blob: ddbfdc29f061f9527aa98a16cfdfdadb508905be [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library object_graph;
import 'dart:async';
import 'dart:collection';
import 'dart:typed_data';
import 'package:logging/logging.dart';
class _JenkinsSmiHash {
static int combine(int hash, int value) {
hash = 0x1fffffff & (hash + value);
hash = 0x1fffffff & (hash + ((0x0007ffff & hash) << 10));
return hash ^ (hash >> 6);
}
static int finish(int hash) {
hash = 0x1fffffff & (hash + ((0x03ffffff & hash) << 3));
hash = hash ^ (hash >> 11);
return 0x1fffffff & (hash + ((0x00003fff & hash) << 15));
}
static int hash3(a, b, c) => finish(combine(combine(combine(0, a), b), c));
}
// Map<[uint32, uint32, uint32], uint32>
class AddressMapper {
final Uint32List _table;
// * 4 ~/3 for 75% load factor
// * 4 for four-tuple entries
AddressMapper(int N) : _table = new Uint32List((N * 4 ~/ 3) * 4);
int _scanFor(int high, int mid, int low) {
var hash = _JenkinsSmiHash.hash3(high, mid, low);
var start = (hash % _table.length) & ~3;
var index = start;
do {
if (_table[index + 3] == 0) return index;
if (_table[index] == high &&
_table[index + 1] == mid &&
_table[index + 2] == low) return index;
index = (index + 4) % _table.length;
} while (index != start);
throw new Exception("Interal error: table full");
}
int get(int high, int mid, int low) {
int index = _scanFor(high, mid, low);
if (_table[index + 3] == 0) return null;
return _table[index + 3];
}
int put(int high, int mid, int low, int id) {
if (id == 0) throw new Exception("Internal error: invalid id");
int index = _scanFor(high, mid, low);
if ((_table[index + 3] != 0)) {
throw new Exception("Internal error: attempt to overwrite key");
}
_table[index] = high;
_table[index + 1] = mid;
_table[index + 2] = low;
_table[index + 3] = id;
return id;
}
}
// Port of dart::ReadStream from vm/datastream.h.
//
// The heap snapshot is a series of variable-length unsigned integers. For
// each byte in the stream, the high bit marks the last byte of an integer and
// the low 7 bits are the payload. The payloads are sent in little endian
// order.
// The largest values used are 64-bit addresses.
// We read in 4 payload chunks (28-bits) to stay in Smi range on Javascript.
// We read them into instance variables ('low', 'mid' and 'high') to avoid
// allocating a container.
class ReadStream {
int position = 0;
int _size = 0;
final List<ByteData> _chunks;
ReadStream(this._chunks) {
int n = _chunks.length;
for (var i = 0; i < n; i++) {
var chunk = _chunks[i];
if (i + 1 != n) {
assert(chunk.lengthInBytes == (1 << 20));
}
_size += chunk.lengthInBytes;
}
}
int get pendingBytes => _size - position;
int _getUint8(i) {
return _chunks[i >> 20].getUint8(i & 0xFFFFF);
}
int low = 0;
int mid = 0;
int high = 0;
int get clampedUint32 {
if (high != 0 || mid > 0xF) {
return 0xFFFFFFFF;
} else {
// Not shift as JS shifts are signed 32-bit.
return mid * 0x10000000 + low;
}
}
int get highUint32 {
return high * (1 << 24) + (mid >> 4);
}
int get lowUint32 {
return (mid & 0xF) * (1 << 28) + low;
}
bool get isZero {
return (high == 0) && (mid == 0) && (low == 0);
}
void readUnsigned() {
low = 0;
mid = 0;
high = 0;
// Low 28 bits.
var digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
low |= (digit & byteMask << 0);
return;
}
low |= (digit << 0);
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
low |= ((digit & byteMask) << 7);
return;
}
low |= (digit << 7);
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
low |= ((digit & byteMask) << 14);
return;
}
low |= (digit << 14);
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
low |= ((digit & byteMask) << 21);
return;
}
low |= (digit << 21);
// Mid 28 bits.
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
mid |= (digit & byteMask << 0);
return;
}
mid |= (digit << 0);
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
mid |= ((digit & byteMask) << 7);
return;
}
mid |= (digit << 7);
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
mid |= ((digit & byteMask) << 14);
return;
}
mid |= (digit << 14);
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
mid |= ((digit & byteMask) << 21);
return;
}
mid |= (digit << 21);
// High 28 bits.
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
high |= (digit & byteMask << 0);
return;
}
high |= (digit << 0);
digit = _getUint8(position++);
if (digit > maxUnsignedDataPerByte) {
high |= ((digit & byteMask) << 7);
return;
}
high |= (digit << 7);
throw new Exception("Format error: snapshot field exceeds 64 bits");
}
void skipUnsigned() {
while (_getUint8(position++) <= maxUnsignedDataPerByte);
}
static const int dataBitsPerByte = 7;
static const int byteMask = (1 << dataBitsPerByte) - 1;
static const int maxUnsignedDataPerByte = byteMask;
}
class ObjectVertex {
// 0 represents invalid/uninitialized, 1 is the root.
final int _id;
final ObjectGraph _graph;
ObjectVertex._(this._id, this._graph);
bool get isRoot => _id == 1;
bool operator ==(other) => _id == other._id && _graph == other._graph;
int get hashCode => _id;
int get retainedSize => _graph._retainedSizes[_id];
ObjectVertex get dominator => new ObjectVertex._(_graph._doms[_id], _graph);
int get shallowSize => _graph._shallowSizes[_id];
int get vmCid => _graph._cids[_id];
get successors => new _SuccessorsIterable(_graph, _id);
String get address {
// Note that everywhere else in this file, "address" really means an address
// scaled down by kObjectAlignment. They were scaled down so they would fit
// into Smis on the client.
var high32 = _graph._addressesHigh[_id];
var low32 = _graph._addressesLow[_id];
// Complicated way to do (high:low * _kObjectAlignment).toHexString()
// without intermediate values exceeding int32.
var strAddr = "";
var carry = 0;
combine4(nibble) {
nibble = nibble * _graph._kObjectAlignment + carry;
carry = nibble >> 4;
nibble = nibble & 0xF;
strAddr = nibble.toRadixString(16) + strAddr;
}
combine32(thirtyTwoBits) {
for (int shift = 0; shift < 32; shift += 4) {
combine4((thirtyTwoBits >> shift) & 0xF);
}
}
combine32(low32);
combine32(high32);
return strAddr;
}
List<ObjectVertex> dominatorTreeChildren() {
var N = _graph._N;
var doms = _graph._doms;
var parentId = _id;
var domChildren = [];
for (var childId = 1; childId <= N; childId++) {
if (doms[childId] == parentId) {
domChildren.add(new ObjectVertex._(childId, _graph));
}
}
return domChildren;
}
}
class _SuccessorsIterable extends IterableBase<ObjectVertex> {
final ObjectGraph _graph;
final int _id;
_SuccessorsIterable(this._graph, this._id);
Iterator<ObjectVertex> get iterator => new _SuccessorsIterator(_graph, _id);
}
class _SuccessorsIterator implements Iterator<ObjectVertex> {
final ObjectGraph _graph;
int _nextSuccIndex;
int _limitSuccIndex;
ObjectVertex current;
_SuccessorsIterator(this._graph, int id) {
_nextSuccIndex = _graph._firstSuccs[id];
_limitSuccIndex = _graph._firstSuccs[id + 1];
}
bool moveNext() {
if (_nextSuccIndex < _limitSuccIndex) {
var succId = _graph._succs[_nextSuccIndex++];
current = new ObjectVertex._(succId, _graph);
return true;
}
return false;
}
}
class _VerticesIterable extends IterableBase<ObjectVertex> {
final ObjectGraph _graph;
_VerticesIterable(this._graph);
Iterator<ObjectVertex> get iterator => new _VerticesIterator(_graph);
}
class _VerticesIterator implements Iterator<ObjectVertex> {
final ObjectGraph _graph;
int _nextId = 0;
ObjectVertex current;
_VerticesIterator(this._graph);
bool moveNext() {
if (_nextId == _graph._N) return false;
current = new ObjectVertex._(_nextId++, _graph);
return true;
}
}
class ObjectGraph {
ObjectGraph(List<ByteData> chunks, int nodeCount)
: this._chunks = chunks
, this._N = nodeCount;
int get size => _size;
int get vertexCount => _N;
int get edgeCount => _E;
ObjectVertex get root => new ObjectVertex._(1, this);
Iterable<ObjectVertex> get vertices => new _VerticesIterable(this);
Iterable<ObjectVertex> getMostRetained({int classId, int limit}) {
List<ObjectVertex> _mostRetained =
new List<ObjectVertex>.from(vertices.where((u) => !u.isRoot));
_mostRetained.sort((u, v) => v.retainedSize - u.retainedSize);
var result = _mostRetained;
if (classId != null) {
result = result.where((u) => u.vmCid == classId);
}
if (limit != null) {
result = result.take(limit);
}
return result;
}
Future process(statusReporter) async {
// We build futures here instead of marking the steps as async to avoid the
// heavy lifting being inside a transformed method.
statusReporter.add("Remapping $_N objects...");
await new Future(() => _remapNodes());
statusReporter.add("Remapping $_E references...");
await new Future(() => _remapEdges());
_addrToId = null;
_chunks = null;
statusReporter.add("Finding post order...");
await new Future(() => _buildPostOrder());
statusReporter.add("Finding predecessors...");
await new Future(() => _buildPredecessors());
statusReporter.add("Finding dominators...");
await new Future(() => _buildDominators());
_firstPreds = null;
_preds = null;
_postOrderIndices = null;
statusReporter.add("Finding retained sizes...");
await new Future(() => _calculateRetainedSizes());
_postOrderOrdinals = null;
statusReporter.add("Loaded");
return this;
}
List<ByteData> _chunks;
int _kObjectAlignment;
int _N;
int _E;
int _size;
// Indexed by node id, with id 0 representing invalid/uninitialized.
// From snapshot.
Uint16List _cids;
Uint32List _shallowSizes;
Uint32List _firstSuccs;
Uint32List _succs;
Uint32List _addressesLow; // No Uint64List in Javascript.
Uint32List _addressesHigh;
// Intermediates.
AddressMapper _addrToId;
Uint32List _postOrderOrdinals; // post-order index -> id
Uint32List _postOrderIndices; // id -> post-order index
Uint32List _firstPreds; // Offset into preds.
Uint32List _preds;
// Outputs.
Uint32List _doms;
Uint32List _retainedSizes;
void _remapNodes() {
var N = _N;
var E = 0;
var addrToId = new AddressMapper(N);
var addressesHigh = new Uint32List(N + 1);
var addressesLow = new Uint32List(N + 1);
var shallowSizes = new Uint32List(N + 1);
var cids = new Uint16List(N + 1);
var stream = new ReadStream(_chunks);
stream.readUnsigned();
_kObjectAlignment = stream.clampedUint32;
var id = 1;
while (stream.pendingBytes > 0) {
stream.readUnsigned(); // addr
addrToId.put(stream.high, stream.mid, stream.low, id);
addressesHigh[id] = stream.highUint32;
addressesLow[id] = stream.lowUint32;
stream.readUnsigned(); // shallowSize
shallowSizes[id] = stream.clampedUint32;
stream.readUnsigned(); // cid
cids[id] = stream.clampedUint32;
stream.readUnsigned();
while (!stream.isZero) {
E++;
stream.readUnsigned();
}
id++;
}
assert(id == (N + 1));
var root = addrToId.get(0, 0, 0);
assert(root == 1);
_E = E;
_addrToId = addrToId;
_addressesLow = addressesLow;
_addressesHigh = addressesHigh;
_shallowSizes = shallowSizes;
_cids = cids;
}
void _remapEdges() {
var N = _N;
var E = _E;
var addrToId = _addrToId;
var firstSuccs = new Uint32List(N + 2);
var succs = new Uint32List(E);
var stream = new ReadStream(_chunks);
stream.skipUnsigned(); // addr alignment
var id = 1, edge = 0;
while (stream.pendingBytes > 0) {
stream.skipUnsigned(); // addr
stream.skipUnsigned(); // shallowSize
stream.skipUnsigned(); // cid
firstSuccs[id] = edge;
stream.readUnsigned();
while (!stream.isZero) {
var childId = addrToId.get(stream.high, stream.mid, stream.low);
if (childId != null) {
succs[edge] = childId;
edge++;
} else {
// Reference into VM isolate's heap.
}
stream.readUnsigned();
}
id++;
}
firstSuccs[id] = edge; // Extra entry for cheap boundary detection.
assert(id == N + 1);
assert(edge <= E); // edge is smaller because E was computed before we knew
// if references pointed into the VM isolate
_E = edge;
_firstSuccs = firstSuccs;
_succs = succs;
}
void _buildPostOrder() {
var N = _N;
var E = _E;
var firstSuccs = _firstSuccs;
var succs = _succs;
var postOrderOrdinals = new Uint32List(N);
var postOrderIndices = new Uint32List(N + 1);
var stackNodes = new Uint32List(N);
var stackCurrentEdgePos = new Uint32List(N);
var visited = new Uint8List(N + 1);
var postOrderIndex = 0;
var stackTop = 0;
var root = 1;
stackNodes[0] = root;
stackCurrentEdgePos[0] = firstSuccs[root];
visited[root] = 1;
while (stackTop >= 0) {
var n = stackNodes[stackTop];
var edgePos = stackCurrentEdgePos[stackTop];
if (edgePos < firstSuccs[n + 1]) {
var childId = succs[edgePos];
edgePos++;
stackCurrentEdgePos[stackTop] = edgePos;
if (visited[childId] == 1) continue;
// Push child.
stackTop++;
stackNodes[stackTop] = childId;
edgePos = firstSuccs[childId];
stackCurrentEdgePos[stackTop] = edgePos;
visited[childId] = 1;
} else {
// Done with all children.
postOrderIndices[n] = postOrderIndex;
postOrderOrdinals[postOrderIndex++] = n;
stackTop--;
}
}
assert(postOrderIndex == N);
assert(postOrderOrdinals[N - 1] == root);
_postOrderOrdinals = postOrderOrdinals;
_postOrderIndices = postOrderIndices;
_E = E;
}
void _buildPredecessors() {
var N = _N;
var E = _E;
var firstSuccs = _firstSuccs;
var succs = _succs;
// This is first filled with the predecessor counts, then reused to hold the
// offset to the first predecessor (see alias below).
// + 1 because 0 is a sentinel
// + 1 so the number of predecessors can be found from the difference with
// the next node's offset.
var numPreds = new Uint32List(N + 2);
var preds = new Uint32List(E);
// Count predecessors of each node.
for (var succIndex = 0; succIndex < E; succIndex++) {
var succId = succs[succIndex];
numPreds[succId]++;
}
// Assign indices into predecessors array.
var firstPreds = numPreds; // Alias.
var nextPreds = new Uint32List(N + 1);
var predIndex = 0;
for (var i = 1; i <= N; i++) {
var thisPredIndex = predIndex;
predIndex += numPreds[i];
firstPreds[i] = thisPredIndex;
nextPreds[i] = thisPredIndex;
}
assert(predIndex == E);
firstPreds[N + 1] = E; // Extra entry for cheap boundary detection.
// Fill predecessors array.
for (var i = 1; i <= N; i++) {
var startSuccIndex = firstSuccs[i];
var limitSuccIndex = firstSuccs[i + 1];
for (var succIndex = startSuccIndex;
succIndex < limitSuccIndex;
succIndex++) {
var succId = succs[succIndex];
var predIndex = nextPreds[succId]++;
preds[predIndex] = i;
}
}
_firstPreds = firstPreds;
_preds = preds;
}
// "A Simple, Fast Dominance Algorithm"
// Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy
void _buildDominators() {
var N = _N;
var postOrder = _postOrderOrdinals;
var postOrderIndex = _postOrderIndices;
var firstPreds = _firstPreds;
var preds = _preds;
var root = 1;
var rootPostOrderIndex = postOrderIndex[root];
var domByPOI = new Uint32List(N + 1);
domByPOI[rootPostOrderIndex] = rootPostOrderIndex;
var iteration = 0;
var changed = true;
while (changed) {
changed = false;
Logger.root.info("Find dominators iteration $iteration");
iteration++; // dart2js heaps typically converge in 10 iterations.
// Visit the nodes, except the root, in reverse post order (top down).
for (var curPostOrderIndex = rootPostOrderIndex - 1;
curPostOrderIndex > 1;
curPostOrderIndex--) {
if (domByPOI[curPostOrderIndex] == rootPostOrderIndex)
continue;
var nodeOrdinal = postOrder[curPostOrderIndex];
var newDomIndex = 0; // 0 = undefined
// Intersect the DOM sets of the node's precedessors.
var beginPredIndex = firstPreds[nodeOrdinal];
var endPredIndex = firstPreds[nodeOrdinal + 1];
for (var predIndex = beginPredIndex;
predIndex < endPredIndex;
predIndex++) {
var predOrdinal = preds[predIndex];
var predPostOrderIndex = postOrderIndex[predOrdinal];
if (domByPOI[predPostOrderIndex] != 0) {
if (newDomIndex == 0) {
newDomIndex = predPostOrderIndex;
} else {
// Note this two finger algorithm to find the DOM intersection
// relies on comparing nodes by their post order index.
while (predPostOrderIndex != newDomIndex) {
while(predPostOrderIndex < newDomIndex)
predPostOrderIndex = domByPOI[predPostOrderIndex];
while (newDomIndex < predPostOrderIndex)
newDomIndex = domByPOI[newDomIndex];
}
}
if (newDomIndex == rootPostOrderIndex) {
break;
}
}
}
if (newDomIndex != 0 && domByPOI[curPostOrderIndex] != newDomIndex) {
domByPOI[curPostOrderIndex] = newDomIndex;
changed = true;
}
}
}
// Reindex doms by id instead of post order index so we can throw away
// the post order arrays.
var domById = new Uint32List(N + 1);
for (var id = 1; id <= N; id++) {
domById[id] = postOrder[domByPOI[postOrderIndex[id]]];
}
domById[root] = 0;
_doms = domById;
}
void _calculateRetainedSizes() {
var N = _N;
var size = 0;
var shallowSizes = _shallowSizes;
var postOrderOrdinals = _postOrderOrdinals;
var doms = _doms;
// Sum shallow sizes.
for (var i = 1; i < N; i++) {
size += shallowSizes[i];
}
// Start with retained size as shallow size.
var retainedSizes = new Uint32List.fromList(shallowSizes);
// In post order (bottom up), add retained size to dominator's retained
// size, skipping root.
for (var o = 0; o < (N - 1); o++) {
var i = postOrderOrdinals[o];
assert(i != 1);
retainedSizes[doms[i]] += retainedSizes[i];
}
_retainedSizes = retainedSizes;
_size = size;
}
}