blob: 27fef1482428d96867eab32d7d59aefeb491028e [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32.
#if defined(TARGET_ARCH_IA32)
#include "vm/intermediate_language.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#define __ compiler->assembler()->
namespace dart {
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, propagate_ic_data);
DECLARE_FLAG(bool, use_osr);
DECLARE_FLAG(bool, throw_on_javascript_int_overflow);
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register EAX.
LocationSummary* Instruction::MakeCallSummary() {
LocationSummary* result = new LocationSummary(0, 0, LocationSummary::kCall);
result->set_out(Location::RegisterLocation(EAX));
return result;
}
LocationSummary* PushArgumentInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps= 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::AnyOrConstant(value()));
return locs;
}
void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// In SSA mode, we need an explicit push. Nothing to do in non-SSA mode
// where PushArgument is handled by BindInstr::EmitNativeCode.
if (compiler->is_optimizing()) {
Location value = locs()->in(0);
if (value.IsRegister()) {
__ pushl(value.reg());
} else if (value.IsConstant()) {
__ PushObject(value.constant());
} else {
ASSERT(value.IsStackSlot());
__ pushl(value.ToStackSlotAddress());
}
}
}
LocationSummary* ReturnInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterLocation(EAX));
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instruction: a jump).
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->in(0).reg();
ASSERT(result == EAX);
#if defined(DEBUG)
// TODO(srdjan): Fix for functions with finally clause.
// A finally clause may leave a previously pushed return value if it
// has its own return instruction. Method that have finally are currently
// not optimized.
if (!compiler->HasFinally()) {
__ Comment("Stack Check");
Label done;
const intptr_t fp_sp_dist =
(kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize;
ASSERT(fp_sp_dist <= 0);
__ movl(EDI, ESP);
__ subl(EDI, EBP);
__ cmpl(EDI, Immediate(fp_sp_dist));
__ j(EQUAL, &done, Assembler::kNearJump);
__ int3();
__ Bind(&done);
}
#endif
__ LeaveFrame();
__ ret();
}
LocationSummary* LoadLocalInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 0;
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
__ movl(result, Address(EBP, local().index() * kWordSize));
}
LocationSummary* StoreLocalInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(kNumInputs,
Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out().reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ movl(Address(EBP, local().index() * kWordSize), value);
}
LocationSummary* ConstantInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 0;
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out().IsInvalid()) {
Register result = locs()->out().reg();
__ LoadObjectSafely(result, value());
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(EAX)); // Value.
summary->set_in(1, Location::RegisterLocation(ECX)); // Instantiator.
summary->set_in(2, Location::RegisterLocation(EDX)); // Type arguments.
summary->set_out(Location::RegisterLocation(EAX));
return summary;
}
LocationSummary* AssertBooleanInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
static void EmitAssertBoolean(Register reg,
intptr_t token_pos,
intptr_t deopt_id,
LocationSummary* locs,
FlowGraphCompiler* compiler) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
ASSERT(locs->always_calls());
Label done;
__ CompareObject(reg, Bool::True());
__ j(EQUAL, &done, Assembler::kNearJump);
__ CompareObject(reg, Bool::False());
__ j(EQUAL, &done, Assembler::kNearJump);
__ pushl(reg); // Push the source object.
compiler->GenerateRuntimeCall(token_pos,
deopt_id,
kNonBoolTypeErrorRuntimeEntry,
1,
locs);
// We should never return here.
__ int3();
__ Bind(&done);
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register obj = locs()->in(0).reg();
Register result = locs()->out().reg();
EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler);
ASSERT(obj == result);
}
static Condition TokenKindToSmiCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return LESS;
case Token::kGT: return GREATER;
case Token::kLTE: return LESS_EQUAL;
case Token::kGTE: return GREATER_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
if (operation_cid() == kMintCid) {
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (operation_cid() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (operation_cid() == kSmiCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
// Only right can be a stack slot.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(Location::RequiresRegister());
return locs;
}
UNREACHABLE();
return NULL;
}
static void LoadValueCid(FlowGraphCompiler* compiler,
Register value_cid_reg,
Register value_reg,
Label* value_is_smi = NULL) {
Label done;
if (value_is_smi == NULL) {
__ movl(value_cid_reg, Immediate(kSmiCid));
}
__ testl(value_reg, Immediate(kSmiTagMask));
if (value_is_smi == NULL) {
__ j(ZERO, &done, Assembler::kNearJump);
} else {
__ j(ZERO, value_is_smi);
}
__ LoadClassId(value_cid_reg, value_reg);
__ Bind(&done);
}
static Condition FlipCondition(Condition condition) {
switch (condition) {
case EQUAL: return EQUAL;
case NOT_EQUAL: return NOT_EQUAL;
case LESS: return GREATER;
case LESS_EQUAL: return GREATER_EQUAL;
case GREATER: return LESS;
case GREATER_EQUAL: return LESS_EQUAL;
case BELOW: return ABOVE;
case BELOW_EQUAL: return ABOVE_EQUAL;
case ABOVE: return BELOW;
case ABOVE_EQUAL: return BELOW_EQUAL;
default:
UNIMPLEMENTED();
return EQUAL;
}
}
static Condition NegateCondition(Condition condition) {
switch (condition) {
case EQUAL: return NOT_EQUAL;
case NOT_EQUAL: return EQUAL;
case LESS: return GREATER_EQUAL;
case LESS_EQUAL: return GREATER;
case GREATER: return LESS_EQUAL;
case GREATER_EQUAL: return LESS;
case BELOW: return ABOVE_EQUAL;
case BELOW_EQUAL: return ABOVE;
case ABOVE: return BELOW_EQUAL;
case ABOVE_EQUAL: return BELOW;
default:
UNIMPLEMENTED();
return EQUAL;
}
}
static void EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition,
BranchLabels labels) {
if (labels.fall_through == labels.false_label) {
// If the next block is the false successor, fall through to it.
__ j(true_condition, labels.true_label);
} else {
// If the next block is not the false successor, branch to it.
Condition false_condition = NegateCondition(true_condition);
__ j(false_condition, labels.false_label);
// Fall through or jump to the true successor.
if (labels.fall_through != labels.true_label) {
__ jmp(labels.true_label);
}
}
}
static Condition EmitSmiComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchLabels labels) {
Location left = locs.in(0);
Location right = locs.in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToSmiCondition(kind);
if (left.IsConstant()) {
__ CompareObject(right.reg(), left.constant());
true_condition = FlipCondition(true_condition);
} else if (right.IsConstant()) {
__ CompareObject(left.reg(), right.constant());
} else if (right.IsStackSlot()) {
__ cmpl(left.reg(), right.ToStackSlotAddress());
} else {
__ cmpl(left.reg(), right.reg());
}
return true_condition;
}
static void EmitJavascriptIntOverflowCheck(FlowGraphCompiler* compiler,
Label* overflow,
XmmRegister result,
Register tmp) {
// Compare upper half.
Label check_lower, done;
__ pextrd(tmp, result, Immediate(1));
__ cmpl(tmp, Immediate(0x00200000));
__ j(GREATER, overflow);
__ j(NOT_EQUAL, &check_lower);
__ pextrd(tmp, result, Immediate(0));
__ cmpl(tmp, Immediate(0));
__ j(ABOVE, overflow);
__ Bind(&check_lower);
__ pextrd(tmp, result, Immediate(1));
__ cmpl(tmp, Immediate(-0x00200000));
__ j(LESS, overflow);
// Anything in the lower part would make the number bigger than the lower
// bound, so we are done.
__ Bind(&done);
}
static Condition TokenKindToMintCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return LESS;
case Token::kGT: return GREATER;
case Token::kLTE: return LESS_EQUAL;
case Token::kGTE: return GREATER_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
static Condition EmitUnboxedMintEqualityOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchLabels labels) {
ASSERT(Token::IsEqualityOperator(kind));
XmmRegister left = locs.in(0).fpu_reg();
XmmRegister right = locs.in(1).fpu_reg();
Register temp = locs.temp(0).reg();
__ movaps(XMM0, left);
__ pcmpeqq(XMM0, right);
__ movd(temp, XMM0);
Condition true_condition = TokenKindToMintCondition(kind);
__ cmpl(temp, Immediate(-1));
return true_condition;
}
static Condition EmitUnboxedMintComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchLabels labels) {
XmmRegister left = locs.in(0).fpu_reg();
XmmRegister right = locs.in(1).fpu_reg();
Register left_tmp = locs.temp(0).reg();
Register right_tmp = locs.temp(1).reg();
Condition hi_cond = OVERFLOW, lo_cond = OVERFLOW;
switch (kind) {
case Token::kLT:
hi_cond = LESS;
lo_cond = BELOW;
break;
case Token::kGT:
hi_cond = GREATER;
lo_cond = ABOVE;
break;
case Token::kLTE:
hi_cond = LESS;
lo_cond = BELOW_EQUAL;
break;
case Token::kGTE:
hi_cond = GREATER;
lo_cond = ABOVE_EQUAL;
break;
default:
break;
}
ASSERT(hi_cond != OVERFLOW && lo_cond != OVERFLOW);
Label is_true, is_false;
// Compare upper halves first.
__ pextrd(left_tmp, left, Immediate(1));
__ pextrd(right_tmp, right, Immediate(1));
__ cmpl(left_tmp, right_tmp);
__ j(hi_cond, labels.true_label);
__ j(FlipCondition(hi_cond), labels.false_label);
// If upper is equal, compare lower half.
__ pextrd(left_tmp, left, Immediate(0));
__ pextrd(right_tmp, right, Immediate(0));
__ cmpl(left_tmp, right_tmp);
return lo_cond;
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQUAL;
case Token::kNE: return NOT_EQUAL;
case Token::kLT: return BELOW;
case Token::kGT: return ABOVE;
case Token::kLTE: return BELOW_EQUAL;
case Token::kGTE: return ABOVE_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchLabels labels) {
XmmRegister left = locs.in(0).fpu_reg();
XmmRegister right = locs.in(1).fpu_reg();
__ comisd(left, right);
Condition true_condition = TokenKindToDoubleCondition(kind);
Label* nan_result = (true_condition == NOT_EQUAL)
? labels.true_label : labels.false_label;
__ j(PARITY_EVEN, nan_result);
return true_condition;
}
Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, *locs(), kind(), labels);
} else if (operation_cid() == kMintCid) {
return EmitUnboxedMintEqualityOp(compiler, *locs(), kind(), labels);
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels);
}
}
void EqualityCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
Label is_true, is_false;
BranchLabels labels = { &is_true, &is_false, &is_false };
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
Register result = locs()->out().reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False());
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
}
void EqualityCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* TestSmiInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, Location::RegisterOrConstant(right()));
return locs;
}
Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
Register left = locs()->in(0).reg();
Location right = locs()->in(1);
if (right.IsConstant()) {
ASSERT(right.constant().IsSmi());
const int32_t imm =
reinterpret_cast<int32_t>(right.constant().raw());
__ testl(left, Immediate(imm));
} else {
__ testl(left, right.reg());
}
Condition true_condition = (kind() == Token::kNE) ? NOT_ZERO : ZERO;
return true_condition;
}
void TestSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Never emitted outside of the BranchInstr.
UNREACHABLE();
}
void TestSmiInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* RelationalOpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operation_cid() == kMintCid) {
const intptr_t kNumTemps = 2;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_temp(1, Location::RequiresRegister());
locs->set_out(Location::RequiresRegister());
return locs;
}
if (operation_cid() == kDoubleCid) {
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
ASSERT(operation_cid() == kSmiCid);
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
summary->set_out(Location::RequiresRegister());
return summary;
}
Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, *locs(), kind(), labels);
} else if (operation_cid() == kMintCid) {
return EmitUnboxedMintComparisonOp(compiler, *locs(), kind(), labels);
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels);
}
}
void RelationalOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label is_true, is_false;
BranchLabels labels = { &is_true, &is_false, &is_false };
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
Register result = locs()->out().reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False());
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
}
void RelationalOpInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* NativeCallInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 3;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(EAX));
locs->set_temp(1, Location::RegisterLocation(ECX));
locs->set_temp(2, Location::RegisterLocation(EDX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == EAX);
ASSERT(locs()->temp(1).reg() == ECX);
ASSERT(locs()->temp(2).reg() == EDX);
Register result = locs()->out().reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::ZoneHandle());
// Pass a pointer to the first argument in EAX.
if (!function().HasOptionalParameters()) {
__ leal(EAX, Address(EBP, (kParamEndSlotFromFp +
function().NumParameters()) * kWordSize));
} else {
__ leal(EAX, Address(EBP, kFirstLocalSlotFromFp * kWordSize));
}
__ movl(ECX, Immediate(reinterpret_cast<uword>(native_c_function())));
__ movl(EDX, Immediate(NativeArguments::ComputeArgcTag(function())));
const ExternalLabel* stub_entry =
(is_bootstrap_native()) ? &StubCode::CallBootstrapCFunctionLabel() :
&StubCode::CallNativeCFunctionLabel();
compiler->GenerateCall(token_pos(),
stub_entry,
PcDescriptors::kOther,
locs());
__ popl(result);
}
static bool CanBeImmediateIndex(Value* value, intptr_t cid) {
ConstantInstr* constant = value->definition()->AsConstant();
if ((constant == NULL) || !Assembler::IsSafeSmi(constant->value())) {
return false;
}
const int64_t index = Smi::Cast(constant->value()).AsInt64Value();
const intptr_t scale = FlowGraphCompiler::ElementSizeFor(cid);
const intptr_t offset = FlowGraphCompiler::DataOffsetFor(cid);
const int64_t displacement = index * scale + offset;
return Utils::IsInt(32, displacement);
}
LocationSummary* StringFromCharCodeInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
// TODO(fschneider): Allow immediate operands for the char code.
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringFromCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register char_code = locs()->in(0).reg();
Register result = locs()->out().reg();
__ movl(result,
Immediate(reinterpret_cast<uword>(Symbols::PredefinedAddress())));
__ movl(result, Address(result,
char_code,
TIMES_HALF_WORD_SIZE, // Char code is a smi.
Symbols::kNullCharCodeSymbolOffset * kWordSize));
}
LocationSummary* StringToCharCodeInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(cid_ == kOneByteStringCid);
Register str = locs()->in(0).reg();
Register result = locs()->out().reg();
Label is_one, done;
__ movl(result, FieldAddress(str, String::length_offset()));
__ cmpl(result, Immediate(Smi::RawValue(1)));
__ j(EQUAL, &is_one, Assembler::kNearJump);
__ movl(result, Immediate(Smi::RawValue(-1)));
__ jmp(&done);
__ Bind(&is_one);
__ movzxb(result, FieldAddress(str, OneByteString::data_offset()));
__ SmiTag(result);
__ Bind(&done);
}
LocationSummary* StringInterpolateInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(EAX));
summary->set_out(Location::RegisterLocation(EAX));
return summary;
}
void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
__ pushl(array);
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
compiler->GenerateStaticCall(deopt_id(),
token_pos(),
CallFunction(),
kNumberOfArguments,
kNoArgumentNames,
locs());
ASSERT(locs()->out().reg() == EAX);
}
LocationSummary* LoadUntaggedInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register object = locs()->in(0).reg();
Register result = locs()->out().reg();
__ movl(result, FieldAddress(object, offset()));
}
LocationSummary* LoadClassIdInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register object = locs()->in(0).reg();
Register result = locs()->out().reg();
Label load, done;
__ testl(object, Immediate(kSmiTagMask));
__ j(NOT_ZERO, &load, Assembler::kNearJump);
__ movl(result, Immediate(Smi::RawValue(kSmiCid)));
__ jmp(&done);
__ Bind(&load);
__ LoadClassId(result, object);
__ SmiTag(result);
__ Bind(&done);
}
CompileType LoadIndexedInstr::ComputeType() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
return CompileType::Dynamic();
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return CompileType::FromCid(kDoubleCid);
case kTypedDataFloat32x4ArrayCid:
return CompileType::FromCid(kFloat32x4Cid);
case kTypedDataInt32x4ArrayCid:
return CompileType::FromCid(kInt32x4Cid);
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
return CompileType::FromCid(kSmiCid);
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
// Result can be Smi or Mint when boxed.
// Instruction can deoptimize if we optimistically assumed that the result
// fits into Smi.
return CanDeoptimize() ? CompileType::FromCid(kSmiCid)
: CompileType::Int();
default:
UNIMPLEMENTED();
return CompileType::Dynamic();
}
}
Representation LoadIndexedInstr::representation() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
return kTagged;
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
// Instruction can deoptimize if we optimistically assumed that the result
// fits into Smi.
return CanDeoptimize() ? kTagged : kUnboxedMint;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
default:
UNIMPLEMENTED();
return kTagged;
}
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (CanBeImmediateIndex(index(), class_id())) {
// CanBeImmediateIndex must return false for unsafe smis.
locs->set_in(1, Location::Constant(index()->BoundConstant()));
} else {
// The index is either untagged (element size == 1) or a smi (for all
// element sizes > 1).
locs->set_in(1, (index_scale() == 1)
? Location::WritableRegister()
: Location::RequiresRegister());
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4)) {
locs->set_out(Location::RequiresFpuRegister());
} else {
locs->set_out(Location::RequiresRegister());
}
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
Location index = locs()->in(1);
Address element_address(kNoRegister, 0);
if (IsExternal()) {
element_address = index.IsRegister()
? FlowGraphCompiler::ExternalElementAddressForRegIndex(
index_scale(), array, index.reg())
: FlowGraphCompiler::ExternalElementAddressForIntIndex(
index_scale(), array, Smi::Cast(index.constant()).Value());
} else {
ASSERT(this->array()->definition()->representation() == kTagged);
element_address = index.IsRegister()
? FlowGraphCompiler::ElementAddressForRegIndex(
class_id(), index_scale(), array, index.reg())
: FlowGraphCompiler::ElementAddressForIntIndex(
class_id(), index_scale(), array,
Smi::Cast(index.constant()).Value());
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedMint) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4)) {
XmmRegister result = locs()->out().fpu_reg();
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
switch (class_id()) {
case kTypedDataInt32ArrayCid:
__ movss(result, element_address);
__ pmovsxdq(result, result);
break;
case kTypedDataUint32ArrayCid:
__ xorpd(result, result);
__ movss(result, element_address);
break;
case kTypedDataFloat32ArrayCid:
// Load single precision float and promote to double.
__ movss(result, element_address);
__ cvtss2sd(result, locs()->out().fpu_reg());
break;
case kTypedDataFloat64ArrayCid:
__ movsd(result, element_address);
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
__ movups(result, element_address);
break;
}
return;
}
Register result = locs()->out().reg();
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
switch (class_id()) {
case kTypedDataInt8ArrayCid:
ASSERT(index_scale() == 1);
__ movsxb(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
ASSERT(index_scale() == 1);
__ movzxb(result, element_address);
__ SmiTag(result);
break;
case kTypedDataInt16ArrayCid:
__ movsxw(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint16ArrayCid:
case kTwoByteStringCid:
__ movzxw(result, element_address);
__ SmiTag(result);
break;
case kTypedDataInt32ArrayCid: {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptInt32Load);
__ movl(result, element_address);
// Verify that the signed value in 'result' can fit inside a Smi.
__ cmpl(result, Immediate(0xC0000000));
__ j(NEGATIVE, deopt);
__ SmiTag(result);
}
break;
case kTypedDataUint32ArrayCid: {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptUint32Load);
__ movl(result, element_address);
// Verify that the unsigned value in 'result' can fit inside a Smi.
__ testl(result, Immediate(0xC0000000));
__ j(NOT_ZERO, deopt);
__ SmiTag(result);
}
break;
default:
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid));
__ movl(result, element_address);
break;
}
}
Representation StoreIndexedInstr::RequiredInputRepresentation(
intptr_t idx) const {
// Array can be a Dart object or a pointer to external data.
if (idx == 0) return kNoRepresentation; // Flexible input representation.
if (idx == 1) return kTagged; // Index is a smi.
ASSERT(idx == 2);
switch (class_id_) {
case kArrayCid:
case kOneByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
return kTagged;
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
return value()->IsSmiValue() ? kTagged : kUnboxedMint;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
default:
UNIMPLEMENTED();
return kTagged;
}
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (CanBeImmediateIndex(index(), class_id())) {
// CanBeImmediateIndex must return false for unsafe smis.
locs->set_in(1, Location::Constant(index()->BoundConstant()));
} else {
// The index is either untagged (element size == 1) or a smi (for all
// element sizes > 1).
locs->set_in(1, (index_scale() == 1)
? Location::WritableRegister()
: Location::RequiresRegister());
}
switch (class_id()) {
case kArrayCid:
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
break;
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
// TODO(fschneider): Add location constraint for byte registers (EAX,
// EBX, ECX, EDX) instead of using a fixed register.
locs->set_in(2, Location::FixedRegisterOrSmiConstant(value(), EAX));
break;
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
// Writable register because the value must be untagged before storing.
locs->set_in(2, Location::WritableRegister());
break;
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
// Mints are stored in XMM registers. For smis, use a writable register
// because the value must be untagged before storing.
locs->set_in(2, value()->IsSmiValue()
? Location::WritableRegister()
: Location::RequiresFpuRegister());
break;
case kTypedDataFloat32ArrayCid:
// Need temp register for float-to-double conversion.
locs->AddTemp(Location::RequiresFpuRegister());
// Fall through.
case kTypedDataFloat64ArrayCid:
// TODO(srdjan): Support Float64 constants.
locs->set_in(2, Location::RequiresFpuRegister());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
locs->set_in(2, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
return NULL;
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
Location index = locs()->in(1);
Address element_address(kNoRegister, 0);
if (IsExternal()) {
element_address = index.IsRegister()
? FlowGraphCompiler::ExternalElementAddressForRegIndex(
index_scale(), array, index.reg())
: FlowGraphCompiler::ExternalElementAddressForIntIndex(
index_scale(), array, Smi::Cast(index.constant()).Value());
} else {
ASSERT(this->array()->definition()->representation() == kTagged);
element_address = index.IsRegister()
? FlowGraphCompiler::ElementAddressForRegIndex(
class_id(), index_scale(), array, index.reg())
: FlowGraphCompiler::ElementAddressForIntIndex(
class_id(), index_scale(), array,
Smi::Cast(index.constant()).Value());
}
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
switch (class_id()) {
case kArrayCid:
if (ShouldEmitStoreBarrier()) {
Register value = locs()->in(2).reg();
__ StoreIntoObject(array, element_address, value);
} else if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreIntoObjectNoBarrier(array, element_address, constant);
} else {
Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, element_address, value);
}
break;
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kOneByteStringCid:
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
__ movb(element_address,
Immediate(static_cast<int8_t>(constant.Value())));
} else {
ASSERT(locs()->in(2).reg() == EAX);
__ SmiUntag(EAX);
__ movb(element_address, AL);
}
break;
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid: {
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
intptr_t value = constant.Value();
// Clamp to 0x0 or 0xFF respectively.
if (value > 0xFF) {
value = 0xFF;
} else if (value < 0) {
value = 0;
}
__ movb(element_address,
Immediate(static_cast<int8_t>(value)));
} else {
ASSERT(locs()->in(2).reg() == EAX);
Label store_value, store_0xff;
__ SmiUntag(EAX);
__ cmpl(EAX, Immediate(0xFF));
__ j(BELOW_EQUAL, &store_value, Assembler::kNearJump);
// Clamp to 0x0 or 0xFF respectively.
__ j(GREATER, &store_0xff);
__ xorl(EAX, EAX);
__ jmp(&store_value, Assembler::kNearJump);
__ Bind(&store_0xff);
__ movl(EAX, Immediate(0xFF));
__ Bind(&store_value);
__ movb(element_address, AL);
}
break;
}
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid: {
Register value = locs()->in(2).reg();
__ SmiUntag(value);
__ movw(element_address, value);
break;
}
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
if (value()->IsSmiValue()) {
ASSERT(RequiredInputRepresentation(2) == kTagged);
Register value = locs()->in(2).reg();
__ SmiUntag(value);
__ movl(element_address, value);
} else {
ASSERT(RequiredInputRepresentation(2) == kUnboxedMint);
__ movss(element_address, locs()->in(2).fpu_reg());
}
break;
case kTypedDataFloat32ArrayCid:
// Convert to single precision.
__ cvtsd2ss(locs()->temp(0).fpu_reg(), locs()->in(2).fpu_reg());
// Store.
__ movss(element_address, locs()->temp(0).fpu_reg());
break;
case kTypedDataFloat64ArrayCid:
__ movsd(element_address, locs()->in(2).fpu_reg());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
__ movups(element_address, locs()->in(2).fpu_reg());
break;
default:
UNREACHABLE();
}
}
LocationSummary* GuardFieldInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, 0, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
const bool field_has_length = field().needs_length_check();
const bool need_value_temp_reg =
(field_has_length || ((value()->Type()->ToCid() == kDynamicCid) &&
(field().guarded_cid() != kSmiCid)));
if (need_value_temp_reg) {
summary->AddTemp(Location::RequiresRegister());
}
const bool need_field_temp_reg =
field_has_length || (field().guarded_cid() == kIllegalCid);
if (need_field_temp_reg) {
summary->AddTemp(Location::RequiresRegister());
}
return summary;
}
void GuardFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t field_cid = field().guarded_cid();
const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid;
const intptr_t field_length = field().guarded_list_length();
const bool field_has_length = field().needs_length_check();
const bool needs_value_temp_reg =
(field_has_length || ((value()->Type()->ToCid() == kDynamicCid) &&
(field().guarded_cid() != kSmiCid)));
const bool needs_field_temp_reg =
field_has_length || (field().guarded_cid() == kIllegalCid);
if (field_has_length) {
// Currently, we should only see final fields that remember length.
ASSERT(field().is_final());
}
if (field_cid == kDynamicCid) {
ASSERT(!compiler->is_optimizing());
return; // Nothing to emit.
}
const intptr_t value_cid = value()->Type()->ToCid();
Register value_reg = locs()->in(0).reg();
Register value_cid_reg = needs_value_temp_reg ?
locs()->temp(0).reg() : kNoRegister;
Register field_reg = needs_field_temp_reg ?
locs()->temp(locs()->temp_count() - 1).reg() : kNoRegister;
Label ok, fail_label;
Label* deopt = compiler->is_optimizing() ?
compiler->AddDeoptStub(deopt_id(), kDeoptGuardField) : NULL;
Label* fail = (deopt != NULL) ? deopt : &fail_label;
const bool ok_is_fall_through = (deopt != NULL);
if (!compiler->is_optimizing() || (field_cid == kIllegalCid)) {
if (!compiler->is_optimizing() && (field_reg == kNoRegister)) {
// Currently we can't have different location summaries for optimized
// and non-optimized code. So instead we manually pick up a register
// that is known to be free because we know how non-optimizing compiler
// allocates registers.
field_reg = EBX;
ASSERT((field_reg != value_reg) && (field_reg != value_cid_reg));
}
__ LoadObject(field_reg, Field::ZoneHandle(field().raw()));
FieldAddress field_cid_operand(field_reg, Field::guarded_cid_offset());
FieldAddress field_nullability_operand(
field_reg, Field::is_nullable_offset());
FieldAddress field_length_operand(
field_reg, Field::guarded_list_length_offset());
if (value_cid == kDynamicCid) {
if (value_cid_reg == kNoRegister) {
ASSERT(!compiler->is_optimizing());
value_cid_reg = EDX;
ASSERT((value_cid_reg != value_reg) && (field_reg != value_cid_reg));
}
LoadValueCid(compiler, value_cid_reg, value_reg);
Label skip_length_check;
__ cmpl(value_cid_reg, field_cid_operand);
// Value CID != Field guard CID, skip length check.
__ j(NOT_EQUAL, &skip_length_check);
if (field_has_length) {
// Field guard may have remembered list length, check it.
if ((field_cid == kArrayCid) || (field_cid == kImmutableArrayCid)) {
__ pushl(value_cid_reg);
__ movl(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
__ cmpl(value_cid_reg, Immediate(Smi::RawValue(field_length)));
__ popl(value_cid_reg);
} else if (RawObject::IsTypedDataClassId(field_cid)) {
__ pushl(value_cid_reg);
__ movl(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ cmpl(value_cid_reg, Immediate(Smi::RawValue(field_length)));
__ popl(value_cid_reg);
} else {
ASSERT(field_cid == kIllegalCid);
ASSERT(field_length == Field::kUnknownFixedLength);
// At compile time we do not know the type of the field nor its
// length. At execution time we may have set the class id and
// list length so we compare the guarded length with the
// list length here, without this check the list length could change
// without triggering a deoptimization.
Label check_array, length_compared, no_fixed_length;
// If length is negative the length guard is either disabled or
// has not been initialized, either way it is safe to skip the
// length check.
__ cmpl(field_length_operand, Immediate(Smi::RawValue(0)));
__ j(LESS, &skip_length_check);
__ cmpl(value_cid_reg, Immediate(kNullCid));
__ j(EQUAL, &no_fixed_length, Assembler::kNearJump);
// Check for typed data array.
__ cmpl(value_cid_reg, Immediate(kTypedDataInt32x4ArrayCid));
// Not a typed array or a regular array.
__ j(GREATER, &no_fixed_length, Assembler::kNearJump);
__ cmpl(value_cid_reg, Immediate(kTypedDataInt8ArrayCid));
// Could still be a regular array.
__ j(LESS, &check_array, Assembler::kNearJump);
__ pushl(value_cid_reg);
__ movl(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ cmpl(field_length_operand, value_cid_reg);
__ popl(value_cid_reg);
__ jmp(&length_compared, Assembler::kNearJump);
// Check for regular array.
__ Bind(&check_array);
__ cmpl(value_cid_reg, Immediate(kImmutableArrayCid));
__ j(GREATER, &no_fixed_length, Assembler::kNearJump);
__ cmpl(value_cid_reg, Immediate(kArrayCid));
__ j(LESS, &no_fixed_length, Assembler::kNearJump);
__ pushl(value_cid_reg);
__ movl(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
__ cmpl(field_length_operand, value_cid_reg);
__ popl(value_cid_reg);
__ jmp(&length_compared, Assembler::kNearJump);
__ Bind(&no_fixed_length);
__ jmp(fail);
__ Bind(&length_compared);
}
__ j(NOT_EQUAL, fail);
}
__ Bind(&skip_length_check);
__ cmpl(value_cid_reg, field_nullability_operand);
} else if (value_cid == kNullCid) {
// Value in graph known to be null.
// Compare with null.
__ cmpl(field_nullability_operand, Immediate(value_cid));
} else {
// Value in graph known to be non-null.
Label skip_length_check;
// Compare class id with guard field class id.
__ cmpl(field_cid_operand, Immediate(value_cid));
// If not equal, skip over length check.
__ j(NOT_EQUAL, &skip_length_check);
// Insert length check.
if (field_has_length) {
ASSERT(value_cid_reg != kNoRegister);
if ((value_cid == kArrayCid) || (value_cid == kImmutableArrayCid)) {
__ cmpl(FieldAddress(value_reg, Array::length_offset()),
Immediate(Smi::RawValue(field_length)));
} else if (RawObject::IsTypedDataClassId(value_cid)) {
__ cmpl(FieldAddress(value_reg, TypedData::length_offset()),
Immediate(Smi::RawValue(field_length)));
} else if (field_cid != kIllegalCid) {
ASSERT(field_cid != value_cid);
ASSERT(field_length >= 0);
// Field has a known class id and length. At compile time it is
// known that the value's class id is not a fixed length list.
__ jmp(fail);
} else {
ASSERT(field_cid == kIllegalCid);
ASSERT(field_length == Field::kUnknownFixedLength);
// Following jump cannot not occur, fall through.
}
__ j(NOT_EQUAL, fail);
}
// Not identical, possibly null.
__ Bind(&skip_length_check);
}
// Jump when class id guard and list length guard are okay.
__ j(EQUAL, &ok);
// Check if guard field is uninitialized.
__ cmpl(field_cid_operand, Immediate(kIllegalCid));
// Jump to failure path when guard field has been initialized and
// the field and value class ids do not not match.
__ j(NOT_EQUAL, fail);
// At this point the field guard is being initialized for the first time.
if (value_cid == kDynamicCid) {
// Do not know value's class id.
__ movl(field_cid_operand, value_cid_reg);
__ movl(field_nullability_operand, value_cid_reg);
if (field_has_length) {
Label check_array, length_set, no_fixed_length;
__ cmpl(value_cid_reg, Immediate(kNullCid));
__ j(EQUAL, &no_fixed_length, Assembler::kNearJump);
// Check for typed data array.
__ cmpl(value_cid_reg, Immediate(kTypedDataInt32x4ArrayCid));
// Not a typed array or a regular array.
__ j(GREATER, &no_fixed_length, Assembler::kNearJump);
__ cmpl(value_cid_reg, Immediate(kTypedDataInt8ArrayCid));
// Could still be a regular array.
__ j(LESS, &check_array, Assembler::kNearJump);
// Destroy value_cid_reg (safe because we are finished with it).
__ movl(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ movl(field_length_operand, value_cid_reg);
// Updated field length typed data array.
__ jmp(&length_set, Assembler::kNearJump);
// Check for regular array.
__ Bind(&check_array);
__ cmpl(value_cid_reg, Immediate(kImmutableArrayCid));
__ j(GREATER, &no_fixed_length, Assembler::kNearJump);
__ cmpl(value_cid_reg, Immediate(kArrayCid));
__ j(LESS, &no_fixed_length, Assembler::kNearJump);
// Destroy value_cid_reg (safe because we are finished with it).
__ movl(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
__ movl(field_length_operand, value_cid_reg);
// Updated field length from regular array.
__ jmp(&length_set, Assembler::kNearJump);
__ Bind(&no_fixed_length);
__ movl(field_length_operand,
Immediate(Smi::RawValue(Field::kNoFixedLength)));
__ Bind(&length_set);
}
} else {
ASSERT(field_reg != kNoRegister);
__ movl(field_cid_operand, Immediate(value_cid));
__ movl(field_nullability_operand, Immediate(value_cid));
if (field_has_length) {
ASSERT(value_cid_reg != kNoRegister);
if ((value_cid == kArrayCid) || (value_cid == kImmutableArrayCid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ movl(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
__ movl(field_length_operand, value_cid_reg);
} else if (RawObject::IsTypedDataClassId(value_cid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ movl(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
__ movl(field_length_operand, value_cid_reg);
} else {
__ movl(field_length_operand,
Immediate(Smi::RawValue(Field::kNoFixedLength)));
}
}
}
if (!ok_is_fall_through) {
__ jmp(&ok);
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ Bind(fail);
__ cmpl(FieldAddress(field_reg, Field::guarded_cid_offset()),
Immediate(kDynamicCid));
__ j(EQUAL, &ok);
__ pushl(field_reg);
__ pushl(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
}
} else {
ASSERT(compiler->is_optimizing());
ASSERT(deopt != NULL);
ASSERT(ok_is_fall_through);
// Field guard class has been initialized and is known.
if (field_reg != kNoRegister) {
__ LoadObject(field_reg, Field::ZoneHandle(field().raw()));
}
if (value_cid == kDynamicCid) {
// Value's class id is not known.
__ testl(value_reg, Immediate(kSmiTagMask));
if (field_cid != kSmiCid) {
__ j(ZERO, fail);
__ LoadClassId(value_cid_reg, value_reg);
__ cmpl(value_cid_reg, Immediate(field_cid));
}
if (field_has_length) {
// Jump when Value CID != Field guard CID
__ j(NOT_EQUAL, fail);
// Classes are same, perform guarded list length check.
ASSERT(field_reg != kNoRegister);
ASSERT(value_cid_reg != kNoRegister);
FieldAddress field_length_operand(
field_reg, Field::guarded_list_length_offset());
if ((field_cid == kArrayCid) || (field_cid == kImmutableArrayCid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ movl(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
} else if (RawObject::IsTypedDataClassId(field_cid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ movl(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
}
__ cmpl(value_cid_reg, field_length_operand);
}
if (field().is_nullable() && (field_cid != kNullCid)) {
__ j(EQUAL, &ok);
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpl(value_reg, raw_null);
}
__ j(NOT_EQUAL, fail);
} else {
// Both value's and field's class id is known.
if ((value_cid != field_cid) && (value_cid != nullability)) {
__ jmp(fail);
} else if (field_has_length && (value_cid == field_cid)) {
ASSERT(value_cid_reg != kNoRegister);
if ((field_cid == kArrayCid) || (field_cid == kImmutableArrayCid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ movl(value_cid_reg,
FieldAddress(value_reg, Array::length_offset()));
} else if (RawObject::IsTypedDataClassId(field_cid)) {
// Destroy value_cid_reg (safe because we are finished with it).
__ movl(value_cid_reg,
FieldAddress(value_reg, TypedData::length_offset()));
}
__ cmpl(value_cid_reg, Immediate(Smi::RawValue(field_length)));
__ j(NOT_EQUAL, fail);
} else {
UNREACHABLE();
}
}
}
__ Bind(&ok);
}
class StoreInstanceFieldSlowPath : public SlowPathCode {
public:
explicit StoreInstanceFieldSlowPath(StoreInstanceFieldInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("StoreInstanceFieldSlowPath");
__ Bind(entry_label());
const Class& double_class = compiler->double_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(double_class));
const ExternalLabel label(double_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kDummyTokenIndex, // No token position.
&label,
PcDescriptors::kOther,
locs);
__ MoveRegister(locs->temp(0).reg(), EAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
StoreInstanceFieldInstr* instruction_;
};
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps,
(field().guarded_cid() == kIllegalCid) || (is_initialization_)
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (IsUnboxedStore() && opt) {
summary->set_in(1, Location::RequiresFpuRegister());
summary->AddTemp(Location::RequiresRegister());
summary->AddTemp(Location::RequiresRegister());
} else if (IsPotentialUnboxedStore()) {
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RequiresRegister());
summary->AddTemp(Location::RequiresRegister());
summary->AddTemp(Location::RequiresRegister());
summary->AddTemp(opt ? Location::RequiresFpuRegister()
: Location::FpuRegisterLocation(XMM1));
} else {
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
}
return summary;
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label skip_store;
Register instance_reg = locs()->in(0).reg();
if (IsUnboxedStore() && compiler->is_optimizing()) {
XmmRegister value = locs()->in(1).fpu_reg();
Register temp = locs()->temp(0).reg();
Register temp2 = locs()->temp(1).reg();
if (is_initialization_) {
StoreInstanceFieldSlowPath* slow_path =
new StoreInstanceFieldSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
temp);
__ Bind(slow_path->exit_label());
__ movl(temp2, temp);
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, field().Offset()),
temp2);
} else {
__ movl(temp, FieldAddress(instance_reg, field().Offset()));
}
__ movsd(FieldAddress(temp, Double::value_offset()), value);
return;
}
if (IsPotentialUnboxedStore()) {
Register value_reg = locs()->in(1).reg();
Register temp = locs()->temp(0).reg();
Register temp2 = locs()->temp(1).reg();
FpuRegister fpu_temp = locs()->temp(2).fpu_reg();
Label store_pointer, copy_payload;
__ LoadObject(temp, Field::ZoneHandle(field().raw()));
__ cmpl(FieldAddress(temp, Field::guarded_cid_offset()),
Immediate(kDoubleCid));
__ j(NOT_EQUAL, &store_pointer);
__ cmpl(FieldAddress(temp, Field::is_nullable_offset()),
Immediate(kNullCid));
__ j(EQUAL, &store_pointer);
__ movzxb(temp2, FieldAddress(temp, Field::kind_bits_offset()));
__ testl(temp2, Immediate(1 << Field::kUnboxingCandidateBit));
__ j(ZERO, &store_pointer);
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ movl(temp, FieldAddress(instance_reg, field().Offset()));
__ cmpl(temp, raw_null);
__ j(NOT_EQUAL, &copy_payload);
StoreInstanceFieldSlowPath* slow_path =
new StoreInstanceFieldSlowPath(this);
compiler->AddSlowPathCode(slow_path);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
locs()->live_registers()->Add(locs()->in(1));
}
__ TryAllocate(compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
temp);
__ Bind(slow_path->exit_label());
__ movl(temp2, temp);
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, field().Offset()),
temp2);
__ Bind(&copy_payload);
__ movsd(fpu_temp, FieldAddress(value_reg, Double::value_offset()));
__ movsd(FieldAddress(temp, Double::value_offset()), fpu_temp);
__ jmp(&skip_store);
__ Bind(&store_pointer);
}
if (ShouldEmitStoreBarrier()) {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, field().Offset()),
value_reg,
CanValueBeSmi());
} else {
if (locs()->in(1).IsConstant()) {
__ StoreIntoObjectNoBarrier(
instance_reg,
FieldAddress(instance_reg, field().Offset()),
locs()->in(1).constant());
} else {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectNoBarrier(instance_reg,
FieldAddress(instance_reg, field().Offset()), value_reg);
}
}
__ Bind(&skip_store);
}
LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// By specifying same register as input, our simple register allocator can
// generate better code.
summary->set_out(Location::SameAsFirstInput());
return summary;
}
// When the parser is building an implicit static getter for optimization,
// it can generate a function body where deoptimization ids do not line up
// with the unoptimized code.
//
// This is safe only so long as LoadStaticFieldInstr cannot deoptimize.
void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register field = locs()->in(0).reg();
Register result = locs()->out().reg();
__ movl(result, FieldAddress(field, Field::value_offset()));
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(bool opt) const {
LocationSummary* locs = new LocationSummary(1, 1, LocationSummary::kNoCall);
locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister()
: Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
__ LoadObject(temp, field());
if (this->value()->NeedsStoreBuffer()) {
__ StoreIntoObject(temp,
FieldAddress(temp, Field::value_offset()), value, CanValueBeSmi());
} else {
__ StoreIntoObjectNoBarrier(
temp, FieldAddress(temp, Field::value_offset()), value);
}
}
LocationSummary* InstanceOfInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(EAX));
summary->set_in(1, Location::RegisterLocation(ECX));
summary->set_in(2, Location::RegisterLocation(EDX));
summary->set_out(Location::RegisterLocation(EAX));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == EAX); // Value.
ASSERT(locs()->in(1).reg() == ECX); // Instantiator.
ASSERT(locs()->in(2).reg() == EDX); // Instantiator type arguments.
compiler->GenerateInstanceOf(token_pos(),
deopt_id(),
type(),
negate_result(),
locs());
ASSERT(locs()->out().reg() == EAX);
}
LocationSummary* CreateArrayInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(ECX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Allocate the array. EDX = length, ECX = element type.
ASSERT(locs()->in(0).reg() == ECX);
__ movl(EDX, Immediate(Smi::RawValue(num_elements())));
compiler->GenerateCall(token_pos(),
&StubCode::AllocateArrayLabel(),
PcDescriptors::kOther,
locs());
ASSERT(locs()->out().reg() == EAX);
}
LocationSummary*
AllocateObjectWithBoundsCheckInstr::MakeLocationSummary(bool opt) const {
return MakeCallSummary();
}
void AllocateObjectWithBoundsCheckInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kAllocateObjectWithBoundsCheckRuntimeEntry,
3,
locs());
__ Drop(3);
ASSERT(locs()->out().reg() == EAX);
__ popl(EAX); // Pop new instance.
}
class BoxDoubleSlowPath : public SlowPathCode {
public:
explicit BoxDoubleSlowPath(Instruction* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxDoubleSlowPath");
__ Bind(entry_label());
const Class& double_class = compiler->double_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(double_class));
const ExternalLabel label(double_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kDummyTokenIndex, // No token position.
&label,
PcDescriptors::kOther,
locs);
__ MoveRegister(locs->out().reg(), EAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
Instruction* instruction_;
};
LocationSummary* LoadFieldInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(
kNumInputs, kNumTemps,
(opt && !IsPotentialUnboxedLoad())
? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath);
locs->set_in(0, Location::RequiresRegister());
if (IsUnboxedLoad() && opt) {
locs->AddTemp(Location::RequiresRegister());
} else if (IsPotentialUnboxedLoad()) {
locs->AddTemp(opt ? Location::RequiresFpuRegister()
: Location::FpuRegisterLocation(XMM1));
locs->AddTemp(Location::RequiresRegister());
}
locs->set_out(Location::RequiresRegister());
return locs;
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instance_reg = locs()->in(0).reg();
if (IsUnboxedLoad() && compiler->is_optimizing()) {
XmmRegister result = locs()->out().fpu_reg();
Register temp = locs()->temp(0).reg();
__ movl(temp, FieldAddress(instance_reg, offset_in_bytes()));
__ movsd(result, FieldAddress(temp, Double::value_offset()));
return;
}
Label done;
Register result = locs()->out().reg();
if (IsPotentialUnboxedLoad()) {
Register temp = locs()->temp(1).reg();
XmmRegister value = locs()->temp(0).fpu_reg();
Label load_pointer;
__ LoadObject(result, Field::ZoneHandle(field()->raw()));
FieldAddress field_cid_operand(result, Field::guarded_cid_offset());
FieldAddress field_nullability_operand(result, Field::is_nullable_offset());
__ cmpl(field_cid_operand, Immediate(kDoubleCid));
__ j(NOT_EQUAL, &load_pointer);
__ cmpl(field_nullability_operand, Immediate(kNullCid));
__ j(EQUAL, &load_pointer);
BoxDoubleSlowPath* slow_path = new BoxDoubleSlowPath(this);
compiler->AddSlowPathCode(slow_path);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
}
__ TryAllocate(compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
result);
__ Bind(slow_path->exit_label());
__ movl(temp, FieldAddress(instance_reg, offset_in_bytes()));
__ movsd(value, FieldAddress(temp, Double::value_offset()));
__ movsd(FieldAddress(result, Double::value_offset()), value);
__ jmp(&done);
__ Bind(&load_pointer);
}
__ movl(result, FieldAddress(instance_reg, offset_in_bytes()));
__ Bind(&done);
}
LocationSummary* InstantiateTypeInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
// 'instantiator_reg' is the instantiator AbstractTypeArguments object
// (or null).
// A runtime call to instantiate the type is required.
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ PushObject(type());
__ pushl(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kInstantiateTypeRuntimeEntry,
2,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type.
__ popl(result_reg); // Pop instantiated type.
ASSERT(instantiator_reg == result_reg);
}
LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary(
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void InstantiateTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
// 'instantiator_reg' is the instantiator AbstractTypeArguments object
// (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpl(instantiator_reg, raw_null);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
}
// Instantiate non-null type arguments.
// A runtime call to instantiate the type arguments is required.
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ PushObject(type_arguments());
__ pushl(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kInstantiateTypeArgumentsRuntimeEntry,
2,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type arguments.
__ popl(result_reg); // Pop instantiated type arguments.
__ Bind(&type_arguments_instantiated);
ASSERT(instantiator_reg == result_reg);
}
LocationSummary*
ExtractConstructorTypeArgumentsInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
return locs;
}
void ExtractConstructorTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
Register result_reg = locs()->out().reg();
ASSERT(instantiator_reg == result_reg);
// instantiator_reg is the instantiator type argument vector, i.e. an
// AbstractTypeArguments object (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
ASSERT(type_arguments().IsRawInstantiatedRaw(type_arguments().Length()));
Label type_arguments_instantiated;
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpl(instantiator_reg, raw_null);
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
// Instantiate non-null type arguments.
// In the non-factory case, we rely on the allocation stub to
// instantiate the type arguments.
__ LoadObject(result_reg, type_arguments());
// result_reg: uninstantiated type arguments.
__ Bind(&type_arguments_instantiated);
// result_reg: uninstantiated or instantiated type arguments.
}
LocationSummary*
ExtractConstructorInstantiatorInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(Location::SameAsFirstInput());
return locs;
}
void ExtractConstructorInstantiatorInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_reg = locs()->in(0).reg();
ASSERT(locs()->out().reg() == instantiator_reg);
// instantiator_reg is the instantiator AbstractTypeArguments object
// (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments and do not pass the instantiator.
ASSERT(type_arguments().IsRawInstantiatedRaw(type_arguments().Length()));
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
Label instantiator_not_null;
__ cmpl(instantiator_reg, raw_null);
__ j(NOT_EQUAL, &instantiator_not_null, Assembler::kNearJump);
// Null was used in VisitExtractConstructorTypeArguments as the
// instantiated type arguments, no proper instantiator needed.
__ movl(instantiator_reg,
Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
__ Bind(&instantiator_not_null);
// instantiator_reg: instantiator or kNoInstantiator.
}
LocationSummary* AllocateContextInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(EDX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == EDX);
ASSERT(locs()->out().reg() == EAX);
__ movl(EDX, Immediate(num_context_variables()));
const ExternalLabel label("alloc_context",
StubCode::AllocateContextEntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
}
LocationSummary* CloneContextInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register context_value = locs()->in(0).reg();
Register result = locs()->out().reg();
__ PushObject(Object::ZoneHandle()); // Make room for the result.
__ pushl(context_value);
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kCloneContextRuntimeEntry,
1,
locs());
__ popl(result); // Remove argument.
__ popl(result); // Get result (cloned context).
}
LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(bool opt) const {
UNREACHABLE();
return NULL;
}
void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
compiler->AddExceptionHandler(catch_try_index(),
try_index(),
compiler->assembler()->CodeSize(),
catch_handler_types_,
needs_stacktrace());
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// Restore ESP from EBP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t fp_sp_dist =
(kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize;
ASSERT(fp_sp_dist <= 0);
__ leal(ESP, Address(EBP, fp_sp_dist));
// Restore stack and initialize the two exception variables:
// exception and stack trace variables.
__ movl(Address(EBP, exception_var().index() * kWordSize),
kExceptionObjectReg);
__ movl(Address(EBP, stacktrace_var().index() * kWordSize),
kStackTraceObjectReg);
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
return summary;
}
class CheckStackOverflowSlowPath : public SlowPathCode {
public:
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("CheckStackOverflowSlowPath");
__ Bind(entry_label());
compiler->SaveLiveRegisters(instruction_->locs());
// pending_deoptimization_env_ is needed to generate a runtime call that
// may throw an exception.
ASSERT(compiler->pending_deoptimization_env_ == NULL);
Environment* env = compiler->SlowPathEnvironmentFor(instruction_);
compiler->pending_deoptimization_env_ = env;
compiler->GenerateRuntimeCall(instruction_->token_pos(),
instruction_->deopt_id(),
kStackOverflowRuntimeEntry,
0,
instruction_->locs());
if (FLAG_use_osr && !compiler->is_optimizing() && instruction_->in_loop()) {
// In unoptimized code, record loop stack checks as possible OSR entries.
compiler->AddCurrentDescriptor(PcDescriptors::kOsrEntry,
instruction_->deopt_id(),
0); // No token position.
}
compiler->pending_deoptimization_env_ = NULL;
compiler->RestoreLiveRegisters(instruction_->locs());
__ jmp(exit_label());
}
private:
CheckStackOverflowInstr* instruction_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ cmpl(ESP,
Address::Absolute(Isolate::Current()->stack_limit_address()));
__ j(BELOW_EQUAL, slow_path->entry_label());
if (compiler->CanOSRFunction() && in_loop()) {
// In unoptimized code check the usage counter to trigger OSR at loop
// stack checks. Use progressively higher thresholds for more deeply
// nested loops to attempt to hit outer loops with OSR when possible.
__ LoadObject(EDI, compiler->parsed_function().function());
intptr_t threshold =
FLAG_optimization_counter_threshold * (loop_depth() + 1);
__ cmpl(FieldAddress(EDI, Function::usage_counter_offset()),
Immediate(threshold));
__ j(GREATER_EQUAL, slow_path->entry_label());
}
__ Bind(slow_path->exit_label());
}
static void EmitSmiShiftLeft(FlowGraphCompiler* compiler,
BinarySmiOpInstr* shift_left) {
const bool is_truncating = shift_left->is_truncating();
const LocationSummary& locs = *shift_left->locs();
Register left = locs.in(0).reg();
Register result = locs.out().reg();
ASSERT(left == result);
Label* deopt = shift_left->CanDeoptimize() ?
compiler->AddDeoptStub(shift_left->deopt_id(), kDeoptBinarySmiOp) : NULL;
if (locs.in(1).IsConstant()) {
const Object& constant = locs.in(1).constant();
ASSERT(constant.IsSmi());
// shll operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
const intptr_t value = Smi::Cast(constant).Value();
if (value == 0) {
// No code needed.
} else if ((value < 0) || (value >= kCountLimit)) {
// This condition may not be known earlier in some cases because
// of constant propagation, inlining, etc.
if ((value >=kCountLimit) && is_truncating) {
__ xorl(result, result);
} else {
// Result is Mint or exception.
__ jmp(deopt);
}
} else {
if (!is_truncating) {
// Check for overflow.
Register temp = locs.temp(0).reg();
__ movl(temp, left);
__ shll(left, Immediate(value));
__ sarl(left, Immediate(value));
__ cmpl(left, temp);
__ j(NOT_EQUAL, deopt); // Overflow.
}
// Shift for result now we know there is no overflow.
__ shll(left, Immediate(value));
}
return;
}
// Right (locs.in(1)) is not constant.
Register right = locs.in(1).reg();
Range* right_range = shift_left->right()->definition()->range();
if (shift_left->left()->BindsToConstant() && !is_truncating) {
// TODO(srdjan): Implement code below for is_truncating().
// If left is constant, we know the maximal allowed size for right.
const Object& obj = shift_left->left()->BoundConstant();
if (obj.IsSmi()) {
const intptr_t left_int = Smi::Cast(obj).Value();
if (left_int == 0) {
__ cmpl(right, Immediate(0));
__ j(NEGATIVE, deopt);
return;
}
const intptr_t max_right = kSmiBits - Utils::HighestBit(left_int);
const bool right_needs_check =
(right_range == NULL) ||
!right_range->IsWithin(0, max_right - 1);
if (right_needs_check) {
__ cmpl(right,
Immediate(reinterpret_cast<int32_t>(Smi::New(max_right))));
__ j(ABOVE_EQUAL, deopt);
}
__ SmiUntag(right);
__ shll(left, right);
}
return;
}
const bool right_needs_check =
(right_range == NULL) || !right_range->IsWithin(0, (Smi::kBits - 1));
ASSERT(right == ECX); // Count must be in ECX
if (is_truncating) {
if (right_needs_check) {
const bool right_may_be_negative =
(right_range == NULL) ||
!right_range->IsWithin(0, RangeBoundary::kPlusInfinity);
if (right_may_be_negative) {
ASSERT(shift_left->CanDeoptimize());
__ cmpl(right, Immediate(0));
__ j(NEGATIVE, deopt);
}
Label done, is_not_zero;
__ cmpl(right,
Immediate(reinterpret_cast<int32_t>(Smi::New(Smi::kBits))));
__ j(BELOW, &is_not_zero, Assembler::kNearJump);
__ xorl(left, left);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_not_zero);
__ SmiUntag(right);
__ shll(left, right);
__ Bind(&done);
} else {
__ SmiUntag(right);
__ shll(left, right);
}
} else {
if (right_needs_check) {
ASSERT(shift_left->CanDeoptimize());
__ cmpl(right,
Immediate(reinterpret_cast<int32_t>(Smi::New(Smi::kBits))));
__ j(ABOVE_EQUAL, deopt);
}
// Left is not a constant.
Register temp = locs.temp(0).reg();
// Check if count too large for handling it inlined.
__ movl(temp, left);
__ SmiUntag(right);
// Overflow test (preserve temp and right);
__ shll(left, right);
__ sarl(left, right);
__ cmpl(left, temp);
__ j(NOT_EQUAL, deopt); // Overflow.
// Shift for result now we know there is no overflow.
__ shll(left, right);
}
}
LocationSummary* BinarySmiOpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
if (op_kind() == Token::kTRUNCDIV) {
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (RightIsPowerOfTwoConstant()) {
summary->set_in(0, Location::RequiresRegister());
ConstantInstr* right_constant = right()->definition()->AsConstant();
// The programmer only controls one bit, so the constant is safe.
summary->set_in(1, Location::Constant(right_constant->value()));
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::SameAsFirstInput());
} else {
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(EAX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(Location::SameAsFirstInput());
// Will be used for sign extension and division.
summary->set_temp(0, Location::RegisterLocation(EDX));
}
return summary;
} else if (op_kind() == Token::kMOD) {
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(EDX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(Location::SameAsFirstInput());
// Will be used for sign extension and division.
summary->set_temp(0, Location::RegisterLocation(EAX));
return summary;
} else if (op_kind() == Token::kSHR) {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), ECX));
summary->set_out(Location::SameAsFirstInput());
return summary;
} else if (op_kind() == Token::kSHL) {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), ECX));
if (!is_truncating()) {
summary->AddTemp(Location::RequiresRegister());
}
summary->set_out(Location::SameAsFirstInput());
return summary;
} else {
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
ConstantInstr* constant = right()->definition()->AsConstant();
if (constant != NULL) {
summary->set_in(1, Location::RegisterOrSmiConstant(right()));
} else {
summary->set_in(1, Location::PrefersRegister());
}
summary->set_out(Location::SameAsFirstInput());
return summary;
}
}
void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (op_kind() == Token::kSHL) {
EmitSmiShiftLeft(compiler, this);
return;
}
ASSERT(!is_truncating());
Register left = locs()->in(0).reg();
Register result = locs()->out().reg();
ASSERT(left == result);
Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
const int32_t imm =
reinterpret_cast<int32_t>(constant.raw());
switch (op_kind()) {
case Token::kADD:
__ addl(left, Immediate(imm));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
case Token::kSUB: {
__ subl(left, Immediate(imm));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
// Keep left value tagged and untag right value.
const intptr_t value = Smi::Cast(constant).Value();
if (value == 2) {
__ shll(left, Immediate(1));
} else {
__ imull(left, Immediate(value));
}
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kTRUNCDIV: {
const intptr_t value = Smi::Cast(constant).Value();
if (value == 1) {
// Do nothing.
break;
} else if (value == -1) {
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot negate the result.
__ cmpl(left, Immediate(0x80000000));
__ j(EQUAL, deopt);
__ negl(left);
break;
}
ASSERT(Utils::IsPowerOfTwo(Utils::Abs(value)));
const intptr_t shift_count =
Utils::ShiftForPowerOfTwo(Utils::Abs(value)) + kSmiTagSize;
ASSERT(kSmiTagSize == 1);
Register temp = locs()->temp(0).reg();
__ movl(temp, left);
__ sarl(temp, Immediate(31));
ASSERT(shift_count > 1); // 1, -1 case handled above.
__ shrl(temp, Immediate(32 - shift_count));
__ addl(left, temp);
ASSERT(shift_count > 0);
__ sarl(left, Immediate(shift_count));
if (value < 0) {
__ negl(left);
}
__ SmiTag(left);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andl(left, Immediate(imm));
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orl(left, Immediate(imm));
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorl(left, Immediate(imm));
break;
}
case Token::kSHR: {
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
intptr_t value = Smi::Cast(constant).Value();
if (value == 0) {
// TODO(vegorov): should be handled outside.
break;
} else if (value < 0) {
// TODO(vegorov): should be handled outside.
__ jmp(deopt);
break;
}
value = value + kSmiTagSize;
if (value >= kCountLimit) value = kCountLimit;
__ sarl(left, Immediate(value));
__ SmiTag(left);
break;
}
default:
UNREACHABLE();
break;
}
return;
} // if locs()->in(1).IsConstant()
if (locs()->in(1).IsStackSlot()) {
const Address& right = locs()->in(1).ToStackSlotAddress();
switch (op_kind()) {
case Token::kADD: {
__ addl(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subl(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
__ SmiUntag(left);
__ imull(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andl(left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orl(left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorl(left, right);
break;
}
default:
UNREACHABLE();
}
return;
} // if locs()->in(1).IsStackSlot.
// if locs()->in(1).IsRegister.
Register right = locs()->in(1).reg();
Range* right_range = this->right()->definition()->range();
switch (op_kind()) {
case Token::kADD: {
__ addl(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subl(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
__ SmiUntag(left);
__ imull(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andl(left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orl(left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorl(left, right);
break;
}
case Token::kTRUNCDIV: {
if ((right_range == NULL) || right_range->Overlaps(0, 0)) {
// Handle divide by zero in runtime.
__ testl(right, right);
__ j(ZERO, deopt);
}
ASSERT(left == EAX);
ASSERT((right != EDX) && (right != EAX));
ASSERT(locs()->temp(0).reg() == EDX);
ASSERT(result == EAX);
__ SmiUntag(left);
__ SmiUntag(right);
__ cdq(); // Sign extend EAX -> EDX:EAX.
__ idivl(right); // EAX: quotient, EDX: remainder.
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ cmpl(result, Immediate(0x40000000));
__ j(EQUAL, deopt);
__ SmiTag(result);
break;
}
case Token::kMOD: {
if ((right_range == NULL) || right_range->Overlaps(0, 0)) {
// Handle divide by zero in runtime.
__ testl(right, right);
__ j(ZERO, deopt);
}
ASSERT(left == EDX);
ASSERT((right != EDX) && (right != EAX));
ASSERT(locs()->temp(0).reg() == EAX);
ASSERT(result == EDX);
__ SmiUntag(left);
__ SmiUntag(right);
__ movl(EAX, EDX);
__ cdq(); // Sign extend EAX -> EDX:EAX.
__ idivl(right); // EAX: quotient, EDX: remainder.
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
Label done;
__ cmpl(result, Immediate(0));
__ j(GREATER_EQUAL, &done, Assembler::kNearJump);
// Result is negative, adjust it.
if ((right_range == NULL) || right_range->Overlaps(-1, 1)) {
// Right can be positive and negative.
Label subtract;
__ cmpl(right, Immediate(0));
__ j(LESS, &subtract, Assembler::kNearJump);
__ addl(result, right);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&subtract);
__ subl(result, right);
} else if (right_range->IsWithin(0, RangeBoundary::kPlusInfinity)) {
// Right is positive.
__ addl(result, right);
} else {
// Right is negative.
__ subl(result, right);
}
__ Bind(&done);
__ SmiTag(result);
break;
}
case Token::kSHR: {
if (CanDeoptimize()) {
__ cmpl(right, Immediate(0));
__ j(LESS, deopt);
}
__ SmiUntag(right);
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
if ((right_range == NULL) ||
!right_range->IsWithin(RangeBoundary::kMinusInfinity, kCountLimit)) {
__ cmpl(right, Immediate(kCountLimit));
Label count_ok;
__ j(LESS, &count_ok, Assembler::kNearJump);
__ movl(right, Immediate(kCountLimit));
__ Bind(&count_ok);
}
ASSERT(right == ECX); // Count must be in ECX
__ SmiUntag(left);
__ sarl(left, right);
__ SmiTag(left);
break;
}
case Token::kDIV: {
// Dispatches to 'Double./'.
// TODO(srdjan): Implement as conversion to double and double division.
UNREACHABLE();
break;
}
case Token::kOR:
case Token::kAND: {
// Flow graph builder has dissected this operation to guarantee correct
// behavior (short-circuit evaluation).
UNREACHABLE();
break;
}
default:
UNREACHABLE();
break;
}
}
LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary(bool opt) const {
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
ASSERT((left_cid != kDoubleCid) && (right_cid != kDoubleCid));
const intptr_t kNumInputs = 2;
const bool need_temp = (left_cid != kSmiCid) && (right_cid != kSmiCid);
const intptr_t kNumTemps = need_temp ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
if (need_temp) summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinaryDoubleOp);
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
if (left_cid == kSmiCid) {
__ testl(right, Immediate(kSmiTagMask));
} else if (right_cid == kSmiCid) {
__ testl(left, Immediate(kSmiTagMask));
} else {
Register temp = locs()->temp(0).reg();
__ movl(temp, left);
__ orl(temp, right);
__ testl(temp, Immediate(kSmiTagMask));
}
__ j(ZERO, deopt);
}
LocationSummary* BoxDoubleInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
void BoxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxDoubleSlowPath* slow_path = new BoxDoubleSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
XmmRegister value = locs()->in(0).fpu_reg();
__ TryAllocate(compiler->double_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg);
__ Bind(slow_path->exit_label());
__ movsd(FieldAddress(out_reg, Double::value_offset()), value);
}
LocationSummary* UnboxDoubleInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const bool needs_temp = ((value_cid != kSmiCid) && (value_cid != kDoubleCid));
const bool needs_writable_input = (value_cid == kSmiCid);
const intptr_t kNumTemps = needs_temp ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, needs_writable_input
? Location::WritableRegister()
: Location::RequiresRegister());
if (needs_temp) summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void UnboxDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out().fpu_reg();
if (value_cid == kDoubleCid) {
__ movsd(result, FieldAddress(value, Double::value_offset()));
} else if (value_cid == kSmiCid) {
__ SmiUntag(value); // Untag input before conversion.
__ cvtsi2sd(result, value);
} else {
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptBinaryDoubleOp);
Register temp = locs()->temp(0).reg();
Label is_smi, done;
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, &is_smi);
__ CompareClassId(value, kDoubleCid, temp);
__ j(NOT_EQUAL, deopt);
__ movsd(result, FieldAddress(value, Double::value_offset()));
__ jmp(&done);
__ Bind(&is_smi);
__ movl(temp, value);
__ SmiUntag(temp);
__ cvtsi2sd(result, temp);
__ Bind(&done);
}
}
LocationSummary* BoxFloat32x4Instr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxFloat32x4SlowPath : public SlowPathCode {
public:
explicit BoxFloat32x4SlowPath(BoxFloat32x4Instr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxFloat32x4SlowPath");
__ Bind(entry_label());
const Class& float32x4_class = compiler->float32x4_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(float32x4_class));
const ExternalLabel label(float32x4_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kDummyTokenIndex, // No token position.
&label,
PcDescriptors::kOther,
locs);
__ MoveRegister(locs->out().reg(), EAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
BoxFloat32x4Instr* instruction_;
};
void BoxFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxFloat32x4SlowPath* slow_path = new BoxFloat32x4SlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
XmmRegister value = locs()->in(0).fpu_reg();
__ TryAllocate(compiler->float32x4_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg);
__ Bind(slow_path->exit_label());
__ movups(FieldAddress(out_reg, Float32x4::value_offset()), value);
}
LocationSummary* UnboxFloat32x4Instr::MakeLocationSummary(bool opt) const {
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = value_cid == kFloat32x4Cid ? 0 : 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (kNumTemps > 0) {
ASSERT(kNumTemps == 1);
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void UnboxFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out().fpu_reg();
if (value_cid != kFloat32x4Cid) {
const Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptCheckClass);
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
__ CompareClassId(value, kFloat32x4Cid, temp);
__ j(NOT_EQUAL, deopt);
}
__ movups(result, FieldAddress(value, Float32x4::value_offset()));
}
LocationSummary* BoxInt32x4Instr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxInt32x4SlowPath : public SlowPathCode {
public:
explicit BoxInt32x4SlowPath(BoxInt32x4Instr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxInt32x4SlowPath");
__ Bind(entry_label());
const Class& int32x4_class = compiler->int32x4_class();
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(int32x4_class));
const ExternalLabel label(int32x4_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kDummyTokenIndex, // No token position.
&label,
PcDescriptors::kOther,
locs);
__ MoveRegister(locs->out().reg(), EAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
BoxInt32x4Instr* instruction_;
};
void BoxInt32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxInt32x4SlowPath* slow_path = new BoxInt32x4SlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
XmmRegister value = locs()->in(0).fpu_reg();
__ TryAllocate(compiler->int32x4_class(),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg);
__ Bind(slow_path->exit_label());
__ movups(FieldAddress(out_reg, Int32x4::value_offset()), value);
}
LocationSummary* UnboxInt32x4Instr::MakeLocationSummary(bool opt) const {
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = value_cid == kInt32x4Cid ? 0 : 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (kNumTemps > 0) {
ASSERT(kNumTemps == 1);
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void UnboxInt32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out().fpu_reg();
if (value_cid != kInt32x4Cid) {
const Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptCheckClass);
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
__ CompareClassId(value, kInt32x4Cid, temp);
__ j(NOT_EQUAL, deopt);
}
__ movups(result, FieldAddress(value, Int32x4::value_offset()));
}
LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
switch (op_kind()) {
case Token::kADD: __ addsd(left, right); break;
case Token::kSUB: __ subsd(left, right); break;
case Token::kMUL: __ mulsd(left, right); break;
case Token::kDIV: __ divsd(left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* BinaryFloat32x4OpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void BinaryFloat32x4OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
switch (op_kind()) {
case Token::kADD: __ addps(left, right); break;
case Token::kSUB: __ subps(left, right); break;
case Token::kMUL: __ mulps(left, right); break;
case Token::kDIV: __ divps(left, right); break;
default: UNREACHABLE();
}
}
LocationSummary* Simd32x4ShuffleInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Simd32x4ShuffleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
ASSERT(locs()->out().fpu_reg() == value);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4ShuffleX:
__ shufps(value, value, Immediate(0x00));
__ cvtss2sd(value, value);
break;
case MethodRecognizer::kFloat32x4ShuffleY:
__ shufps(value, value, Immediate(0x55));
__ cvtss2sd(value, value);
break;
case MethodRecognizer::kFloat32x4ShuffleZ:
__ shufps(value, value, Immediate(0xAA));
__ cvtss2sd(value, value);
break;
case MethodRecognizer::kFloat32x4ShuffleW:
__ shufps(value, value, Immediate(0xFF));
__ cvtss2sd(value, value);
break;
case MethodRecognizer::kFloat32x4Shuffle:
case MethodRecognizer::kInt32x4Shuffle:
__ shufps(value, value, Immediate(mask_));
break;
default: UNREACHABLE();
}
}
LocationSummary* Simd32x4ShuffleMixInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Simd32x4ShuffleMixInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4ShuffleMix:
case MethodRecognizer::kInt32x4ShuffleMix:
__ shufps(left, right, Immediate(mask_));
break;
default: UNREACHABLE();
}
}
LocationSummary* Simd32x4GetSignMaskInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
void Simd32x4GetSignMaskInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
Register out = locs()->out().reg();
__ movmskps(out, value);
__ SmiTag(out);
}
LocationSummary* Float32x4ConstructorInstr::MakeLocationSummary(
bool opt) const {
const intptr_t kNumInputs = 4;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_in(3, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4ConstructorInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister v0 = locs()->in(0).fpu_reg();
XmmRegister v1 = locs()->in(1).fpu_reg();
XmmRegister v2 = locs()->in(2).fpu_reg();
XmmRegister v3 = locs()->in(3).fpu_reg();
ASSERT(v0 == locs()->out().fpu_reg());
__ subl(ESP, Immediate(16));
__ cvtsd2ss(v0, v0);
__ movss(Address(ESP, 0), v0);
__ movsd(v0, v1);
__ cvtsd2ss(v0, v0);
__ movss(Address(ESP, 4), v0);
__ movsd(v0, v2);
__ cvtsd2ss(v0, v0);
__ movss(Address(ESP, 8), v0);
__ movsd(v0, v3);
__ cvtsd2ss(v0, v0);
__ movss(Address(ESP, 12), v0);
__ movups(v0, Address(ESP, 0));
__ addl(ESP, Immediate(16));
}
LocationSummary* Float32x4ZeroInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Float32x4ZeroInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->out().fpu_reg();
__ xorps(value, value);
}
LocationSummary* Float32x4SplatInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4SplatInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->out().fpu_reg();
ASSERT(locs()->in(0).fpu_reg() == locs()->out().fpu_reg());
// Convert to Float32.
__ cvtsd2ss(value, value);
// Splat across all lanes.
__ shufps(value, value, Immediate(0x00));
}
LocationSummary* Float32x4ComparisonInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Equal:
__ cmppseq(left, right);
break;
case MethodRecognizer::kFloat32x4NotEqual:
__ cmppsneq(left, right);
break;
case MethodRecognizer::kFloat32x4GreaterThan:
__ cmppsnle(left, right);
break;
case MethodRecognizer::kFloat32x4GreaterThanOrEqual:
__ cmppsnlt(left, right);
break;
case MethodRecognizer::kFloat32x4LessThan:
__ cmppslt(left, right);
break;
case MethodRecognizer::kFloat32x4LessThanOrEqual:
__ cmppsle(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4MinMaxInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4MinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Min:
__ minps(left, right);
break;
case MethodRecognizer::kFloat32x4Max:
__ maxps(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ScaleInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4ScaleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Scale:
__ cvtsd2ss(left, left);
__ shufps(left, left, Immediate(0x00));
__ mulps(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4SqrtInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4SqrtInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Sqrt:
__ sqrtps(left);
break;
case MethodRecognizer::kFloat32x4Reciprocal:
__ reciprocalps(left);
break;
case MethodRecognizer::kFloat32x4ReciprocalSqrt:
__ rsqrtps(left);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ZeroArgInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4ZeroArgInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4Negate:
__ negateps(left);
break;
case MethodRecognizer::kFloat32x4Absolute:
__ absps(left);
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ClampInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4ClampInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister lower = locs()->in(1).fpu_reg();
XmmRegister upper = locs()->in(2).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
__ minps(left, upper);
__ maxps(left, lower);
}
LocationSummary* Float32x4WithInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4WithInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister replacement = locs()->in(0).fpu_reg();
XmmRegister value = locs()->in(1).fpu_reg();
ASSERT(locs()->out().fpu_reg() == replacement);
switch (op_kind()) {
case MethodRecognizer::kFloat32x4WithX:
__ cvtsd2ss(replacement, replacement);
__ subl(ESP, Immediate(16));
// Move value to stack.
__ movups(Address(ESP, 0), value);
// Write over X value.
__ movss(Address(ESP, 0), replacement);
// Move updated value into output register.
__ movups(replacement, Address(ESP, 0));
__ addl(ESP, Immediate(16));
break;
case MethodRecognizer::kFloat32x4WithY:
__ cvtsd2ss(replacement, replacement);
__ subl(ESP, Immediate(16));
// Move value to stack.
__ movups(Address(ESP, 0), value);
// Write over Y value.
__ movss(Address(ESP, 4), replacement);
// Move updated value into output register.
__ movups(replacement, Address(ESP, 0));
__ addl(ESP, Immediate(16));
break;
case MethodRecognizer::kFloat32x4WithZ:
__ cvtsd2ss(replacement, replacement);
__ subl(ESP, Immediate(16));
// Move value to stack.
__ movups(Address(ESP, 0), value);
// Write over Z value.
__ movss(Address(ESP, 8), replacement);
// Move updated value into output register.
__ movups(replacement, Address(ESP, 0));
__ addl(ESP, Immediate(16));
break;
case MethodRecognizer::kFloat32x4WithW:
__ cvtsd2ss(replacement, replacement);
__ subl(ESP, Immediate(16));
// Move value to stack.
__ movups(Address(ESP, 0), value);
// Write over W value.
__ movss(Address(ESP, 12), replacement);
// Move updated value into output register.
__ movups(replacement, Address(ESP, 0));
__ addl(ESP, Immediate(16));
break;
default: UNREACHABLE();
}
}
LocationSummary* Float32x4ToInt32x4Instr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Float32x4ToInt32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
// NOP.
}
LocationSummary* Int32x4BoolConstructorInstr::MakeLocationSummary(
bool opt) const {
const intptr_t kNumInputs = 4;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_in(2, Location::RequiresRegister());
summary->set_in(3, Location::RequiresRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void Int32x4BoolConstructorInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register v0 = locs()->in(0).reg();
Register v1 = locs()->in(1).reg();
Register v2 = locs()->in(2).reg();
Register v3 = locs()->in(3).reg();
XmmRegister result = locs()->out().fpu_reg();
Label x_false, x_done;
Label y_false, y_done;
Label z_false, z_done;
Label w_false, w_done;
__ subl(ESP, Immediate(16));
__ CompareObject(v0, Bool::True());
__ j(NOT_EQUAL, &x_false);
__ movl(Address(ESP, 0), Immediate(0xFFFFFFFF));
__ jmp(&x_done);
__ Bind(&x_false);
__ movl(Address(ESP, 0), Immediate(0x0));
__ Bind(&x_done);
__ CompareObject(v1, Bool::True());
__ j(NOT_EQUAL, &y_false);
__ movl(Address(ESP, 4), Immediate(0xFFFFFFFF));
__ jmp(&y_done);
__ Bind(&y_false);
__ movl(Address(ESP, 4), Immediate(0x0));
__ Bind(&y_done);
__ CompareObject(v2, Bool::True());
__ j(NOT_EQUAL, &z_false);
__ movl(Address(ESP, 8), Immediate(0xFFFFFFFF));
__ jmp(&z_done);
__ Bind(&z_false);
__ movl(Address(ESP, 8), Immediate(0x0));
__ Bind(&z_done);
__ CompareObject(v3, Bool::True());
__ j(NOT_EQUAL, &w_false);
__ movl(Address(ESP, 12), Immediate(0xFFFFFFFF));
__ jmp(&w_done);
__ Bind(&w_false);
__ movl(Address(ESP, 12), Immediate(0x0));
__ Bind(&w_done);
__ movups(result, Address(ESP, 0));
__ addl(ESP, Immediate(16));
}
LocationSummary* Int32x4GetFlagInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresRegister());
return summary;
}
void Int32x4GetFlagInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
Register result = locs()->out().reg();
Label done;
Label non_zero;
__ subl(ESP, Immediate(16));
// Move value to stack.
__ movups(Address(ESP, 0), value);
switch (op_kind()) {
case MethodRecognizer::kInt32x4GetFlagX:
__ movl(result, Address(ESP, 0));
break;
case MethodRecognizer::kInt32x4GetFlagY:
__ movl(result, Address(ESP, 4));
break;
case MethodRecognizer::kInt32x4GetFlagZ:
__ movl(result, Address(ESP, 8));
break;
case MethodRecognizer::kInt32x4GetFlagW:
__ movl(result, Address(ESP, 12));
break;
default: UNREACHABLE();
}
__ addl(ESP, Immediate(16));
__ testl(result, result);
__ j(NOT_ZERO, &non_zero, Assembler::kNearJump);
__ LoadObject(result, Bool::False());
__ jmp(&done);
__ Bind(&non_zero);
__ LoadObject(result, Bool::True());
__ Bind(&done);
}
LocationSummary* Int32x4SelectInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_in(2, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Int32x4SelectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister mask = locs()->in(0).fpu_reg();
XmmRegister trueValue = locs()->in(1).fpu_reg();
XmmRegister falseValue = locs()->in(2).fpu_reg();
XmmRegister out = locs()->out().fpu_reg();
XmmRegister temp = locs()->temp(0).fpu_reg();
ASSERT(out == mask);
// Copy mask.
__ movaps(temp, mask);
// Invert it.
__ notps(temp);
// mask = mask & trueValue.
__ andps(mask, trueValue);
// temp = temp & falseValue.
__ andps(temp, falseValue);
// out = mask | temp.
__ orps(mask, temp);
}
LocationSummary* Int32x4SetFlagInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Int32x4SetFlagInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister mask = locs()->in(0).fpu_reg();
Register flag = locs()->in(1).reg();
ASSERT(mask == locs()->out().fpu_reg());
__ subl(ESP, Immediate(16));
// Copy mask to stack.
__ movups(Address(ESP, 0), mask);
Label falsePath, exitPath;
__ CompareObject(flag, Bool::True());
__ j(NOT_EQUAL, &falsePath);
switch (op_kind()) {
case MethodRecognizer::kInt32x4WithFlagX:
__ movl(Address(ESP, 0), Immediate(0xFFFFFFFF));
__ jmp(&exitPath);
__ Bind(&falsePath);
__ movl(Address(ESP, 0), Immediate(0x0));
break;
case MethodRecognizer::kInt32x4WithFlagY:
__ movl(Address(ESP, 4), Immediate(0xFFFFFFFF));
__ jmp(&exitPath);
__ Bind(&falsePath);
__ movl(Address(ESP, 4), Immediate(0x0));
break;
case MethodRecognizer::kInt32x4WithFlagZ:
__ movl(Address(ESP, 8), Immediate(0xFFFFFFFF));
__ jmp(&exitPath);
__ Bind(&falsePath);
__ movl(Address(ESP, 8), Immediate(0x0));
break;
case MethodRecognizer::kInt32x4WithFlagW:
__ movl(Address(ESP, 12), Immediate(0xFFFFFFFF));
__ jmp(&exitPath);
__ Bind(&falsePath);
__ movl(Address(ESP, 12), Immediate(0x0));
break;
default: UNREACHABLE();
}
__ Bind(&exitPath);
// Copy mask back to register.
__ movups(mask, Address(ESP, 0));
__ addl(ESP, Immediate(16));
}
LocationSummary* Int32x4ToFloat32x4Instr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void Int32x4ToFloat32x4Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
// NOP.
}
LocationSummary* BinaryInt32x4OpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void BinaryInt32x4OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(left == locs()->out().fpu_reg());
switch (op_kind()) {
case Token::kBIT_AND: {
__ andps(left, right);
break;
}
case Token::kBIT_OR: {
__ orps(left, right);
break;
}
case Token::kBIT_XOR: {
__ xorps(left, right);
break;
}
case Token::kADD:
__ addpl(left, right);
break;
case Token::kSUB:
__ subpl(left, right);
break;
default: UNREACHABLE();
}
}
LocationSummary* MathUnaryInstr::MakeLocationSummary(bool opt) const {
if ((kind() == MethodRecognizer::kMathSin) ||
(kind() == MethodRecognizer::kMathCos)) {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::FpuRegisterLocation(XMM1));
summary->set_out(Location::FpuRegisterLocation(XMM1));
return summary;
}
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void MathUnaryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (kind() == MethodRecognizer::kMathSqrt) {
__ sqrtsd(locs()->out().fpu_reg(), locs()->in(0).fpu_reg());
} else {
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(kDoubleSize * InputCount());
__ movsd(Address(ESP, 0), locs()->in(0).fpu_reg());
__ CallRuntime(TargetFunction(), InputCount());
__ fstpl(Address(ESP, 0));
__ movsd(locs()->out().fpu_reg(), Address(ESP, 0));
__ leave();
}
}
LocationSummary* MathMinMaxInstr::MakeLocationSummary(bool opt) const {
if (result_cid() == kDoubleCid) {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(Location::SameAsFirstInput());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
ASSERT(result_cid() == kSmiCid);
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void MathMinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((op_kind() == MethodRecognizer::kMathMin) ||
(op_kind() == MethodRecognizer::kMathMax));
const intptr_t is_min = (op_kind() == MethodRecognizer::kMathMin);
if (result_cid() == kDoubleCid) {
Label done, returns_nan, are_equal;
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
XmmRegister result = locs()->out().fpu_reg();
Register temp = locs()->temp(0).reg();
__ comisd(left, right);
__ j(PARITY_EVEN, &returns_nan, Assembler::kNearJump);
__ j(EQUAL, &are_equal, Assembler::kNearJump);
const Condition double_condition =
is_min ? TokenKindToDoubleCondition(Token::kLT)
: TokenKindToDoubleCondition(Token::kGT);
ASSERT(left == result);
__ j(double_condition, &done, Assembler::kNearJump);
__ movsd(result, right);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&returns_nan);
static double kNaN = NAN;
__ movsd(result, Address::Absolute(reinterpret_cast<uword>(&kNaN)));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&are_equal);
Label left_is_negative;
// Check for negative zero: -0.0 is equal 0.0 but min or max must return
// -0.0 or 0.0 respectively.
// Check for negative left value (get the sign bit):
// - min -> left is negative ? left : right.
// - max -> left is negative ? right : left
// Check the sign bit.
__ movmskpd(temp, left);
__ testl(temp, Immediate(1));
ASSERT(left == result);
if (is_min) {
__ j(NOT_ZERO, &done, Assembler::kNearJump); // Negative -> return left.
} else {
__ j(ZERO, &done, Assembler::kNearJump); // Positive -> return left.
}
__ movsd(result, right);
__ Bind(&done);
return;
}
ASSERT(result_cid() == kSmiCid);
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register result = locs()->out().reg();
__ cmpl(left, right);
ASSERT(result == left);
if (is_min) {
__ cmovgel(result, right);
} else {
__ cmovlessl(result, right);
}
}
LocationSummary* UnarySmiOpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(kNumInputs,
Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
ASSERT(value == locs()->out().reg());
switch (op_kind()) {
case Token::kNEGATE: {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptUnaryOp);
__ negl(value);
__ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_NOT:
__ notl(value);
__ andl(value, Immediate(~kSmiTagMask)); // Remove inverted smi-tag.
break;
default:
UNREACHABLE();
}
}
LocationSummary* UnaryDoubleOpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void UnaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
ASSERT(locs()->out().fpu_reg() == value);
__ DoubleNegate(value);
}
LocationSummary* SmiToDoubleInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::WritableRegister());
result->set_out(Location::RequiresFpuRegister());
return result;
}
void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
FpuRegister result = locs()->out().fpu_reg();
__ SmiUntag(value);
__ cvtsi2sd(result, value);
}
LocationSummary* DoubleToIntegerInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::RegisterLocation(ECX));
result->set_out(Location::RegisterLocation(EAX));
return result;
}
void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out().reg();
Register value_obj = locs()->in(0).reg();
XmmRegister value_double = XMM0;
ASSERT(result == EAX);
ASSERT(result != value_obj);
__ movsd(value_double, FieldAddress(value_obj, Double::value_offset()));
__ cvttsd2si(result, value_double);
// Overflow is signalled with minint.
Label do_call, done;
// Check for overflow and that it fits into Smi.
__ cmpl(result, Immediate(0xC0000000));
__ j(NEGATIVE, &do_call, Assembler::kNearJump);
__ SmiTag(result);
__ jmp(&done);
__ Bind(&do_call);
__ pushl(value_obj);
ASSERT(instance_call()->HasICData());
const ICData& ic_data = *instance_call()->ic_data();
ASSERT((ic_data.NumberOfChecks() == 1));
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(0));
const intptr_t kNumberOfArguments = 1;
compiler->GenerateStaticCall(deopt_id(),
instance_call()->token_pos(),
target,
kNumberOfArguments,
Object::null_array(), // No argument names.,
locs());
__ Bind(&done);
}
LocationSummary* DoubleToSmiInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new LocationSummary(
kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(Location::RequiresRegister());
return result;
}
void DoubleToSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptDoubleToSmi);
Register result = locs()->out().reg();
XmmRegister value = locs()->in(0).fpu_reg();
__ cvttsd2si(result, value);
// Check for overflow and that it fits into Smi.
__ cmpl(result, Immediate(0xC0000000));
__ j(NEGATIVE, deopt);
__ SmiTag(result);
}
LocationSummary* DoubleToDoubleInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(Location::RequiresFpuRegister());
return result;
}
void DoubleToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
XmmRegister result = locs()->out().fpu_reg();
switch (recognized_kind()) {
case MethodRecognizer::kDoubleTruncate:
__ roundsd(result, value, Assembler::kRoundToZero);
break;
case MethodRecognizer::kDoubleFloor:
__ roundsd(result, value, Assembler::kRoundDown);
break;
case MethodRecognizer::kDoubleCeil:
__ roundsd(result, value, Assembler::kRoundUp);
break;
default:
UNREACHABLE();
}
}
LocationSummary* InvokeMathCFunctionInstr::MakeLocationSummary(bool opt) const {
ASSERT((InputCount() == 1) || (InputCount() == 2));
const intptr_t kNumTemps = 0;
LocationSummary* result =
new LocationSummary(InputCount(), kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::FpuRegisterLocation(XMM1));
if (InputCount() == 2) {
result->set_in(1, Location::FpuRegisterLocation(XMM2));
}
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
result->AddTemp(Location::RegisterLocation(EAX));
result->AddTemp(Location::FpuRegisterLocation(XMM4));
}
result->set_out(Location::FpuRegisterLocation(XMM3));
return result;
}
void InvokeMathCFunctionInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(kDoubleSize * InputCount());
for (intptr_t i = 0; i < InputCount(); i++) {
__ movsd(Address(ESP, kDoubleSize * i), locs()->in(i).fpu_reg());
}
Label do_call, skip_call;
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
// Pseudo code:
// if (exponent == 0.0) return 1.0;
// if (base == 1.0) return 1.0;
// if (base.isNaN || exponent.isNaN) {
// return double.NAN;
// }
XmmRegister base = locs()->in(0).fpu_reg();
XmmRegister exp = locs()->in(1).fpu_reg();
XmmRegister result = locs()->out().fpu_reg();
Register temp = locs()->temp(0).reg();
XmmRegister zero_temp = locs()->temp(1).fpu_reg();
Label check_base_is_one;
// Check if exponent is 0.0 -> return 1.0;
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(0)));
__ movsd(zero_temp, FieldAddress(temp, Double::value_offset()));
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(1)));
__ movsd(result, FieldAddress(temp, Double::value_offset()));
// 'result' contains 1.0.
__ comisd(exp, zero_temp);
__ j(PARITY_EVEN, &check_base_is_one, Assembler::kNearJump); // NaN.
__ j(EQUAL, &skip_call, Assembler::kNearJump); // exp is 0, result is 1.0.
Label base_is_nan;
__ Bind(&check_base_is_one);
__ comisd(base, result);
__ j(PARITY_EVEN, &base_is_nan, Assembler::kNearJump);
__ j(EQUAL, &skip_call, Assembler::kNearJump); // base and result are 1.0
__ jmp(&do_call, Assembler::kNearJump);
__ Bind(&base_is_nan);
// Returns NaN.
__ movsd(result, base);
__ jmp(&skip_call, Assembler::kNearJump);
// exp is Nan case is handled correctly in the C-library.
}
__ Bind(&do_call);
__ CallRuntime(TargetFunction(), InputCount());
__ fstpl(Address(ESP, 0));
__ movsd(locs()->out().fpu_reg(), Address(ESP, 0));
__ Bind(&skip_call);
__ leave();
}
LocationSummary* MergedMathInstr::MakeLocationSummary(bool opt) const {
if (kind() == MergedMathInstr::kTruncDivMod) {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(EAX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(Location::RequiresRegister());
// Will be used for sign extension and division.
summary->set_temp(0, Location::RegisterLocation(EDX));
return summary;
}
if (kind() == MergedMathInstr::kSinCos) {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::FpuRegisterLocation(XMM1));
summary->set_out(Location::RegisterLocation(EAX));
return summary;
}
UNIMPLEMENTED();
return NULL;
}
typedef void (*SinCosCFunction) (double x, double* res_sin, double* res_cos);
extern const RuntimeEntry kSinCosRuntimeEntry(
"libc_sincos", reinterpret_cast<RuntimeFunction>(
static_cast<SinCosCFunction>(&SinCos)), 1, true, true);
void MergedMathInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinarySmiOp);
}
if (kind() == MergedMathInstr::kTruncDivMod) {
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register result = locs()->out().reg();
Range* right_range = InputAt(1)->definition()->range();
if ((right_range == NULL) || right_range->Overlaps(0, 0)) {
// Handle divide by zero in runtime.
__ testl(right, right);
__ j(ZERO, deopt);
}
ASSERT(left == EAX);
ASSERT((right != EDX) && (right != EAX));
ASSERT(locs()->temp(0).reg() == EDX);
ASSERT((result != EDX) && (result != EAX));
__ SmiUntag(left);
__ SmiUntag(right);
__ cdq(); // Sign extend EAX -> EDX:EAX.
__ idivl(right); // EAX: quotient, EDX: remainder.
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
// TODO(srdjan): We could store instead untagged intermediate results in a
// typed array, but then the load indexed instructions would need to be
// able to deoptimize.
__ cmpl(EAX, Immediate(0x40000000));
__ j(EQUAL, deopt);
// Modulo result (EDX) correction:
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
Label done;
__ cmpl(EDX, Immediate(0));
__ j(GREATER_EQUAL, &done, Assembler::kNearJump);
// Result is negative, adjust it.
if ((right_range == NULL) || right_range->Overlaps(-1, 1)) {
Label subtract;
__ cmpl(right, Immediate(0));
__ j(LESS, &subtract, Assembler::kNearJump);
__ addl(EDX, right);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&subtract);
__ subl(EDX, right);
} else if (right_range->IsWithin(0, RangeBoundary::kPlusInfinity)) {
// Right is positive.
__ addl(EDX, right);
} else {
// Right is negative.
__ subl(EDX, right);
}
__ Bind(&done);
__ LoadObject(result, Array::ZoneHandle(Array::New(2, Heap::kOld)));
const intptr_t index_scale = FlowGraphCompiler::ElementSizeFor(kArrayCid);
Address trunc_div_address(
FlowGraphCompiler::ElementAddressForIntIndex(
kArrayCid, index_scale, result,
MergedMathInstr::ResultIndexOf(Token::kTRUNCDIV)));
Address mod_address(
FlowGraphCompiler::ElementAddressForIntIndex(
kArrayCid, index_scale, result,
MergedMathInstr::ResultIndexOf(Token::kMOD)));
__ SmiTag(EAX);
__ SmiTag(EDX);
__ StoreIntoObjectNoBarrier(result, trunc_div_address, EAX);
__ StoreIntoObjectNoBarrier(result, mod_address, EDX);
return;
}
if (kind() == MergedMathInstr::kSinCos) {
// Do x87 sincos, since the ia32 compilers may not fuse sin/cos into
// sincos.
__ pushl(EAX);
__ pushl(EAX);
__ movsd(Address(ESP, 0), locs()->in(0).fpu_reg());
__ fldl(Address(ESP, 0));
__ fsincos();
__ fstpl(Address(ESP, 0));
__ movsd(XMM1, Address(ESP, 0));
__ fstpl(Address(ESP, 0));
__ movsd(XMM0, Address(ESP, 0));
__ addl(ESP, Immediate(2 * kWordSize));
Register result = locs()->out().reg();
const TypedData& res_array = TypedData::ZoneHandle(
TypedData::New(kTypedDataFloat64ArrayCid, 2, Heap::kOld));
__ LoadObject(result, res_array);
const intptr_t index_scale =
FlowGraphCompiler::ElementSizeFor(kTypedDataFloat64ArrayCid);
Address sin_address(
FlowGraphCompiler::ElementAddressForIntIndex(
kTypedDataFloat64ArrayCid, index_scale, result,
MergedMathInstr::ResultIndexOf(MethodRecognizer::kMathSin)));
Address cos_address(
FlowGraphCompiler::ElementAddressForIntIndex(
kTypedDataFloat64ArrayCid, index_scale, result,
MergedMathInstr::ResultIndexOf(MethodRecognizer::kMathCos)));
__ movsd(sin_address, XMM0);
__ movsd(cos_address, XMM1);
return;
}
UNIMPLEMENTED();
}
LocationSummary* PolymorphicInstanceCallInstr::MakeLocationSummary(
bool opt) const {
return MakeCallSummary();
}
void PolymorphicInstanceCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptPolymorphicInstanceCallTestFail);
if (ic_data().NumberOfChecks() == 0) {
__ jmp(deopt);
return;
}
ASSERT(ic_data().num_args_tested() == 1);
if (!with_checks()) {
ASSERT(ic_data().HasOneTarget());
const Function& target = Function::ZoneHandle(ic_data().GetTargetAt(0));
compiler->GenerateStaticCall(deopt_id(),
instance_call()->token_pos(),
target,
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
locs());
return;
}
// Load receiver into EAX.
__ movl(EAX,
Address(ESP, (instance_call()->ArgumentCount() - 1) * kWordSize));
LoadValueCid(compiler, EDI, EAX,
(ic_data().GetReceiverClassIdAt(0) == kSmiCid) ? NULL : deopt);
compiler->EmitTestAndCall(ic_data(),
EDI, // Class id register.
instance_call()->ArgumentCount(),
instance_call()->argument_names(),
deopt,
deopt_id(),
instance_call()->token_pos(),
locs());
}
LocationSummary* BranchInstr::MakeLocationSummary(bool opt) const {
comparison()->InitializeLocationSummary(opt);
// Branches don't produce a result.
comparison()->locs()->set_out(Location::NoLocation());
return comparison()->locs();
}
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
comparison()->EmitBranchCode(compiler, this);
}
LocationSummary* CheckClassInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (!IsNullCheck()) {
summary->AddTemp(Location::RequiresRegister());
}
return summary;
}
void CheckClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (IsNullCheck()) {
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckClass);
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ cmpl(locs()->in(0).reg(), raw_null);
__ j(EQUAL, deopt);
return;
}
ASSERT((unary_checks().GetReceiverClassIdAt(0) != kSmiCid) ||
(unary_checks().NumberOfChecks() > 1));
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckClass);
Label is_ok;
intptr_t cix = 0;
if (unary_checks().GetReceiverClassIdAt(cix) == kSmiCid) {
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, &is_ok);
cix++; // Skip first check.
} else {
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, deopt);
}
__ LoadClassId(temp, value);
const intptr_t num_checks = unary_checks().NumberOfChecks();
const bool use_near_jump = num_checks < 5;
for (intptr_t i = cix; i < num_checks; i++) {
ASSERT(unary_checks().GetReceiverClassIdAt(i) != kSmiCid);
__ cmpl(temp, Immediate(unary_checks().GetReceiverClassIdAt(i)));
if (i == (num_checks - 1)) {
__ j(NOT_EQUAL, deopt);
} else {
if (use_near_jump) {
__ j(EQUAL, &is_ok, Assembler::kNearJump);
} else {
__ j(EQUAL, &is_ok);
}
}
}
__ Bind(&is_ok);
}
LocationSummary* CheckSmiInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptCheckSmi);
__ testl(value, Immediate(kSmiTagMask));
__ j(NOT_ZERO, deopt);
}
// Length: register or constant.
// Index: register, constant or stack slot.
LocationSummary* CheckArrayBoundInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(kLengthPos, Location::RegisterOrSmiConstant(length()));
ConstantInstr* index_constant = index()->definition()->AsConstant();
if (index_constant != NULL) {
locs->set_in(kIndexPos, Location::RegisterOrSmiConstant(index()));
} else {
locs->set_in(kIndexPos, Location::PrefersRegister());
}
return locs;
}
void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), kDeoptCheckArrayBound);
Location length_loc = locs()->in(kLengthPos);
Location index_loc = locs()->in(kIndexPos);
if (length_loc.IsConstant() && index_loc.IsConstant()) {
// TODO(srdjan): remove this code once failures are fixed.
if ((Smi::Cast(length_loc.constant()).Value() >
Smi::Cast(index_loc.constant()).Value()) &&
(Smi::Cast(index_loc.constant()).Value() >= 0)) {
// This CheckArrayBoundInstr should have been eliminated.
return;
}
ASSERT((Smi::Cast(length_loc.constant()).Value() <=
Smi::Cast(index_loc.constant()).Value()) ||
(Smi::Cast(index_loc.constant()).Value() < 0));
// Unconditionally deoptimize for constant bounds checks because they
// only occur only when index is out-of-bounds.
__ jmp(deopt);
return;
}
if (index_loc.IsConstant()) {
Register length = length_loc.reg();
const Object& index = Smi::Cast(index_loc.constant());
__ cmpl(length, Immediate(reinterpret_cast<int32_t>(index.raw())));
__ j(BELOW_EQUAL, deopt);
} else if (length_loc.IsConstant()) {
const Smi& length = Smi::Cast(length_loc.constant());
if (index_loc.IsStackSlot()) {
const Address& index = index_loc.ToStackSlotAddress();
__ cmpl(index, Immediate(reinterpret_cast<int32_t>(length.raw())));
} else {
Register index = index_loc.reg();
__ cmpl(index, Immediate(reinterpret_cast<int32_t>(length.raw())));
}
__ j(ABOVE_EQUAL, deopt);
} else if (index_loc.IsStackSlot()) {
Register length = length_loc.reg();
const Address& index = index_loc.ToStackSlotAddress();
__ cmpl(length, index);
__ j(BELOW_EQUAL, deopt);
} else {
Register length = length_loc.reg();
Register index = index_loc.reg();
__ cmpl(index, length);
__ j(ABOVE_EQUAL, deopt);
}
}
LocationSummary* UnboxIntegerInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const bool needs_temp = ((value_cid != kSmiCid) && (value_cid != kMintCid));
const bool needs_writable_input = (value_cid == kSmiCid);
const intptr_t kNumTemps = needs_temp ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, needs_writable_input
? Location::WritableRegister()
: Location::RequiresRegister());
if (needs_temp) summary->set_temp(0, Location::RequiresRegister());
summary->set_out(Location::RequiresFpuRegister());
return summary;
}
void UnboxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const XmmRegister result = locs()->out().fpu_reg();
if (value_cid == kMintCid) {
__ movsd(result, FieldAddress(value, Mint::value_offset()));
} else if (value_cid == kSmiCid) {
__ SmiUntag(value); // Untag input before conversion.
__ movd(result, value);
__ pmovsxdq(result, result);
} else {
Register temp = locs()->temp(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id_, kDeoptUnboxInteger);
Label is_smi, done;
__ testl(value, Immediate(kSmiTagMask));
__ j(ZERO, &is_smi);
__ CompareClassId(value, kMintCid, temp);
__ j(NOT_EQUAL, deopt);
__ movsd(result, FieldAddress(value, Mint::value_offset()));
__ jmp(&done);
__ Bind(&is_smi);
__ movl(temp, value);
__ SmiUntag(temp);
__ movd(result, temp);
__ pmovsxdq(result, result);
__ Bind(&done);
}
}
LocationSummary* BoxIntegerInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 2;
LocationSummary* summary =
new LocationSummary(kNumInputs,
kNumTemps,
LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RegisterLocation(EAX));
summary->set_temp(1, Location::RegisterLocation(EDX));
// TODO(fschneider): Save one temp by using result register as a temp.
summary->set_out(Location::RequiresRegister());
return summary;
}
class BoxIntegerSlowPath : public SlowPathCode {
public:
explicit BoxIntegerSlowPath(BoxIntegerInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("BoxIntegerSlowPath");
__ Bind(entry_label());
const Class& mint_class =
Class::ZoneHandle(Isolate::Current()->object_store()->mint_class());
const Code& stub =
Code::Handle(StubCode::GetAllocationStubForClass(mint_class));
const ExternalLabel label(mint_class.ToCString(), stub.EntryPoint());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out());
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kDummyTokenIndex, // No token position.
&label,
PcDescriptors::kOther,
locs);
__ MoveRegister(locs->out().reg(), EAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
private:
BoxIntegerInstr* instruction_;
};
void BoxIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BoxIntegerSlowPath* slow_path = new BoxIntegerSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register out_reg = locs()->out().reg();
XmmRegister value = locs()->in(0).fpu_reg();
// Unboxed operations produce smis or mint-sized values.
// Check if value fits into a smi.
Label not_smi, done;
__ pextrd(EDX, value, Immediate(1)); // Upper half.
__ pextrd(EAX, value, Immediate(0)); // Lower half.
// 1. Compute (x + -kMinSmi) which has to be in the range
// 0 .. -kMinSmi+kMaxSmi for x to fit into a smi.
__ addl(EAX, Immediate(0x40000000));
__ adcl(EDX, Immediate(0));
// 2. Unsigned compare to -kMinSmi+kMaxSmi.
__ cmpl(EAX, Immediate(0x80000000));
__ sbbl(EDX, Immediate(0));
__ j(ABOVE_EQUAL, &not_smi);
// 3. Restore lower half if result is a smi.
__ subl(EAX, Immediate(0x40000000));
__ SmiTag(EAX);
__ movl(out_reg, EAX);
__ jmp(&done);
__ Bind(&not_smi);
__ TryAllocate(
Class::ZoneHandle(Isolate::Current()->object_store()->mint_class()),
slow_path->entry_label(),
Assembler::kFarJump,
out_reg);
__ Bind(slow_path->exit_label());
__ movsd(FieldAddress(out_reg, Mint::value_offset()), value);
__ Bind(&done);
}
LocationSummary* BinaryMintOpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
switch (op_kind()) {
case Token::kBIT_AND:
case Token::kBIT_OR:
case Token::kBIT_XOR: {
const intptr_t kNumTemps =
FLAG_throw_on_javascript_int_overflow ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
if (FLAG_throw_on_javascript_int_overflow) {
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(Location::SameAsFirstInput());
return summary;
}
case Token::kADD:
case Token::kSUB: {
const intptr_t kNumTemps = 2;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_out(Location::SameAsFirstInput());
return summary;
}
default:
UNREACHABLE();
return NULL;
}
}
void BinaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out().fpu_reg() == left);
Label* deopt = NULL;
if (FLAG_throw_on_javascript_int_overflow) {
deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinaryMintOp);
}
switch (op_kind()) {
case Token::kBIT_AND: __ andpd(left, right); break;
case Token::kBIT_OR: __ orpd(left, right); break;
case Token::kBIT_XOR: __ xorpd(left, right); break;
case Token::kADD:
case Token::kSUB: {
Register lo = locs()->temp(0).reg();
Register hi = locs()->temp(1).reg();
if (!FLAG_throw_on_javascript_int_overflow) {
deopt = compiler->AddDeoptStub(deopt_id(), kDeoptBinaryMintOp);
}
Label done, overflow;
__ pextrd(lo, right, Immediate(0)); // Lower half
__ pextrd(hi, right, Immediate(1)); // Upper half
__ subl(ESP, Immediate(2 * kWordSize));
__ movq(Address(ESP, 0), left);
if (op_kind() == Token::kADD) {
__ addl(Address(ESP, 0), lo);
__ adcl(Address(ESP, 1 * kWordSize), hi);
} else {
__ subl(Address(ESP, 0), lo);
__ sbbl(Address(ESP, 1 * kWordSize), hi);
}
__ j(OVERFLOW, &overflow);
__ movq(left, Address(ESP, 0));
__ addl(ESP, Immediate(2 * kWordSize));
__ jmp(&done);
__ Bind(&overflow);
__ addl(ESP, Immediate(2 * kWordSize));
__ jmp(deopt);
__ Bind(&done);
break;
}
default: UNREACHABLE();
}
if (FLAG_throw_on_javascript_int_overflow) {
Register tmp = locs()->temp(0).reg();
EmitJavascriptIntOverflowCheck(compiler, deopt, left, tmp);
}
}
LocationSummary* ShiftMintOpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = op_kind() == Token::kSHL ? 2 : 1;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RegisterLocation(ECX));
summary->set_temp(0, Location::RequiresRegister());
if (op_kind() == Token::kSHL) {
summary->set_temp(1, Location::RequiresRegister());
}
summary->set_out(Location::SameAsFirstInput());
return summary;
}
void ShiftMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
ASSERT(locs()->in(1).reg() == ECX);
ASSERT(locs()->out().fpu_reg() == left);
Label* deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptShiftMintOp);
Label done;
__ testl(ECX, ECX);
__ j(ZERO, &done); // Shift by 0 is a nop.
__ subl(ESP, Immediate(2 * kWordSize));
__ movq(Address(ESP, 0), left);
// Deoptimize if shift count is > 31.
// sarl operation masks the count to 5 bits and
// shrd is undefined with count > operand size (32)
// TODO(fschneider): Support shift counts > 31 without deoptimization.
__ SmiUntag(ECX);
const Immediate& kCountLimit = Immediate(31);
__ cmpl(ECX, kCountLimit);
__ j(ABOVE, deopt);
switch (op_kind()) {
case Token::kSHR: {
Register temp = locs()->temp(0).reg();
__ movl(temp, Address(ESP, 1 * kWordSize)); // High half.
__ shrd(Address(ESP, 0), temp); // Shift count in CL.
__ sarl(Address(ESP, 1 * kWordSize), ECX); // Shift count in CL.
break;
}
case Token::kSHL: {
Register temp1 = locs()->temp(0).reg();
Register temp2 = locs()->temp(1).reg();
__ movl(temp1, Address(ESP, 0 * kWordSize)); // Low 32 bits.
__ movl(temp2, Address(ESP, 1 * kWordSize)); // High 32 bits.
__ shll(Address(ESP, 0 * kWordSize), ECX); // Shift count in CL.
__ shld(Address(ESP, 1 * kWordSize), temp1); // Shift count in CL.
// Check for overflow by shifting back the high 32 bits
// and comparing with the input.
__ movl(temp1, temp2);
__ movl(temp2, Address(ESP, 1 * kWordSize));
__ sarl(temp2, ECX);
__ cmpl(temp1, temp2);
__ j(NOT_EQUAL, deopt);
break;
}
default:
UNREACHABLE();
break;
}
__ movq(left, Address(ESP, 0));
__ addl(ESP, Immediate(2 * kWordSize));
__ Bind(&done);
if (FLAG_throw_on_javascript_int_overflow) {
Register tmp = locs()->temp(0).reg();
EmitJavascriptIntOverflowCheck(compiler, deopt, left, tmp);
}
}
LocationSummary* UnaryMintOpInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps =
FLAG_throw_on_javascript_int_overflow ? 1 : 0;
LocationSummary* summary =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(Location::SameAsFirstInput());
if (FLAG_throw_on_javascript_int_overflow) {
summary->set_temp(0, Location::RequiresRegister());
}
return summary;
}
void UnaryMintOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(op_kind() == Token::kBIT_NOT);
XmmRegister value = locs()->in(0).fpu_reg();
ASSERT(value == locs()->out().fpu_reg());
Label* deopt = NULL;
if (FLAG_throw_on_javascript_int_overflow) {
deopt = compiler->AddDeoptStub(deopt_id(),
kDeoptUnaryMintOp);
}
__ pcmpeqq(XMM0, XMM0); // Generate all 1's.
__ pxor(value, XMM0);
if (FLAG_throw_on_javascript_int_overflow) {
Register tmp = locs()->temp(0).reg();
EmitJavascriptIntOverflowCheck(compiler, deopt, value, tmp);
}
}
LocationSummary* ThrowInstr::MakeLocationSummary(bool opt) const {
return new LocationSummary(0, 0, LocationSummary::kCall);
}
void ThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kThrowRuntimeEntry,
1,
locs());
__ int3();
}
LocationSummary* ReThrowInstr::MakeLocationSummary(bool opt) const {
return new LocationSummary(0, 0, LocationSummary::kCall);
}
void ReThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler->SetNeedsStacktrace(catch_try_index());
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kReThrowRuntimeEntry,
2,
locs());
__ int3();
}
void GraphEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->CanFallThroughTo(normal_entry())) {
__ jmp(compiler->GetJumpLabel(normal_entry()));
}
}
void TargetEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
if (!compiler->is_optimizing()) {
compiler->EmitEdgeCounter();
// The deoptimization descriptor points after the edge counter code for
// uniformity with ARM and MIPS, where we can reuse pattern matching
// code that matches backwards from the end of the pattern.
compiler->AddCurrentDescriptor(PcDescriptors::kDeopt,
deopt_id_,
Scanner::kDummyTokenIndex);
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
}
LocationSummary* GotoInstr::MakeLocationSummary(bool opt) const {
return new LocationSummary(0, 0, LocationSummary::kNoCall);
}
void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->is_optimizing()) {
compiler->EmitEdgeCounter();
// Add a deoptimization descriptor for deoptimizing instructions that
// may be inserted before this instruction. This descriptor points
// after the edge counter for uniformity with ARM and MIPS, where we can
// reuse pattern matching that matches backwards from the end of the
// pattern.
compiler->AddCurrentDescriptor(PcDescriptors::kDeopt,
GetDeoptId(),
Scanner::kDummyTokenIndex);
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// We can fall through if the successor is the next block in the list.
// Otherwise, we need a jump.
if (!compiler->CanFallThroughTo(successor())) {
__ jmp(compiler->GetJumpLabel(successor()));
}
}
LocationSummary* CurrentContextInstr::MakeLocationSummary(bool opt) const {
return LocationSummary::Make(0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void CurrentContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ MoveRegister(locs()->out().reg(), CTX);
}
LocationSummary* StrictCompareInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (needs_number_check()) {
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(EAX));
locs->set_in(1, Location::RegisterLocation(ECX));
locs->set_out(Location::RegisterLocation(EAX));
return locs;
}
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one of the inputs can be a constant. Choose register if the first one
// is a constant.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(Location::RequiresRegister());
return locs;
}
Condition StrictCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
Location left = locs()->in(0);
Location right = locs()->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
if (left.IsConstant()) {
compiler->EmitEqualityRegConstCompare(right.reg(),
left.constant(),
needs_number_check(),
token_pos());
} else if (right.IsConstant()) {
compiler->EmitEqualityRegConstCompare(left.reg(),
right.constant(),
needs_number_check(),
token_pos());
} else {
compiler->EmitEqualityRegRegCompare(left.reg(),
right.reg(),
needs_number_check(),
token_pos());
}
Condition true_condition = (kind() == Token::kEQ_STRICT) ? EQUAL : NOT_EQUAL;
return true_condition;
}
void StrictCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(kind() == Token::kEQ_STRICT || kind() == Token::kNE_STRICT);
Label is_true, is_false;
BranchLabels labels = { &is_true, &is_false, &is_false };
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
Register result = locs()->out().reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False());
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
}
void StrictCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT(kind() == Token::kEQ_STRICT || kind() == Token::kNE_STRICT);
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
// Detect pattern when one value is zero and another is a power of 2.
static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) {
return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) ||
(Utils::IsPowerOfTwo(v2) && (v1 == 0));
}
LocationSummary* IfThenElseInstr::MakeLocationSummary(bool opt) const {
comparison()->InitializeLocationSummary(opt);
// TODO(vegorov): support byte register constraints in the register allocator.
comparison()->locs()->set_out(Location::RegisterLocation(EDX));
return comparison()->locs();
}
void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->out().reg() == EDX);
// Clear upper part of the out register. We are going to use setcc on it
// which is a byte move.
__ xorl(EDX, EDX);
// Emit comparison code. This must not overwrite the result register.
BranchLabels labels = { NULL, NULL, NULL };
Condition true_condition = comparison()->EmitComparisonCode(compiler, labels);
const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_);
intptr_t true_value = if_true_;
intptr_t false_value = if_false_;
if (is_power_of_two_kind) {
if (true_value == 0) {
// We need to have zero in EDX on true_condition.
true_condition = NegateCondition(true_condition);
}
} else {
if (true_value == 0) {
// Swap values so that false_value is zero.
intptr_t temp = true_value;
true_value = false_value;
false_value = temp;
} else {
true_condition = NegateCondition(true_condition);
}
}
__ setcc(true_condition, DL);
if (is_power_of_two_kind) {
const intptr_t shift =
Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value));
__ shll(EDX, Immediate(shift + kSmiTagSize));
} else {
__ subl(EDX, Immediate(1));
__ andl(EDX, Immediate(
Smi::RawValue(true_value) - Smi::RawValue(false_value)));
if (false_value != 0) {
__ addl(EDX, Immediate(Smi::RawValue(false_value)));
}
}
}
LocationSummary* ClosureCallInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* result =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_out(Location::RegisterLocation(EAX));
result->set_temp(0, Location::RegisterLocation(EDX)); // Arg. descriptor.
return result;
}
void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The arguments to the stub include the closure, as does the arguments
// descriptor.
Register temp_reg = locs()->temp(0).reg();
int argument_count = ArgumentCount();
const Array& arguments_descriptor =
Array::ZoneHandle(ArgumentsDescriptor::New(argument_count,
argument_names()));
__ LoadObject(temp_reg, arguments_descriptor);
ASSERT(temp_reg == EDX);
compiler->GenerateDartCall(deopt_id(),
token_pos(),
&StubCode::CallClosureFunctionLabel(),
PcDescriptors::kClosureCall,
locs());
__ Drop(argument_count);
}
LocationSummary* BooleanNegateInstr::MakeLocationSummary(bool opt) const {
return LocationSummary::Make(1,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void BooleanNegateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out().reg();
Label done;
__ LoadObject(result, Bool::True());
__ CompareRegisters(result, value);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
__ LoadObject(result, Bool::False());
__ Bind(&done);
}
LocationSummary* StoreVMFieldInstr::MakeLocationSummary(bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs =
new LocationSummary(kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister()
: Location::RequiresRegister());
locs->set_in(1, Location::RequiresRegister());
return locs;
}
void StoreVMFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value_reg = locs()->in(0).reg();
Register dest_reg = locs()->in(1).reg();
if (value()->NeedsStoreBuffer()) {
__ StoreIntoObject(dest_reg, FieldAddress(dest_reg, offset_in_bytes()),
value_reg);
} else {
__ StoreIntoObjectNoBarrier(
dest_reg, FieldAddress(dest_reg, offset_in_bytes()), value_reg);
}
}
LocationSummary* AllocateObjectInstr::MakeLocationSummary(bool opt) const {
return MakeCallSummary();
}
void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Code& stub = Code::Handle(StubCode::GetAllocationStubForClass(cls()));
const ExternalLabel label(cls().ToCString(), stub.EntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
__ Drop(ArgumentCount()); // Discard arguments.
}
LocationSummary* CreateClosureInstr::MakeLocationSummary(bool opt) const {
return MakeCallSummary();
}
void CreateClosureInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Function& closure_function = function();
ASSERT(!closure_function.IsImplicitStaticClosureFunction());
const Code& stub = Code::Handle(
StubCode::GetAllocationStubForClosure(closure_function));
const ExternalLabel label(closure_function.ToCString(), stub.EntryPoint());
compiler->GenerateCall(token_pos(),
&label,
PcDescriptors::kOther,
locs());
__ Drop(2); // Discard type arguments and receiver.
}
} // namespace dart
#undef __
#endif // defined TARGET_ARCH_IA32