
ASSERT(instr->IsPushArgument() || (instr->ArgumentCount() > 0));
for (intptr_t i = 0, n = instr->locs()->input_count(); i < n; ++i) {
const auto in_loc = instr->locs()->in(i);
if (in_loc.IsRegister()) {
busy |= (1 << in_loc.reg());
} else if (in_loc.IsPairLocation()) {
const auto pair_location = in_loc.AsPairLocation();
busy |= (1 << pair_location->At(0).reg());
busy |= (1 << pair_location->At(1).reg());
}
}
if (instr->ArgumentCount() > 0) {
break;
}
}
}
if (pending_regs_ != 0) {
// Find the highest available register which can be pushed along with
// pending registers.
Register reg = HighestAvailableRegister(busy, lowest_register_);
if (reg != kNoRegister) {
return reg;
}
Flush(compiler);
}
// At this point there are no pending buffered registers.
// Use LR as it's the highest free register, it is not allocatable and
// it is clobbered by the call.
CLOBBERS_LR({
static_assert(((1 << LR) & kDartAvailableCpuRegs) == 0,
"LR should not be allocatable");
return LR;
});
}
private:
RegList pending_regs_ = 0;
Register lowest_register_ = kNoRegister;
bool is_single_register_ = false;
Register HighestAvailableRegister(intptr_t busy, Register upper_bound) {
for (intptr_t i = upper_bound - 1; i >= 0; --i) {
if ((busy & (1 << i)) == 0) {
return static_cast<Register>(i);
}
}
return kNoRegister;
}
};
void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// In SSA mode, we need an explicit push. Nothing to do in non-SSA mode
// where arguments are pushed by their definitions.
if (compiler->is_optimizing()) {
if (previous()->IsPushArgument()) {
// Already generated.
return;
}
ArgumentsPusher pusher;
for (PushArgumentInstr* push_arg = this; push_arg != nullptr;
push_arg = push_arg->next()->AsPushArgument()) {
const Location value = push_arg->locs()->in(0);
if (value.IsRegister()) {
pusher.PushRegister(compiler, value.reg());
} else if (value.IsPairLocation()) {
pusher.PushRegister(compiler, value.AsPairLocation()->At(1).reg());
pusher.PushRegister(compiler, value.AsPairLocation()->At(0).reg());
} else if (value.IsFpuRegister()) {
pusher.Flush(compiler);
__ vstmd(DB_W, SP, EvenDRegisterOf(value.fpu_reg()), 1);
} else {
const Register reg = pusher.FindFreeRegister(compiler, push_arg);
ASSERT(reg != kNoRegister);
if (value.IsConstant()) {
__ LoadObject(reg, value.constant());
} else {
ASSERT(value.IsStackSlot());
const intptr_t value_offset = value.ToStackSlotOffset();
__ LoadFromOffset(reg, value.base_reg(), value_offset);
}
pusher.PushRegister(compiler, reg);
}
}
pusher.Flush(compiler);
}
}
LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
switch (representation()) {
case kTagged:
locs->set_in(0,
Location::RegisterLocation(CallingConventions::kReturnReg));
break;
case kUnboxedInt64:
locs->set_in(
0, Location::Pair(
Location::RegisterLocation(CallingConventions::kReturnReg),
Location::RegisterLocation(
CallingConventions::kSecondReturnReg)));
break;
case kUnboxedDouble:
locs->set_in(
0, Location::FpuRegisterLocation(CallingConventions::kReturnFpuReg));
break;
default:
UNREACHABLE();
break;
}
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instructions: a branch macro sequence.
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (locs()->in(0).IsRegister()) {
const Register result = locs()->in(0).reg();
ASSERT(result == CallingConventions::kReturnReg);
} else if (locs()->in(0).IsPairLocation()) {
const Register result_lo = locs()->in(0).AsPairLocation()->At(0).reg();
const Register result_hi = locs()->in(0).AsPairLocation()->At(1).reg();
ASSERT(result_lo == CallingConventions::kReturnReg);
ASSERT(result_hi == CallingConventions::kSecondReturnReg);
} else {
ASSERT(locs()->in(0).IsFpuRegister());
const FpuRegister result = locs()->in(0).fpu_reg();
ASSERT(result == CallingConventions::kReturnFpuReg);
}
if (!compiler->flow_graph().graph_entry()->NeedsFrame()) {
__ Ret();
return;
}
#if defined(DEBUG)
compiler::Label stack_ok;
__ Comment("Stack Check");
const intptr_t fp_sp_dist =
(compiler::target::frame_layout.first_local_from_fp + 1 -
compiler->StackSize()) *
compiler::target::kWordSize;
ASSERT(fp_sp_dist <= 0);
__ sub(R2, SP, compiler::Operand(FP));
__ CompareImmediate(R2, fp_sp_dist);
__ b(&stack_ok, EQ);
__ bkpt(0);
__ Bind(&stack_ok);
#endif
ASSERT(__ constant_pool_allowed());
if (yield_index() != UntaggedPcDescriptors::kInvalidYieldIndex) {
compiler->EmitYieldPositionMetadata(source(), yield_index());
}
__ LeaveDartFrameAndReturn(); // Disallows constant pool use.
// This ReturnInstr may be emitted out of order by the optimizer. The next
// block may be a target expecting a properly set constant pool pointer.
__ set_constant_pool_allowed(true);
}
// Detect pattern when one value is zero and another is a power of 2.
static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) {
return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) ||
(Utils::IsPowerOfTwo(v2) && (v1 == 0));
}
LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
return comparison()->locs();
}
void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
Location left = locs()->in(0);
Location right = locs()->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
// Clear out register.
__ eor(result, result, compiler::Operand(result));
// Emit comparison code. This must not overwrite the result register.
// IfThenElseInstr::Supports() should prevent EmitComparisonCode from using
// the labels or returning an invalid condition.
BranchLabels labels = {NULL, NULL, NULL};
Condition true_condition = comparison()->EmitComparisonCode(compiler, labels);
ASSERT(true_condition != kInvalidCondition);
const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_);
intptr_t true_value = if_true_;
intptr_t false_value = if_false_;
if (is_power_of_two_kind) {
if (true_value == 0) {
// We need to have zero in result on true_condition.
true_condition = InvertCondition(true_condition);
}
} else {
if (true_value == 0) {
// Swap values so that false_value is zero.
intptr_t temp = true_value;
true_value = false_value;
false_value = temp;
} else {
true_condition = InvertCondition(true_condition);
}
}
__ mov(result, compiler::Operand(1), true_condition);
if (is_power_of_two_kind) {
const intptr_t shift =
Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value));
__ Lsl(result, result, compiler::Operand(shift + kSmiTagSize));
} else {
__ sub(result, result, compiler::Operand(1));
const int32_t val = compiler::target::ToRawSmi(true_value) -
compiler::target::ToRawSmi(false_value);
__ AndImmediate(result, result, val);
if (false_value != 0) {
__ AddImmediate(result, compiler::target::ToRawSmi(false_value));
}
}
}
LocationSummary* DispatchTableCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0)); // ClassId
return MakeCallSummary(zone, this, summary);
}
LocationSummary* ClosureCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0)); // Function.
return MakeCallSummary(zone, this, summary);
}
void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Load arguments descriptor in R4.
const intptr_t argument_count = ArgumentCount(); // Includes type args.
const Array& arguments_descriptor =
Array::ZoneHandle(Z, GetArgumentsDescriptor());
__ LoadObject(R4, arguments_descriptor);
// R4: Arguments descriptor.
// R0: Function.
ASSERT(locs()->in(0).reg() == R0);
if (!FLAG_precompiled_mode || !FLAG_use_bare_instructions) {
__ ldr(CODE_REG, compiler::FieldAddress(
R0, compiler::target::Function::code_offset()));
}
__ ldr(R2,
compiler::FieldAddress(
R0, compiler::target::Function::entry_point_offset(entry_kind())));
// R2: instructions entry point.
if (!FLAG_precompiled_mode) {
// R9: Smi 0 (no IC data; the lazy-compile stub expects a GC-safe value).
__ LoadImmediate(R9, 0);
}
__ blx(R2);
compiler->EmitCallsiteMetadata(source(), deopt_id(),
UntaggedPcDescriptors::kOther, locs());
__ Drop(argument_count);
}
LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 0, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
__ LoadFromOffset(result, FP,
compiler::target::FrameOffsetInBytesForVariable(&local()));
}
LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 1, Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ StoreToOffset(value, FP,
compiler::target::FrameOffsetInBytesForVariable(&local()));
}
LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 0, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out(0).IsInvalid()) {
const Register result = locs()->out(0).reg();
__ LoadObject(result, value());
}
}
void ConstantInstr::EmitMoveToLocation(FlowGraphCompiler* compiler,
const Location& destination,
Register tmp) {
if (destination.IsRegister()) {
if (RepresentationUtils::IsUnboxedInteger(representation())) {
int64_t v;
const bool ok = compiler::HasIntegerValue(value_, &v);
RELEASE_ASSERT(ok);
if (value_.IsSmi() && RepresentationUtils::IsUnsigned(representation())) {
// If the value is negative, then the sign bit was preserved during
// Smi untagging, which means the resulting value may be unexpected.
ASSERT(v >= 0);
}
__ LoadImmediate(destination.reg(), v);
} else {
ASSERT(representation() == kTagged);
__ LoadObject(destination.reg(), value_);
}
} else if (destination.IsFpuRegister()) {
const DRegister dst = EvenDRegisterOf(destination.fpu_reg());
if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0) &&
TargetCPUFeatures::neon_supported()) {
QRegister qdst = destination.fpu_reg();
__ veorq(qdst, qdst, qdst);
} else {
ASSERT(tmp != kNoRegister);
__ LoadDImmediate(dst, Double::Cast(value_).value(), tmp);
}
} else if (destination.IsDoubleStackSlot()) {
if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0) &&
TargetCPUFeatures::neon_supported()) {
__ veorq(QTMP, QTMP, QTMP);
} else {
ASSERT(tmp != kNoRegister);
__ LoadDImmediate(DTMP, Double::Cast(value_).value(), tmp);
}
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ StoreDToOffset(DTMP, destination.base_reg(), dest_offset);
} else {
ASSERT(destination.IsStackSlot());
ASSERT(tmp != kNoRegister);
const intptr_t dest_offset = destination.ToStackSlotOffset();
if (RepresentationUtils::IsUnboxedInteger(representation())) {
int64_t v;
const bool ok = compiler::HasIntegerValue(value_, &v);
RELEASE_ASSERT(ok);
__ LoadImmediate(tmp, v);
} else {
__ LoadObject(tmp, value_);
}
__ StoreToOffset(tmp, destination.base_reg(), dest_offset);
}
}
LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const bool is_unboxed_int =
RepresentationUtils::IsUnboxedInteger(representation());
ASSERT(!is_unboxed_int || RepresentationUtils::ValueSize(representation()) <=
compiler::target::kWordSize);
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = is_unboxed_int ? 0 : 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (is_unboxed_int) {
locs->set_out(0, Location::RequiresRegister());
} else {
ASSERT(representation_ == kUnboxedDouble);
locs->set_out(0, Location::RequiresFpuRegister());
}
if (kNumTemps > 0) {
locs->set_temp(0, Location::RequiresRegister());
}
return locs;
}
void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out(0).IsInvalid()) {
const Register scratch =
locs()->temp_count() == 0 ? kNoRegister : locs()->temp(0).reg();
EmitMoveToLocation(compiler, locs()->out(0), scratch);
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
auto const dst_type_loc =
LocationFixedRegisterOrConstant(dst_type(), TypeTestABI::kDstTypeReg);
// We want to prevent spilling of the inputs (e.g. function/instantiator tav),
// since TTS preserves them. So we make this a `kNoCall` summary,
// even though most other registers can be modified by the stub. To tell the
// register allocator about it, we reserve all the other registers as
// temporary registers.
// TODO(http://dartbug.com/32788): Simplify this.
const intptr_t kNonChangeableInputRegs =
(1 << TypeTestABI::kInstanceReg) |
((dst_type_loc.IsRegister() ? 1 : 0) << TypeTestABI::kDstTypeReg) |
(1 << TypeTestABI::kInstantiatorTypeArgumentsReg) |
(1 << TypeTestABI::kFunctionTypeArgumentsReg);
const intptr_t kNumInputs = 4;
// We invoke a stub that can potentially clobber any CPU register
// but can only clobber FPU registers on the slow path when
// entering runtime. Preserve all FPU registers that are
// not guarateed to be preserved by the ABI.
const intptr_t kCpuRegistersToPreserve =
kDartAvailableCpuRegs & ~kNonChangeableInputRegs;
const intptr_t kFpuRegistersToPreserve =
Utils::SignedNBitMask(kNumberOfFpuRegisters) &
~(Utils::SignedNBitMask(kAbiPreservedFpuRegCount)
<< kAbiFirstPreservedFpuReg) &
~(1 << FpuTMP);
const intptr_t kNumTemps = (Utils::CountOneBits64(kCpuRegistersToPreserve) +
Utils::CountOneBits64(kFpuRegistersToPreserve));
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallCalleeSafe);
summary->set_in(kInstancePos,
Location::RegisterLocation(TypeTestABI::kInstanceReg));
summary->set_in(kDstTypePos, dst_type_loc);
summary->set_in(
kInstantiatorTAVPos,
Location::RegisterLocation(TypeTestABI::kInstantiatorTypeArgumentsReg));
summary->set_in(kFunctionTAVPos, Location::RegisterLocation(
TypeTestABI::kFunctionTypeArgumentsReg));
summary->set_out(0, Location::SameAsFirstInput());
// Let's reserve all registers except for the input ones.
intptr_t next_temp = 0;
for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) {
const bool should_preserve = ((1 << i) & kCpuRegistersToPreserve) != 0;
if (should_preserve) {
summary->set_temp(next_temp++,
Location::RegisterLocation(static_cast<Register>(i)));
}
}
for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) {
const bool should_preserve = ((1 << i) & kFpuRegistersToPreserve) != 0;
if (should_preserve) {
summary->set_temp(next_temp++, Location::FpuRegisterLocation(
static_cast<FpuRegister>(i)));
}
}
return summary;
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->always_calls());
auto object_store = compiler->isolate_group()->object_store();
const auto& assert_boolean_stub =
Code::ZoneHandle(compiler->zone(), object_store->assert_boolean_stub());
compiler::Label done;
__ tst(AssertBooleanABI::kObjectReg,
compiler::Operand(compiler::target::ObjectAlignment::kBoolVsNullMask));
__ b(&done, NOT_ZERO);
compiler->GenerateStubCall(source(), assert_boolean_stub,
/*kind=*/UntaggedPcDescriptors::kOther, locs(),
deopt_id());
__ Bind(&done);
}
static Condition TokenKindToSmiCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ:
return EQ;
case Token::kNE:
return NE;
case Token::kLT:
return LT;
case Token::kGT:
return GT;
case Token::kLTE:
return LE;
case Token::kGTE:
return GE;
default:
UNREACHABLE();
return VS;
}
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
if (operation_cid() == kMintCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
locs->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
if (operation_cid() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
if (operation_cid() == kSmiCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, LocationRegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: LocationRegisterOrConstant(right()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
UNREACHABLE();
return NULL;
}
static void LoadValueCid(FlowGraphCompiler* compiler,
Register value_cid_reg,
Register value_reg,
compiler::Label* value_is_smi = NULL) {
if (value_is_smi == NULL) {
__ mov(value_cid_reg, compiler::Operand(kSmiCid));
}
__ tst(value_reg, compiler::Operand(kSmiTagMask));
if (value_is_smi == NULL) {
__ LoadClassId(value_cid_reg, value_reg, NE);
} else {
__ b(value_is_smi, EQ);
__ LoadClassId(value_cid_reg, value_reg);
}
}
static Condition FlipCondition(Condition condition) {
switch (condition) {
case EQ:
return EQ;
case NE:
return NE;
case LT:
return GT;
case LE:
return GE;
case GT:
return LT;
case GE:
return LE;
case CC:
return HI;
case LS:
return CS;
case HI:
return CC;
case CS:
return LS;
default:
UNREACHABLE();
return EQ;
}
}
static void EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition,
BranchLabels labels) {
if (labels.fall_through == labels.false_label) {
// If the next block is the false successor we will fall through to it.
__ b(labels.true_label, true_condition);
} else {
// If the next block is not the false successor we will branch to it.
Condition false_condition = InvertCondition(true_condition);
__ b(labels.false_label, false_condition);
// Fall through or jump to the true successor.
if (labels.fall_through != labels.true_label) {
__ b(labels.true_label);
}
}
}
static Condition EmitSmiComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind) {
Location left = locs->in(0);
Location right = locs->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToSmiCondition(kind);
if (left.IsConstant()) {
__ CompareObject(right.reg(), left.constant());
true_condition = FlipCondition(true_condition);
} else if (right.IsConstant()) {
__ CompareObject(left.reg(), right.constant());
} else {
__ cmp(left.reg(), compiler::Operand(right.reg()));
}
return true_condition;
}
static Condition TokenKindToMintCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ:
return EQ;
case Token::kNE:
return NE;
case Token::kLT:
return LT;
case Token::kGT:
return GT;
case Token::kLTE:
return LE;
case Token::kGTE:
return GE;
default:
UNREACHABLE();
return VS;
}
}
static Condition EmitUnboxedMintEqualityOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind) {
ASSERT(Token::IsEqualityOperator(kind));
PairLocation* left_pair = locs->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* right_pair = locs->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
// Compare lower.
__ cmp(left_lo, compiler::Operand(right_lo));
// Compare upper if lower is equal.
__ cmp(left_hi, compiler::Operand(right_hi), EQ);
return TokenKindToMintCondition(kind);
}
static Condition EmitUnboxedMintComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchLabels labels) {
PairLocation* left_pair = locs->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* right_pair = locs->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
// 64-bit comparison.
Condition hi_cond, lo_cond;
switch (kind) {
case Token::kLT:
hi_cond = LT;
lo_cond = CC;
break;
case Token::kGT:
hi_cond = GT;
lo_cond = HI;
break;
case Token::kLTE:
hi_cond = LT;
lo_cond = LS;
break;
case Token::kGTE:
hi_cond = GT;
lo_cond = CS;
break;
default:
UNREACHABLE();
hi_cond = lo_cond = VS;
}
// Compare upper halves first.
__ cmp(left_hi, compiler::Operand(right_hi));
__ b(labels.true_label, hi_cond);
__ b(labels.false_label, FlipCondition(hi_cond));
// If higher words are equal, compare lower words.
__ cmp(left_lo, compiler::Operand(right_lo));
return lo_cond;
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ:
return EQ;
case Token::kNE:
return NE;
case Token::kLT:
return LT;
case Token::kGT:
return GT;
case Token::kLTE:
return LE;
case Token::kGTE:
return GE;
default:
UNREACHABLE();
return VS;
}
}
static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
BranchLabels labels,
Token::Kind kind) {
const QRegister left = locs->in(0).fpu_reg();
const QRegister right = locs->in(1).fpu_reg();
const DRegister dleft = EvenDRegisterOf(left);
const DRegister dright = EvenDRegisterOf(right);
__ vcmpd(dleft, dright);
__ vmstat();
Condition true_condition = TokenKindToDoubleCondition(kind);
if (true_condition != NE) {
// Special case for NaN comparison. Result is always false unless
// relational operator is !=.
__ b(labels.false_label, VS);
}
return true_condition;
}
Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, locs(), kind());
} else if (operation_cid() == kMintCid) {
return EmitUnboxedMintEqualityOp(compiler, locs(), kind());
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, locs(), labels, kind());
}
}
LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, LocationRegisterOrConstant(right()));
return locs;
}
Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
const Register left = locs()->in(0).reg();
Location right = locs()->in(1);
if (right.IsConstant()) {
ASSERT(compiler::target::IsSmi(right.constant()));
const int32_t imm = compiler::target::ToRawSmi(right.constant());
__ TestImmediate(left, imm);
} else {
__ tst(left, compiler::Operand(right.reg()));
}
Condition true_condition = (kind() == Token::kNE) ? NE : EQ;
return true_condition;
}
LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT));
const Register val_reg = locs()->in(0).reg();
const Register cid_reg = locs()->temp(0).reg();
compiler::Label* deopt =
CanDeoptimize()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptTestCids,
licm_hoisted_ ? ICData::kHoisted : 0)
: NULL;
const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0;
const ZoneGrowableArray<intptr_t>& data = cid_results();
ASSERT(data[0] == kSmiCid);
bool result = data[1] == true_result;
__ tst(val_reg, compiler::Operand(kSmiTagMask));
__ b(result ? labels.true_label : labels.false_label, EQ);
__ LoadClassId(cid_reg, val_reg);
for (intptr_t i = 2; i < data.length(); i += 2) {
const intptr_t test_cid = data[i];
ASSERT(test_cid != kSmiCid);
result = data[i + 1] == true_result;
__ CompareImmediate(cid_reg, test_cid);
__ b(result ? labels.true_label : labels.false_label, EQ);
}
// No match found, deoptimize or default action.
if (deopt == NULL) {
// If the cid is not in the list, jump to the opposite label from the cids
// that are in the list. These must be all the same (see asserts in the
// constructor).
compiler::Label* target = result ? labels.false_label : labels.true_label;
if (target != labels.fall_through) {
__ b(target);
}
} else {
__ b(deopt);
}
// Dummy result as this method already did the jump, there's no need
// for the caller to branch on a condition.
return kInvalidCondition;
}
LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operation_cid() == kMintCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
locs->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
if (operation_cid() == kDoubleCid) {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
ASSERT(operation_cid() == kSmiCid);
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, LocationRegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: LocationRegisterOrConstant(right()));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, locs(), kind());
} else if (operation_cid() == kMintCid) {
return EmitUnboxedMintComparisonOp(compiler, locs(), kind(), labels);
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, locs(), labels, kind());
}
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
SetupNative();
const Register result = locs()->out(0).reg();
// All arguments are already @SP due to preceding PushArgument()s.
ASSERT(ArgumentCount() ==
function().NumParameters() + (function().IsGeneric() ? 1 : 0));
// Push the result place holder initialized to NULL.
__ PushObject(Object::null_object());
// Pass a pointer to the first argument in R2.
__ add(R2, SP,
compiler::Operand(ArgumentCount() * compiler::target::kWordSize));
// Compute the effective address. When running under the simulator,
// this is a redirection address that forces the simulator to call
// into the runtime system.
uword entry;
const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function());
const Code* stub;
if (link_lazily()) {
stub = &StubCode::CallBootstrapNative();
entry = NativeEntry::LinkNativeCallEntry();
} else {
entry = reinterpret_cast<uword>(native_c_function());
if (is_bootstrap_native()) {
stub = &StubCode::CallBootstrapNative();
} else if (is_auto_scope()) {
stub = &StubCode::CallAutoScopeNative();
} else {
stub = &StubCode::CallNoScopeNative();
}
}
__ LoadImmediate(R1, argc_tag);
compiler::ExternalLabel label(entry);
__ LoadNativeEntry(R9, &label,
link_lazily()
? compiler::ObjectPoolBuilderEntry::kPatchable
: compiler::ObjectPoolBuilderEntry::kNotPatchable);
if (link_lazily()) {
compiler->GeneratePatchableCall(source(), *stub,
UntaggedPcDescriptors::kOther, locs());
} else {
compiler->GenerateStubCall(source(), *stub, UntaggedPcDescriptors::kOther,
locs());
}
__ Pop(result);
__ Drop(ArgumentCount()); // Drop the arguments.
}
void FfiCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register saved_fp = locs()->temp(0).reg();
const Register temp = locs()->temp(1).reg();
const Register branch = locs()->in(TargetAddressIndex()).reg();
// Save frame pointer because we're going to update it when we enter the exit
// frame.
__ mov(saved_fp, compiler::Operand(FPREG));
// Make a space to put the return address.
__ PushImmediate(0);
// We need to create a dummy "exit frame". It will have a null code object.
__ LoadObject(CODE_REG, Object::null_object());
__ set_constant_pool_allowed(false);
__ EnterDartFrame(0, /*load_pool_pointer=*/false);
// Reserve space for arguments and align frame before entering C++ world.
__ ReserveAlignedFrameSpace(marshaller_.RequiredStackSpaceInBytes());
EmitParamMoves(compiler);
if (compiler::Assembler::EmittingComments()) {
__ Comment("Call");
}
// We need to copy the return address up into the dummy stack frame so the
// stack walker will know which safepoint to use.
__ mov(TMP, compiler::Operand(PC));
__ str(TMP, compiler::Address(FPREG, kSavedCallerPcSlotFromFp *
compiler::target::kWordSize));
// For historical reasons, the PC on ARM points 8 bytes past the current
// instruction. Therefore we emit the metadata here, 8 bytes (2 instructions)
// after the original mov.
compiler->EmitCallsiteMetadata(InstructionSource(), deopt_id(),
UntaggedPcDescriptors::Kind::kOther, locs());
// Update information in the thread object and enter a safepoint.
if (CanExecuteGeneratedCodeInSafepoint()) {
__ LoadImmediate(temp, compiler::target::Thread::exit_through_ffi());
__ TransitionGeneratedToNative(branch, FPREG, temp, saved_fp,
/*enter_safepoint=*/true);
__ blx(branch);
// Update information in the thread object and leave the safepoint.
__ TransitionNativeToGenerated(saved_fp, temp, /*leave_safepoint=*/true);
} else {
// We cannot trust that this code will be executable within a safepoint.
// Therefore we delegate the responsibility of entering/exiting the
// safepoint to a stub which in the VM isolate's heap, which will never lose
// execute permission.
__ ldr(TMP,
compiler::Address(
THR, compiler::target::Thread::
call_native_through_safepoint_entry_point_offset()));
// Calls R8 in a safepoint and clobbers R4 and NOTFP.
ASSERT(branch == R8 && temp == R4);
static_assert((kReservedCpuRegisters & (1 << NOTFP)) != 0,
"NOTFP should be a reserved register");
__ blx(TMP);
}
// Restore the global object pool after returning from runtime (old space is
// moving, so the GOP could have been relocated).
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
__ SetupGlobalPoolAndDispatchTable();
}
EmitReturnMoves(compiler);
// Leave dummy exit frame.
__ LeaveDartFrame();
__ set_constant_pool_allowed(true);
// Instead of returning to the "fake" return address, we just pop it.
__ PopRegister(TMP);
}
// Keep in sync with NativeEntryInstr::EmitNativeCode.
void NativeReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
EmitReturnMoves(compiler);
__ LeaveDartFrame();
// The dummy return address is in LR, no need to pop it as on Intel.
// These can be anything besides the return registers (R0 and R1) and THR
// (R10).
const Register vm_tag_reg = R2;
const Register old_exit_frame_reg = R3;
const Register old_exit_through_ffi_reg = R4;
const Register tmp = R5;
__ Pop(old_exit_frame_reg);
__ Pop(old_exit_through_ffi_reg);
// Restore top_resource.
__ Pop(tmp);
__ StoreToOffset(tmp, THR, compiler::target::Thread::top_resource_offset());
__ Pop(vm_tag_reg);
// If we were called by a trampoline, it will enter the safepoint on our
// behalf.
__ TransitionGeneratedToNative(
vm_tag_reg, old_exit_frame_reg, old_exit_through_ffi_reg, tmp,
/*enter_safepoint=*/!NativeCallbackTrampolines::Enabled());
__ PopNativeCalleeSavedRegisters();
#if defined(TARGET_OS_FUCHSIA) && defined(USING_SHADOW_CALL_STACK)
#error Unimplemented
#endif
// Leave the entry frame.
RESTORES_LR_FROM_FRAME(__ LeaveFrame(1 << LR | 1 << FP));
// Leave the dummy frame holding the pushed arguments.
RESTORES_LR_FROM_FRAME(__ LeaveFrame(1 << LR | 1 << FP));
__ Ret();
// For following blocks.
__ set_constant_pool_allowed(true);
}
// Keep in sync with NativeReturnInstr::EmitNativeCode and ComputeInnerLRState.
void NativeEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Constant pool cannot be used until we enter the actual Dart frame.
__ set_constant_pool_allowed(false);
__ Bind(compiler->GetJumpLabel(this));
// Create a dummy frame holding the pushed arguments. This simplifies
// NativeReturnInstr::EmitNativeCode.
SPILLS_LR_TO_FRAME(__ EnterFrame((1 << FP) | (1 << LR), 0));
// Save the argument registers, in reverse order.
SaveArguments(compiler);
// Enter the entry frame.
SPILLS_LR_TO_FRAME(__ EnterFrame((1 << FP) | (1 << LR), 0));
// Save a space for the code object.
__ PushImmediate(0);
#if defined(TARGET_OS_FUCHSIA) && defined(USING_SHADOW_CALL_STACK)
#error Unimplemented
#endif
__ PushNativeCalleeSavedRegisters();
// Load the thread object. If we were called by a trampoline, the thread is
// already loaded.
if (FLAG_precompiled_mode) {
compiler->LoadBSSEntry(BSS::Relocation::DRT_GetThreadForNativeCallback, R1,
R0);
} else if (!NativeCallbackTrampolines::Enabled()) {
// In JIT mode, we can just paste the address of the runtime entry into the
// generated code directly. This is not a problem since we don't save
// callbacks into JIT snapshots.
ASSERT(kWordSize == compiler::target::kWordSize);
__ LoadImmediate(
R1, static_cast<compiler::target::uword>(
reinterpret_cast<uword>(DLRT_GetThreadForNativeCallback)));
}
// Load the thread object. If we were called by a trampoline, the thread is
// already loaded.
if (!NativeCallbackTrampolines::Enabled()) {
// Create another frame to align the frame before continuing in "native"
// code.
__ EnterFrame(1 << FP, 0);
__ ReserveAlignedFrameSpace(0);
__ LoadImmediate(R0, callback_id_);
__ blx(R1);
__ mov(THR, compiler::Operand(R0));
__ LeaveFrame(1 << FP);
}
// Save the current VMTag on the stack.
__ LoadFromOffset(R0, THR, compiler::target::Thread::vm_tag_offset());
__ Push(R0);
// Save top resource.
const intptr_t top_resource_offset =
compiler::target::Thread::top_resource_offset();
__ LoadFromOffset(R0, THR, top_resource_offset);
__ Push(R0);
__ LoadImmediate(R0, 0);
__ StoreToOffset(R0, THR, top_resource_offset);
__ LoadFromOffset(R0, THR,
compiler::target::Thread::exit_through_ffi_offset());
__ Push(R0);
// Save top exit frame info. Don't set it to 0 yet,
// TransitionNativeToGenerated will handle that.
__ LoadFromOffset(R0, THR,
compiler::target::Thread::top_exit_frame_info_offset());
__ Push(R0);
__ EmitEntryFrameVerification(R0);
// Either DLRT_GetThreadForNativeCallback or the callback trampoline (caller)
// will leave the safepoint for us.
__ TransitionNativeToGenerated(/*scratch0=*/R0, /*scratch1=*/R1,
/*exit_safepoint=*/false);
// Now that the safepoint has ended, we can touch Dart objects without
// handles.
// Load the code object.
__ LoadFromOffset(R0, THR, compiler::target::Thread::callback_code_offset());
__ LoadFieldFromOffset(R0, R0,
compiler::target::GrowableObjectArray::data_offset());
__ LoadFieldFromOffset(CODE_REG, R0,
compiler::target::Array::data_offset() +
callback_id_ * compiler::target::kWordSize);
// Put the code object in the reserved slot.
__ StoreToOffset(CODE_REG, FPREG,
kPcMarkerSlotFromFp * compiler::target::kWordSize);
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
__ SetupGlobalPoolAndDispatchTable();
} else {
__ LoadImmediate(PP, 0); // GC safe value into PP.
}
// Load a GC-safe value for the arguments descriptor (unused but tagged).
__ LoadImmediate(ARGS_DESC_REG, 0);
// Load a dummy return address which suggests that we are inside of
// InvokeDartCodeStub. This is how the stack walker detects an entry frame.
CLOBBERS_LR({
__ LoadFromOffset(LR, THR,
compiler::target::Thread::invoke_dart_code_stub_offset());
__ LoadFieldFromOffset(LR, LR,
compiler::target::Code::entry_point_offset());
});
FunctionEntryInstr::EmitNativeCode(compiler);
}
LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
// TODO(fschneider): Allow immediate operands for the char code.
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void OneByteStringFromCharCodeInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
ASSERT(compiler->is_optimizing());
const Register char_code = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ ldr(
result,
compiler::Address(
THR, compiler::target::Thread::predefined_symbols_address_offset()));
__ AddImmediate(
result, Symbols::kNullCharCodeSymbolOffset * compiler::target::kWordSize);
__ ldr(result,
compiler::Address(result, char_code, LSL, 1)); // Char code is a smi.
}
LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(cid_ == kOneByteStringCid);
const Register str = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ ldr(result, compiler::FieldAddress(
str, compiler::target::String::length_offset()));
__ cmp(result, compiler::Operand(compiler::target::ToRawSmi(1)));
__ LoadImmediate(result, -1, NE);
__ ldrb(result,
compiler::FieldAddress(
str, compiler::target::OneByteString::data_offset()),
EQ);
__ SmiTag(result);
}
LocationSummary* StringInterpolateInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0));
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register array = locs()->in(0).reg();
__ Push(array);
const int kTypeArgsLen = 0;
const int kNumberOfArguments = 1;
constexpr int kSizeOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kSizeOfArguments,
kNoArgumentNames);
compiler->GenerateStaticCall(deopt_id(), source(), CallFunction(), args_info,
locs(), ICData::Handle(), ICData::kStatic);
ASSERT(locs()->out(0).reg() == R0);
}
LocationSummary* Utf8ScanInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 5;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::Any()); // decoder
summary->set_in(1, Location::WritableRegister()); // bytes
summary->set_in(2, Location::WritableRegister()); // start
summary->set_in(3, Location::WritableRegister()); // end
summary->set_in(4, Location::WritableRegister()); // table
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void Utf8ScanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register bytes_reg = locs()->in(1).reg();
const Register start_reg = locs()->in(2).reg();
const Register end_reg = locs()->in(3).reg();
const Register table_reg = locs()->in(4).reg();
const Register size_reg = locs()->out(0).reg();
const Register bytes_ptr_reg = start_reg;
const Register bytes_end_reg = end_reg;
const Register flags_reg = bytes_reg;
const Register temp_reg = TMP;
const Register decoder_temp_reg = start_reg;
const Register flags_temp_reg = end_reg;
static const intptr_t kSizeMask = 0x03;
static const intptr_t kFlagsMask = 0x3C;
compiler::Label loop, loop_in;
// Address of input bytes.
__ LoadFieldFromOffset(bytes_reg, bytes_reg,
compiler::target::TypedDataBase::data_field_offset());
// Table.
__ AddImmediate(
table_reg, table_reg,
compiler::target::OneByteString::data_offset() - kHeapObjectTag);
// Pointers to start and end.
__ add(bytes_ptr_reg, bytes_reg, compiler::Operand(start_reg));
__ add(bytes_end_reg, bytes_reg, compiler::Operand(end_reg));
// Initialize size and flags.
__ LoadImmediate(size_reg, 0);
__ LoadImmediate(flags_reg, 0);
__ b(&loop_in);
__ Bind(&loop);
// Read byte and increment pointer.
__ ldrb(temp_reg,
compiler::Address(bytes_ptr_reg, 1, compiler::Address::PostIndex));
// Update size and flags based on byte value.
__ ldrb(temp_reg, compiler::Address(table_reg, temp_reg));
__ orr(flags_reg, flags_reg, compiler::Operand(temp_reg));
__ and_(temp_reg, temp_reg, compiler::Operand(kSizeMask));
__ add(size_reg, size_reg, compiler::Operand(temp_reg));
// Stop if end is reached.
__ Bind(&loop_in);
__ cmp(bytes_ptr_reg, compiler::Operand(bytes_end_reg));
__ b(&loop, UNSIGNED_LESS);
// Write flags to field.
__ AndImmediate(flags_reg, flags_reg, kFlagsMask);
if (!IsScanFlagsUnboxed()) {
__ SmiTag(flags_reg);
}
Register decoder_reg;
const Location decoder_location = locs()->in(0);
if (decoder_location.IsStackSlot()) {
__ ldr(decoder_temp_reg, LocationToStackSlotAddress(decoder_location));
decoder_reg = decoder_temp_reg;
} else {
decoder_reg = decoder_location.reg();
}
const auto scan_flags_field_offset = scan_flags_field_.offset_in_bytes();
__ LoadFieldFromOffset(flags_temp_reg, decoder_reg, scan_flags_field_offset);
__ orr(flags_temp_reg, flags_temp_reg, compiler::Operand(flags_reg));
__ StoreFieldToOffset(flags_temp_reg, decoder_reg, scan_flags_field_offset);
}
LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register obj = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
if (object()->definition()->representation() == kUntagged) {
__ LoadFromOffset(result, obj, offset());
} else {
ASSERT(object()->definition()->representation() == kTagged);
__ LoadFieldFromOffset(result, obj, offset());
}
}
DEFINE_BACKEND(StoreUntagged, (NoLocation, Register obj, Register value)) {
__ StoreToOffset(value, obj, instr->offset_from_tagged());
}
Representation LoadIndexedInstr::representation() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
case kTypeArgumentsCid:
return kTagged;
case kOneByteStringCid:
case kTwoByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kTypedDataUint16ArrayCid:
case kExternalOneByteStringCid:
case kExternalTwoByteStringCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
return kUnboxedIntPtr;
case kTypedDataInt32ArrayCid:
return kUnboxedInt32;
case kTypedDataUint32ArrayCid:
return kUnboxedUint32;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return kUnboxedInt64;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNREACHABLE();
return kTagged;
}
}
static bool CanBeImmediateIndex(Value* value,
intptr_t cid,
bool is_external,
bool is_load,
bool* needs_base) {
if ((cid == kTypedDataInt32x4ArrayCid) ||
(cid == kTypedDataFloat32x4ArrayCid) ||
(cid == kTypedDataFloat64x2ArrayCid)) {
// We are using vldmd/vstmd which do not support offset.
return false;
}
ConstantInstr* constant = value->definition()->AsConstant();
if ((constant == NULL) ||
!compiler::Assembler::IsSafeSmi(constant->value())) {
return false;
}
const int64_t index = compiler::target::SmiValue(constant->value());
const intptr_t scale = compiler::target::Instance::ElementSizeFor(cid);
const intptr_t base_offset =
(is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag));
const int64_t offset = index * scale + base_offset;
if (!Utils::IsAbsoluteUint(12, offset)) {
return false;
}
if (compiler::Address::CanHoldImmediateOffset(is_load, cid, offset)) {
*needs_base = false;
return true;
}
if (compiler::Address::CanHoldImmediateOffset(is_load, cid,
offset - base_offset)) {
*needs_base = true;
return true;
}
return false;
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const bool directly_addressable =
aligned() && representation() != kUnboxedInt64;
const intptr_t kNumInputs = 2;
intptr_t kNumTemps = 0;
if (!directly_addressable) {
kNumTemps += 1;
if (representation() == kUnboxedDouble) {
kNumTemps += 1;
}
}
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
bool needs_base = false;
if (CanBeImmediateIndex(index(), class_id(), IsExternal(),
true, // Load.
&needs_base)) {
// CanBeImmediateIndex must return false for unsafe smis.
locs->set_in(1, Location::Constant(index()->definition()->AsConstant()));
} else {
locs->set_in(1, Location::RequiresRegister());
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
if (class_id() == kTypedDataFloat32ArrayCid) {
// Need register < Q7 for float operations.
// TODO(30953): Support register range constraints in the regalloc.
locs->set_out(0, Location::FpuRegisterLocation(Q6));
} else {
locs->set_out(0, Location::RequiresFpuRegister());
}
} else if (representation() == kUnboxedInt64) {
ASSERT(class_id() == kTypedDataInt64ArrayCid ||
class_id() == kTypedDataUint64ArrayCid);
locs->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
} else {
locs->set_out(0, Location::RequiresRegister());
}
if (!directly_addressable) {
locs->set_temp(0, Location::RequiresRegister());
if (representation() == kUnboxedDouble) {
locs->set_temp(1, Location::RequiresRegister());
}
}
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const bool directly_addressable =
aligned() && representation() != kUnboxedInt64;
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
const Register address =
directly_addressable ? kNoRegister : locs()->temp(0).reg();
compiler::Address element_address(kNoRegister);
if (directly_addressable) {
element_address =
index.IsRegister()
? __ ElementAddressForRegIndex(true, // Load.
IsExternal(), class_id(),
index_scale(), index_unboxed_, array,
index.reg())
: __ ElementAddressForIntIndex(
true, // Load.
IsExternal(), class_id(), index_scale(), array,
compiler::target::SmiValue(index.constant()),
IP); // Temp register.
// Warning: element_address may use register IP as base.
} else {
if (index.IsRegister()) {
__ LoadElementAddressForRegIndex(address,
true, // Load.
IsExternal(), class_id(), index_scale(),
index_unboxed_, array, index.reg());
} else {
__ LoadElementAddressForIntIndex(
address,
true, // Load.
IsExternal(), class_id(), index_scale(), array,
compiler::target::SmiValue(index.constant()));
}
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
const QRegister result = locs()->out(0).fpu_reg();
const DRegister dresult0 = EvenDRegisterOf(result);
switch (class_id()) {
case kTypedDataFloat32ArrayCid:
// Load single precision float.
// vldrs does not support indexed addressing.
if (aligned()) {
__ vldrs(EvenSRegisterOf(dresult0), element_address);
} else {
const Register value = locs()->temp(1).reg();
__ LoadWordUnaligned(value, address, TMP);
__ vmovsr(EvenSRegisterOf(dresult0), value);
}
break;
case kTypedDataFloat64ArrayCid:
// vldrd does not support indexed addressing.
if (aligned()) {
__ vldrd(dresult0, element_address);
} else {
const Register value = locs()->temp(1).reg();
__ LoadWordUnaligned(value, address, TMP);
__ vmovdr(dresult0, 0, value);
__ AddImmediate(address, address, 4);
__ LoadWordUnaligned(value, address, TMP);
__ vmovdr(dresult0, 1, value);
}
break;
case kTypedDataFloat64x2ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
ASSERT(element_address.Equals(compiler::Address(IP)));
ASSERT(aligned());
__ vldmd(IA, IP, dresult0, 2);
break;
default:
UNREACHABLE();
}
return;
}
switch (class_id()) {
case kTypedDataInt32ArrayCid: {
const Register result = locs()->out(0).reg();
ASSERT(representation() == kUnboxedInt32);
if (aligned()) {
__ ldr(result, element_address);
} else {
__ LoadWordUnaligned(result, address, TMP);
}
break;
}
case kTypedDataUint32ArrayCid: {
const Register result = locs()->out(0).reg();
ASSERT(representation() == kUnboxedUint32);
if (aligned()) {
__ ldr(result, element_address);
} else {
__ LoadWordUnaligned(result, address, TMP);
}
break;
}
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid: {
ASSERT(representation() == kUnboxedInt64);
ASSERT(!directly_addressable); // need to add to register
ASSERT(locs()->out(0).IsPairLocation());
PairLocation* result_pair = locs()->out(0).AsPairLocation();
const Register result_lo = result_pair->At(0).reg();
const Register result_hi = result_pair->At(1).reg();
if (aligned()) {
__ ldr(result_lo, compiler::Address(address));
__ ldr(result_hi,
compiler::Address(address, compiler::target::kWordSize));
} else {
__ LoadWordUnaligned(result_lo, address, TMP);
__ AddImmediate(address, address, compiler::target::kWordSize);
__ LoadWordUnaligned(result_hi, address, TMP);
}
break;
}
case kTypedDataInt8ArrayCid: {
const Register result = locs()->out(0).reg();
ASSERT(representation() == kUnboxedIntPtr);
ASSERT(index_scale() == 1);
ASSERT(aligned());
__ ldrsb(result, element_address);
break;
}
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kExternalOneByteStringCid: {
const Register result = locs()->out(0).reg();
ASSERT(representation() == kUnboxedIntPtr);
ASSERT(index_scale() == 1);
ASSERT(aligned());
__ ldrb(result, element_address);
break;
}
case kTypedDataInt16ArrayCid: {
const Register result = locs()->out(0).reg();
ASSERT(representation() == kUnboxedIntPtr);
if (aligned()) {
__ ldrsh(result, element_address);
} else {
__ LoadHalfWordUnaligned(result, address, TMP);
}
break;
}
case kTypedDataUint16ArrayCid:
case kTwoByteStringCid:
case kExternalTwoByteStringCid: {
const Register result = locs()->out(0).reg();
ASSERT(representation() == kUnboxedIntPtr);
if (aligned()) {
__ ldrh(result, element_address);
} else {
__ LoadHalfWordUnsignedUnaligned(result, address, TMP);
}
break;
}
default: {
const Register result = locs()->out(0).reg();
ASSERT(representation() == kTagged);
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid) ||
(class_id() == kTypeArgumentsCid));
__ ldr(result, element_address);
break;
}
}
}
Representation StoreIndexedInstr::RequiredInputRepresentation(
intptr_t idx) const {
// Array can be a Dart object or a pointer to external data.
if (idx == 0) return kNoRepresentation; // Flexible input representation.
if (idx == 1) {
if (index_unboxed_) {
// TODO(dartbug.com/39432): kUnboxedInt32 || kUnboxedUint32.
return kNoRepresentation;
} else {
return kTagged; // Index is a smi.
}
}
ASSERT(idx == 2);
switch (class_id_) {
case kArrayCid:
return kTagged;
case kOneByteStringCid:
case kTwoByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kTypedDataUint16ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
return kUnboxedIntPtr;
case kTypedDataInt32ArrayCid:
return kUnboxedInt32;
case kTypedDataUint32ArrayCid:
return kUnboxedUint32;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return kUnboxedInt64;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNREACHABLE();
return kTagged;
}
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const bool directly_addressable =
aligned() && class_id() != kTypedDataInt64ArrayCid &&
class_id() != kTypedDataUint64ArrayCid && class_id() != kArrayCid;
const intptr_t kNumInputs = 3;
LocationSummary* locs;
bool needs_base = false;
intptr_t kNumTemps = 0;
if (CanBeImmediateIndex(index(), class_id(), IsExternal(),
false, // Store.
&needs_base)) {
if (!directly_addressable) {
kNumTemps += 2;
} else if (needs_base) {
kNumTemps += 1;
}
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
// CanBeImmediateIndex must return false for unsafe smis.
locs->set_in(1, Location::Constant(index()->definition()->AsConstant()));
} else {
if (!directly_addressable) {
kNumTemps += 2;
}
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(1, Location::WritableRegister());
}
locs->set_in(0, Location::RequiresRegister());
for (intptr_t i = 0; i < kNumTemps; i++) {
locs->set_temp(i, Location::RequiresRegister());
}
switch (class_id()) {
case kArrayCid:
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::RegisterLocation(kWriteBarrierValueReg)
: LocationRegisterOrConstant(value()));
if (ShouldEmitStoreBarrier()) {
locs->set_in(0, Location::RegisterLocation(kWriteBarrierObjectReg));
locs->set_temp(0, Location::RegisterLocation(kWriteBarrierSlotReg));
}
break;
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
locs->set_in(2, Location::RequiresRegister());
break;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
locs->set_in(2, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
break;
case kTypedDataFloat32ArrayCid:
// Need low register (< Q7).
locs->set_in(2, Location::FpuRegisterLocation(Q6));
break;
case kTypedDataFloat64ArrayCid: // TODO(srdjan): Support Float64 constants.
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
locs->set_in(2, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
return NULL;
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const bool directly_addressable =
aligned() && class_id() != kTypedDataInt64ArrayCid &&
class_id() != kTypedDataUint64ArrayCid && class_id() != kArrayCid;
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
const Register temp =
(locs()->temp_count() > 0) ? locs()->temp(0).reg() : kNoRegister;
const Register temp2 =
(locs()->temp_count() > 1) ? locs()->temp(1).reg() : kNoRegister;
compiler::Address element_address(kNoRegister);
if (directly_addressable) {
element_address =
index.IsRegister()
? __ ElementAddressForRegIndex(false, // Store.
IsExternal(), class_id(),
index_scale(), index_unboxed_, array,
index.reg())
: __ ElementAddressForIntIndex(
false, // Store.
IsExternal(), class_id(), index_scale(), array,
compiler::target::SmiValue(index.constant()), temp);
} else {
if (index.IsRegister()) {
__ LoadElementAddressForRegIndex(temp,
false, // Store.
IsExternal(), class_id(), index_scale(),
index_unboxed_, array, index.reg());
} else {
__ LoadElementAddressForIntIndex(
temp,
false, // Store.
IsExternal(), class_id(), index_scale(), array,
compiler::target::SmiValue(index.constant()));
}
}
switch (class_id()) {
case kArrayCid:
if (ShouldEmitStoreBarrier()) {
const Register value = locs()->in(2).reg();
__ StoreIntoArray(array, temp, value, CanValueBeSmi());
} else if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreIntoObjectNoBarrier(array, compiler::Address(temp), constant);
} else {
const Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, compiler::Address(temp), value);
}
break;
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kOneByteStringCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
if (locs()->in(2).IsConstant()) {
__ LoadImmediate(IP,
compiler::target::SmiValue(locs()->in(2).constant()));
__ strb(IP, element_address);
} else {
const Register value = locs()->in(2).reg();
__ strb(value, element_address);
}
break;
}
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
if (locs()->in(2).IsConstant()) {
intptr_t value = compiler::target::SmiValue(locs()->in(2).constant());
// Clamp to 0x0 or 0xFF respectively.
if (value > 0xFF) {
value = 0xFF;
} else if (value < 0) {
value = 0;
}
__ LoadImmediate(IP, static_cast<int8_t>(value));
__ strb(IP, element_address);
} else {
const Register value = locs()->in(2).reg();
// Clamp to 0x00 or 0xFF respectively.
__ LoadImmediate(IP, 0xFF);
__ cmp(value,
compiler::Operand(IP)); // Compare Smi value and smi 0xFF.
__ mov(IP, compiler::Operand(0), LE); // IP = value <= 0xFF ? 0 : 0xFF.
__ mov(IP, compiler::Operand(value),
LS); // IP = value in range ? value : IP.
__ strb(IP, element_address);
}
break;
}
case kTwoByteStringCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
const Register value = locs()->in(2).reg();
if (aligned()) {
__ strh(value, element_address);
} else {
__ StoreHalfWordUnaligned(value, temp, temp2);
}
break;
}
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid: {
const Register value = locs()->in(2).reg();
if (aligned()) {
__ str(value, element_address);
} else {
__ StoreWordUnaligned(value, temp, temp2);
}
break;
}
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid: {
ASSERT(!directly_addressable); // need to add to register
ASSERT(locs()->in(2).IsPairLocation());
PairLocation* value_pair = locs()->in(2).AsPairLocation();
Register value_lo = value_pair->At(0).reg();
Register value_hi = value_pair->At(1).reg();
if (aligned()) {
__ str(value_lo, compiler::Address(temp));
__ str(value_hi, compiler::Address(temp, compiler::target::kWordSize));
} else {
__ StoreWordUnaligned(value_lo, temp, temp2);
__ AddImmediate(temp, temp, compiler::target::kWordSize);
__ StoreWordUnaligned(value_hi, temp, temp2);
}
break;
}
case kTypedDataFloat32ArrayCid: {
const SRegister value_reg =
EvenSRegisterOf(EvenDRegisterOf(locs()->in(2).fpu_reg()));
if (aligned()) {
__ vstrs(value_reg, element_address);
} else {
const Register address = temp;
const Register value = temp2;
__ vmovrs(value, value_reg);
__ StoreWordUnaligned(value, address, TMP);
}
break;
}
case kTypedDataFloat64ArrayCid: {
const DRegister value_reg = EvenDRegisterOf(locs()->in(2).fpu_reg());
if (aligned()) {
__ vstrd(value_reg, element_address);
} else {
const Register address = temp;
const Register value = temp2;
__ vmovrs(value, EvenSRegisterOf(value_reg));
__ StoreWordUnaligned(value, address, TMP);
__ AddImmediate(address, address, 4);
__ vmovrs(value, OddSRegisterOf(value_reg));
__ StoreWordUnaligned(value, address, TMP);
}
break;
}
case kTypedDataFloat64x2ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid: {
ASSERT(element_address.Equals(compiler::Address(index.reg())));
ASSERT(aligned());
const DRegister value_reg = EvenDRegisterOf(locs()->in(2).fpu_reg());
__ vstmd(IA, index.reg(), value_reg, 2);
break;
}
default:
UNREACHABLE();
}
}
LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const bool emit_full_guard = !opt || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
emit_full_guard || ((value_cid == kDynamicCid) && (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
intptr_t num_temps = 0;
if (needs_value_cid_temp_reg) {
num_temps++;
}
if (needs_field_temp_reg) {
num_temps++;
}
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
for (intptr_t i = 0; i < num_temps; i++) {
summary->set_temp(i, Location::RequiresRegister());
}
return summary;
}
void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(compiler::target::UntaggedObject::kClassIdTagSize == 16);
ASSERT(sizeof(UntaggedField::guarded_cid_) == 2);
ASSERT(sizeof(UntaggedField::is_nullable_) == 2);
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid;
if (field_cid == kDynamicCid) {
return; // Nothing to emit.
}
const bool emit_full_guard =
!compiler->is_optimizing() || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
emit_full_guard || ((value_cid == kDynamicCid) && (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
const Register value_reg = locs()->in(0).reg();
const Register value_cid_reg =
needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister;
const Register field_reg = needs_field_temp_reg
? locs()->temp(locs()->temp_count() - 1).reg()
: kNoRegister;
compiler::Label ok, fail_label;
compiler::Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
compiler::Label* fail = (deopt != NULL) ? deopt : &fail_label;
if (emit_full_guard) {
__ LoadObject(field_reg, Field::ZoneHandle(field().Original()));
compiler::FieldAddress field_cid_operand(
field_reg, compiler::target::Field::guarded_cid_offset());
compiler::FieldAddress field_nullability_operand(
field_reg, compiler::target::Field::is_nullable_offset());
if (value_cid == kDynamicCid) {
LoadValueCid(compiler, value_cid_reg, value_reg);
__ ldrh(IP, field_cid_operand);
__ cmp(value_cid_reg, compiler::Operand(IP));
__ b(&ok, EQ);
__ ldrh(IP, field_nullability_operand);
__ cmp(value_cid_reg, compiler::Operand(IP));
} else if (value_cid == kNullCid) {
__ ldrh(value_cid_reg, field_nullability_operand);
__ CompareImmediate(value_cid_reg, value_cid);
} else {
__ ldrh(value_cid_reg, field_cid_operand);
__ CompareImmediate(value_cid_reg, value_cid);
}
__ b(&ok, EQ);
// Check if the tracked state of the guarded field can be initialized
// inline. If the field needs length check we fall through to runtime
// which is responsible for computing offset of the length field
// based on the class id.
// Length guard will be emitted separately when needed via GuardFieldLength
// instruction after GuardFieldClass.
if (!field().needs_length_check()) {
// Uninitialized field can be handled inline. Check if the
// field is still unitialized.
__ ldrh(IP, field_cid_operand);
__ CompareImmediate(IP, kIllegalCid);
__ b(fail, NE);
if (value_cid == kDynamicCid) {
__ strh(value_cid_reg, field_cid_operand);
__ strh(value_cid_reg, field_nullability_operand);
} else {
__ LoadImmediate(IP, value_cid);
__ strh(IP, field_cid_operand);
__ strh(IP, field_nullability_operand);
}
__ b(&ok);
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ Bind(fail);
__ ldrh(IP,
compiler::FieldAddress(
field_reg, compiler::target::Field::guarded_cid_offset()));
__ CompareImmediate(IP, kDynamicCid);
__ b(&ok, EQ);
__ Push(field_reg);
__ Push(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ b(fail);
}
} else {
ASSERT(compiler->is_optimizing());
ASSERT(deopt != NULL);
// Field guard class has been initialized and is known.
if (value_cid == kDynamicCid) {
// Field's guarded class id is fixed by value's class id is not known.
__ tst(value_reg, compiler::Operand(kSmiTagMask));
if (field_cid != kSmiCid) {
__ b(fail, EQ);
__ LoadClassId(value_cid_reg, value_reg);
__ CompareImmediate(value_cid_reg, field_cid);
}
if (field().is_nullable() && (field_cid != kNullCid)) {
__ b(&ok, EQ);
if (field_cid != kSmiCid) {
__ CompareImmediate(value_cid_reg, kNullCid);
} else {
__ CompareObject(value_reg, Object::null_object());
}
}
__ b(fail, NE);
} else if (value_cid == field_cid) {
// This would normaly be caught by Canonicalize, but RemoveRedefinitions
// may sometimes produce the situation after the last Canonicalize pass.
} else {
// Both value's and field's class id is known.
ASSERT(value_cid != nullability);
__ b(fail);
}
}
__ Bind(&ok);
}
LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) {
const intptr_t kNumTemps = 3;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We need temporaries for field object, length offset and expected length.
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, Location::RequiresRegister());
return summary;
} else {
// TODO(vegorov): can use TMP when length is small enough to fit into
// immediate.
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
}
void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (field().guarded_list_length() == Field::kNoFixedLength) {
return; // Nothing to emit.
}
compiler::Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
const Register value_reg = locs()->in(0).reg();
if (!compiler->is_optimizing() ||
(field().guarded_list_length() == Field::kUnknownFixedLength)) {
const Register field_reg = locs()->temp(0).reg();
const Register offset_reg = locs()->temp(1).reg();
const Register length_reg = locs()->temp(2).reg();
compiler::Label ok;
__ LoadObject(field_reg, Field::ZoneHandle(field().Original()));
__ ldrsb(offset_reg,
compiler::FieldAddress(
field_reg, compiler::target::Field::
guarded_list_length_in_object_offset_offset()));
__ ldr(
length_reg,
compiler::FieldAddress(
field_reg, compiler::target::Field::guarded_list_length_offset()));
__ tst(offset_reg, compiler::Operand(offset_reg));
__ b(&ok, MI);
// Load the length from the value. GuardFieldClass already verified that
// value's class matches guarded class id of the field.
// offset_reg contains offset already corrected by -kHeapObjectTag that is
// why we use Address instead of FieldAddress.
__ ldr(IP, compiler::Address(value_reg, offset_reg));
__ cmp(length_reg, compiler::Operand(IP));
if (deopt == NULL) {
__ b(&ok, EQ);
__ Push(field_reg);
__ Push(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ b(deopt, NE);
}
__ Bind(&ok);
} else {
ASSERT(compiler->is_optimizing());
ASSERT(field().guarded_list_length() >= 0);
ASSERT(field().guarded_list_length_in_object_offset() !=
Field::kUnknownLengthOffset);
const Register length_reg = locs()->temp(0).reg();
__ ldr(length_reg,
compiler::FieldAddress(
value_reg, field().guarded_list_length_in_object_offset()));
__ CompareImmediate(
length_reg, compiler::target::ToRawSmi(field().guarded_list_length()));
__ b(deopt, NE);
}
}
DEFINE_UNIMPLEMENTED_INSTRUCTION(GuardFieldTypeInstr)
DEFINE_UNIMPLEMENTED_INSTRUCTION(CheckConditionInstr)
class BoxAllocationSlowPath : public TemplateSlowPathCode<Instruction> {
public:
BoxAllocationSlowPath(Instruction* instruction,
const Class& cls,
Register result)
: TemplateSlowPathCode(instruction), cls_(cls), result_(result) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (compiler::Assembler::EmittingComments()) {
__ Comment("%s slow path allocation of %s", instruction()->DebugName(),
String::Handle(cls_.ScrubbedName()).ToCString());
}
__ Bind(entry_label());
const Code& stub = Code::ZoneHandle(
compiler->zone(), StubCode::GetAllocationStubForClass(cls_));
LocationSummary* locs = instruction()->locs();
locs->live_registers()->Remove(Location::RegisterLocation(result_));
compiler->SaveLiveRegisters(locs);
compiler->GenerateStubCall(InstructionSource(), // No token position.
stub, UntaggedPcDescriptors::kOther, locs);
__ MoveRegister(result_, R0);
compiler->RestoreLiveRegisters(locs);
__ b(exit_label());
}
static void Allocate(FlowGraphCompiler* compiler,
Instruction* instruction,
const Class& cls,
Register result,
Register temp) {
if (compiler->intrinsic_mode()) {
__ TryAllocate(cls, compiler->intrinsic_slow_path_label(), result, temp);
} else {
BoxAllocationSlowPath* slow_path =
new BoxAllocationSlowPath(instruction, cls, result);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(cls, slow_path->entry_label(), result, temp);
__ Bind(slow_path->exit_label());
}
}
private:
const Class& cls_;
const Register result_;
};
LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const bool might_box = (representation() == kTagged) && !can_pack_into_smi();
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = might_box ? 2 : 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
might_box ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
if (might_box) {
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
}
if (representation() == kUnboxedInt64) {
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
} else {
ASSERT(representation() == kTagged);
summary->set_out(0, Location::RequiresRegister());
}
return summary;
}
void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The string register points to the backing store for external strings.
const Register str = locs()->in(0).reg();
const Location index = locs()->in(1);
compiler::Address element_address = __ ElementAddressForRegIndex(
true, IsExternal(), class_id(), index_scale(), /*index_unboxed=*/false,
str, index.reg());
// Warning: element_address may use register IP as base.
if (representation() == kUnboxedInt64) {
ASSERT(compiler->is_optimizing());
ASSERT(locs()->out(0).IsPairLocation());
PairLocation* result_pair = locs()->out(0).AsPairLocation();
Register result1 = result_pair->At(0).reg();
Register result2 = result_pair->At(1).reg();
switch (class_id()) {
case kOneByteStringCid:
case kExternalOneByteStringCid:
ASSERT(element_count() == 4);
__ ldr(result1, element_address);
__ eor(result2, result2, compiler::Operand(result2));
break;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
ASSERT(element_count() == 2);
__ ldr(result1, element_address);
__ eor(result2, result2, compiler::Operand(result2));
break;
default:
UNREACHABLE();
}
} else {
ASSERT(representation() == kTagged);
Register result = locs()->out(0).reg();
switch (class_id()) {
case kOneByteStringCid:
case kExternalOneByteStringCid:
switch (element_count()) {
case 1:
__ ldrb(result, element_address);
break;
case 2:
__ ldrh(result, element_address);
break;
case 4:
__ ldr(result, element_address);
break;
default:
UNREACHABLE();
}
break;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
switch (element_count()) {
case 1:
__ ldrh(result, element_address);
break;
case 2:
__ ldr(result, element_address);
break;
default:
UNREACHABLE();
}
break;
default:
UNREACHABLE();
break;
}
if (can_pack_into_smi()) {
__ SmiTag(result);
} else {
// If the value cannot fit in a smi then allocate a mint box for it.
Register value = locs()->temp(0).reg();
Register temp = locs()->temp(1).reg();
// Value register needs to be manually preserved on allocation slow-path.
locs()->live_registers()->Add(locs()->temp(0), kUnboxedInt32);
ASSERT(result != value);
__ MoveRegister(value, result);
__ SmiTag(result);
compiler::Label done;
__ TestImmediate(value, 0xC0000000);
__ b(&done, EQ);
BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(),
result, temp);
__ eor(temp, temp, compiler::Operand(temp));
__ StoreFieldToOffset(value, result,
compiler::target::Mint::value_offset());
__ StoreFieldToOffset(
temp, result,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
__ Bind(&done);
}
}
}
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps =
((IsUnboxedStore() && opt) ? (FLAG_precompiled_mode ? 0 : 2)
: (IsPotentialUnboxedStore() ? 3 : 0));
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
(!FLAG_precompiled_mode &&
((IsUnboxedStore() && opt && is_initialization()) ||
IsPotentialUnboxedStore()))
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (IsUnboxedStore() && opt) {
if (slot().field().is_non_nullable_integer()) {
ASSERT(FLAG_precompiled_mode);
summary->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
} else {
summary->set_in(1, Location::RequiresFpuRegister());
}
if (!FLAG_precompiled_mode) {
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
}
} else if (IsPotentialUnboxedStore()) {
summary->set_in(1, ShouldEmitStoreBarrier() ? Location::WritableRegister()
: Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, opt ? Location::RequiresFpuRegister()
: Location::FpuRegisterLocation(Q1));
} else {
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::RegisterLocation(kWriteBarrierValueReg)
: LocationRegisterOrConstant(value()));
}
return summary;
}
static void EnsureMutableBox(FlowGraphCompiler* compiler,
StoreInstanceFieldInstr* instruction,
Register box_reg,
const Class& cls,
Register instance_reg,
intptr_t offset,
Register temp) {
compiler::Label done;
__ ldr(box_reg, compiler::FieldAddress(instance_reg, offset));
__ CompareObject(box_reg, Object::null_object());
__ b(&done, NE);
BoxAllocationSlowPath::Allocate(compiler, instruction, cls, box_reg, temp);
__ MoveRegister(temp, box_reg);
__ StoreIntoObjectOffset(instance_reg, offset, temp,
compiler::Assembler::kValueIsNotSmi);
__ Bind(&done);
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(compiler::target::UntaggedObject::kClassIdTagSize == 16);
ASSERT(sizeof(UntaggedField::guarded_cid_) == 2);
ASSERT(sizeof(UntaggedField::is_nullable_) == 2);
compiler::Label skip_store;
const Register instance_reg = locs()->in(0).reg();
const intptr_t offset_in_bytes = OffsetInBytes();
ASSERT(offset_in_bytes > 0); // Field is finalized and points after header.
if (IsUnboxedStore() && compiler->is_optimizing()) {
if (slot().field().is_non_nullable_integer()) {
const PairLocation* value_pair = locs()->in(1).AsPairLocation();
const Register value_lo = value_pair->At(0).reg();
const Register value_hi = value_pair->At(1).reg();
__ Comment("UnboxedIntegerStoreInstanceFieldInstr");
__ StoreFieldToOffset(value_lo, instance_reg, offset_in_bytes);
__ StoreFieldToOffset(value_hi, instance_reg,
offset_in_bytes + compiler::target::kWordSize);
return;
}
const intptr_t cid = slot().field().UnboxedFieldCid();
const DRegister value = EvenDRegisterOf(locs()->in(1).fpu_reg());
if (FLAG_precompiled_mode) {
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleStoreInstanceFieldInstr");
__ StoreDToOffset(value, instance_reg,
offset_in_bytes - kHeapObjectTag);
return;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4StoreInstanceFieldInstr");
__ StoreMultipleDToOffset(value, 2, instance_reg,
offset_in_bytes - kHeapObjectTag);
return;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2StoreInstanceFieldInstr");
__ StoreMultipleDToOffset(value, 2, instance_reg,
offset_in_bytes - kHeapObjectTag);
return;
default:
UNREACHABLE();
}
}
const Register temp = locs()->temp(0).reg();
const Register temp2 = locs()->temp(1).reg();
if (is_initialization()) {
const Class* cls = NULL;
switch (cid) {
case kDoubleCid:
cls = &compiler->double_class();
break;
case kFloat32x4Cid:
cls = &compiler->float32x4_class();
break;
case kFloat64x2Cid:
cls = &compiler->float64x2_class();
break;
default:
UNREACHABLE();
}
BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2);
__ MoveRegister(temp2, temp);
__ StoreIntoObjectOffset(instance_reg, offset_in_bytes, temp2,
compiler::Assembler::kValueIsNotSmi);
} else {
__ ldr(temp, compiler::FieldAddress(instance_reg, offset_in_bytes));
}
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleStoreInstanceFieldInstr");
__ StoreDToOffset(
value, temp,
compiler::target::Double::value_offset() - kHeapObjectTag);
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4StoreInstanceFieldInstr");
__ StoreMultipleDToOffset(
value, 2, temp,
compiler::target::Float32x4::value_offset() - kHeapObjectTag);
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2StoreInstanceFieldInstr");
__ StoreMultipleDToOffset(
value, 2, temp,
compiler::target::Float64x2::value_offset() - kHeapObjectTag);
break;
default:
UNREACHABLE();
}
return;
}
if (IsPotentialUnboxedStore()) {
const Register value_reg = locs()->in(1).reg();
const Register temp = locs()->temp(0).reg();
const Register temp2 = locs()->temp(1).reg();
const DRegister fpu_temp = EvenDRegisterOf(locs()->temp(2).fpu_reg());
if (ShouldEmitStoreBarrier()) {
// Value input is a writable register and should be manually preserved
// across allocation slow-path.
locs()->live_registers()->Add(locs()->in(1), kTagged);
}
compiler::Label store_pointer;
compiler::Label store_double;
compiler::Label store_float32x4;
compiler::Label store_float64x2;
__ LoadObject(temp, Field::ZoneHandle(Z, slot().field().Original()));
__ ldrh(temp2, compiler::FieldAddress(
temp, compiler::target::Field::is_nullable_offset()));
__ CompareImmediate(temp2, kNullCid);
__ b(&store_pointer, EQ);
__ ldrb(temp2, compiler::FieldAddress(
temp, compiler::target::Field::kind_bits_offset()));
__ tst(temp2, compiler::Operand(1 << Field::kUnboxingCandidateBit));
__ b(&store_pointer, EQ);
__ ldrh(temp2, compiler::FieldAddress(
temp, compiler::target::Field::guarded_cid_offset()));
__ CompareImmediate(temp2, kDoubleCid);
__ b(&store_double, EQ);
__ ldrh(temp2, compiler::FieldAddress(
temp, compiler::target::Field::guarded_cid_offset()));
__ CompareImmediate(temp2, kFloat32x4Cid);
__ b(&store_float32x4, EQ);
__ ldrh(temp2, compiler::FieldAddress(
temp, compiler::target::Field::guarded_cid_offset()));
__ CompareImmediate(temp2, kFloat64x2Cid);
__ b(&store_float64x2, EQ);
// Fall through.
__ b(&store_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
locs()->live_registers()->Add(locs()->in(1));
}
{
__ Bind(&store_double);
EnsureMutableBox(compiler, this, temp, compiler->double_class(),
instance_reg, offset_in_bytes, temp2);
__ CopyDoubleField(temp, value_reg, TMP, temp2, fpu_temp);
__ b(&skip_store);
}
{
__ Bind(&store_float32x4);
EnsureMutableBox(compiler, this, temp, compiler->float32x4_class(),
instance_reg, offset_in_bytes, temp2);
__ CopyFloat32x4Field(temp, value_reg, TMP, temp2, fpu_temp);
__ b(&skip_store);
}
{
__ Bind(&store_float64x2);
EnsureMutableBox(compiler, this, temp, compiler->float64x2_class(),
instance_reg, offset_in_bytes, temp2);
__ CopyFloat64x2Field(temp, value_reg, TMP, temp2, fpu_temp);
__ b(&skip_store);
}
__ Bind(&store_pointer);
}
if (ShouldEmitStoreBarrier()) {
const Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectOffset(instance_reg, offset_in_bytes, value_reg,
CanValueBeSmi());
} else {
if (locs()->in(1).IsConstant()) {
__ StoreIntoObjectNoBarrierOffset(instance_reg, offset_in_bytes,
locs()->in(1).constant());
} else {
const Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectNoBarrierOffset(instance_reg, offset_in_bytes,
value_reg);
}
}
__ Bind(&skip_store);
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register temp = locs()->temp(0).reg();
compiler->used_static_fields().Add(&field());
__ LoadFromOffset(temp, THR,
compiler::target::Thread::field_table_values_offset());
// Note: static fields ids won't be changed by hot-reload.
__ StoreToOffset(value, temp,
compiler::target::FieldTable::OffsetOf(field()));
}
LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(TypeTestABI::kInstanceReg));
summary->set_in(1, Location::RegisterLocation(
TypeTestABI::kInstantiatorTypeArgumentsReg));
summary->set_in(
2, Location::RegisterLocation(TypeTestABI::kFunctionTypeArgumentsReg));
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == TypeTestABI::kInstanceReg);
ASSERT(locs()->in(1).reg() == TypeTestABI::kInstantiatorTypeArgumentsReg);
ASSERT(locs()->in(2).reg() == TypeTestABI::kFunctionTypeArgumentsReg);
compiler->GenerateInstanceOf(source(), deopt_id(), type(), locs());
ASSERT(locs()->out(0).reg() == R0);
}
LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(kElementTypePos, Location::RegisterLocation(R1));
locs->set_in(kLengthPos, Location::RegisterLocation(R2));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
// Inlines array allocation for known constant values.
static void InlineArrayAllocation(FlowGraphCompiler* compiler,
intptr_t num_elements,
compiler::Label* slow_path,
compiler::Label* done) {
const int kInlineArraySize = 12; // Same as kInlineInstanceSize.
const Register kLengthReg = R2;
const Register kElemTypeReg = R1;
const intptr_t instance_size = Array::InstanceSize(num_elements);
__ TryAllocateArray(kArrayCid, instance_size, slow_path,
R0, // instance
R3, // end address
R8, R6);
// R0: new object start as a tagged pointer.
// R3: new object end address.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(
R0,
compiler::FieldAddress(R0,
compiler::target::Array::type_arguments_offset()),
kElemTypeReg);
// Set the length field.
__ StoreIntoObjectNoBarrier(
R0, compiler::FieldAddress(R0, compiler::target::Array::length_offset()),
kLengthReg);
// Initialize all array elements to raw_null.
// R0: new object start as a tagged pointer.
// R3: new object end address.
// R6: iterator which initially points to the start of the variable
// data area to be initialized.
// R8: null
if (num_elements > 0) {
const intptr_t array_size = instance_size - sizeof(UntaggedArray);
__ LoadObject(R8, Object::null_object());
if (num_elements >= 2) {
__ mov(R9, compiler::Operand(R8));
} else {
#if defined(DEBUG)
// Clobber R9 with an invalid pointer.
__ LoadImmediate(R9, 0x1);
#endif // DEBUG
}
__ AddImmediate(R6, R0, sizeof(UntaggedArray) - kHeapObjectTag);
if (array_size < (kInlineArraySize * compiler::target::kWordSize)) {
__ InitializeFieldsNoBarrierUnrolled(
R0, R6, 0, num_elements * compiler::target::kWordSize, R8, R9);
} else {
__ InitializeFieldsNoBarrier(R0, R6, R3, R8, R9);
}
}
__ b(done);
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info();
if (type_usage_info != nullptr) {
const Class& list_class =
Class::Handle(compiler->isolate_group()->class_table()->At(kArrayCid));
RegisterTypeArgumentsUse(compiler->function(), type_usage_info, list_class,
element_type()->definition());
}
const Register kLengthReg = R2;
const Register kElemTypeReg = R1;
const Register kResultReg = R0;
ASSERT(locs()->in(kElementTypePos).reg() == kElemTypeReg);
ASSERT(locs()->in(kLengthPos).reg() == kLengthReg);
compiler::Label slow_path, done;
if (compiler->is_optimizing() && !FLAG_precompiled_mode &&
num_elements()->BindsToConstant() &&
compiler::target::IsSmi(num_elements()->BoundConstant())) {
const intptr_t length =
compiler::target::SmiValue(num_elements()->BoundConstant());
if (Array::IsValidLength(length)) {
InlineArrayAllocation(compiler, length, &slow_path, &done);
}
}
__ Bind(&slow_path);
auto object_store = compiler->isolate_group()->object_store();
const auto& allocate_array_stub =
Code::ZoneHandle(compiler->zone(), object_store->allocate_array_stub());
compiler->GenerateStubCall(source(), allocate_array_stub,
UntaggedPcDescriptors::kOther, locs(), deopt_id());
__ Bind(&done);
ASSERT(locs()->out(0).reg() == kResultReg);
}
LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
LocationSummary* locs = nullptr;
if (slot().representation() != kTagged) {
ASSERT(!calls_initializer());
ASSERT(RepresentationUtils::IsUnboxedInteger(slot().representation()));
const size_t value_size =
RepresentationUtils::ValueSize(slot().representation());
const intptr_t kNumTemps = 0;
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (value_size <= compiler::target::kWordSize) {
locs->set_out(0, Location::RequiresRegister());
} else {
ASSERT(value_size <= 2 * compiler::target::kWordSize);
locs->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
}
} else if (IsUnboxedDartFieldLoad() && opt) {
ASSERT(!calls_initializer());
ASSERT(!slot().field().is_non_nullable_integer());
const intptr_t kNumTemps = FLAG_precompiled_mode ? 0 : 1;
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (!FLAG_precompiled_mode) {
locs->set_temp(0, Location::RequiresRegister());
}
locs->set_out(0, Location::RequiresFpuRegister());
} else if (IsPotentialUnboxedDartFieldLoad()) {
ASSERT(!calls_initializer());
const intptr_t kNumTemps = 3;
locs = new (zone) LocationSummary(zone, kNumInputs, kNumTemps,
LocationSummary::kCallOnSlowPath);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, opt ? Location::RequiresFpuRegister()
: Location::FpuRegisterLocation(Q1));
locs->set_temp(1, Location::RequiresRegister());
locs->set_temp(2, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
} else if (calls_initializer()) {
if (throw_exception_on_initialization()) {
const bool using_shared_stub = UseSharedSlowPathStub(opt);
const intptr_t kNumTemps = using_shared_stub ? 1 : 0;
locs = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
using_shared_stub ? LocationSummary::kCallOnSharedSlowPath
: LocationSummary::kCallOnSlowPath);
if (using_shared_stub) {
locs->set_temp(0, Location::RegisterLocation(
LateInitializationErrorABI::kFieldReg));
}
locs->set_in(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
} else {
const intptr_t kNumTemps = 0;
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(
0, Location::RegisterLocation(InitInstanceFieldABI::kInstanceReg));
locs->set_out(
0, Location::RegisterLocation(InitInstanceFieldABI::kResultReg));
}
} else {
const intptr_t kNumTemps = 0;
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
}
return locs;
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(compiler::target::UntaggedObject::kClassIdTagSize == 16);
ASSERT(sizeof(UntaggedField::guarded_cid_) == 2);
ASSERT(sizeof(UntaggedField::is_nullable_) == 2);
const Register instance_reg = locs()->in(0).reg();
if (slot().representation() != kTagged) {
ASSERT(!calls_initializer());
switch (slot().representation()) {
case kUnboxedInt64: {
auto const out_pair = locs()->out(0).AsPairLocation();
const Register out_lo = out_pair->At(0).reg();
const Register out_hi = out_pair->At(1).reg();
const intptr_t offset_lo = OffsetInBytes() - kHeapObjectTag;
const intptr_t offset_hi = offset_lo + compiler::target::kWordSize;
__ Comment("UnboxedInt64LoadFieldInstr");
__ LoadFromOffset(out_lo, instance_reg, offset_lo);
__ LoadFromOffset(out_hi, instance_reg, offset_hi);
break;
}
case kUnboxedUint32: {
const Register result = locs()->out(0).reg();
__ Comment("UnboxedUint32LoadFieldInstr");
__ LoadFieldFromOffset(result, instance_reg, OffsetInBytes());
break;
}
case kUnboxedUint8: {
const Register result = locs()->out(0).reg();
__ Comment("UnboxedUint8LoadFieldInstr");
__ LoadFieldFromOffset(result, instance_reg, OffsetInBytes(),
compiler::kUnsignedByte);
break;
}
default:
UNIMPLEMENTED();
break;
}
return;
}
if (IsUnboxedDartFieldLoad() && compiler->is_optimizing()) {
ASSERT_EQUAL(slot().representation(), kTagged);
ASSERT(!calls_initializer());
ASSERT(!slot().field().is_non_nullable_integer());
const intptr_t cid = slot().field().UnboxedFieldCid();
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
if (FLAG_precompiled_mode) {
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleLoadFieldInstr");
__ LoadDFromOffset(result, instance_reg,
OffsetInBytes() - kHeapObjectTag);
return;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4LoadFieldInstr");
__ LoadMultipleDFromOffset(result, 2, instance_reg,
OffsetInBytes() - kHeapObjectTag);
return;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2LoadFieldInstr");
__ LoadMultipleDFromOffset(result, 2, instance_reg,
OffsetInBytes() - kHeapObjectTag);
return;
default:
UNREACHABLE();
}
}
const Register temp = locs()->temp(0).reg();
__ LoadFieldFromOffset(temp, instance_reg, OffsetInBytes());
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleLoadFieldInstr");
__ LoadDFromOffset(
result, temp,
compiler::target::Double::value_offset() - kHeapObjectTag);
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4LoadFieldInstr");
__ LoadMultipleDFromOffset(
result, 2, temp,
compiler::target::Float32x4::value_offset() - kHeapObjectTag);
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2LoadFieldInstr");
__ LoadMultipleDFromOffset(
result, 2, temp,
compiler::target::Float64x2::value_offset() - kHeapObjectTag);
break;
default:
UNREACHABLE();
}
return;
}
compiler::Label done;
const Register result_reg = locs()->out(0).reg();
if (IsPotentialUnboxedDartFieldLoad()) {
ASSERT_EQUAL(slot().representation(), kTagged);
ASSERT(!calls_initializer());
const DRegister value = EvenDRegisterOf(locs()->temp(0).fpu_reg());
const Register temp = locs()->temp(1).reg();
const Register temp2 = locs()->temp(2).reg();
compiler::Label load_pointer;
compiler::Label load_double;
compiler::Label load_float32x4;
compiler::Label load_float64x2;
__ LoadObject(result_reg, Field::ZoneHandle(slot().field().Original()));
compiler::FieldAddress field_cid_operand(
result_reg, compiler::target::Field::guarded_cid_offset());
compiler::FieldAddress field_nullability_operand(
result_reg, compiler::target::Field::is_nullable_offset());
__ ldrh(temp, field_nullability_operand);
__ CompareImmediate(temp, kNullCid);
__ b(&load_pointer, EQ);
__ ldrh(temp, field_cid_operand);
__ CompareImmediate(temp, kDoubleCid);
__ b(&load_double, EQ);
__ ldrh(temp, field_cid_operand);
__ CompareImmediate(temp, kFloat32x4Cid);
__ b(&load_float32x4, EQ);
__ ldrh(temp, field_cid_operand);
__ CompareImmediate(temp, kFloat64x2Cid);
__ b(&load_float64x2, EQ);
// Fall through.
__ b(&load_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
}
{
__ Bind(&load_double);
BoxAllocationSlowPath::Allocate(compiler, this, compiler->double_class(),
result_reg, temp);
__ ldr(temp, compiler::FieldAddress(instance_reg, OffsetInBytes()));
__ CopyDoubleField(result_reg, temp, TMP, temp2, value);
__ b(&done);
}
{
__ Bind(&load_float32x4);
BoxAllocationSlowPath::Allocate(
compiler, this, compiler->float32x4_class(), result_reg, temp);
__ ldr(temp, compiler::FieldAddress(instance_reg, OffsetInBytes()));
__ CopyFloat32x4Field(result_reg, temp, TMP, temp2, value);
__ b(&done);
}
{
__ Bind(&load_float64x2);
BoxAllocationSlowPath::Allocate(
compiler, this, compiler->float64x2_class(), result_reg, temp);
__ ldr(temp, compiler::FieldAddress(instance_reg, OffsetInBytes()));
__ CopyFloat64x2Field(result_reg, temp, TMP, temp2, value);
__ b(&done);
}
__ Bind(&load_pointer);
}
__ LoadFieldFromOffset(result_reg, instance_reg, OffsetInBytes());
if (calls_initializer()) {
EmitNativeCodeForInitializerCall(compiler);
}
__ Bind(&done);
}
LocationSummary* InstantiateTypeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(
InstantiationABI::kInstantiatorTypeArgumentsReg));
locs->set_in(1, Location::RegisterLocation(
InstantiationABI::kFunctionTypeArgumentsReg));
locs->set_out(0,
Location::RegisterLocation(InstantiationABI::kResultTypeReg));
return locs;
}
void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register instantiator_type_args_reg = locs()->in(0).reg();
const Register function_type_args_reg = locs()->in(1).reg();
const Register result_reg = locs()->out(0).reg();
// 'instantiator_type_args_reg' is a TypeArguments object (or null).
// 'function_type_args_reg' is a TypeArguments object (or null).
// A runtime call to instantiate the type is required.
__ PushObject(Object::null_object()); // Make room for the result.
__ PushObject(type());
static_assert(InstantiationABI::kFunctionTypeArgumentsReg <
InstantiationABI::kInstantiatorTypeArgumentsReg,
"Should be ordered to push arguments with one instruction");
__ PushList((1 << instantiator_type_args_reg) |
(1 << function_type_args_reg));
compiler->GenerateRuntimeCall(source(), deopt_id(),
kInstantiateTypeRuntimeEntry, 3, locs());
__ Drop(3); // Drop 2 type vectors, and uninstantiated type.
__ Pop(result_reg); // Pop instantiated type.
}
LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(
InstantiationABI::kInstantiatorTypeArgumentsReg));
locs->set_in(1, Location::RegisterLocation(
InstantiationABI::kFunctionTypeArgumentsReg));
locs->set_in(2, Location::RegisterLocation(
InstantiationABI::kUninstantiatedTypeArgumentsReg));
locs->set_out(
0, Location::RegisterLocation(InstantiationABI::kResultTypeArgumentsReg));
return locs;
}
void InstantiateTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
// We should never try and instantiate a TAV known at compile time to be null,
// so we can use a null value below for the dynamic case.
ASSERT(!type_arguments()->BindsToConstant() ||
!type_arguments()->BoundConstant().IsNull());
const auto& type_args =
type_arguments()->BindsToConstant()
? TypeArguments::Cast(type_arguments()->BoundConstant())
: Object::null_type_arguments();
const intptr_t len = type_args.Length();
const bool can_function_type_args_be_null =
function_type_arguments()->CanBe(Object::null_object());
compiler::Label type_arguments_instantiated;
if (type_args.IsNull()) {
// Currently we only create dynamic InstantiateTypeArguments instructions
// in cases where we know the type argument is uninstantiated at runtime,
// so there are no extra checks needed to call the stub successfully.
} else if (type_args.IsRawWhenInstantiatedFromRaw(len) &&
can_function_type_args_be_null) {
// If both the instantiator and function type arguments are null and if the
// type argument vector instantiated from null becomes a vector of dynamic,
// then use null as the type arguments.
//
// 'instantiator_type_args_reg' is a TypeArguments object (or null).
// 'function_type_args_reg' is a TypeArguments object (or null).
const Register instantiator_type_args_reg = locs()->in(0).reg();
const Register function_type_args_reg = locs()->in(1).reg();
const Register result_reg = locs()->out(0).reg();
ASSERT(result_reg != instantiator_type_args_reg &&
result_reg != function_type_args_reg);
__ LoadObject(result_reg, Object::null_object());
__ cmp(instantiator_type_args_reg, compiler::Operand(result_reg));
if (!function_type_arguments()->BindsToConstant()) {
__ cmp(function_type_args_reg, compiler::Operand(result_reg), EQ);
}
__ b(&type_arguments_instantiated, EQ);
}
// Lookup cache in stub before calling runtime.
compiler->GenerateStubCall(source(), GetStub(), UntaggedPcDescriptors::kOther,
locs());
__ Bind(&type_arguments_instantiated);
}
LocationSummary* AllocateUninitializedContextInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
ASSERT(opt);
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 3;
LocationSummary* locs = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
locs->set_temp(0, Location::RegisterLocation(R1));
locs->set_temp(1, Location::RegisterLocation(R2));
locs->set_temp(2, Location::RegisterLocation(R3));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
class AllocateContextSlowPath
: public TemplateSlowPathCode<AllocateUninitializedContextInstr> {
public:
explicit AllocateContextSlowPath(
AllocateUninitializedContextInstr* instruction)
: TemplateSlowPathCode(instruction) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("AllocateContextSlowPath");
__ Bind(entry_label());
LocationSummary* locs = instruction()->locs();
locs->live_registers()->Remove(locs->out(0));
compiler->SaveLiveRegisters(locs);
auto object_store = compiler->isolate_group()->object_store();
const auto& allocate_context_stub = Code::ZoneHandle(
compiler->zone(), object_store->allocate_context_stub());
__ LoadImmediate(R1, instruction()->num_context_variables());
compiler->GenerateStubCall(instruction()->source(), allocate_context_stub,
UntaggedPcDescriptors::kOther, locs);
ASSERT(instruction()->locs()->out(0).reg() == R0);
compiler->RestoreLiveRegisters(instruction()->locs());
__ b(exit_label());
}
};
void AllocateUninitializedContextInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register temp0 = locs()->temp(0).reg();
Register temp1 = locs()->temp(1).reg();
Register temp2 = locs()->temp(2).reg();
Register result = locs()->out(0).reg();
// Try allocate the object.
AllocateContextSlowPath* slow_path = new AllocateContextSlowPath(this);
compiler->AddSlowPathCode(slow_path);
intptr_t instance_size = Context::InstanceSize(num_context_variables());
__ TryAllocateArray(kContextCid, instance_size, slow_path->entry_label(),
result, // instance
temp0, temp1, temp2);
// Setup up number of context variables field.
__ LoadImmediate(temp0, num_context_variables());
__ str(temp0, compiler::FieldAddress(
result, compiler::target::Context::num_variables_offset()));
__ Bind(slow_path->exit_label());
}
LocationSummary* AllocateContextInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(R1));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == R1);
ASSERT(locs()->out(0).reg() == R0);
auto object_store = compiler->isolate_group()->object_store();
const auto& allocate_context_stub =
Code::ZoneHandle(compiler->zone(), object_store->allocate_context_stub());
__ LoadImmediate(R1, num_context_variables());
compiler->GenerateStubCall(source(), allocate_context_stub,
UntaggedPcDescriptors::kOther, locs());
}
LocationSummary* CloneContextInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R4));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == R4);
ASSERT(locs()->out(0).reg() == R0);
auto object_store = compiler->isolate_group()->object_store();
const auto& clone_context_stub =
Code::ZoneHandle(compiler->zone(), object_store->clone_context_stub());
compiler->GenerateStubCall(source(), clone_context_stub,
/*kind=*/UntaggedPcDescriptors::kOther, locs());
}
LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
UNREACHABLE();
return NULL;
}
void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
compiler->AddExceptionHandler(
catch_try_index(), try_index(), compiler->assembler()->CodeSize(),
is_generated(), catch_handler_types_, needs_stacktrace());
if (!FLAG_precompiled_mode) {
// On lazy deoptimization we patch the optimized code here to enter the
// deoptimization stub.
const intptr_t deopt_id = DeoptId::ToDeoptAfter(GetDeoptId());
if (compiler->is_optimizing()) {
compiler->AddDeoptIndexAtCall(deopt_id);
} else {
compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kDeopt, deopt_id,
InstructionSource());
}
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// Restore SP from FP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t fp_sp_dist =
(compiler::target::frame_layout.first_local_from_fp + 1 -
compiler->StackSize()) *
compiler::target::kWordSize;
ASSERT(fp_sp_dist <= 0);
__ AddImmediate(SP, FP, fp_sp_dist);
if (!compiler->is_optimizing()) {
if (raw_exception_var_ != nullptr) {
__ StoreToOffset(
kExceptionObjectReg, FP,
compiler::target::FrameOffsetInBytesForVariable(raw_exception_var_));
}
if (raw_stacktrace_var_ != nullptr) {
__ StoreToOffset(
kStackTraceObjectReg, FP,
compiler::target::FrameOffsetInBytesForVariable(raw_stacktrace_var_));
}
}
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 2;
const bool using_shared_stub = UseSharedSlowPathStub(opt);
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
using_shared_stub ? LocationSummary::kCallOnSharedSlowPath
: LocationSummary::kCallOnSlowPath);
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
return summary;
}
class CheckStackOverflowSlowPath
: public TemplateSlowPathCode<CheckStackOverflowInstr> {
public:
static constexpr intptr_t kNumSlowPathArgs = 0;
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: TemplateSlowPathCode(instruction) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (compiler->isolate_group()->use_osr() && osr_entry_label()->IsLinked()) {
const Register value = instruction()->locs()->temp(0).reg();
__ Comment("CheckStackOverflowSlowPathOsr");
__ Bind(osr_entry_label());
__ LoadImmediate(value, Thread::kOsrRequest);
__ str(value,
compiler::Address(
THR, compiler::target::Thread::stack_overflow_flags_offset()));
}
__ Comment("CheckStackOverflowSlowPath");
__ Bind(entry_label());
const bool using_shared_stub =
instruction()->locs()->call_on_shared_slow_path();
if (!using_shared_stub) {
compiler->SaveLiveRegisters(instruction()->locs());
}
// pending_deoptimization_env_ is needed to generate a runtime call that
// may throw an exception.
ASSERT(compiler->pending_deoptimization_env_ == NULL);
Environment* env =
compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs);
compiler->pending_deoptimization_env_ = env;
if (using_shared_stub) {
const uword entry_point_offset = compiler::target::Thread::
stack_overflow_shared_stub_entry_point_offset(
instruction()->locs()->live_registers()->FpuRegisterCount() > 0);
__ Call(compiler::Address(THR, entry_point_offset));
compiler->RecordSafepoint(instruction()->locs(), kNumSlowPathArgs);
compiler->RecordCatchEntryMoves();
compiler->AddDescriptor(
UntaggedPcDescriptors::kOther, compiler->assembler()->CodeSize(),
instruction()->deopt_id(), instruction()->source(),
compiler->CurrentTryIndex());
} else {
compiler->GenerateRuntimeCall(
instruction()->source(), instruction()->deopt_id(),
kStackOverflowRuntimeEntry, kNumSlowPathArgs, instruction()->locs());
}
if (compiler->isolate_group()->use_osr() && !compiler->is_optimizing() &&
instruction()->in_loop()) {
// In unoptimized code, record loop stack checks as possible OSR entries.
compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kOsrEntry,
instruction()->deopt_id(),
InstructionSource());
}
compiler->pending_deoptimization_env_ = NULL;
if (!using_shared_stub) {
compiler->RestoreLiveRegisters(instruction()->locs());
}
__ b(exit_label());
}
compiler::Label* osr_entry_label() {
ASSERT(IsolateGroup::Current()->use_osr());
return &osr_entry_label_;
}
private:
compiler::Label osr_entry_label_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ ldr(IP, compiler::Address(THR,
compiler::target::Thread::stack_limit_offset()));
__ cmp(SP, compiler::Operand(IP));
auto object_store = compiler->isolate_group()->object_store();
const bool live_fpu_regs = locs()->live_registers()->FpuRegisterCount() > 0;
const auto& stub = Code::ZoneHandle(
compiler->zone(),
live_fpu_regs
? object_store->stack_overflow_stub_with_fpu_regs_stub()
: object_store->stack_overflow_stub_without_fpu_regs_stub());
const bool using_shared_stub = locs()->call_on_shared_slow_path();
if (using_shared_stub && compiler->CanPcRelativeCall(stub)) {
__ GenerateUnRelocatedPcRelativeCall(LS);
compiler->AddPcRelativeCallStubTarget(stub);
// We use the "extended" environment which has the locations updated to
// reflect live registers being saved in the shared spilling stubs (see
// the stub above).
auto extended_env = compiler->SlowPathEnvironmentFor(this, 0);
compiler->EmitCallsiteMetadata(source(), deopt_id(),
UntaggedPcDescriptors::kOther, locs(),
extended_env);
return;
}
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ b(slow_path->entry_label(), LS);
if (compiler->CanOSRFunction() && in_loop()) {
const Register function = locs()->temp(0).reg();
const Register count = locs()->temp(1).reg();
// In unoptimized code check the usage counter to trigger OSR at loop
// stack checks. Use progressively higher thresholds for more deeply
// nested loops to attempt to hit outer loops with OSR when possible.
__ LoadObject(function, compiler->parsed_function().function());
intptr_t threshold =
FLAG_optimization_counter_threshold * (loop_depth() + 1);
__ ldr(count,
compiler::FieldAddress(
function, compiler::target::Function::usage_counter_offset()));
__ add(count, count, compiler::Operand(1));
__ str(count,
compiler::FieldAddress(
function, compiler::target::Function::usage_counter_offset()));
__ CompareImmediate(count, threshold);
__ b(slow_path->osr_entry_label(), GE);
}
if (compiler->ForceSlowPathForStackOverflow()) {
__ b(slow_path->entry_label());
}
__ Bind(slow_path->exit_label());
}
static void EmitSmiShiftLeft(FlowGraphCompiler* compiler,
BinarySmiOpInstr* shift_left) {
const LocationSummary& locs = *shift_left->locs();
const Register left = locs.in(0).reg();
const Register result = locs.out(0).reg();
compiler::Label* deopt =
shift_left->CanDeoptimize()
? compiler->AddDeoptStub(shift_left->deopt_id(),
ICData::kDeoptBinarySmiOp)
: NULL;
if (locs.in(1).IsConstant()) {
const Object& constant = locs.in(1).constant();
ASSERT(compiler::target::IsSmi(constant));
// Immediate shift operation takes 5 bits for the count.
const intptr_t kCountLimit = 0x1F;
const intptr_t value = compiler::target::SmiValue(constant);
ASSERT((0 < value) && (value < kCountLimit));
if (shift_left->can_overflow()) {
// Check for overflow (preserve left).
__ Lsl(IP, left, compiler::Operand(value));
__ cmp(left, compiler::Operand(IP, ASR, value));
__ b(deopt, NE); // Overflow.
}
// Shift for result now we know there is no overflow.
__ Lsl(result, left, compiler::Operand(value));
return;
}
// Right (locs.in(1)) is not constant.
const Register right = locs.in(1).reg();
Range* right_range = shift_left->right_range();
if (shift_left->left()->BindsToConstant() && shift_left->can_overflow()) {
// TODO(srdjan): Implement code below for is_truncating().
// If left is constant, we know the maximal allowed size for right.
const Object& obj = shift_left->left()->BoundConstant();
if (compiler::target::IsSmi(obj)) {
const intptr_t left_int = compiler::target::SmiValue(obj);
if (left_int == 0) {
__ cmp(right, compiler::Operand(0));
__ b(deopt, MI);
__ mov(result, compiler::Operand(0));
return;
}
const intptr_t max_right =
compiler::target::kSmiBits - Utils::HighestBit(left_int);
const bool right_needs_check =
!RangeUtils::IsWithin(right_range, 0, max_right - 1);
if (right_needs_check) {
__ cmp(right, compiler::Operand(compiler::target::ToRawSmi(max_right)));
__ b(deopt, CS);
}
__ SmiUntag(IP, right);
__ Lsl(result, left, IP);
}
return;
}
const bool right_needs_check =
!RangeUtils::IsWithin(right_range, 0, (compiler::target::kSmiBits - 1));
if (!shift_left->can_overflow()) {
if (right_needs_check) {
if (!RangeUtils::IsPositive(right_range)) {
ASSERT(shift_left->CanDeoptimize());
__ cmp(right, compiler::Operand(0));
__ b(deopt, MI);
}
__ cmp(right, compiler::Operand(compiler::target::ToRawSmi(
compiler::target::kSmiBits)));
__ mov(result, compiler::Operand(0), CS);
__ SmiUntag(IP, right, CC); // SmiUntag right into IP if CC.
__ Lsl(result, left, IP, CC);
} else {
__ SmiUntag(IP, right);
__ Lsl(result, left, IP);
}
} else {
if (right_needs_check) {
ASSERT(shift_left->CanDeoptimize());
__ cmp(right, compiler::Operand(compiler::target::ToRawSmi(
compiler::target::kSmiBits)));
__ b(deopt, CS);
}
// Left is not a constant.
// Check if count too large for handling it inlined.
__ SmiUntag(IP, right);
// Overflow test (preserve left, right, and IP);
const Register temp = locs.temp(0).reg();
__ Lsl(temp, left, IP);
__ cmp(left, compiler::Operand(temp, ASR, IP));
__ b(deopt, NE); // Overflow.
// Shift for result now we know there is no overflow.
__ Lsl(result, left, IP);
}
}
class CheckedSmiSlowPath : public TemplateSlowPathCode<CheckedSmiOpInstr> {
public:
CheckedSmiSlowPath(CheckedSmiOpInstr* instruction, intptr_t try_index)
: TemplateSlowPathCode(instruction), try_index_(try_index) {}
static constexpr intptr_t kNumSlowPathArgs = 2;
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (compiler::Assembler::EmittingComments()) {
__ Comment("slow path smi operation");
}
__ Bind(entry_label());
LocationSummary* locs = instruction()->locs();
Register result = locs->out(0).reg();
locs->live_registers()->Remove(Location::RegisterLocation(result));
compiler->SaveLiveRegisters(locs);
if (instruction()->env() != NULL) {
Environment* env =
compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs);
compiler->pending_deoptimization_env_ = env;
}
__ Push(locs->in(0).reg());
__ Push(locs->in(1).reg());
const auto& selector = String::Handle(instruction()->call()->Selector());
const auto& arguments_descriptor =
Array::Handle(ArgumentsDescriptor::NewBoxed(
/*type_args_len=*/0, /*num_arguments=*/2));
compiler->EmitMegamorphicInstanceCall(
selector, arguments_descriptor, instruction()->call()->deopt_id(),
instruction()->source(), locs, try_index_, kNumSlowPathArgs);
__ mov(result, compiler::Operand(R0));
compiler->RestoreLiveRegisters(locs);
__ b(exit_label());
compiler->pending_deoptimization_env_ = NULL;
}
private:
intptr_t try_index_;
};
LocationSummary* CheckedSmiOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void CheckedSmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckedSmiSlowPath* slow_path =
new CheckedSmiSlowPath(this, compiler->CurrentTryIndex());
compiler->AddSlowPathCode(slow_path);
// Test operands if necessary.
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register result = locs()->out(0).reg();
intptr_t left_cid = this->left()->Type()->ToCid();
intptr_t right_cid = this->right()->Type()->ToCid();
bool combined_smi_check = false;
if (this->left()->definition() == this->right()->definition()) {
__ tst(left, compiler::Operand(kSmiTagMask));
} else if (left_cid == kSmiCid) {
__ tst(right, compiler::Operand(kSmiTagMask));
} else if (right_cid == kSmiCid) {
__ tst(left, compiler::Operand(kSmiTagMask));
} else {
combined_smi_check = true;
__ orr(result, left, compiler::Operand(right));
__ tst(result, compiler::Operand(kSmiTagMask));
}
__ b(slow_path->entry_label(), NE);
switch (op_kind()) {
case Token::kADD:
__ adds(result, left, compiler::Operand(right));
__ b(slow_path->entry_label(), VS);
break;
case Token::kSUB:
__ subs(result, left, compiler::Operand(right));
__ b(slow_path->entry_label(), VS);
break;
case Token::kMUL:
__ SmiUntag(IP, left);
__ smull(result, IP, IP, right);
// IP: result bits 32..63.
__ cmp(IP, compiler::Operand(result, ASR, 31));
__ b(slow_path->entry_label(), NE);
break;
case Token::kBIT_OR:
// Operation may be part of combined smi check.
if (!combined_smi_check) {
__ orr(result, left, compiler::Operand(right));
}
break;
case Token::kBIT_AND:
__ and_(result, left, compiler::Operand(right));
break;
case Token::kBIT_XOR:
__ eor(result, left, compiler::Operand(right));
break;
case Token::kSHL:
ASSERT(result != left);
ASSERT(result != right);
__ CompareImmediate(
right, compiler::target::ToRawSmi(compiler::target::kSmiBits));
__ b(slow_path->entry_label(), HI);
__ SmiUntag(TMP, right);
// Check for overflow by shifting left and shifting back arithmetically.
// If the result is different from the original, there was overflow.
__ Lsl(result, left, TMP);
__ cmp(left, compiler::Operand(result, ASR, TMP));
__ b(slow_path->entry_label(), NE);
break;
case Token::kSHR:
ASSERT(result != left);
ASSERT(result != right);
__ CompareImmediate(
right, compiler::target::ToRawSmi(compiler::target::kSmiBits));
__ b(slow_path->entry_label(), HI);
__ SmiUntag(result, right);
__ SmiUntag(TMP, left);
__ Asr(result, TMP, result);
__ SmiTag(result);
break;
case Token::kUSHR: {
ASSERT(result != left);
ASSERT(result != right);
__ CompareImmediate(right, compiler::target::ToRawSmi(kBitsPerInt64));
__ b(slow_path->entry_label(), UNSIGNED_GREATER_EQUAL);
compiler::Label done;
__ SmiUntag(result, right);
// 64-bit representation of left operand value:
//
// ss...sssss s s xxxxxxxxxxxxx
// | | | | | |
// 63 32 31 30 kSmiBits-1 0
//
// Where 's' is a sign bit.
//
// If left operand is negative (sign bit is set), then
// result will fit into Smi range if and only if
// the shift amount >= 64 - kSmiBits.
//
// If left operand is non-negative, the result always
// fits into Smi range.
//
__ CompareImmediate(result, 64 - compiler::target::kSmiBits);
// Shift amount >= 64 - kSmiBits > 32, but < 64.
// Result is guaranteed to fit into Smi range.
// Low (Smi) part of the left operand is shifted out.
// High part is filled with sign bits.
__ sub(result, result, compiler::Operand(32), GE);
__ Asr(TMP, left, compiler::Operand(31), GE);
__ Lsr(result, TMP, result, GE);
__ SmiTag(result, GE);
__ b(&done, GE);
// Shift amount < 64 - kSmiBits.
// If left is negative, then result will not fit into Smi range.
// Also deopt in case of negative shift amount.
__ tst(left, compiler::Operand(left));
__ b(slow_path->entry_label(), MI);
// At this point left operand is non-negative, so unsigned shift
// can't overflow.
__ CompareImmediate(result, compiler::target::kSmiBits);
// Left operand >= 0, shift amount >= kSmiBits. Result is 0.
__ LoadImmediate(result, 0, GE);
// Left operand >= 0, shift amount < kSmiBits < 32.
__ SmiUntag(TMP, left, LT);
__ Lsr(result, TMP, result, LT);
__ SmiTag(result, LT);
__ Bind(&done);
break;
}
default:
UNREACHABLE();
}
__ Bind(slow_path->exit_label());
}
class CheckedSmiComparisonSlowPath
: public TemplateSlowPathCode<CheckedSmiComparisonInstr> {
public:
static constexpr intptr_t kNumSlowPathArgs = 2;
CheckedSmiComparisonSlowPath(CheckedSmiComparisonInstr* instruction,
Environment* env,
intptr_t try_index,
BranchLabels labels,
bool merged)
: TemplateSlowPathCode(instruction),
try_index_(try_index),
labels_(labels),
merged_(merged),
env_(env) {
// The environment must either come from the comparison or the environment
// was cleared from the comparison (and moved to a branch).
ASSERT(env == instruction->env() ||
(merged && instruction->env() == nullptr));
}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (compiler::Assembler::EmittingComments()) {
__ Comment("slow path smi operation");
}
__ Bind(entry_label());
LocationSummary* locs = instruction()->locs();
Register result = merged_ ? locs->temp(0).reg() : locs->out(0).reg();
locs->live_registers()->Remove(Location::RegisterLocation(result));
compiler->SaveLiveRegisters(locs);
if (env_ != nullptr) {
compiler->pending_deoptimization_env_ =
compiler->SlowPathEnvironmentFor(env_, locs, kNumSlowPathArgs);
}
__ Push(locs->in(0).reg());
__ Push(locs->in(1).reg());
const auto& selector = String::Handle(instruction()->call()->Selector());
const auto& arguments_descriptor =
Array::Handle(ArgumentsDescriptor::NewBoxed(
/*type_args_len=*/0, /*num_arguments=*/2));
compiler->EmitMegamorphicInstanceCall(
selector, arguments_descriptor, instruction()->call()->deopt_id(),
instruction()->source(), locs, try_index_, kNumSlowPathArgs);
__ mov(result, compiler::Operand(R0));
compiler->RestoreLiveRegisters(locs);
compiler->pending_deoptimization_env_ = nullptr;
if (merged_) {
__ CompareObject(result, Bool::True());
__ b(instruction()->is_negated() ? labels_.false_label
: labels_.true_label,
EQ);
__ b(instruction()->is_negated() ? labels_.true_label
: labels_.false_label);
} else {
if (instruction()->is_negated()) {
// Need to negate the result of slow path call.
__ CompareObject(result, Bool::True());
__ LoadObject(result, Bool::True(), NE);
__ LoadObject(result, Bool::False(), EQ);
}
__ b(exit_label());
}
}
private:
intptr_t try_index_;
BranchLabels labels_;
bool merged_;
Environment* env_;
};
LocationSummary* CheckedSmiComparisonInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
Condition CheckedSmiComparisonInstr::EmitComparisonCode(
FlowGraphCompiler* compiler,
BranchLabels labels) {
return EmitSmiComparisonOp(compiler, locs(), kind());
}
#define EMIT_SMI_CHECK \
Register left = locs()->in(0).reg(); \
Register right = locs()->in(1).reg(); \
Register temp = locs()->temp(0).reg(); \
intptr_t left_cid = this->left()->Type()->ToCid(); \
intptr_t right_cid = this->right()->Type()->ToCid(); \
if (this->left()->definition() == this->right()->definition()) { \
__ tst(left, compiler::Operand(kSmiTagMask)); \
} else if (left_cid == kSmiCid) { \
__ tst(right, compiler::Operand(kSmiTagMask)); \
} else if (right_cid == kSmiCid) { \
__ tst(left, compiler::Operand(kSmiTagMask)); \
} else { \
__ orr(temp, left, compiler::Operand(right)); \
__ tst(temp, compiler::Operand(kSmiTagMask)); \
} \
__ b(slow_path->entry_label(), NE)
void CheckedSmiComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
CheckedSmiComparisonSlowPath* slow_path = new CheckedSmiComparisonSlowPath(
this, branch->env(), compiler->CurrentTryIndex(), labels,
/* merged = */ true);
compiler->AddSlowPathCode(slow_path);
EMIT_SMI_CHECK;
Condition true_condition = EmitComparisonCode(compiler, labels);
ASSERT(true_condition != kInvalidCondition);
EmitBranchOnCondition(compiler, true_condition, labels);
__ Bind(slow_path->exit_label());
}
void CheckedSmiComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BranchLabels labels = {NULL, NULL, NULL};
CheckedSmiComparisonSlowPath* slow_path = new CheckedSmiComparisonSlowPath(
this, env(), compiler->CurrentTryIndex(), labels,
/* merged = */ false);
compiler->AddSlowPathCode(slow_path);
EMIT_SMI_CHECK;
Condition true_condition = EmitComparisonCode(compiler, labels);
ASSERT(true_condition != kInvalidCondition);
Register result = locs()->out(0).reg();
__ LoadObject(result, Bool::True(), true_condition);
__ LoadObject(result, Bool::False(), InvertCondition(true_condition));
__ Bind(slow_path->exit_label());
}
#undef EMIT_SMI_CHECK
LocationSummary* BinarySmiOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
// Calculate number of temporaries.
intptr_t num_temps = 0;
if (op_kind() == Token::kTRUNCDIV) {
if (RightIsPowerOfTwoConstant()) {
num_temps = 1;
} else {
num_temps = 2;
}
} else if (op_kind() == Token::kMOD) {
num_temps = 2;
} else if (((op_kind() == Token::kSHL) && can_overflow()) ||
(op_kind() == Token::kSHR) || (op_kind() == Token::kUSHR)) {
num_temps = 1;
}
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall);
if (op_kind() == Token::kTRUNCDIV) {
summary->set_in(0, Location::RequiresRegister());
if (RightIsPowerOfTwoConstant()) {
ConstantInstr* right_constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(right_constant));
summary->set_temp(0, Location::RequiresRegister());
} else {
summary->set_in(1, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
// Request register that overlaps with S0..S31.
summary->set_temp(1, Location::FpuRegisterLocation(Q0));
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
if (op_kind() == Token::kMOD) {
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
// Request register that overlaps with S0..S31.
summary->set_temp(1, Location::FpuRegisterLocation(Q0));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, LocationRegisterOrSmiConstant(right()));
if (((op_kind() == Token::kSHL) && can_overflow()) ||
(op_kind() == Token::kSHR) || (op_kind() == Token::kUSHR)) {
summary->set_temp(0, Location::RequiresRegister());
}
// We make use of 3-operand instructions by not requiring result register
// to be identical to first input register as on Intel.
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (op_kind() == Token::kSHL) {
EmitSmiShiftLeft(compiler, this);
return;
}
const Register left = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
compiler::Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(compiler::target::IsSmi(constant));
const int32_t imm = compiler::target::ToRawSmi(constant);
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ AddImmediate(result, left, imm);
} else {
__ AddImmediateSetFlags(result, left, imm);
__ b(deopt, VS);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ AddImmediate(result, left, -imm);
} else {
// Negating imm and using AddImmediateSetFlags would not detect the
// overflow when imm == kMinInt32.
__ SubImmediateSetFlags(result, left, imm);
__ b(deopt, VS);
}
break;
}
case Token::kMUL: {
// Keep left value tagged and untag right value.
const intptr_t value = compiler::target::SmiValue(constant);
if (deopt == NULL) {
__ LoadImmediate(IP, value);
__ mul(result, left, IP);
} else {
__ LoadImmediate(IP, value);
__ smull(result, IP, left, IP);
// IP: result bits 32..63.
__ cmp(IP, compiler::Operand(result, ASR, 31));
__ b(deopt, NE);
}
break;
}
case Token::kTRUNCDIV: {
const intptr_t value = compiler::target::SmiValue(constant);
ASSERT(value != kIntptrMin);
ASSERT(Utils::IsPowerOfTwo(Utils::Abs(value)));
const intptr_t shift_count =
Utils::ShiftForPowerOfTwo(Utils::Abs(value)) + kSmiTagSize;
ASSERT(kSmiTagSize == 1);
__ mov(IP, compiler::Operand(left, ASR, 31));
ASSERT(shift_count > 1); // 1, -1 case handled above.
const Register temp = locs()->temp(0).reg();
__ add(temp, left, compiler::Operand(IP, LSR, 32 - shift_count));
ASSERT(shift_count > 0);
__ mov(result, compiler::Operand(temp, ASR, shift_count));
if (value < 0) {
__ rsb(result, result, compiler::Operand(0));
}
__ SmiTag(result);
break;
}
case Token::kBIT_AND: {
// No overflow check.
compiler::Operand o;
if (compiler::Operand::CanHold(imm, &o)) {
__ and_(result, left, o);
} else if (compiler::Operand::CanHold(~imm, &o)) {
__ bic(result, left, o);
} else {
__ LoadImmediate(IP, imm);
__ and_(result, left, compiler::Operand(IP));
}
break;
}
case Token::kBIT_OR: {
// No overflow check.
compiler::Operand o;
if (compiler::Operand::CanHold(imm, &o)) {
__ orr(result, left, o);
} else {
__ LoadImmediate(IP, imm);
__ orr(result, left, compiler::Operand(IP));
}
break;
}
case Token::kBIT_XOR: {
// No overflow check.
compiler::Operand o;
if (compiler::Operand::CanHold(imm, &o)) {
__ eor(result, left, o);
} else {
__ LoadImmediate(IP, imm);
__ eor(result, left, compiler::Operand(IP));
}
break;
}
case Token::kSHR: {
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
intptr_t value = compiler::target::SmiValue(constant);
__ Asr(result, left,
compiler::Operand(
Utils::Minimum(value + kSmiTagSize, kCountLimit)));
__ SmiTag(result);
break;
}
case Token::kUSHR: {
const intptr_t value = compiler::target::SmiValue(constant);
ASSERT((value > 0) && (value < 64));
COMPILE_ASSERT(compiler::target::kSmiBits < 32);
// 64-bit representation of left operand value:
//
// ss...sssss s s xxxxxxxxxxxxx
// | | | | | |
// 63 32 31 30 kSmiBits-1 0
//
// Where 's' is a sign bit.
//
// If left operand is negative (sign bit is set), then
// result will fit into Smi range if and only if
// the shift amount >= 64 - kSmiBits.
//
// If left operand is non-negative, the result always
// fits into Smi range.
//
if (value < (64 - compiler::target::kSmiBits)) {
if (deopt != nullptr) {
__ CompareImmediate(left, 0);
__ b(deopt, LT);
} else {
// Operation cannot overflow only if left value is always
// non-negative.
ASSERT(!can_overflow());
}
// At this point left operand is non-negative, so unsigned shift
// can't overflow.
if (value >= compiler::target::kSmiBits) {
__ LoadImmediate(result, 0);
} else {
__ Lsr(result, left, compiler::Operand(value + kSmiTagSize));
__ SmiTag(result);
}
} else {
// Shift amount > 32, and the result is guaranteed to fit into Smi.
// Low (Smi) part of the left operand is shifted out.
// High part is filled with sign bits.
__ Asr(result, left, compiler::Operand(31));
__ Lsr(result, result, compiler::Operand(value - 32));
__ SmiTag(result);
}
break;
}
default:
UNREACHABLE();
break;
}
return;
}
const Register right = locs()->in(1).reg();
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ add(result, left, compiler::Operand(right));
} else {
__ adds(result, left, compiler::Operand(right));
__ b(deopt, VS);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ sub(result, left, compiler::Operand(right));
} else {
__ subs(result, left, compiler::Operand(right));
__ b(deopt, VS);
}
break;
}
case Token::kMUL: {
__ SmiUntag(IP, left);
if (deopt == NULL) {
__ mul(result, IP, right);
} else {
__ smull(result, IP, IP, right);
// IP: result bits 32..63.
__ cmp(IP, compiler::Operand(result, ASR, 31));
__ b(deopt, NE);
}
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ and_(result, left, compiler::Operand(right));
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orr(result, left, compiler::Operand(right));
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ eor(result, left, compiler::Operand(right));
break;
}
case Token::kTRUNCDIV: {
ASSERT(TargetCPUFeatures::can_divide());
if (RangeUtils::CanBeZero(right_range())) {
// Handle divide by zero in runtime.
__ cmp(right, compiler::Operand(0));
__ b(deopt, EQ);
}
const Register temp = locs()->temp(0).reg();
const DRegister dtemp = EvenDRegisterOf(locs()->temp(1).fpu_reg());
__ SmiUntag(temp, left);
__ SmiUntag(IP, right);
__ IntegerDivide(result, temp, IP, dtemp, DTMP);
if (RangeUtils::Overlaps(right_range(), -1, -1)) {
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ CompareImmediate(result, 0x40000000);
__ b(deopt, EQ);
}
__ SmiTag(result);
break;
}
case Token::kMOD: {
ASSERT(TargetCPUFeatures::can_divide());
if (RangeUtils::CanBeZero(right_range())) {
// Handle divide by zero in runtime.
__ cmp(right, compiler::Operand(0));
__ b(deopt, EQ);
}
const Register temp = locs()->temp(0).reg();
const DRegister dtemp = EvenDRegisterOf(locs()->temp(1).fpu_reg());
__ SmiUntag(temp, left);
__ SmiUntag(IP, right);
__ IntegerDivide(result, temp, IP, dtemp, DTMP);
__ SmiUntag(IP, right);
__ mls(result, IP, result, temp); // result <- left - right * result
__ SmiTag(result);
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
compiler::Label done;
__ cmp(result, compiler::Operand(0));
__ b(&done, GE);
// Result is negative, adjust it.
__ cmp(right, compiler::Operand(0));
__ sub(result, result, compiler::Operand(right), LT);
__ add(result, result, compiler::Operand(right), GE);
__ Bind(&done);
break;
}
case Token::kSHR: {
if (CanDeoptimize()) {
__ CompareImmediate(right, 0);
__ b(deopt, LT);
}
__ SmiUntag(IP, right);
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(), kCountLimit)) {
__ CompareImmediate(IP, kCountLimit);
__ LoadImmediate(IP, kCountLimit, GT);
}
const Register temp = locs()->temp(0).reg();
__ SmiUntag(temp, left);
__ Asr(result, temp, IP);
__ SmiTag(result);
break;
}
case Token::kUSHR: {
compiler::Label done;
__ SmiUntag(IP, right);
// 64-bit representation of left operand value:
//
// ss...sssss s s xxxxxxxxxxxxx
// | | | | | |
// 63 32 31 30 kSmiBits-1 0
//
// Where 's' is a sign bit.
//
// If left operand is negative (sign bit is set), then
// result will fit into Smi range if and only if
// the shift amount >= 64 - kSmiBits.
//
// If left operand is non-negative, the result always
// fits into Smi range.
//
if (!RangeUtils::OnlyLessThanOrEqualTo(
right_range(), 64 - compiler::target::kSmiBits - 1)) {
if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(),
kBitsPerInt64 - 1)) {
__ CompareImmediate(IP, kBitsPerInt64);
// If shift amount >= 64, then result is 0.
__ LoadImmediate(result, 0, GE);
__ b(&done, GE);
}
__ CompareImmediate(IP, 64 - compiler::target::kSmiBits);
// Shift amount >= 64 - kSmiBits > 32, but < 64.
// Result is guaranteed to fit into Smi range.
// Low (Smi) part of the left operand is shifted out.
// High part is filled with sign bits.
__ sub(IP, IP, compiler::Operand(32), GE);
__ Asr(result, left, compiler::Operand(31), GE);
__ Lsr(result, result, IP, GE);
__ SmiTag(result, GE);
__ b(&done, GE);
}
// Shift amount < 64 - kSmiBits.
// If left is negative, then result will not fit into Smi range.
// Also deopt in case of negative shift amount.
if (deopt != nullptr) {
__ tst(left, compiler::Operand(left));
__ tst(right, compiler::Operand(right), PL);
__ b(deopt, MI);
} else {
ASSERT(!can_overflow());
}
// At this point left operand is non-negative, so unsigned shift
// can't overflow.
if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(),
compiler::target::kSmiBits - 1)) {
__ CompareImmediate(IP, compiler::target::kSmiBits);
// Left operand >= 0, shift amount >= kSmiBits. Result is 0.
__ LoadImmediate(result, 0, GE);
__ b(&done, GE);
}
// Left operand >= 0, shift amount < kSmiBits < 32.
const Register temp = locs()->temp(0).reg();
__ SmiUntag(temp, left);
__ Lsr(result, temp, IP);
__ SmiTag(result);
__ Bind(&done);
break;
}
case Token::kDIV: {
// Dispatches to 'Double./'.
// TODO(srdjan): Implement as conversion to double and double division.
UNREACHABLE();
break;
}
case Token::kOR:
case Token::kAND: {
// Flow graph builder has dissected this operation to guarantee correct
// behavior (short-circuit evaluation).
UNREACHABLE();
break;
}
default:
UNREACHABLE();
break;
}
}
static void EmitInt32ShiftLeft(FlowGraphCompiler* compiler,
BinaryInt32OpInstr* shift_left) {
const LocationSummary& locs = *shift_left->locs();
const Register left = locs.in(0).reg();
const Register result = locs.out(0).reg();
compiler::Label* deopt =
shift_left->CanDeoptimize()
? compiler->AddDeoptStub(shift_left->deopt_id(),
ICData::kDeoptBinarySmiOp)
: NULL;
ASSERT(locs.in(1).IsConstant());
const Object& constant = locs.in(1).constant();
ASSERT(compiler::target::IsSmi(constant));
// Immediate shift operation takes 5 bits for the count.
const intptr_t kCountLimit = 0x1F;
const intptr_t value = compiler::target::SmiValue(constant);
ASSERT((0 < value) && (value < kCountLimit));
if (shift_left->can_overflow()) {
// Check for overflow (preserve left).
__ Lsl(IP, left, compiler::Operand(value));
__ cmp(left, compiler::Operand(IP, ASR, value));
__ b(deopt, NE); // Overflow.
}
// Shift for result now we know there is no overflow.
__ Lsl(result, left, compiler::Operand(value));
}
LocationSummary* BinaryInt32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
// Calculate number of temporaries.
intptr_t num_temps = 0;
if (((op_kind() == Token::kSHL) && can_overflow()) ||
(op_kind() == Token::kSHR) || (op_kind() == Token::kUSHR)) {
num_temps = 1;
}
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, LocationRegisterOrSmiConstant(right()));
if (((op_kind() == Token::kSHL) && can_overflow()) ||
(op_kind() == Token::kSHR) || (op_kind() == Token::kUSHR)) {
summary->set_temp(0, Location::RequiresRegister());
}
// We make use of 3-operand instructions by not requiring result register
// to be identical to first input register as on Intel.
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BinaryInt32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (op_kind() == Token::kSHL) {
EmitInt32ShiftLeft(compiler, this);
return;
}
const Register left = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
compiler::Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(compiler::target::IsSmi(constant));
const intptr_t value = compiler::target::SmiValue(constant);
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ AddImmediate(result, left, value);
} else {
__ AddImmediateSetFlags(result, left, value);
__ b(deopt, VS);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ AddImmediate(result, left, -value);
} else {
// Negating value and using AddImmediateSetFlags would not detect the
// overflow when value == kMinInt32.
__ SubImmediateSetFlags(result, left, value);
__ b(deopt, VS);
}
break;
}
case Token::kMUL: {
if (deopt == NULL) {
__ LoadImmediate(IP, value);
__ mul(result, left, IP);
} else {
__ LoadImmediate(IP, value);
__ smull(result, IP, left, IP);
// IP: result bits 32..63.
__ cmp(IP, compiler::Operand(result, ASR, 31));
__ b(deopt, NE);
}
break;
}
case Token::kBIT_AND: {
// No overflow check.
compiler::Operand o;
if (compiler::Operand::CanHold(value, &o)) {
__ and_(result, left, o);
} else if (compiler::Operand::CanHold(~value, &o)) {
__ bic(result, left, o);
} else {
__ LoadImmediate(IP, value);
__ and_(result, left, compiler::Operand(IP));
}
break;
}
case Token::kBIT_OR: {
// No overflow check.
compiler::Operand o;
if (compiler::Operand::CanHold(value, &o)) {
__ orr(result, left, o);
} else {
__ LoadImmediate(IP, value);
__ orr(result, left, compiler::Operand(IP));
}
break;
}
case Token::kBIT_XOR: {
// No overflow check.
compiler::Operand o;
if (compiler::Operand::CanHold(value, &o)) {
__ eor(result, left, o);
} else {
__ LoadImmediate(IP, value);
__ eor(result, left, compiler::Operand(IP));
}
break;
}
case Token::kSHR: {
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
__ Asr(result, left,
compiler::Operand(Utils::Minimum(value, kCountLimit)));
break;
}
case Token::kUSHR: {
ASSERT((value > 0) && (value < 64));
// 64-bit representation of left operand value:
//
// ss...sssss s xxxxxxxxxxxxx
// | | | | |
// 63 32 31 30 0
//
// Where 's' is a sign bit.
//
// If left operand is negative (sign bit is set), then
// result will fit into Int32 range if and only if
// the shift amount > 32.
//
if (value <= 32) {
if (deopt != nullptr) {
__ tst(left, compiler::Operand(left));
__ b(deopt, MI);
} else {
// Operation cannot overflow only if left value is always
// non-negative.
ASSERT(!can_overflow());
}
// At this point left operand is non-negative, so unsigned shift
// can't overflow.
if (value == 32) {
__ LoadImmediate(result, 0);
} else {
__ Lsr(result, left, compiler::Operand(value));
}
} else {
// Shift amount > 32.
// Low (Int32) part of the left operand is shifted out.
// Shift high part which is filled with sign bits.
__ Asr(result, left, compiler::Operand(31));
__ Lsr(result, result, compiler::Operand(value - 32));
}
break;
}
default:
UNREACHABLE();
break;
}
return;
}
const Register right = locs()->in(1).reg();
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ add(result, left, compiler::Operand(right));
} else {
__ adds(result, left, compiler::Operand(right));
__ b(deopt, VS);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ sub(result, left, compiler::Operand(right));
} else {
__ subs(result, left, compiler::Operand(right));
__ b(deopt, VS);
}
break;
}
case Token::kMUL: {
if (deopt == NULL) {
__ mul(result, left, right);
} else {
__ smull(result, IP, left, right);
// IP: result bits 32..63.
__ cmp(IP, compiler::Operand(result, ASR, 31));
__ b(deopt, NE);
}
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ and_(result, left, compiler::Operand(right));
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orr(result, left, compiler::Operand(right));
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ eor(result, left, compiler::Operand(right));
break;
}
default:
UNREACHABLE();
break;
}
}
LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
ASSERT((left_cid != kDoubleCid) && (right_cid != kDoubleCid));
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
return summary;
}
void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryDoubleOp,
licm_hoisted_ ? ICData::kHoisted : 0);
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
const Register left = locs()->in(0).reg();
const Register right = locs()->in(1).reg();
if (this->left()->definition() == this->right()->definition()) {
__ tst(left, compiler::Operand(kSmiTagMask));
} else if (left_cid == kSmiCid) {
__ tst(right, compiler::Operand(kSmiTagMask));
} else if (right_cid == kSmiCid) {
__ tst(left, compiler::Operand(kSmiTagMask));
} else {
__ orr(IP, left, compiler::Operand(right));
__ tst(IP, compiler::Operand(kSmiTagMask));
}
__ b(deopt, EQ);
}
LocationSummary* BoxInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register out_reg = locs()->out(0).reg();
const DRegister value = EvenDRegisterOf(locs()->in(0).fpu_reg());
BoxAllocationSlowPath::Allocate(compiler, this,
compiler->BoxClassFor(from_representation()),
out_reg, locs()->temp(0).reg());
switch (from_representation()) {
case kUnboxedDouble:
__ StoreDToOffset(value, out_reg, ValueOffset() - kHeapObjectTag);
break;
case kUnboxedFloat:
__ vcvtds(DTMP, EvenSRegisterOf(value));
__ StoreDToOffset(EvenDRegisterOf(FpuTMP), out_reg,
ValueOffset() - kHeapObjectTag);
break;
case kUnboxedFloat32x4:
case kUnboxedFloat64x2:
case kUnboxedInt32x4:
__ StoreMultipleDToOffset(value, 2, out_reg,
ValueOffset() - kHeapObjectTag);
break;
default:
UNREACHABLE();
break;
}
}
LocationSummary* UnboxInstr::MakeLocationSummary(Zone* zone, bool opt) const {
ASSERT(BoxCid() != kSmiCid);
const bool needs_temp = CanDeoptimize();
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = needs_temp ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (needs_temp) {
summary->set_temp(0, Location::RequiresRegister());
}
if (representation() == kUnboxedInt64) {
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
} else if (representation() == kUnboxedInt32) {
summary->set_out(0, Location::RequiresRegister());
} else if (representation() == kUnboxedFloat) {
// Low (< Q7) Q registers are needed for the vcvtds and vmovs instructions.
// TODO(30953): Support register range constraints in the regalloc.
summary->set_out(0, Location::FpuRegisterLocation(Q6));
} else {
summary->set_out(0, Location::RequiresFpuRegister());
}
return summary;
}
void UnboxInstr::EmitLoadFromBox(FlowGraphCompiler* compiler) {
const Register box = locs()->in(0).reg();
switch (representation()) {
case kUnboxedInt64: {
PairLocation* result = locs()->out(0).AsPairLocation();
ASSERT(result->At(0).reg() != box);
__ LoadFieldFromOffset(result->At(0).reg(), box, ValueOffset());
__ LoadFieldFromOffset(result->At(1).reg(), box,
ValueOffset() + compiler::target::kWordSize);
break;
}
case kUnboxedDouble: {
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ LoadDFromOffset(result, box, ValueOffset() - kHeapObjectTag);
break;
}
case kUnboxedFloat: {
// Should only be <= Q7, because >= Q8 cannot be addressed as S register.
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ LoadDFromOffset(result, box, ValueOffset() - kHeapObjectTag);
__ vcvtsd(EvenSRegisterOf(result), result);
break;
}
case kUnboxedFloat32x4:
case kUnboxedFloat64x2:
case kUnboxedInt32x4: {
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ LoadMultipleDFromOffset(result, 2, box,
ValueOffset() - kHeapObjectTag);
break;
}
default:
UNREACHABLE();
break;
}
}
void UnboxInstr::EmitSmiConversion(FlowGraphCompiler* compiler) {
const Register box = locs()->in(0).reg();
switch (representation()) {
case kUnboxedInt64: {
PairLocation* result = locs()->out(0).AsPairLocation();
__ SmiUntag(result->At(0).reg(), box);
__ SignFill(result->At(1).reg(), result->At(0).reg());
break;
}
case kUnboxedDouble: {
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ SmiUntag(IP, box);
__ vmovdr(DTMP, 0, IP);
__ vcvtdi(result, STMP);
break;
}
default:
UNREACHABLE();
break;
}
}
void UnboxInstr::EmitLoadInt32FromBoxOrSmi(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
compiler::Label done;
__ SmiUntag(result, value, &done);
__ LoadFieldFromOffset(result, value, compiler::target::Mint::value_offset());
__ Bind(&done);
}
void UnboxInstr::EmitLoadInt64FromBoxOrSmi(FlowGraphCompiler* compiler) {
const Register box = locs()->in(0).reg();
PairLocation* result = locs()->out(0).AsPairLocation();
ASSERT(result->At(0).reg() != box);
ASSERT(result->At(1).reg() != box);
compiler::Label done;
__ SignFill(result->At(1).reg(), box);
__ SmiUntag(result->At(0).reg(), box, &done);
EmitLoadFromBox(compiler);
__ Bind(&done);
}
LocationSummary* BoxUint8Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT(from_representation() == kUnboxedUint8);
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxUint8Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
__ AndImmediate(out, value, 0xff);
__ SmiTag(out);
}
LocationSummary* BoxInteger32Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((from_representation() == kUnboxedInt32) ||
(from_representation() == kUnboxedUint32));
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = ValueFitsSmi() ? 0 : 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
ValueFitsSmi() ? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
if (!ValueFitsSmi()) {
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register out = locs()->out(0).reg();
ASSERT(value != out);
__ SmiTag(out, value);
if (!ValueFitsSmi()) {
Register temp = locs()->temp(0).reg();
compiler::Label done;
if (from_representation() == kUnboxedInt32) {
__ cmp(value, compiler::Operand(out, ASR, 1));
} else {
ASSERT(from_representation() == kUnboxedUint32);
// Note: better to test upper bits instead of comparing with
// kSmiMax as kSmiMax does not fit into immediate operand.
__ TestImmediate(value, 0xC0000000);
}
__ b(&done, EQ);
BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(), out,
temp);
if (from_representation() == kUnboxedInt32) {
__ Asr(temp, value,
compiler::Operand(compiler::target::kBitsPerWord - 1));
} else {
ASSERT(from_representation() == kUnboxedUint32);
__ eor(temp, temp, compiler::Operand(temp));
}
__ StoreFieldToOffset(value, out, compiler::target::Mint::value_offset());
__ StoreFieldToOffset(
temp, out,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
__ Bind(&done);
}
}
LocationSummary* BoxInt64Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = ValueFitsSmi() ? 0 : 1;
// Shared slow path is used in BoxInt64Instr::EmitNativeCode in
// FLAG_use_bare_instructions mode and only after VM isolate stubs where
// replaced with isolate-specific stubs.
auto object_store = IsolateGroup::Current()->object_store();
const bool stubs_in_vm_isolate =
object_store->allocate_mint_with_fpu_regs_stub()
->untag()
->InVMIsolateHeap() ||
object_store->allocate_mint_without_fpu_regs_stub()
->untag()
->InVMIsolateHeap();
const bool shared_slow_path_call = SlowPathSharingSupported(opt) &&
FLAG_use_bare_instructions &&
!stubs_in_vm_isolate;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
ValueFitsSmi()
? LocationSummary::kNoCall
: ((shared_slow_path_call ? LocationSummary::kCallOnSharedSlowPath
: LocationSummary::kCallOnSlowPath)));
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
if (ValueFitsSmi()) {
summary->set_out(0, Location::RequiresRegister());
} else if (shared_slow_path_call) {
summary->set_out(0,
Location::RegisterLocation(AllocateMintABI::kResultReg));
summary->set_temp(0, Location::RegisterLocation(AllocateMintABI::kTempReg));
} else {
summary->set_out(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
}
return summary;
}
void BoxInt64Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (ValueFitsSmi()) {
PairLocation* value_pair = locs()->in(0).AsPairLocation();
Register value_lo = value_pair->At(0).reg();
Register out_reg = locs()->out(0).reg();
__ SmiTag(out_reg, value_lo);
return;
}
PairLocation* value_pair = locs()->in(0).AsPairLocation();
Register value_lo = value_pair->At(0).reg();
Register value_hi = value_pair->At(1).reg();
Register tmp = locs()->temp(0).reg();
Register out_reg = locs()->out(0).reg();
compiler::Label done;
__ SmiTag(out_reg, value_lo);
__ cmp(value_lo, compiler::Operand(out_reg, ASR, kSmiTagSize));
__ cmp(value_hi, compiler::Operand(out_reg, ASR, 31), EQ);
__ b(&done, EQ);
if (compiler->intrinsic_mode()) {
__ TryAllocate(compiler->mint_class(),
compiler->intrinsic_slow_path_label(), out_reg, tmp);
} else if (locs()->call_on_shared_slow_path()) {
auto object_store = compiler->isolate_group()->object_store();
const bool live_fpu_regs = locs()->live_registers()->FpuRegisterCount() > 0;
const auto& stub = Code::ZoneHandle(
compiler->zone(),
live_fpu_regs ? object_store->allocate_mint_with_fpu_regs_stub()
: object_store->allocate_mint_without_fpu_regs_stub());
ASSERT(!locs()->live_registers()->ContainsRegister(
AllocateMintABI::kResultReg));
auto extended_env = compiler->SlowPathEnvironmentFor(this, 0);
compiler->GenerateStubCall(source(), stub, UntaggedPcDescriptors::kOther,
locs(), DeoptId::kNone, extended_env);
} else {
BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(),
out_reg, tmp);
}
__ StoreFieldToOffset(value_lo, out_reg,
compiler::target::Mint::value_offset());
__ StoreFieldToOffset(
value_hi, out_reg,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
__ Bind(&done);
}
static void LoadInt32FromMint(FlowGraphCompiler* compiler,
Register mint,
Register result,
Register temp,
compiler::Label* deopt) {
__ LoadFieldFromOffset(result, mint, compiler::target::Mint::value_offset());
if (deopt != NULL) {
__ LoadFieldFromOffset(
temp, mint,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
__ cmp(temp,
compiler::Operand(result, ASR, compiler::target::kBitsPerWord - 1));
__ b(deopt, NE);
}
}
LocationSummary* UnboxInteger32Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((representation() == kUnboxedInt32) ||
(representation() == kUnboxedUint32));
ASSERT((representation() != kUnboxedUint32) || is_truncating());
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = CanDeoptimize() ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (kNumTemps > 0) {
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void UnboxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
const Register temp = CanDeoptimize() ? locs()->temp(0).reg() : kNoRegister;
compiler::Label* deopt =
CanDeoptimize()
? compiler->AddDeoptStub(GetDeoptId(), ICData::kDeoptUnboxInteger)
: NULL;
compiler::Label* out_of_range = !is_truncating() ? deopt : NULL;
ASSERT(value != out);
if (value_cid == kSmiCid) {
__ SmiUntag(out, value);
} else if (value_cid == kMintCid) {
LoadInt32FromMint(compiler, value, out, temp, out_of_range);
} else if (!CanDeoptimize()) {
compiler::Label done;
__ SmiUntag(out, value, &done);
LoadInt32FromMint(compiler, value, out, kNoRegister, NULL);
__ Bind(&done);
} else {
compiler::Label done;
__ SmiUntag(out, value, &done);
__ CompareClassId(value, kMintCid, temp);
__ b(deopt, NE);
LoadInt32FromMint(compiler, value, out, temp, out_of_range);
__ Bind(&done);
}
}
LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const DRegister left = EvenDRegisterOf(locs()->in(0).fpu_reg());
const DRegister right = EvenDRegisterOf(locs()->in(1).fpu_reg());
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
switch (op_kind()) {
case Token::kADD:
__ vaddd(result, left, right);
break;
case Token::kSUB:
__ vsubd(result, left, right);
break;
case Token::kMUL:
__ vmuld(result, left, right);
break;
case Token::kDIV:
__ vdivd(result, left, right);
break;
default:
UNREACHABLE();
}
}
LocationSummary* DoubleTestOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps =
(op_kind() == MethodRecognizer::kDouble_getIsInfinite) ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
if (op_kind() == MethodRecognizer::kDouble_getIsInfinite) {
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
Condition DoubleTestOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
const DRegister value = EvenDRegisterOf(locs()->in(0).fpu_reg());
const bool is_negated = kind() != Token::kEQ;
if (op_kind() == MethodRecognizer::kDouble_getIsNaN) {
__ vcmpd(value, value);
__ vmstat();
return is_negated ? VC : VS;
} else {
ASSERT(op_kind() == MethodRecognizer::kDouble_getIsInfinite);
const Register temp = locs()->temp(0).reg();
compiler::Label done;
// TMP <- value[0:31], result <- value[32:63]
__ vmovrrd(TMP, temp, value);
__ cmp(TMP, compiler::Operand(0));
__ b(is_negated ? labels.true_label : labels.false_label, NE);
// Mask off the sign bit.
__ AndImmediate(temp, temp, 0x7FFFFFFF);
// Compare with +infinity.
__ CompareImmediate(temp, 0x7FF00000);
return is_negated ? NE : EQ;
}
}
// SIMD
#define DEFINE_EMIT(Name, Args) \
static void Emit##Name(FlowGraphCompiler* compiler, SimdOpInstr* instr, \
PP_APPLY(PP_UNPACK, Args))
DEFINE_EMIT(Simd32x4BinaryOp,
(QRegister result, QRegister left, QRegister right)) {
switch (instr->kind()) {
case SimdOpInstr::kFloat32x4Add:
__ vaddqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4Sub:
__ vsubqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4Mul:
__ vmulqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4Div:
__ Vdivqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4Equal:
__ vceqqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4NotEqual:
__ vceqqs(result, left, right);
// Invert the result.
__ vmvnq(result, result);
break;
case SimdOpInstr::kFloat32x4GreaterThan:
__ vcgtqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4GreaterThanOrEqual:
__ vcgeqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4LessThan:
__ vcgtqs(result, right, left);
break;
case SimdOpInstr::kFloat32x4LessThanOrEqual:
__ vcgeqs(result, right, left);
break;
case SimdOpInstr::kFloat32x4Min:
__ vminqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4Max:
__ vmaxqs(result, left, right);
break;
case SimdOpInstr::kFloat32x4Scale:
__ vcvtsd(STMP, EvenDRegisterOf(left));
__ vdup(compiler::kFourBytes, result, DTMP, 0);
__ vmulqs(result, result, right);
break;
case SimdOpInstr::kInt32x4BitAnd:
__ vandq(result, left, right);
break;
case SimdOpInstr::kInt32x4BitOr:
__ vorrq(result, left, right);
break;
case SimdOpInstr::kInt32x4BitXor:
__ veorq(result, left, right);
break;
case SimdOpInstr::kInt32x4Add:
__ vaddqi(compiler::kFourBytes, result, left, right);
break;
case SimdOpInstr::kInt32x4Sub:
__ vsubqi(compiler::kFourBytes, result, left, right);
break;
default:
UNREACHABLE();
}
}
DEFINE_EMIT(Float64x2BinaryOp,
(QRegisterView result, QRegisterView left, QRegisterView right)) {
switch (instr->kind()) {
case SimdOpInstr::kFloat64x2Add:
__ vaddd(result.d(0), left.d(0), right.d(0));
__ vaddd(result.d(1), left.d(1), right.d(1));
break;
case SimdOpInstr::kFloat64x2Sub:
__ vsubd(result.d(0), left.d(0), right.d(0));
__ vsubd(result.d(1), left.d(1), right.d(1));
break;
case SimdOpInstr::kFloat64x2Mul:
__ vmuld(result.d(0), left.d(0), right.d(0));
__ vmuld(result.d(1), left.d(1), right.d(1));
break;
case SimdOpInstr::kFloat64x2Div:
__ vdivd(result.d(0), left.d(0), right.d(0));
__ vdivd(result.d(1), left.d(1), right.d(1));
break;
default:
UNREACHABLE();
}
}
// Low (< Q7) Q registers are needed for the vcvtds and vmovs instructions.
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Simd32x4Shuffle,
(FixedQRegisterView<Q6> result, FixedQRegisterView<Q5> value)) {
// For some cases the vdup instruction requires fewer
// instructions. For arbitrary shuffles, use vtbl.
switch (instr->kind()) {
case SimdOpInstr::kFloat32x4ShuffleX:
__ vcvtds(result.d(0), value.s(0));
break;
case SimdOpInstr::kFloat32x4ShuffleY:
__ vcvtds(result.d(0), value.s(1));
break;
case SimdOpInstr::kFloat32x4ShuffleZ:
__ vcvtds(result.d(0), value.s(2));
break;
case SimdOpInstr::kFloat32x4ShuffleW:
__ vcvtds(result.d(0), value.s(3));
break;
case SimdOpInstr::kInt32x4Shuffle:
case SimdOpInstr::kFloat32x4Shuffle: {
if (instr->mask() == 0x00) {
__ vdup(compiler::kFourBytes, result, value.d(0), 0);
} else if (instr->mask() == 0x55) {
__ vdup(compiler::kFourBytes, result, value.d(0), 1);
} else if (instr->mask() == 0xAA) {
__ vdup(compiler::kFourBytes, result, value.d(1), 0);
} else if (instr->mask() == 0xFF) {
__ vdup(compiler::kFourBytes, result, value.d(1), 1);
} else {
// TODO(zra): Investigate better instruction sequences for other
// shuffle masks.
QRegisterView temp(QTMP);
__ vmovq(temp, value);
for (intptr_t i = 0; i < 4; i++) {
__ vmovs(result.s(i), temp.s((instr->mask() >> (2 * i)) & 0x3));
}
}
break;
}
default:
UNREACHABLE();
}
}
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Simd32x4ShuffleMix,
(FixedQRegisterView<Q6> result,
FixedQRegisterView<Q4> left,
FixedQRegisterView<Q5> right)) {
// TODO(zra): Investigate better instruction sequences for shuffle masks.
__ vmovs(result.s(0), left.s((instr->mask() >> 0) & 0x3));
__ vmovs(result.s(1), left.s((instr->mask() >> 2) & 0x3));
__ vmovs(result.s(2), right.s((instr->mask() >> 4) & 0x3));
__ vmovs(result.s(3), right.s((instr->mask() >> 6) & 0x3));
}
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Simd32x4GetSignMask,
(Register out, FixedQRegisterView<Q5> value, Temp<Register> temp)) {
// X lane.
__ vmovrs(out, value.s(0));
__ Lsr(out, out, compiler::Operand(31));
// Y lane.
__ vmovrs(temp, value.s(1));
__ Lsr(temp, temp, compiler::Operand(31));
__ orr(out, out, compiler::Operand(temp, LSL, 1));
// Z lane.
__ vmovrs(temp, value.s(2));
__ Lsr(temp, temp, compiler::Operand(31));
__ orr(out, out, compiler::Operand(temp, LSL, 2));
// W lane.
__ vmovrs(temp, value.s(3));
__ Lsr(temp, temp, compiler::Operand(31));
__ orr(out, out, compiler::Operand(temp, LSL, 3));
}
// Low (< 7) Q registers are needed for the vcvtsd instruction.
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Float32x4FromDoubles,
(FixedQRegisterView<Q6> out,
QRegisterView q0,
QRegisterView q1,
QRegisterView q2,
QRegisterView q3)) {
__ vcvtsd(out.s(0), q0.d(0));
__ vcvtsd(out.s(1), q1.d(0));
__ vcvtsd(out.s(2), q2.d(0));
__ vcvtsd(out.s(3), q3.d(0));
}
DEFINE_EMIT(Float32x4Zero, (QRegister out)) {
__ veorq(out, out, out);
}
DEFINE_EMIT(Float32x4Splat, (QRegister result, QRegisterView value)) {
// Convert to Float32.
__ vcvtsd(STMP, value.d(0));
// Splat across all lanes.
__ vdup(compiler::kFourBytes, result, DTMP, 0);
}
DEFINE_EMIT(Float32x4Sqrt,
(QRegister result, QRegister left, Temp<QRegister> temp)) {
__ Vsqrtqs(result, left, temp);
}
DEFINE_EMIT(Float32x4Unary, (QRegister result, QRegister left)) {
switch (instr->kind()) {
case SimdOpInstr::kFloat32x4Negate:
__ vnegqs(result, left);
break;
case SimdOpInstr::kFloat32x4Abs:
__ vabsqs(result, left);
break;
case SimdOpInstr::kFloat32x4Reciprocal:
__ Vreciprocalqs(result, left);
break;
case SimdOpInstr::kFloat32x4ReciprocalSqrt:
__ VreciprocalSqrtqs(result, left);
break;
default:
UNREACHABLE();
}
}
DEFINE_EMIT(Simd32x4ToSimd32x4Convertion, (SameAsFirstInput, QRegister left)) {
// TODO(dartbug.com/30949) these operations are essentially nop and should
// not generate any code. They should be removed from the graph before
// code generation.
}
DEFINE_EMIT(
Float32x4Clamp,
(QRegister result, QRegister left, QRegister lower, QRegister upper)) {
__ vminqs(result, left, upper);
__ vmaxqs(result, result, lower);
}
// Low (< 7) Q registers are needed for the vmovs instruction.
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Float32x4With,
(FixedQRegisterView<Q6> result,
QRegisterView replacement,
QRegister value)) {
__ vcvtsd(STMP, replacement.d(0));
__ vmovq(result, value);
switch (instr->kind()) {
case SimdOpInstr::kFloat32x4WithX:
__ vmovs(result.s(0), STMP);
break;
case SimdOpInstr::kFloat32x4WithY:
__ vmovs(result.s(1), STMP);
break;
case SimdOpInstr::kFloat32x4WithZ:
__ vmovs(result.s(2), STMP);
break;
case SimdOpInstr::kFloat32x4WithW:
__ vmovs(result.s(3), STMP);
break;
default:
UNREACHABLE();
}
}
DEFINE_EMIT(Simd64x2Shuffle, (QRegisterView result, QRegisterView value)) {
switch (instr->kind()) {
case SimdOpInstr::kFloat64x2GetX:
__ vmovd(result.d(0), value.d(0));
break;
case SimdOpInstr::kFloat64x2GetY:
__ vmovd(result.d(0), value.d(1));
break;
default:
UNREACHABLE();
}
}
DEFINE_EMIT(Float64x2Zero, (QRegister q)) {
__ veorq(q, q, q);
}
DEFINE_EMIT(Float64x2Splat, (QRegisterView result, QRegisterView value)) {
// Splat across all lanes.
__ vmovd(result.d(0), value.d(0));
__ vmovd(result.d(1), value.d(0));
}
DEFINE_EMIT(Float64x2FromDoubles,
(QRegisterView r, QRegisterView q0, QRegisterView q1)) {
__ vmovd(r.d(0), q0.d(0));
__ vmovd(r.d(1), q1.d(0));
}
// Low (< 7) Q registers are needed for the vcvtsd instruction.
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Float64x2ToFloat32x4, (FixedQRegisterView<Q6> r, QRegisterView q)) {
__ veorq(r, r, r);
// Set X lane.
__ vcvtsd(r.s(0), q.d(0));
// Set Y lane.
__ vcvtsd(r.s(1), q.d(1));
}
// Low (< 7) Q registers are needed for the vcvtds instruction.
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Float32x4ToFloat64x2, (QRegisterView r, FixedQRegisterView<Q6> q)) {
// Set X.
__ vcvtds(r.d(0), q.s(0));
// Set Y.
__ vcvtds(r.d(1), q.s(1));
}
// Grabbing the S components means we need a low (< 7) Q.
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Float64x2GetSignMask,
(Register out, FixedQRegisterView<Q6> value)) {
// Upper 32-bits of X lane.
__ vmovrs(out, value.s(1));
__ Lsr(out, out, compiler::Operand(31));
// Upper 32-bits of Y lane.
__ vmovrs(TMP, value.s(3));
__ Lsr(TMP, TMP, compiler::Operand(31));
__ orr(out, out, compiler::Operand(TMP, LSL, 1));
}
DEFINE_EMIT(Float64x2Unary, (QRegisterView result, QRegisterView value)) {
switch (instr->kind()) {
case SimdOpInstr::kFloat64x2Negate:
__ vnegd(result.d(0), value.d(0));
__ vnegd(result.d(1), value.d(1));
break;
case SimdOpInstr::kFloat64x2Abs:
__ vabsd(result.d(0), value.d(0));
__ vabsd(result.d(1), value.d(1));
break;
case SimdOpInstr::kFloat64x2Sqrt:
__ vsqrtd(result.d(0), value.d(0));
__ vsqrtd(result.d(1), value.d(1));
break;
default:
UNREACHABLE();
}
}
DEFINE_EMIT(Float64x2Binary,
(SameAsFirstInput, QRegisterView left, QRegisterView right)) {
switch (instr->kind()) {
case SimdOpInstr::kFloat64x2Scale:
__ vmuld(left.d(0), left.d(0), right.d(0));
__ vmuld(left.d(1), left.d(1), right.d(0));
break;
case SimdOpInstr::kFloat64x2WithX:
__ vmovd(left.d(0), right.d(0));
break;
case SimdOpInstr::kFloat64x2WithY:
__ vmovd(left.d(1), right.d(0));
break;
case SimdOpInstr::kFloat64x2Min: {
// X lane.
__ vcmpd(left.d(0), right.d(0));
__ vmstat();
__ vmovd(left.d(0), right.d(0), GE);
// Y lane.
__ vcmpd(left.d(1), right.d(1));
__ vmstat();
__ vmovd(left.d(1), right.d(1), GE);
break;
}
case SimdOpInstr::kFloat64x2Max: {
// X lane.
__ vcmpd(left.d(0), right.d(0));
__ vmstat();
__ vmovd(left.d(0), right.d(0), LE);
// Y lane.
__ vcmpd(left.d(1), right.d(1));
__ vmstat();
__ vmovd(left.d(1), right.d(1), LE);
break;
}
default:
UNREACHABLE();
}
}
DEFINE_EMIT(Int32x4FromInts,
(QRegisterView result,
Register v0,
Register v1,
Register v2,
Register v3)) {
__ veorq(result, result, result);
__ vmovdrr(result.d(0), v0, v1);
__ vmovdrr(result.d(1), v2, v3);
}
DEFINE_EMIT(Int32x4FromBools,
(QRegisterView result,
Register v0,
Register v1,
Register v2,
Register v3,
Temp<Register> temp)) {
__ veorq(result, result, result);
__ LoadImmediate(temp, 0xffffffff);
__ LoadObject(IP, Bool::True());
__ cmp(v0, compiler::Operand(IP));
__ vmovdr(result.d(0), 0, temp, EQ);
__ cmp(v1, compiler::Operand(IP));
__ vmovdr(result.d(0), 1, temp, EQ);
__ cmp(v2, compiler::Operand(IP));
__ vmovdr(result.d(1), 0, temp, EQ);
__ cmp(v3, compiler::Operand(IP));
__ vmovdr(result.d(1), 1, temp, EQ);
}
// Low (< 7) Q registers are needed for the vmovrs instruction.
// TODO(dartbug.com/30953) support register range constraints in the regalloc.
DEFINE_EMIT(Int32x4GetFlag, (Register result, FixedQRegisterView<Q6> value)) {
switch (instr->kind()) {
case SimdOpInstr::kInt32x4GetFlagX:
__ vmovrs(result, value.s(0));
break;
case SimdOpInstr::kInt32x4GetFlagY:
__ vmovrs(result, value.s(1));
break;
case SimdOpInstr::kInt32x4GetFlagZ:
__ vmovrs(result, value.s(2));
break;
case SimdOpInstr::kInt32x4GetFlagW:
__ vmovrs(result, value.s(3));
break;
default:
UNREACHABLE();
}
__ tst(result, compiler::Operand(result));
__ LoadObject(result, Bool::True(), NE);
__ LoadObject(result, Bool::False(), EQ);
}
DEFINE_EMIT(Int32x4Select,
(QRegister out,
QRegister mask,
QRegister trueValue,
QRegister falseValue,
Temp<QRegister> temp)) {
// Copy mask.
__ vmovq(temp, mask);
// Invert it.
__ vmvnq(temp, temp);
// mask = mask & trueValue.
__ vandq(mask, mask, trueValue);
// temp = temp & falseValue.
__ vandq(temp, temp, falseValue);
// out = mask | temp.
__ vorrq(out, mask, temp);
}
DEFINE_EMIT(Int32x4WithFlag,
(QRegisterView result, QRegister mask, Register flag)) {
__ vmovq(result, mask);
__ CompareObject(flag, Bool::True());
__ LoadImmediate(TMP, 0xffffffff, EQ);
__ LoadImmediate(TMP, 0, NE);
switch (instr->kind()) {
case SimdOpInstr::kInt32x4WithFlagX:
__ vmovdr(result.d(0), 0, TMP);
break;
case SimdOpInstr::kInt32x4WithFlagY:
__ vmovdr(result.d(0), 1, TMP);
break;
case SimdOpInstr::kInt32x4WithFlagZ:
__ vmovdr(result.d(1), 0, TMP);
break;
case SimdOpInstr::kInt32x4WithFlagW:
__ vmovdr(result.d(1), 1, TMP);
break;
default:
UNREACHABLE();
}
}
// Map SimdOpInstr::Kind-s to corresponding emit functions. Uses the following
// format:
//
// CASE(OpA) CASE(OpB) ____(Emitter) - Emitter is used to emit OpA and OpB.
// SIMPLE(OpA) - Emitter with name OpA is used to emit OpA.
//
#define SIMD_OP_VARIANTS(CASE, ____, SIMPLE) \
CASE(Float32x4Add) \
CASE(Float32x4Sub) \
CASE(Float32x4Mul) \
CASE(Float32x4Div) \
CASE(Float32x4Equal) \
CASE(Float32x4NotEqual) \
CASE(Float32x4GreaterThan) \
CASE(Float32x4GreaterThanOrEqual) \
CASE(Float32x4LessThan) \
CASE(Float32x4LessThanOrEqual) \
CASE(Float32x4Min) \
CASE(Float32x4Max) \
CASE(Float32x4Scale) \
CASE(Int32x4BitAnd) \
CASE(Int32x4BitOr) \
CASE(Int32x4BitXor) \
CASE(Int32x4Add) \
CASE(Int32x4Sub) \
____(Simd32x4BinaryOp) \
CASE(Float64x2Add) \
CASE(Float64x2Sub) \
CASE(Float64x2Mul) \
CASE(Float64x2Div) \
____(Float64x2BinaryOp) \
CASE(Float32x4ShuffleX) \
CASE(Float32x4ShuffleY) \
CASE(Float32x4ShuffleZ) \
CASE(Float32x4ShuffleW) \
CASE(Int32x4Shuffle) \
CASE(Float32x4Shuffle) \
____(Simd32x4Shuffle) \
CASE(Float32x4ShuffleMix) \
CASE(Int32x4ShuffleMix) \
____(Simd32x4ShuffleMix) \
CASE(Float32x4GetSignMask) \
CASE(Int32x4GetSignMask) \
____(Simd32x4GetSignMask) \
SIMPLE(Float32x4FromDoubles) \
SIMPLE(Float32x4Zero) \
SIMPLE(Float32x4Splat) \
SIMPLE(Float32x4Sqrt) \
CASE(Float32x4Negate) \
CASE(Float32x4Abs) \
CASE(Float32x4Reciprocal) \
CASE(Float32x4ReciprocalSqrt) \
____(Float32x4Unary) \
CASE(Float32x4ToInt32x4) \
CASE(Int32x4ToFloat32x4) \
____(Simd32x4ToSimd32x4Convertion) \
SIMPLE(Float32x4Clamp) \
CASE(Float32x4WithX) \
CASE(Float32x4WithY) \
CASE(Float32x4WithZ) \
CASE(Float32x4WithW) \
____(Float32x4With) \
CASE(Float64x2GetX) \
CASE(Float64x2GetY) \
____(Simd64x2Shuffle) \
SIMPLE(Float64x2Zero) \
SIMPLE(Float64x2Splat) \
SIMPLE(Float64x2FromDoubles) \
SIMPLE(Float64x2ToFloat32x4) \
SIMPLE(Float32x4ToFloat64x2) \
SIMPLE(Float64x2GetSignMask) \
CASE(Float64x2Negate) \
CASE(Float64x2Abs) \
CASE(Float64x2Sqrt) \
____(Float64x2Unary) \
CASE(Float64x2Scale) \
CASE(Float64x2WithX) \
CASE(Float64x2WithY) \
CASE(Float64x2Min) \
CASE(Float64x2Max) \
____(Float64x2Binary) \
SIMPLE(Int32x4FromInts) \
SIMPLE(Int32x4FromBools) \
CASE(Int32x4GetFlagX) \
CASE(Int32x4GetFlagY) \
CASE(Int32x4GetFlagZ) \
CASE(Int32x4GetFlagW) \
____(Int32x4GetFlag) \
SIMPLE(Int32x4Select) \
CASE(Int32x4WithFlagX) \
CASE(Int32x4WithFlagY) \
CASE(Int32x4WithFlagZ) \
CASE(Int32x4WithFlagW) \
____(Int32x4WithFlag)
LocationSummary* SimdOpInstr::MakeLocationSummary(Zone* zone, bool opt) const {
switch (kind()) {
#define CASE(Name) case k##Name:
#define EMIT(Name) \
return MakeLocationSummaryFromEmitter(zone, this, &Emit##Name);
#define SIMPLE(Name) CASE(Name) EMIT(Name)
SIMD_OP_VARIANTS(CASE, EMIT, SIMPLE)
#undef CASE
#undef EMIT
#undef SIMPLE
case kIllegalSimdOp:
UNREACHABLE();
break;
}
UNREACHABLE();
return NULL;
}
void SimdOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
switch (kind()) {
#define CASE(Name) case k##Name:
#define EMIT(Name) \
InvokeEmitter(compiler, this, &Emit##Name); \
break;
#define SIMPLE(Name) CASE(Name) EMIT(Name)
SIMD_OP_VARIANTS(CASE, EMIT, SIMPLE)
#undef CASE
#undef EMIT
#undef SIMPLE
case kIllegalSimdOp:
UNREACHABLE();
break;
}
}
#undef DEFINE_EMIT
LocationSummary* MathUnaryInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((kind() == MathUnaryInstr::kSqrt) ||
(kind() == MathUnaryInstr::kDoubleSquare));
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void MathUnaryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (kind() == MathUnaryInstr::kSqrt) {
const DRegister val = EvenDRegisterOf(locs()->in(0).fpu_reg());
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ vsqrtd(result, val);
} else if (kind() == MathUnaryInstr::kDoubleSquare) {
const DRegister val = EvenDRegisterOf(locs()->in(0).fpu_reg());
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ vmuld(result, val, val);
} else {
UNREACHABLE();
}
}
LocationSummary* CaseInsensitiveCompareInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0));
summary->set_in(1, Location::RegisterLocation(R1));
summary->set_in(2, Location::RegisterLocation(R2));
summary->set_in(3, Location::RegisterLocation(R3));
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void CaseInsensitiveCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Call the function.
__ CallRuntime(TargetFunction(), TargetFunction().argument_count());
}
LocationSummary* MathMinMaxInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
if (result_cid() == kDoubleCid) {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(0, Location::SameAsFirstInput());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
ASSERT(result_cid() == kSmiCid);
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void MathMinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((op_kind() == MethodRecognizer::kMathMin) ||
(op_kind() == MethodRecognizer::kMathMax));
const intptr_t is_min = (op_kind() == MethodRecognizer::kMathMin);
if (result_cid() == kDoubleCid) {
compiler::Label done, returns_nan, are_equal;
const DRegister left = EvenDRegisterOf(locs()->in(0).fpu_reg());
const DRegister right = EvenDRegisterOf(locs()->in(1).fpu_reg());
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
const Register temp = locs()->temp(0).reg();
__ vcmpd(left, right);
__ vmstat();
__ b(&returns_nan, VS);
__ b(&are_equal, EQ);
const Condition neg_double_condition =
is_min ? TokenKindToDoubleCondition(Token::kGTE)
: TokenKindToDoubleCondition(Token::kLTE);
ASSERT(left == result);
__ vmovd(result, right, neg_double_condition);
__ b(&done);
__ Bind(&returns_nan);
__ LoadDImmediate(result, NAN, temp);
__ b(&done);
__ Bind(&are_equal);
// Check for negative zero: -0.0 is equal 0.0 but min or max must return
// -0.0 or 0.0 respectively.
// Check for negative left value (get the sign bit):
// - min -> left is negative ? left : right.
// - max -> left is negative ? right : left
// Check the sign bit.
__ vmovrrd(IP, temp, left); // Sign bit is in bit 31 of temp.
__ cmp(temp, compiler::Operand(0));
if (is_min) {
ASSERT(left == result);
__ vmovd(result, right, GE);
} else {
__ vmovd(result, right, LT);
ASSERT(left == result);
}
__ Bind(&done);
return;
}
ASSERT(result_cid() == kSmiCid);
const Register left = locs()->in(0).reg();
const Register right = locs()->in(1).reg();
const Register result = locs()->out(0).reg();
__ cmp(left, compiler::Operand(right));
ASSERT(result == left);
if (is_min) {
__ mov(result, compiler::Operand(right), GT);
} else {
__ mov(result, compiler::Operand(right), LT);
}
}
LocationSummary* UnarySmiOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We make use of 3-operand instructions by not requiring result register
// to be identical to first input register as on Intel.
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
switch (op_kind()) {
case Token::kNEGATE: {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnaryOp);
__ rsbs(result, value, compiler::Operand(0));
__ b(deopt, VS);
break;
}
case Token::kBIT_NOT:
__ mvn(result, compiler::Operand(value));
// Remove inverted smi-tag.
__ bic(result, result, compiler::Operand(kSmiTagMask));
break;
default:
UNREACHABLE();
}
}
LocationSummary* UnaryDoubleOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void UnaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
const DRegister value = EvenDRegisterOf(locs()->in(0).fpu_reg());
__ vnegd(result, value);
}
LocationSummary* Int32ToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void Int32ToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ vmovdr(DTMP, 0, value);
__ vcvtdi(result, STMP);
}
LocationSummary* SmiToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ SmiUntag(IP, value);
__ vmovdr(DTMP, 0, IP);
__ vcvtdi(result, STMP);
}
LocationSummary* Int64ToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
UNIMPLEMENTED();
return NULL;
}
void Int64ToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* DoubleToIntegerInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::RegisterLocation(R1));
result->set_out(0, Location::RegisterLocation(R0));
return result;
}
void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
const Register value_obj = locs()->in(0).reg();
ASSERT(result == R0);
ASSERT(result != value_obj);
__ LoadDFromOffset(DTMP, value_obj,
compiler::target::Double::value_offset() - kHeapObjectTag);
compiler::Label done, do_call;
// First check for NaN. Checking for minint after the conversion doesn't work
// on ARM because vcvtid gives 0 for NaN.
__ vcmpd(DTMP, DTMP);
__ vmstat();
__ b(&do_call, VS);
__ vcvtid(STMP, DTMP);
__ vmovrs(result, STMP);
// Overflow is signaled with minint.
// Check for overflow and that it fits into Smi.
__ CompareImmediate(result, 0xC0000000);
__ SmiTag(result, PL);
__ b(&done, PL);
__ Bind(&do_call);
__ Push(value_obj);
ASSERT(instance_call()->HasICData());
const ICData& ic_data = *instance_call()->ic_data();
ASSERT(ic_data.NumberOfChecksIs(1));
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(0));
const int kTypeArgsLen = 0;
const int kNumberOfArguments = 1;
constexpr int kSizeOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kSizeOfArguments,
kNoArgumentNames);
compiler->GenerateStaticCall(deopt_id(), instance_call()->source(), target,
args_info, locs(), ICData::Handle(),
ICData::kStatic);
__ Bind(&done);
}
LocationSummary* DoubleToSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresRegister());
return result;
}
void DoubleToSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptDoubleToSmi);
const Register result = locs()->out(0).reg();
const DRegister value = EvenDRegisterOf(locs()->in(0).fpu_reg());
// First check for NaN. Checking for minint after the conversion doesn't work
// on ARM because vcvtid gives 0 for NaN.
__ vcmpd(value, value);
__ vmstat();
__ b(deopt, VS);
__ vcvtid(STMP, value);
__ vmovrs(result, STMP);
// Check for overflow and that it fits into Smi.
__ CompareImmediate(result, 0xC0000000);
__ b(deopt, MI);
__ SmiTag(result);
}
LocationSummary* DoubleToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
UNIMPLEMENTED();
return NULL;
}
void DoubleToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* DoubleToFloatInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Low (< Q7) Q registers are needed for the conversion instructions.
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::FpuRegisterLocation(Q6));
return result;
}
void DoubleToFloatInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const DRegister value = EvenDRegisterOf(locs()->in(0).fpu_reg());
const SRegister result =
EvenSRegisterOf(EvenDRegisterOf(locs()->out(0).fpu_reg()));
__ vcvtsd(result, value);
}
LocationSummary* FloatToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Low (< Q7) Q registers are needed for the conversion instructions.
result->set_in(0, Location::FpuRegisterLocation(Q6));
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void FloatToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const SRegister value =
EvenSRegisterOf(EvenDRegisterOf(locs()->in(0).fpu_reg()));
const DRegister result = EvenDRegisterOf(locs()->out(0).fpu_reg());
__ vcvtds(result, value);
}
LocationSummary* InvokeMathCFunctionInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((InputCount() == 1) || (InputCount() == 2));
const intptr_t kNumTemps =
(TargetCPUFeatures::hardfp_supported())
? ((recognized_kind() == MethodRecognizer::kMathDoublePow) ? 1 : 0)
: 4;
LocationSummary* result = new (zone)
LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::FpuRegisterLocation(Q0));
if (InputCount() == 2) {
result->set_in(1, Location::FpuRegisterLocation(Q1));
}
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
result->set_temp(0, Location::RegisterLocation(R2));
if (!TargetCPUFeatures::hardfp_supported()) {
result->set_temp(1, Location::RegisterLocation(R0));
result->set_temp(2, Location::RegisterLocation(R1));
result->set_temp(3, Location::RegisterLocation(R3));
}
} else if (!TargetCPUFeatures::hardfp_supported()) {
result->set_temp(0, Location::RegisterLocation(R0));
result->set_temp(1, Location::RegisterLocation(R1));
result->set_temp(2, Location::RegisterLocation(R2));
result->set_temp(3, Location::RegisterLocation(R3));
}
result->set_out(0, Location::FpuRegisterLocation(Q0));
return result;
}
// Pseudo code:
// if (exponent == 0.0) return 1.0;
// // Speed up simple cases.
// if (exponent == 1.0) return base;
// if (exponent == 2.0) return base * base;
// if (exponent == 3.0) return base * base * base;
// if (base == 1.0) return 1.0;
// if (base.isNaN || exponent.isNaN) {
// return double.NAN;
// }
// if (base != -Infinity && exponent == 0.5) {
// if (base == 0.0) return 0.0;
// return sqrt(value);
// }
// TODO(srdjan): Move into a stub?
static void InvokeDoublePow(FlowGraphCompiler* compiler,
InvokeMathCFunctionInstr* instr) {
ASSERT(instr->recognized_kind() == MethodRecognizer::kMathDoublePow);
const intptr_t kInputCount = 2;
ASSERT(instr->InputCount() == kInputCount);
LocationSummary* locs = instr->locs();
const DRegister base = EvenDRegisterOf(locs->in(0).fpu_reg());
const DRegister exp = EvenDRegisterOf(locs->in(1).fpu_reg());
const DRegister result = EvenDRegisterOf(locs->out(0).fpu_reg());
const Register temp = locs->temp(0).reg();
const DRegister saved_base = OddDRegisterOf(locs->in(0).fpu_reg());
ASSERT((base == result) && (result != saved_base));
compiler::Label skip_call, try_sqrt, check_base, return_nan;
__ vmovd(saved_base, base);
__ LoadDImmediate(result, 1.0, temp);
// exponent == 0.0 -> return 1.0;
__ vcmpdz(exp);
__ vmstat();
__ b(&check_base, VS); // NaN -> check base.
__ b(&skip_call, EQ); // exp is 0.0, result is 1.0.
// exponent == 1.0 ?
__ vcmpd(exp, result);
__ vmstat();
compiler::Label return_base;
__ b(&return_base, EQ);
// exponent == 2.0 ?
__ LoadDImmediate(DTMP, 2.0, temp);
__ vcmpd(exp, DTMP);
__ vmstat();
compiler::Label return_base_times_2;
__ b(&return_base_times_2, EQ);
// exponent == 3.0 ?
__ LoadDImmediate(DTMP, 3.0, temp);
__ vcmpd(exp, DTMP);
__ vmstat();
__ b(&check_base, NE);
// base_times_3.
__ vmuld(result, saved_base, saved_base);
__ vmuld(result, result, saved_base);
__ b(&skip_call);
__ Bind(&return_base);
__ vmovd(result, saved_base);
__ b(&skip_call);
__ Bind(&return_base_times_2);
__ vmuld(result, saved_base, saved_base);
__ b(&skip_call);
__ Bind(&check_base);
// Note: 'exp' could be NaN.
// base == 1.0 -> return 1.0;
__ vcmpd(saved_base, result);
__ vmstat();
__ b(&return_nan, VS);
__ b(&skip_call, EQ); // base is 1.0, result is 1.0.
__ vcmpd(saved_base, exp);
__ vmstat();
__ b(&try_sqrt, VC); // // Neither 'exp' nor 'base' is NaN.
__ Bind(&return_nan);
__ LoadDImmediate(result, NAN, temp);
__ b(&skip_call);
compiler::Label do_pow, return_zero;
__ Bind(&try_sqrt);
// Before calling pow, check if we could use sqrt instead of pow.
__ LoadDImmediate(result, kNegInfinity, temp);
// base == -Infinity -> call pow;
__ vcmpd(saved_base, result);
__ vmstat();
__ b(&do_pow, EQ);
// exponent == 0.5 ?
__ LoadDImmediate(result, 0.5, temp);
__ vcmpd(exp, result);
__ vmstat();
__ b(&do_pow, NE);
// base == 0 -> return 0;
__ vcmpdz(saved_base);
__ vmstat();
__ b(&return_zero, EQ);
__ vsqrtd(result, saved_base);
__ b(&skip_call);
__ Bind(&return_zero);
__ LoadDImmediate(result, 0.0, temp);
__ b(&skip_call);
__ Bind(&do_pow);
__ vmovd(base, saved_base); // Restore base.
// Args must be in D0 and D1, so move arg from Q1(== D3:D2) to D1.
__ vmovd(D1, D2);
if (TargetCPUFeatures::hardfp_supported()) {
__ CallRuntime(instr->TargetFunction(), kInputCount);
} else {
// If the ABI is not "hardfp", then we have to move the double arguments
// to the integer registers, and take the results from the integer
// registers.
__ vmovrrd(R0, R1, D0);
__ vmovrrd(R2, R3, D1);
__ CallRuntime(instr->TargetFunction(), kInputCount);
__ vmovdrr(D0, R0, R1);
__ vmovdrr(D1, R2, R3);
}
__ Bind(&skip_call);
}
void InvokeMathCFunctionInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
InvokeDoublePow(compiler, this);
return;
}
if (InputCount() == 2) {
// Args must be in D0 and D1, so move arg from Q1(== D3:D2) to D1.
__ vmovd(D1, D2);
}
if (TargetCPUFeatures::hardfp_supported()) {
__ CallRuntime(TargetFunction(), InputCount());
} else {
// If the ABI is not "hardfp", then we have to move the double arguments
// to the integer registers, and take the results from the integer
// registers.
__ vmovrrd(R0, R1, D0);
__ vmovrrd(R2, R3, D1);
__ CallRuntime(TargetFunction(), InputCount());
__ vmovdrr(D0, R0, R1);
__ vmovdrr(D1, R2, R3);
}
}
LocationSummary* ExtractNthOutputInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
// Only use this instruction in optimized code.
ASSERT(opt);
const intptr_t kNumInputs = 1;
LocationSummary* summary =
new (zone) LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall);
if (representation() == kUnboxedDouble) {
if (index() == 0) {
summary->set_in(
0, Location::Pair(Location::RequiresFpuRegister(), Location::Any()));
} else {
ASSERT(index() == 1);
summary->set_in(
0, Location::Pair(Location::Any(), Location::RequiresFpuRegister()));
}
summary->set_out(0, Location::RequiresFpuRegister());
} else {
ASSERT(representation() == kTagged);
if (index() == 0) {
summary->set_in(
0, Location::Pair(Location::RequiresRegister(), Location::Any()));
} else {
ASSERT(index() == 1);
summary->set_in(
0, Location::Pair(Location::Any(), Location::RequiresRegister()));
}
summary->set_out(0, Location::RequiresRegister());
}
return summary;
}
void ExtractNthOutputInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).IsPairLocation());
PairLocation* pair = locs()->in(0).AsPairLocation();
Location in_loc = pair->At(index());
if (representation() == kUnboxedDouble) {
const QRegister out = locs()->out(0).fpu_reg();
const QRegister in = in_loc.fpu_reg();
__ vmovq(out, in);
} else {
ASSERT(representation() == kTagged);
const Register out = locs()->out(0).reg();
const Register in = in_loc.reg();
__ mov(out, compiler::Operand(in));
}
}
LocationSummary* TruncDivModInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 2;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
// Request register that overlaps with S0..S31.
summary->set_temp(1, Location::FpuRegisterLocation(Q0));
// Output is a pair of registers.
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
return summary;
}
void TruncDivModInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(CanDeoptimize());
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
ASSERT(TargetCPUFeatures::can_divide());
const Register left = locs()->in(0).reg();
const Register right = locs()->in(1).reg();
ASSERT(locs()->out(0).IsPairLocation());
PairLocation* pair = locs()->out(0).AsPairLocation();
const Register result_div = pair->At(0).reg();
const Register result_mod = pair->At(1).reg();
if (RangeUtils::CanBeZero(divisor_range())) {
// Handle divide by zero in runtime.
__ cmp(right, compiler::Operand(0));
__ b(deopt, EQ);
}
const Register temp = locs()->temp(0).reg();
const DRegister dtemp = EvenDRegisterOf(locs()->temp(1).fpu_reg());
__ SmiUntag(temp, left);
__ SmiUntag(IP, right);
__ IntegerDivide(result_div, temp, IP, dtemp, DTMP);
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ CompareImmediate(result_div, 0x40000000);
__ b(deopt, EQ);
__ SmiUntag(IP, right);
// result_mod <- left - right * result_div.
__ mls(result_mod, IP, result_div, temp);
__ SmiTag(result_div);
__ SmiTag(result_mod);
// Correct MOD result:
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
compiler::Label done;
__ cmp(result_mod, compiler::Operand(0));
__ b(&done, GE);
// Result is negative, adjust it.
__ cmp(right, compiler::Operand(0));
__ sub(result_mod, result_mod, compiler::Operand(right), LT);
__ add(result_mod, result_mod, compiler::Operand(right), GE);
__ Bind(&done);
}
LocationSummary* BranchInstr::MakeLocationSummary(Zone* zone, bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
// Branches don't produce a result.
comparison()->locs()->set_out(0, Location::NoLocation());
return comparison()->locs();
}
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
comparison()->EmitBranchCode(compiler, this);
}
LocationSummary* CheckClassInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const bool need_mask_temp = IsBitTest();
const intptr_t kNumTemps = !IsNullCheck() ? (need_mask_temp ? 2 : 1) : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (!IsNullCheck()) {
summary->set_temp(0, Location::RequiresRegister());
if (need_mask_temp) {
summary->set_temp(1, Location::RequiresRegister());
}
}
return summary;
}
void CheckClassInstr::EmitNullCheck(FlowGraphCompiler* compiler,
compiler::Label* deopt) {
__ CompareObject(locs()->in(0).reg(), Object::null_object());
ASSERT(IsDeoptIfNull() || IsDeoptIfNotNull());
Condition cond = IsDeoptIfNull() ? EQ : NE;
__ b(deopt, cond);
}
void CheckClassInstr::EmitBitTest(FlowGraphCompiler* compiler,
intptr_t min,
intptr_t max,
intptr_t mask,
compiler::Label* deopt) {
Register biased_cid = locs()->temp(0).reg();
__ AddImmediate(biased_cid, -min);
__ CompareImmediate(biased_cid, max - min);
__ b(deopt, HI);
Register bit_reg = locs()->temp(1).reg();
__ LoadImmediate(bit_reg, 1);
__ Lsl(bit_reg, bit_reg, biased_cid);
__ TestImmediate(bit_reg, mask);
__ b(deopt, EQ);
}
int CheckClassInstr::EmitCheckCid(FlowGraphCompiler* compiler,
int bias,
intptr_t cid_start,
intptr_t cid_end,
bool is_last,
compiler::Label* is_ok,
compiler::Label* deopt,
bool use_near_jump) {
Register biased_cid = locs()->temp(0).reg();
Condition no_match, match;
if (cid_start == cid_end) {
__ CompareImmediate(biased_cid, cid_start - bias);
no_match = NE;
match = EQ;
} else {
// For class ID ranges use a subtract followed by an unsigned
// comparison to check both ends of the ranges with one comparison.
__ AddImmediate(biased_cid, bias - cid_start);
bias = cid_start;
__ CompareImmediate(biased_cid, cid_end - cid_start);
no_match = HI; // Unsigned higher.
match = LS; // Unsigned lower or same.
}
if (is_last) {
__ b(deopt, no_match);
} else {
__ b(is_ok, match);
}
return bias;
}
LocationSummary* CheckSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
compiler::Label* deopt = compiler->AddDeoptStub(
deopt_id(), ICData::kDeoptCheckSmi, licm_hoisted_ ? ICData::kHoisted : 0);
__ BranchIfNotSmi(value, deopt);
}
void CheckNullInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value_reg = locs()->in(0).reg();
// TODO(dartbug.com/30480): Consider passing `null` literal as an argument
// in order to be able to allocate it on register.
__ CompareObject(value_reg, Object::null_object());
const bool live_fpu_regs = locs()->live_registers()->FpuRegisterCount() > 0;
Code& stub = Code::ZoneHandle(
compiler->zone(),
NullErrorSlowPath::GetStub(compiler, exception_type(), live_fpu_regs));
const bool using_shared_stub = locs()->call_on_shared_slow_path();
if (using_shared_stub && compiler->CanPcRelativeCall(stub)) {
__ GenerateUnRelocatedPcRelativeCall(EQUAL);
compiler->AddPcRelativeCallStubTarget(stub);
// We use the "extended" environment which has the locations updated to
// reflect live registers being saved in the shared spilling stubs (see
// the stub above).
auto extended_env = compiler->SlowPathEnvironmentFor(this, 0);
compiler->EmitCallsiteMetadata(source(), deopt_id(),
UntaggedPcDescriptors::kOther, locs(),
extended_env);
CheckNullInstr::AddMetadataForRuntimeCall(this, compiler);
return;
}
ThrowErrorSlowPathCode* slow_path =
new NullErrorSlowPath(this, compiler->CurrentTryIndex());
compiler->AddSlowPathCode(slow_path);
__ BranchIf(EQUAL, slow_path->entry_label());
}
LocationSummary* CheckClassIdInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, cids_.IsSingleCid() ? Location::RequiresRegister()
: Location::WritableRegister());
return summary;
}
void CheckClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckClass);
if (cids_.IsSingleCid()) {
__ CompareImmediate(value, compiler::target::ToRawSmi(cids_.cid_start));
__ b(deopt, NE);
} else {
__ AddImmediate(value, -compiler::target::ToRawSmi(cids_.cid_start));
__ CompareImmediate(value, compiler::target::ToRawSmi(cids_.Extent()));
__ b(deopt, HI); // Unsigned higher.
}
}
LocationSummary* CheckArrayBoundInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(kLengthPos, LocationRegisterOrSmiConstant(length()));
locs->set_in(kIndexPos, LocationRegisterOrSmiConstant(index()));
return locs;
}
void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
uint32_t flags = generalized_ ? ICData::kGeneralized : 0;
flags |= licm_hoisted_ ? ICData::kHoisted : 0;
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckArrayBound, flags);
Location length_loc = locs()->in(kLengthPos);
Location index_loc = locs()->in(kIndexPos);
if (length_loc.IsConstant() && index_loc.IsConstant()) {
#ifdef DEBUG
const int32_t length = compiler::target::SmiValue(length_loc.constant());
const int32_t index = compiler::target::SmiValue(index_loc.constant());
ASSERT((length <= index) || (index < 0));
#endif
// Unconditionally deoptimize for constant bounds checks because they
// only occur only when index is out-of-bounds.
__ b(deopt);
return;
}
const intptr_t index_cid = index()->Type()->ToCid();
if (index_loc.IsConstant()) {
const Register length = length_loc.reg();
__ CompareImmediate(length,
compiler::target::ToRawSmi(index_loc.constant()));
__ b(deopt, LS);
} else if (length_loc.IsConstant()) {
const Register index = index_loc.reg();
if (index_cid != kSmiCid) {
__ BranchIfNotSmi(index, deopt);
}
if (compiler::target::SmiValue(length_loc.constant()) ==
compiler::target::kSmiMax) {
__ tst(index, compiler::Operand(index));
__ b(deopt, MI);
} else {
__ CompareImmediate(index,
compiler::target::ToRawSmi(length_loc.constant()));
__ b(deopt, CS);
}
} else {
const Register length = length_loc.reg();
const Register index = index_loc.reg();
if (index_cid != kSmiCid) {
__ BranchIfNotSmi(index, deopt);
}
__ cmp(index, compiler::Operand(length));
__ b(deopt, CS);
}
}
LocationSummary* BinaryInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = (op_kind() == Token::kMUL) ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
if (op_kind() == Token::kMUL) {
summary->set_temp(0, Location::RequiresRegister());
}
return summary;
}
void BinaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
PairLocation* left_pair = locs()->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* right_pair = locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
ASSERT(!can_overflow());
ASSERT(!CanDeoptimize());
switch (op_kind()) {
case Token::kBIT_AND: {
__ and_(out_lo, left_lo, compiler::Operand(right_lo));
__ and_(out_hi, left_hi, compiler::Operand(right_hi));
break;
}
case Token::kBIT_OR: {
__ orr(out_lo, left_lo, compiler::Operand(right_lo));
__ orr(out_hi, left_hi, compiler::Operand(right_hi));
break;
}
case Token::kBIT_XOR: {
__ eor(out_lo, left_lo, compiler::Operand(right_lo));
__ eor(out_hi, left_hi, compiler::Operand(right_hi));
break;
}
case Token::kADD: {
__ adds(out_lo, left_lo, compiler::Operand(right_lo));
__ adcs(out_hi, left_hi, compiler::Operand(right_hi));
break;
}
case Token::kSUB: {
__ subs(out_lo, left_lo, compiler::Operand(right_lo));
__ sbcs(out_hi, left_hi, compiler::Operand(right_hi));
break;
}
case Token::kMUL: {
// Compute 64-bit a * b as:
// a_l * b_l + (a_h * b_l + a_l * b_h) << 32
Register temp = locs()->temp(0).reg();
__ mul(temp, left_lo, right_hi);
__ mla(out_hi, left_hi, right_lo, temp);
__ umull(out_lo, temp, left_lo, right_lo);
__ add(out_hi, out_hi, compiler::Operand(temp));
break;
}
default:
UNREACHABLE();
}
}
static void EmitShiftInt64ByConstant(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out_lo,
Register out_hi,
Register left_lo,
Register left_hi,
const Object& right) {
const int64_t shift = Integer::Cast(right).AsInt64Value();
ASSERT(shift >= 0);
switch (op_kind) {
case Token::kSHR: {
if (shift < 32) {
__ Lsl(out_lo, left_hi, compiler::Operand(32 - shift));
__ orr(out_lo, out_lo, compiler::Operand(left_lo, LSR, shift));
__ Asr(out_hi, left_hi, compiler::Operand(shift));
} else {
if (shift == 32) {
__ mov(out_lo, compiler::Operand(left_hi));
} else if (shift < 64) {
__ Asr(out_lo, left_hi, compiler::Operand(shift - 32));
} else {
__ Asr(out_lo, left_hi, compiler::Operand(31));
}
__ Asr(out_hi, left_hi, compiler::Operand(31));
}
break;
}
case Token::kUSHR: {
ASSERT(shift < 64);
if (shift < 32) {
__ Lsl(out_lo, left_hi, compiler::Operand(32 - shift));
__ orr(out_lo, out_lo, compiler::Operand(left_lo, LSR, shift));
__ Lsr(out_hi, left_hi, compiler::Operand(shift));
} else {
if (shift == 32) {
__ mov(out_lo, compiler::Operand(left_hi));
} else {
__ Lsr(out_lo, left_hi, compiler::Operand(shift - 32));
}
__ mov(out_hi, compiler::Operand(0));
}
break;
}
case Token::kSHL: {
ASSERT(shift < 64);
if (shift < 32) {
__ Lsr(out_hi, left_lo, compiler::Operand(32 - shift));
__ orr(out_hi, out_hi, compiler::Operand(left_hi, LSL, shift));
__ Lsl(out_lo, left_lo, compiler::Operand(shift));
} else {
if (shift == 32) {
__ mov(out_hi, compiler::Operand(left_lo));
} else {
__ Lsl(out_hi, left_lo, compiler::Operand(shift - 32));
}
__ mov(out_lo, compiler::Operand(0));
}
break;
}
default:
UNREACHABLE();
}
}
static void EmitShiftInt64ByRegister(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out_lo,
Register out_hi,
Register left_lo,
Register left_hi,
Register right) {
switch (op_kind) {
case Token::kSHR: {
__ rsbs(IP, right, compiler::Operand(32));
__ sub(IP, right, compiler::Operand(32), MI);
__ mov(out_lo, compiler::Operand(left_hi, ASR, IP), MI);
__ mov(out_lo, compiler::Operand(left_lo, LSR, right), PL);
__ orr(out_lo, out_lo, compiler::Operand(left_hi, LSL, IP), PL);
__ mov(out_hi, compiler::Operand(left_hi, ASR, right));
break;
}
case Token::kUSHR: {
__ rsbs(IP, right, compiler::Operand(32));
__ sub(IP, right, compiler::Operand(32), MI);
__ mov(out_lo, compiler::Operand(left_hi, LSR, IP), MI);
__ mov(out_lo, compiler::Operand(left_lo, LSR, right), PL);
__ orr(out_lo, out_lo, compiler::Operand(left_hi, LSL, IP), PL);
__ mov(out_hi, compiler::Operand(left_hi, LSR, right));
break;
}
case Token::kSHL: {
__ rsbs(IP, right, compiler::Operand(32));
__ sub(IP, right, compiler::Operand(32), MI);
__ mov(out_hi, compiler::Operand(left_lo, LSL, IP), MI);
__ mov(out_hi, compiler::Operand(left_hi, LSL, right), PL);
__ orr(out_hi, out_hi, compiler::Operand(left_lo, LSR, IP), PL);
__ mov(out_lo, compiler::Operand(left_lo, LSL, right));
break;
}
default:
UNREACHABLE();
}
}
static void EmitShiftUint32ByConstant(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out,
Register left,
const Object& right) {
const int64_t shift = Integer::Cast(right).AsInt64Value();
ASSERT(shift >= 0);
if (shift >= 32) {
__ LoadImmediate(out, 0);
} else {
switch (op_kind) {
case Token::kSHR:
case Token::kUSHR:
__ Lsr(out, left, compiler::Operand(shift));
break;
case Token::kSHL:
__ Lsl(out, left, compiler::Operand(shift));
break;
default:
UNREACHABLE();
}
}
}
static void EmitShiftUint32ByRegister(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out,
Register left,
Register right) {
switch (op_kind) {
case Token::kSHR:
case Token::kUSHR:
__ Lsr(out, left, right);
break;
case Token::kSHL:
__ Lsl(out, left, right);
break;
default:
UNREACHABLE();
}
}
class ShiftInt64OpSlowPath : public ThrowErrorSlowPathCode {
public:
ShiftInt64OpSlowPath(ShiftInt64OpInstr* instruction, intptr_t try_index)
: ThrowErrorSlowPathCode(instruction,
kArgumentErrorUnboxedInt64RuntimeEntry,
try_index) {}
const char* name() override { return "int64 shift"; }
void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override {
PairLocation* left_pair = instruction()->locs()->in(0).AsPairLocation();
Register left_hi = left_pair->At(1).reg();
PairLocation* right_pair = instruction()->locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
PairLocation* out_pair = instruction()->locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
__ CompareImmediate(right_hi, 0);
switch (instruction()->AsShiftInt64Op()->op_kind()) {
case Token::kSHR:
__ Asr(out_hi, left_hi,
compiler::Operand(compiler::target::kBitsPerWord - 1), GE);
__ mov(out_lo, compiler::Operand(out_hi), GE);
break;
case Token::kUSHR:
case Token::kSHL: {
__ LoadImmediate(out_lo, 0, GE);
__ LoadImmediate(out_hi, 0, GE);
break;
}
default:
UNREACHABLE();
}
__ b(exit_label(), GE);
// Can't pass unboxed int64 value directly to runtime call, as all
// arguments are expected to be tagged (boxed).
// The unboxed int64 argument is passed through a dedicated slot in Thread.
// TODO(dartbug.com/33549): Clean this up when unboxed values
// could be passed as arguments.
__ StoreToOffset(
right_lo, THR,
compiler::target::Thread::unboxed_int64_runtime_arg_offset());
__ StoreToOffset(
right_hi, THR,
compiler::target::Thread::unboxed_int64_runtime_arg_offset() +
compiler::target::kWordSize);
}
};
LocationSummary* ShiftInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
if (RangeUtils::IsPositive(shift_range()) &&
right()->definition()->IsConstant()) {
ConstantInstr* constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(constant));
} else {
summary->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
}
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
return summary;
}
void ShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
PairLocation* left_pair = locs()->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
ASSERT(!can_overflow());
if (locs()->in(1).IsConstant()) {
EmitShiftInt64ByConstant(compiler, op_kind(), out_lo, out_hi, left_lo,
left_hi, locs()->in(1).constant());
} else {
// Code for a variable shift amount (or constant that throws).
PairLocation* right_pair = locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
// Jump to a slow path if shift is larger than 63 or less than 0.
ShiftInt64OpSlowPath* slow_path = NULL;
if (!IsShiftCountInRange()) {
slow_path =
new (Z) ShiftInt64OpSlowPath(this, compiler->CurrentTryIndex());
compiler->AddSlowPathCode(slow_path);
__ CompareImmediate(right_hi, 0);
__ b(slow_path->entry_label(), NE);
__ CompareImmediate(right_lo, kShiftCountLimit);
__ b(slow_path->entry_label(), HI);
}
EmitShiftInt64ByRegister(compiler, op_kind(), out_lo, out_hi, left_lo,
left_hi, right_lo);
if (slow_path != NULL) {
__ Bind(slow_path->exit_label());
}
}
}
LocationSummary* SpeculativeShiftInt64OpInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_in(1, LocationWritableRegisterOrSmiConstant(right()));
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
return summary;
}
void SpeculativeShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
PairLocation* left_pair = locs()->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
ASSERT(!can_overflow());
if (locs()->in(1).IsConstant()) {
EmitShiftInt64ByConstant(compiler, op_kind(), out_lo, out_hi, left_lo,
left_hi, locs()->in(1).constant());
} else {
// Code for a variable shift amount.
Register shift = locs()->in(1).reg();
__ SmiUntag(shift);
// Deopt if shift is larger than 63 or less than 0 (or not a smi).
if (!IsShiftCountInRange()) {
ASSERT(CanDeoptimize());
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op);
__ CompareImmediate(shift, kShiftCountLimit);
__ b(deopt, HI);
}
EmitShiftInt64ByRegister(compiler, op_kind(), out_lo, out_hi, left_lo,
left_hi, shift);
}
}
class ShiftUint32OpSlowPath : public ThrowErrorSlowPathCode {
public:
ShiftUint32OpSlowPath(ShiftUint32OpInstr* instruction, intptr_t try_index)
: ThrowErrorSlowPathCode(instruction,
kArgumentErrorUnboxedInt64RuntimeEntry,
try_index) {}
const char* name() override { return "uint32 shift"; }
void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override {
PairLocation* right_pair = instruction()->locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
Register out = instruction()->locs()->out(0).reg();
__ CompareImmediate(right_hi, 0);
__ LoadImmediate(out, 0, GE);
__ b(exit_label(), GE);
// Can't pass unboxed int64 value directly to runtime call, as all
// arguments are expected to be tagged (boxed).
// The unboxed int64 argument is passed through a dedicated slot in Thread.
// TODO(dartbug.com/33549): Clean this up when unboxed values
// could be passed as arguments.
__ StoreToOffset(
right_lo, THR,
compiler::target::Thread::unboxed_int64_runtime_arg_offset());
__ StoreToOffset(
right_hi, THR,
compiler::target::Thread::unboxed_int64_runtime_arg_offset() +
compiler::target::kWordSize);
}
};
LocationSummary* ShiftUint32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
if (RangeUtils::IsPositive(shift_range()) &&
right()->definition()->IsConstant()) {
ConstantInstr* constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(constant));
} else {
summary->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void ShiftUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
ASSERT(left != out);
if (locs()->in(1).IsConstant()) {
EmitShiftUint32ByConstant(compiler, op_kind(), out, left,
locs()->in(1).constant());
} else {
// Code for a variable shift amount (or constant that throws).
PairLocation* right_pair = locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
// Jump to a slow path if shift count is > 31 or negative.
ShiftUint32OpSlowPath* slow_path = NULL;
if (!IsShiftCountInRange(kUint32ShiftCountLimit)) {
slow_path =
new (Z) ShiftUint32OpSlowPath(this, compiler->CurrentTryIndex());
compiler->AddSlowPathCode(slow_path);
__ CompareImmediate(right_hi, 0);
__ b(slow_path->entry_label(), NE);
__ CompareImmediate(right_lo, kUint32ShiftCountLimit);
__ b(slow_path->entry_label(), HI);
}
EmitShiftUint32ByRegister(compiler, op_kind(), out, left, right_lo);
if (slow_path != NULL) {
__ Bind(slow_path->exit_label());
}
}
}
LocationSummary* SpeculativeShiftUint32OpInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, LocationRegisterOrSmiConstant(right()));
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void SpeculativeShiftUint32OpInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
Register temp = locs()->temp(0).reg();
ASSERT(left != out);
if (locs()->in(1).IsConstant()) {
EmitShiftUint32ByConstant(compiler, op_kind(), out, left,
locs()->in(1).constant());
} else {
Register right = locs()->in(1).reg();
const bool shift_count_in_range =
IsShiftCountInRange(kUint32ShiftCountLimit);
__ SmiUntag(temp, right);
right = temp;
// Deopt if shift count is negative.
if (!shift_count_in_range) {
ASSERT(CanDeoptimize());
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op);
__ CompareImmediate(right, 0);
__ b(deopt, LT);
}
EmitShiftUint32ByRegister(compiler, op_kind(), out, left, right);
if (!shift_count_in_range) {
__ CompareImmediate(right, kUint32ShiftCountLimit);
__ LoadImmediate(out, 0, HI);
}
}
}
LocationSummary* UnaryInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
return summary;
}
void UnaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
PairLocation* left_pair = locs()->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
switch (op_kind()) {
case Token::kBIT_NOT:
__ mvn(out_lo, compiler::Operand(left_lo));
__ mvn(out_hi, compiler::Operand(left_hi));
break;
case Token::kNEGATE:
__ rsbs(out_lo, left_lo, compiler::Operand(0));
__ sbc(out_hi, out_hi, compiler::Operand(out_hi));
__ sub(out_hi, out_hi, compiler::Operand(left_hi));
break;
default:
UNREACHABLE();
}
}
LocationSummary* BinaryUint32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BinaryUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register out = locs()->out(0).reg();
ASSERT(out != left);
switch (op_kind()) {
case Token::kBIT_AND:
__ and_(out, left, compiler::Operand(right));
break;
case Token::kBIT_OR:
__ orr(out, left, compiler::Operand(right));
break;
case Token::kBIT_XOR:
__ eor(out, left, compiler::Operand(right));
break;
case Token::kADD:
__ add(out, left, compiler::Operand(right));
break;
case Token::kSUB:
__ sub(out, left, compiler::Operand(right));
break;
case Token::kMUL:
__ mul(out, left, right);
break;
default:
UNREACHABLE();
}
}
LocationSummary* UnaryUint32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void UnaryUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
ASSERT(left != out);
ASSERT(op_kind() == Token::kBIT_NOT);
__ mvn(out, compiler::Operand(left));
}
LocationSummary* IntConverterInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (from() == kUntagged || to() == kUntagged) {
ASSERT((from() == kUntagged && to() == kUnboxedInt32) ||
(from() == kUntagged && to() == kUnboxedUint32) ||
(from() == kUnboxedInt32 && to() == kUntagged) ||
(from() == kUnboxedUint32 && to() == kUntagged));
ASSERT(!CanDeoptimize());
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
} else if (from() == kUnboxedInt64) {
ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_out(0, Location::RequiresRegister());
} else if (to() == kUnboxedInt64) {
ASSERT(from() == kUnboxedUint32 || from() == kUnboxedInt32);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
} else {
ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32);
ASSERT(from() == kUnboxedUint32 || from() == kUnboxedInt32);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
}
return summary;
}
void IntConverterInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const bool is_nop_conversion =
(from() == kUntagged && to() == kUnboxedInt32) ||
(from() == kUntagged && to() == kUnboxedUint32) ||
(from() == kUnboxedInt32 && to() == kUntagged) ||
(from() == kUnboxedUint32 && to() == kUntagged);
if (is_nop_conversion) {
ASSERT(locs()->in(0).reg() == locs()->out(0).reg());
return;
}
if (from() == kUnboxedInt32 && to() == kUnboxedUint32) {
const Register out = locs()->out(0).reg();
// Representations are bitwise equivalent.
ASSERT(out == locs()->in(0).reg());
} else if (from() == kUnboxedUint32 && to() == kUnboxedInt32) {
const Register out = locs()->out(0).reg();
// Representations are bitwise equivalent.
ASSERT(out == locs()->in(0).reg());
if (CanDeoptimize()) {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger);
__ tst(out, compiler::Operand(out));
__ b(deopt, MI);
}
} else if (from() == kUnboxedInt64) {
ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32);
PairLocation* in_pair = locs()->in(0).AsPairLocation();
Register in_lo = in_pair->At(0).reg();
Register in_hi = in_pair->At(1).reg();
Register out = locs()->out(0).reg();
// Copy low word.
__ mov(out, compiler::Operand(in_lo));
if (CanDeoptimize()) {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger);
ASSERT(to() == kUnboxedInt32);
__ cmp(in_hi,
compiler::Operand(in_lo, ASR, compiler::target::kBitsPerWord - 1));
__ b(deopt, NE);
}
} else if (from() == kUnboxedUint32 || from() == kUnboxedInt32) {
ASSERT(to() == kUnboxedInt64);
Register in = locs()->in(0).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
// Copy low word.
__ mov(out_lo, compiler::Operand(in));
if (from() == kUnboxedUint32) {
__ eor(out_hi, out_hi, compiler::Operand(out_hi));
} else {
ASSERT(from() == kUnboxedInt32);
__ mov(out_hi,
compiler::Operand(in, ASR, compiler::target::kBitsPerWord - 1));
}
} else {
UNREACHABLE();
}
}
LocationSummary* BitCastInstr::MakeLocationSummary(Zone* zone, bool opt) const {
LocationSummary* summary =
new (zone) LocationSummary(zone, /*num_inputs=*/InputCount(),
/*num_temps=*/0, LocationSummary::kNoCall);
switch (from()) {
case kUnboxedInt32:
summary->set_in(0, Location::RequiresRegister());
break;
case kUnboxedInt64:
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
break;
case kUnboxedFloat:
case kUnboxedDouble:
// Choose an FPU register with corresponding D and S registers.
summary->set_in(0, Location::FpuRegisterLocation(Q0));
break;
default:
UNREACHABLE();
}
switch (to()) {
case kUnboxedInt32:
summary->set_out(0, Location::RequiresRegister());
break;
case kUnboxedInt64:
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
break;
case kUnboxedFloat:
case kUnboxedDouble:
// Choose an FPU register with corresponding D and S registers.
summary->set_out(0, Location::FpuRegisterLocation(Q0));
break;
default:
UNREACHABLE();
}
return summary;
}
void BitCastInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
switch (from()) {
case kUnboxedInt32: {
ASSERT(to() == kUnboxedFloat);
const Register from_reg = locs()->in(0).reg();
const FpuRegister to_reg = locs()->out(0).fpu_reg();
__ vmovsr(EvenSRegisterOf(EvenDRegisterOf(to_reg)), from_reg);
break;
}
case kUnboxedFloat: {
ASSERT(to() == kUnboxedInt32);
const FpuRegister from_reg = locs()->in(0).fpu_reg();
const Register to_reg = locs()->out(0).reg();
__ vmovrs(to_reg, EvenSRegisterOf(EvenDRegisterOf(from_reg)));
break;
}
case kUnboxedInt64: {
ASSERT(to() == kUnboxedDouble);
const Register from_lo = locs()->in(0).AsPairLocation()->At(0).reg();
const Register from_hi = locs()->in(0).AsPairLocation()->At(1).reg();
const FpuRegister to_reg = locs()->out(0).fpu_reg();
__ vmovsr(EvenSRegisterOf(EvenDRegisterOf(to_reg)), from_lo);
__ vmovsr(OddSRegisterOf(EvenDRegisterOf(to_reg)), from_hi);
break;
}
case kUnboxedDouble: {
ASSERT(to() == kUnboxedInt64);
const FpuRegister from_reg = locs()->in(0).fpu_reg();
const Register to_lo = locs()->out(0).AsPairLocation()->At(0).reg();
const Register to_hi = locs()->out(0).AsPairLocation()->At(1).reg();
__ vmovrs(to_lo, EvenSRegisterOf(EvenDRegisterOf(from_reg)));
__ vmovrs(to_hi, OddSRegisterOf(EvenDRegisterOf(from_reg)));
break;
}
default:
UNREACHABLE();
}
}
LocationSummary* StopInstr::MakeLocationSummary(Zone* zone, bool opt) const {
return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall);
}
void StopInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Stop(message());
}
void GraphEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BlockEntryInstr* entry = normal_entry();
if (entry != nullptr) {
if (!compiler->CanFallThroughTo(entry)) {
FATAL("Checked function entry must have no offset");
}
} else {
entry = osr_entry();
if (!compiler->CanFallThroughTo(entry)) {
__ b(compiler->GetJumpLabel(entry));
}
}
}
LocationSummary* GotoInstr::MakeLocationSummary(Zone* zone, bool opt) const {
return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall);
}
void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->is_optimizing()) {
if (FLAG_reorder_basic_blocks) {
compiler->EmitEdgeCounter(block()->preorder_number());
}
// Add a deoptimization descriptor for deoptimizing instructions that
// may be inserted before this instruction.
compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kDeopt, GetDeoptId(),
InstructionSource());
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// We can fall through if the successor is the next block in the list.
// Otherwise, we need a jump.
if (!compiler->CanFallThroughTo(successor())) {
__ b(compiler->GetJumpLabel(successor()));
}
}
LocationSummary* IndirectGotoInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void IndirectGotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register target_address_reg = locs()->temp_slot(0)->reg();
// Offset is relative to entry pc.
const intptr_t entry_to_pc_offset = __ CodeSize() + Instr::kPCReadOffset;
__ mov(target_address_reg, compiler::Operand(PC));
__ AddImmediate(target_address_reg, -entry_to_pc_offset);
// Add the offset.
Register offset_reg = locs()->in(0).reg();
compiler::Operand offset_opr =
(offset()->definition()->representation() == kTagged)
? compiler::Operand(offset_reg, ASR, kSmiTagSize)
: compiler::Operand(offset_reg);
__ add(target_address_reg, target_address_reg, offset_opr);
// Jump to the absolute address.
__ bx(target_address_reg);
}
LocationSummary* StrictCompareInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (needs_number_check()) {
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_in(1, Location::RegisterLocation(R1));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
// If a constant has more than one use, make sure it is loaded in register
// so that multiple immediate loads can be avoided.
ConstantInstr* constant = left()->definition()->AsConstant();
if ((constant != NULL) && !left()->IsSingleUse()) {
locs->set_in(0, Location::RequiresRegister());
} else {
locs->set_in(0, LocationRegisterOrConstant(left()));
}
constant = right()->definition()->AsConstant();
if ((constant != NULL) && !right()->IsSingleUse()) {
locs->set_in(1, Location::RequiresRegister());
} else {
// Only one of the inputs can be a constant. Choose register if the first
// one is a constant.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: LocationRegisterOrConstant(right()));
}
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition StrictCompareInstr::EmitComparisonCodeRegConstant(
FlowGraphCompiler* compiler,
BranchLabels labels,
Register reg,
const Object& obj) {
return compiler->EmitEqualityRegConstCompare(reg, obj, needs_number_check(),
source(), deopt_id());
}
void ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The ARM code may not use true- and false-labels here.
compiler::Label is_true, is_false, done;
BranchLabels labels = {&is_true, &is_false, &is_false};
Condition true_condition = EmitComparisonCode(compiler, labels);
const Register result = this->locs()->out(0).reg();
if (is_false.IsLinked() || is_true.IsLinked()) {
if (true_condition != kInvalidCondition) {
EmitBranchOnCondition(compiler, true_condition, labels);
}
__ Bind(&is_false);
__ LoadObject(result, Bool::False());
__ b(&done);
__ Bind(&is_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
} else {
// If EmitComparisonCode did not use the labels and just returned
// a condition we can avoid the branch and use conditional loads.
ASSERT(true_condition != kInvalidCondition);
__ LoadObject(result, Bool::True(), true_condition);
__ LoadObject(result, Bool::False(), InvertCondition(true_condition));
}
}
void ComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
if (true_condition != kInvalidCondition) {
EmitBranchOnCondition(compiler, true_condition, labels);
}
}
LocationSummary* BooleanNegateInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 1, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void BooleanNegateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register input = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ eor(result, input,
compiler::Operand(compiler::target::ObjectAlignment::kBoolValueMask));
}
LocationSummary* AllocateObjectInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = (type_arguments() != nullptr) ? 1 : 0;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
if (type_arguments() != nullptr) {
locs->set_in(0,
Location::RegisterLocation(kAllocationStubTypeArgumentsReg));
}
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (type_arguments() != nullptr) {
TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info();
if (type_usage_info != nullptr) {
RegisterTypeArgumentsUse(compiler->function(), type_usage_info, cls_,
type_arguments()->definition());
}
}
const Code& stub = Code::ZoneHandle(
compiler->zone(), StubCode::GetAllocationStubForClass(cls()));
compiler->GenerateStubCall(source(), stub, UntaggedPcDescriptors::kOther,
locs());
}
void DebugStepCheckInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#ifdef PRODUCT
UNREACHABLE();
#else
ASSERT(!compiler->is_optimizing());
__ BranchLinkPatchable(StubCode::DebugStepCheck());
compiler->AddCurrentDescriptor(stub_kind_, deopt_id_, source());
compiler->RecordSafepoint(locs());
#endif
}
} // namespace dart
#endif // defined(TARGET_ARCH_ARM)