blob: eb8f82ce4779381c28a5a63de5b411b4081b9333 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of dart.core;
/**
* All numbers in dart are instances of [num].
*/
abstract class num implements Comparable<num> {
/** Addition operator. */
num operator +(num other);
/** Subtraction operator. */
num operator -(num other);
/** Multiplication operator. */
num operator *(num other);
/**
* Euclidean modulo operator.
*
* Returns the remainder of the euclidean division. The euclidean division of
* two integers `a` and `b` yields two integers `q` and `r` such that
* `a = b*q + r` and `0 <= r < |a|`.
*
* The euclidean division is only defined for integers, but can be easily
* extended to work with doubles. In that case `r` may have a non-integer
* value, but it still verifies `0 <= r < |a|`.
*
* The sign of the returned value `r` is always positive.
*
* See [remainder] for the remainder of the truncating division.
*/
num operator %(num other);
/** Division operator. */
double operator /(num other);
/**
* Truncating division operator.
*
* If either operand is a [double] then the result of the truncating division
* [:a ~/ b:] is equivalent to [:(a / b).truncate().toInt():].
*
* If both operands are [int]s then [:a ~/ b:] performs the truncating
* integer division.
*/
int operator ~/(num other);
/** Negate operator. */
num operator -();
/**
* Return the remainder of the truncating division of `this` by [other].
*
* The result `r` of this operation satisfies: `this = this ~/ other + r`.
* As a consequence the remainder `r` has the same sign as the dividend
* `this`.
*/
num remainder(num other);
/** Relational less than operator. */
bool operator <(num other);
/** Relational less than or equal operator. */
bool operator <=(num other);
/** Relational greater than operator. */
bool operator >(num other);
/** Relational greater than or equal operator. */
bool operator >=(num other);
bool get isNaN;
bool get isNegative;
bool get isInfinite;
/** Returns the absolute value of this [num]. */
num abs();
/**
* Returns the integer closest to `this`.
*
* Rounds away from zero when there is no closest integer:
* [:(3.5).round() == 4:] and [:(-3.5).round() == -4:].
*
* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
*/
int round();
/**
* Returns the greatest integer no greater than `this`.
*
* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
*/
int floor();
/**
* Returns the least integer no smaller than `this`.
*
* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
*/
int ceil();
/**
* Returns the integer obtained by discarding any fractional
* digits from `this`.
*
* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
*/
int truncate();
/**
* Returns the integer value closest to `this`.
*
* Rounds away from zero when there is no closest integer:
* [:(3.5).round() == 4:] and [:(-3.5).round() == -4:].
*
* The result is a double.
*/
double roundToDouble();
/**
* Returns the greatest integer value no greater than `this`.
*
* The result is a double.
*/
double floorToDouble();
/**
* Returns the least integer value no smaller than `this`.
*
* The result is a double.
*/
double ceilToDouble();
/**
* Returns the integer obtained by discarding any fractional
* digits from `this`.
*
* The result is a double.
*/
double truncateToDouble();
/**
* Clamps [this] to be in the range [lowerLimit]-[upperLimit]. The comparison
* is done using [compareTo] and therefore takes [:-0.0:] into account.
* It also implies that [double.NAN] is treated as the maximal double value.
*/
num clamp(num lowerLimit, num upperLimit);
/** Truncates this [num] to an integer and returns the result as an [int]. */
int toInt();
/**
* Return this [num] as a [double].
*
* If the number is not representable as a [double], an
* approximation is returned. For numerically large integers, the
* approximation may be infinite.
*/
double toDouble();
/**
* Converts [this] to a string representation with [fractionDigits] digits
* after the decimal point.
*
* The parameter [fractionDigits] must be an integer satisfying:
* [:0 <= fractionDigits <= 20:].
*/
String toStringAsFixed(int fractionDigits);
/**
* Converts [this] to a string in decimal exponential notation with
* [fractionDigits] digits after the decimal point.
*
* If [fractionDigits] is given then it must be an integer satisfying:
* [:0 <= fractionDigits <= 20:]. Without the parameter the returned string
* uses the shortest number of digits that accurately represent [this].
*/
String toStringAsExponential([int fractionDigits]);
/**
* Converts [this] to a string representation with [precision] significant
* digits.
*
* The parameter [precision] must be an integer satisfying:
* [:1 <= precision <= 21:].
*/
String toStringAsPrecision(int precision);
}