blob: 0f9c559fd5dec86b1c6a7609a0d94d1a6d68b4ac [file] [log] [blame]
// Copyright (c) 2020, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// VMOptions=--disable-heap-verification
import 'dart:math' as math;
import 'package:expect/expect.dart';
import 'ring_gc_test.dart' show Worker;
import 'test_utils.dart';
main(args) async {
// We don't run this test in our artificial hot reload mode, because it would
// create too many threads during the reload (one per isolate), which can
// cause this test or other concurrently executing tests to Crash due to
// unability of `pthread_create` to create a new thread.
if (isArtificialReloadMode) return;
final int numIsolates = (isDebugMode || isSimulator) ? 100 : 5000;
// Spawn ring of 1k isolates.
final ring = await Ring.create(numIsolates);
// Let each node produce a tree, send it to it's neighbour and let it return
// the one it received (via Isolate.exit).
final results = await ring.runAndClose((int id) => Worker(id));
Expect.equals(numIsolates, results.length);
// Validate the result.
for (int i = 0; i < numIsolates; ++i) {
final Tree tree = results[i];
final senderId = (numIsolates + i - 1) % numIsolates;
final expectedCount = math.pow(2, senderId % 10) - 1;
Expect.equals(expectedCount, tree.sum);
}
}