| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| |
| // For `AllocateObjectInstr::WillAllocateNewOrRemembered` |
| #include "vm/compiler/backend/il.h" |
| |
| #define SHOULD_NOT_INCLUDE_RUNTIME |
| |
| #include "vm/compiler/stub_code_compiler.h" |
| |
| #if defined(TARGET_ARCH_IA32) |
| |
| #include "vm/class_id.h" |
| #include "vm/code_entry_kind.h" |
| #include "vm/compiler/api/type_check_mode.h" |
| #include "vm/compiler/assembler/assembler.h" |
| #include "vm/compiler/backend/locations.h" |
| #include "vm/constants.h" |
| #include "vm/instructions.h" |
| #include "vm/static_type_exactness_state.h" |
| #include "vm/tags.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| namespace compiler { |
| |
| // Ensures that [EAX] is a new object, if not it will be added to the remembered |
| // set via a leaf runtime call. |
| // |
| // WARNING: This might clobber all registers except for [EAX], [THR] and [FP]. |
| // The caller should simply call LeaveFrame() and return. |
| void StubCodeCompiler::EnsureIsNewOrRemembered(Assembler* assembler, |
| bool preserve_registers) { |
| // If the object is not remembered we call a leaf-runtime to add it to the |
| // remembered set. |
| Label done; |
| __ testl(EAX, Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
| __ BranchIf(NOT_ZERO, &done); |
| |
| if (preserve_registers) { |
| __ EnterCallRuntimeFrame(2 * target::kWordSize); |
| } else { |
| __ ReserveAlignedFrameSpace(2 * target::kWordSize); |
| } |
| __ movl(Address(ESP, 1 * target::kWordSize), THR); |
| __ movl(Address(ESP, 0 * target::kWordSize), EAX); |
| __ CallRuntime(kEnsureRememberedAndMarkingDeferredRuntimeEntry, 2); |
| if (preserve_registers) { |
| __ LeaveCallRuntimeFrame(); |
| } |
| |
| __ Bind(&done); |
| } |
| |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : address of last argument in argument array. |
| // ESP + 4*EDX : address of first argument in argument array. |
| // ESP + 4*EDX + 4 : address of return value. |
| // ECX : address of the runtime function to call. |
| // EDX : number of arguments to the call. |
| // Must preserve callee saved registers EDI and EBX. |
| void StubCodeCompiler::GenerateCallToRuntimeStub(Assembler* assembler) { |
| const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
| const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
| |
| __ movl(CODE_REG, |
| Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), EBP); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(target::Thread::exit_through_runtime_call())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ cmpl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing VM code. |
| __ movl(Assembler::VMTagAddress(), ECX); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| __ AddImmediate( |
| ESP, |
| Immediate(-static_cast<int32_t>(target::NativeArguments::StructSize()))); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andl(ESP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call runtime. |
| __ movl(Address(ESP, thread_offset), THR); // Set thread in NativeArgs. |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| __ movl(Address(ESP, argc_tag_offset), EDX); // Set argc in NativeArguments. |
| // Compute argv. |
| __ leal(EAX, |
| Address(EBP, EDX, TIMES_4, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ movl(Address(ESP, argv_offset), EAX); // Set argv in NativeArguments. |
| __ addl(EAX, |
| Immediate(1 * target::kWordSize)); // Retval is next to 1st argument. |
| __ movl(Address(ESP, retval_offset), EAX); // Set retval in NativeArguments. |
| __ call(ECX); |
| |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| __ LeaveFrame(); |
| |
| // The following return can jump to a lazy-deopt stub, which assumes EAX |
| // contains a return value and will save it in a GC-visible way. We therefore |
| // have to ensure EAX does not contain any garbage value left from the C |
| // function we called (which has return type "void"). |
| // (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.) |
| __ xorl(EAX, EAX); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateEnterSafepointStub(Assembler* assembler) { |
| __ pushal(); |
| __ subl(SPREG, Immediate(8)); |
| __ movsd(Address(SPREG, 0), XMM0); |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| __ movl(EAX, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread())); |
| __ call(EAX); |
| __ LeaveFrame(); |
| |
| __ movsd(XMM0, Address(SPREG, 0)); |
| __ addl(SPREG, Immediate(8)); |
| __ popal(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointStub(Assembler* assembler) { |
| __ pushal(); |
| __ subl(SPREG, Immediate(8)); |
| __ movsd(Address(SPREG, 0), XMM0); |
| |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Set the execution state to VM while waiting for the safepoint to end. |
| // This isn't strictly necessary but enables tests to check that we're not |
| // in native code anymore. See tests/ffi/function_gc_test.dart for example. |
| __ movl(Address(THR, target::Thread::execution_state_offset()), |
| Immediate(target::Thread::vm_execution_state())); |
| |
| __ movl(EAX, Address(THR, kExitSafepointRuntimeEntry.OffsetFromThread())); |
| __ call(EAX); |
| __ LeaveFrame(); |
| |
| __ movsd(XMM0, Address(SPREG, 0)); |
| __ addl(SPREG, Immediate(8)); |
| __ popal(); |
| __ ret(); |
| } |
| |
| // Calls a native function inside a safepoint. |
| // |
| // On entry: |
| // Stack: set up for native call |
| // EAX: target to call |
| // |
| // On exit: |
| // Stack: preserved |
| // EBX: clobbered (even though it's normally callee-saved) |
| void StubCodeCompiler::GenerateCallNativeThroughSafepointStub( |
| Assembler* assembler) { |
| __ popl(EBX); |
| |
| __ movl(ECX, compiler::Immediate(target::Thread::exit_through_ffi())); |
| __ TransitionGeneratedToNative(EAX, FPREG, ECX /*volatile*/, |
| /*enter_safepoint=*/true); |
| __ call(EAX); |
| __ TransitionNativeToGenerated(ECX /*volatile*/, /*leave_safepoint=*/true); |
| |
| __ jmp(EBX); |
| } |
| |
| void StubCodeCompiler::GenerateJITCallbackTrampolines( |
| Assembler* assembler, |
| intptr_t next_callback_id) { |
| Label done, ret_4; |
| |
| // EAX is volatile and doesn't hold any arguments. |
| COMPILE_ASSERT(!IsArgumentRegister(EAX) && !IsCalleeSavedRegister(EAX)); |
| |
| for (intptr_t i = 0; |
| i < NativeCallbackTrampolines::NumCallbackTrampolinesPerPage(); ++i) { |
| __ movl(EAX, compiler::Immediate(next_callback_id + i)); |
| __ jmp(&done); |
| } |
| |
| ASSERT(__ CodeSize() == |
| kNativeCallbackTrampolineSize * |
| NativeCallbackTrampolines::NumCallbackTrampolinesPerPage()); |
| |
| __ Bind(&done); |
| |
| const intptr_t shared_stub_start = __ CodeSize(); |
| |
| // Save THR and EBX which are callee-saved. |
| __ pushl(THR); |
| __ pushl(EBX); |
| |
| // We need the callback ID after the call for return stack. |
| __ pushl(EAX); |
| |
| // THR & return address |
| COMPILE_ASSERT(StubCodeCompiler::kNativeCallbackTrampolineStackDelta == 4); |
| |
| // Load the thread, verify the callback ID and exit the safepoint. |
| // |
| // We exit the safepoint inside DLRT_GetThreadForNativeCallbackTrampoline |
| // in order to save code size on this shared stub. |
| { |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(compiler::target::kWordSize); |
| |
| __ movl(compiler::Address(SPREG, 0), EAX); |
| __ movl(EAX, compiler::Immediate(reinterpret_cast<int64_t>( |
| DLRT_GetThreadForNativeCallbackTrampoline))); |
| __ call(EAX); |
| __ movl(THR, EAX); |
| __ movl(EAX, compiler::Address(SPREG, 0)); |
| |
| __ LeaveFrame(); |
| } |
| |
| COMPILE_ASSERT(!IsCalleeSavedRegister(ECX) && !IsArgumentRegister(ECX)); |
| COMPILE_ASSERT(ECX != THR); |
| |
| // Load the target from the thread. |
| __ movl(ECX, compiler::Address( |
| THR, compiler::target::Thread::callback_code_offset())); |
| __ movl(ECX, compiler::FieldAddress( |
| ECX, compiler::target::GrowableObjectArray::data_offset())); |
| __ movl(ECX, __ ElementAddressForRegIndex( |
| /*external=*/false, |
| /*array_cid=*/kArrayCid, |
| /*index, smi-tagged=*/compiler::target::kWordSize * 2, |
| /*index_unboxed=*/false, |
| /*array=*/ECX, |
| /*index=*/EAX)); |
| __ movl(ECX, compiler::FieldAddress( |
| ECX, compiler::target::Code::entry_point_offset())); |
| |
| // On entry to the function, there will be two extra slots on the stack: |
| // the saved THR and the return address. The target will know to skip them. |
| __ call(ECX); |
| |
| // Register state: |
| // - callee saved registers (should be restored) |
| // - EBX available as scratch because we restore it later. |
| // - ESI(THR) contains thread |
| // - EDI |
| // - return registers (should not be touched) |
| // - EAX |
| // - EDX |
| // - available scratch registers |
| // - ECX free |
| |
| // Load the return stack delta from the thread. |
| __ movl(ECX, |
| compiler::Address( |
| THR, compiler::target::Thread::callback_stack_return_offset())); |
| __ popl(EBX); // Compiler callback id. |
| __ movzxb(EBX, __ ElementAddressForRegIndex( |
| /*external=*/false, |
| /*array_cid=*/kTypedDataUint8ArrayCid, |
| /*index=*/1, |
| /*index_unboxed=*/false, |
| /*array=*/ECX, |
| /*index=*/EBX)); |
| #if defined(DEBUG) |
| // Stack delta should be either 0 or 4. |
| Label check_done; |
| __ BranchIfZero(EBX, &check_done); |
| __ CompareImmediate(EBX, compiler::target::kWordSize); |
| __ BranchIf(EQUAL, &check_done); |
| __ Breakpoint(); |
| __ Bind(&check_done); |
| #endif |
| |
| // Takes care to not clobber *any* registers (besides scratch). |
| __ EnterFullSafepoint(/*scratch=*/ECX); |
| |
| // Restore callee-saved registers. |
| __ movl(ECX, EBX); |
| __ popl(EBX); |
| __ popl(THR); |
| |
| __ cmpl(ECX, compiler::Immediate(Smi::RawValue(0))); |
| __ j(NOT_EQUAL, &ret_4, compiler::Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(&ret_4); |
| __ ret(Immediate(4)); |
| |
| // 'kNativeCallbackSharedStubSize' is an upper bound because the exact |
| // instruction size can vary slightly based on OS calling conventions. |
| ASSERT((__ CodeSize() - shared_stub_start) <= kNativeCallbackSharedStubSize); |
| ASSERT(__ CodeSize() <= VirtualMemory::PageSize()); |
| |
| #if defined(DEBUG) |
| while (__ CodeSize() < VirtualMemory::PageSize()) { |
| __ Breakpoint(); |
| } |
| #endif |
| } |
| |
| void StubCodeCompiler::GenerateSharedStubGeneric( |
| Assembler* assembler, |
| bool save_fpu_registers, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| std::function<void()> perform_runtime_call) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStub( |
| Assembler* assembler, |
| bool save_fpu_registers, |
| const RuntimeEntry* target, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| bool store_runtime_result_in_result_register) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateRangeError(Assembler* assembler, |
| bool with_fpu_regs) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateDispatchTableNullErrorStub( |
| Assembler* assembler) { |
| // Only used in AOT. |
| __ Breakpoint(); |
| } |
| |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : address of return value. |
| // EAX : address of first argument in argument array. |
| // ECX : address of the native function to call. |
| // EDX : argc_tag including number of arguments and function kind. |
| static void GenerateCallNativeWithWrapperStub(Assembler* assembler, |
| Address wrapper_address) { |
| const intptr_t native_args_struct_offset = |
| target::NativeEntry::kNumCallWrapperArguments * target::kWordSize; |
| const intptr_t thread_offset = |
| target::NativeArguments::thread_offset() + native_args_struct_offset; |
| const intptr_t argc_tag_offset = |
| target::NativeArguments::argc_tag_offset() + native_args_struct_offset; |
| const intptr_t argv_offset = |
| target::NativeArguments::argv_offset() + native_args_struct_offset; |
| const intptr_t retval_offset = |
| target::NativeArguments::retval_offset() + native_args_struct_offset; |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to dart VM code. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), EBP); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(target::Thread::exit_through_runtime_call())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ cmpl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ movl(Assembler::VMTagAddress(), ECX); |
| |
| // Reserve space for the native arguments structure, the outgoing parameters |
| // (pointer to the native arguments structure, the C function entry point) |
| // and align frame before entering the C++ world. |
| __ AddImmediate( |
| ESP, |
| Immediate(-static_cast<int32_t>(target::NativeArguments::StructSize()) - |
| (2 * target::kWordSize))); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andl(ESP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call native function. |
| __ movl(Address(ESP, thread_offset), THR); // Set thread in NativeArgs. |
| __ movl(Address(ESP, argc_tag_offset), EDX); // Set argc in NativeArguments. |
| __ movl(Address(ESP, argv_offset), EAX); // Set argv in NativeArguments. |
| __ leal(EAX, |
| Address(EBP, 2 * target::kWordSize)); // Compute return value addr. |
| __ movl(Address(ESP, retval_offset), EAX); // Set retval in NativeArguments. |
| __ leal( |
| EAX, |
| Address(ESP, 2 * target::kWordSize)); // Pointer to the NativeArguments. |
| __ movl(Address(ESP, 0), EAX); // Pass the pointer to the NativeArguments. |
| |
| __ movl(Address(ESP, target::kWordSize), ECX); // Function to call. |
| __ call(wrapper_address); |
| |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateCallNoScopeNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::no_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| void StubCodeCompiler::GenerateCallAutoScopeNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::auto_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : address of return value. |
| // EAX : address of first argument in argument array. |
| // ECX : address of the native function to call. |
| // EDX : argc_tag including number of arguments and function kind. |
| void StubCodeCompiler::GenerateCallBootstrapNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::bootstrap_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // EDX: arguments descriptor array. |
| void StubCodeCompiler::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushl(EDX); // Preserve arguments descriptor array. |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
| __ popl(EAX); // Get Code object result. |
| __ popl(EDX); // Restore arguments descriptor array. |
| // Remove the stub frame as we are about to jump to the dart function. |
| __ LeaveFrame(); |
| |
| __ jmp(FieldAddress(EAX, target::Code::entry_point_offset())); |
| } |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // EDX: arguments descriptor array. |
| void StubCodeCompiler::GenerateFixCallersTargetStub(Assembler* assembler) { |
| Label monomorphic; |
| __ BranchOnMonomorphicCheckedEntryJIT(&monomorphic); |
| |
| // This was a static call. |
| __ EnterStubFrame(); |
| __ pushl(EDX); // Preserve arguments descriptor array. |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
| __ popl(EAX); // Get Code object. |
| __ popl(EDX); // Restore arguments descriptor array. |
| __ movl(EAX, FieldAddress(EAX, target::Code::entry_point_offset())); |
| __ LeaveFrame(); |
| __ jmp(EAX); |
| __ int3(); |
| |
| __ Bind(&monomorphic); |
| // This was a switchable call. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Result slot. |
| __ pushl(EBX); // Preserve receiver. |
| __ pushl(ECX); // Preserve cache (guarded CID as Smi). |
| __ CallRuntime(kFixCallersTargetMonomorphicRuntimeEntry, 2); |
| __ popl(ECX); // Restore cache (guarded CID as Smi). |
| __ popl(EBX); // Restore receiver. |
| __ popl(CODE_REG); // Get target Code object. |
| __ movl(EAX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
| CodeEntryKind::kMonomorphic))); |
| __ LeaveFrame(); |
| __ jmp(EAX); |
| __ int3(); |
| } |
| |
| // Called from object allocate instruction when the allocation stub has been |
| // disabled. |
| void StubCodeCompiler::GenerateFixAllocationStubTargetStub( |
| Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| __ popl(EAX); // Get Code object. |
| __ movl(EAX, FieldAddress(EAX, target::Code::entry_point_offset())); |
| __ LeaveFrame(); |
| __ jmp(EAX); |
| __ int3(); |
| } |
| |
| // Input parameters: |
| // EDX: smi-tagged argument count, may be zero. |
| // EBP[target::frame_layout.param_end_from_fp + 1]: last argument. |
| // Uses EAX, EBX, ECX, EDX, EDI. |
| static void PushArrayOfArguments(Assembler* assembler) { |
| // Allocate array to store arguments of caller. |
| const Immediate& raw_null = Immediate(target::ToRawPointer(NullObject())); |
| __ movl(ECX, raw_null); // Null element type for raw Array. |
| __ Call(StubCodeAllocateArray()); |
| __ SmiUntag(EDX); |
| // EAX: newly allocated array. |
| // EDX: length of the array (was preserved by the stub). |
| __ pushl(EAX); // Array is in EAX and on top of stack. |
| __ leal(EBX, |
| Address(EBP, EDX, TIMES_4, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ leal(ECX, FieldAddress(EAX, target::Array::data_offset())); |
| // EBX: address of first argument on stack. |
| // ECX: address of first argument in array. |
| Label loop, loop_condition; |
| __ jmp(&loop_condition, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ movl(EDI, Address(EBX, 0)); |
| // Generational barrier is needed, array is not necessarily in new space. |
| __ StoreIntoObject(EAX, Address(ECX, 0), EDI); |
| __ AddImmediate(ECX, Immediate(target::kWordSize)); |
| __ AddImmediate(EBX, Immediate(-target::kWordSize)); |
| __ Bind(&loop_condition); |
| __ decl(EDX); |
| __ j(POSITIVE, &loop, Assembler::kNearJump); |
| } |
| |
| // Used by eager and lazy deoptimization. Preserve result in EAX if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterDartFrame(0) below: |
| // +------------------+ |
| // | PC marker | <- TOS |
| // +------------------+ |
| // | Saved FP | <- FP of stub |
| // +------------------+ |
| // | return-address | (deoptimization point) |
| // +------------------+ |
| // | ... | <- SP of optimized frame |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| DeoptStubKind kind) { |
| // Leaf runtime function DeoptimizeCopyFrame expects a Dart frame. |
| __ EnterDartFrame(0); |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_result_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - EAX); |
| const intptr_t saved_exception_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - EAX); |
| const intptr_t saved_stacktrace_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - EDX); |
| // Result in EAX is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) { |
| if (i == CODE_REG) { |
| // Save the original value of CODE_REG pushed before invoking this stub |
| // instead of the value used to call this stub. |
| __ pushl(Address(EBP, 2 * target::kWordSize)); |
| } else { |
| __ pushl(static_cast<Register>(i)); |
| } |
| } |
| __ subl(ESP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize)); |
| intptr_t offset = 0; |
| for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { |
| XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); |
| __ movups(Address(ESP, offset), xmm_reg); |
| offset += kFpuRegisterSize; |
| } |
| |
| __ movl(ECX, ESP); // Preserve saved registers block. |
| __ ReserveAlignedFrameSpace(2 * target::kWordSize); |
| __ movl(Address(ESP, 0 * target::kWordSize), |
| ECX); // Start of register block. |
| bool is_lazy = |
| (kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow); |
| __ movl(Address(ESP, 1 * target::kWordSize), Immediate(is_lazy ? 1 : 0)); |
| __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2); |
| // Result (EAX) is stack-size (FP - SP) in bytes. |
| |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into EBX temporarily. |
| __ movl(EBX, Address(EBP, saved_result_slot_from_fp * target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into EBX temporarily. |
| __ movl(EBX, |
| Address(EBP, saved_exception_slot_from_fp * target::kWordSize)); |
| __ movl(ECX, |
| Address(EBP, saved_stacktrace_slot_from_fp * target::kWordSize)); |
| } |
| |
| __ LeaveFrame(); |
| __ popl(EDX); // Preserve return address. |
| __ movl(ESP, EBP); // Discard optimized frame. |
| __ subl(ESP, EAX); // Reserve space for deoptimized frame. |
| __ pushl(EDX); // Restore return address. |
| |
| // Leaf runtime function DeoptimizeFillFrame expects a Dart frame. |
| __ EnterDartFrame(0); |
| if (kind == kLazyDeoptFromReturn) { |
| __ pushl(EBX); // Preserve result as first local. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ pushl(EBX); // Preserve exception as first local. |
| __ pushl(ECX); // Preserve stacktrace as first local. |
| } |
| __ ReserveAlignedFrameSpace(1 * target::kWordSize); |
| __ movl(Address(ESP, 0), EBP); // Pass last FP as parameter on stack. |
| __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into EBX. |
| __ movl(EBX, Address(EBP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into EBX. |
| __ movl(EBX, Address(EBP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| __ movl(ECX, Address(EBP, (target::frame_layout.first_local_from_fp - 1) * |
| target::kWordSize)); |
| } |
| // Code above cannot cause GC. |
| __ LeaveFrame(); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| __ EnterStubFrame(); |
| if (kind == kLazyDeoptFromReturn) { |
| __ pushl(EBX); // Preserve result, it will be GC-d here. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ pushl(EBX); // Preserve exception, it will be GC-d here. |
| __ pushl(ECX); // Preserve stacktrace, it will be GC-d here. |
| } |
| __ pushl(Immediate(target::ToRawSmi(0))); // Space for the result. |
| __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
| // Result tells stub how many bytes to remove from the expression stack |
| // of the bottom-most frame. They were used as materialization arguments. |
| __ popl(EBX); |
| __ SmiUntag(EBX); |
| if (kind == kLazyDeoptFromReturn) { |
| __ popl(EAX); // Restore result. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ popl(EDX); // Restore exception. |
| __ popl(EAX); // Restore stacktrace. |
| } |
| __ LeaveFrame(); |
| |
| __ popl(ECX); // Pop return address. |
| __ addl(ESP, EBX); // Remove materialization arguments. |
| __ pushl(ECX); // Push return address. |
| // The caller is responsible for emitting the return instruction. |
| } |
| |
| // EAX: result, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub( |
| Assembler* assembler) { |
| // Return address for "call" to deopt stub. |
| __ pushl(Immediate(kZapReturnAddress)); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn); |
| __ ret(); |
| } |
| |
| // EAX: exception, must be preserved |
| // EDX: stacktrace, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub( |
| Assembler* assembler) { |
| // Return address for "call" to deopt stub. |
| __ pushl(Immediate(kZapReturnAddress)); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateDeoptimizeStub(Assembler* assembler) { |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| __ ret(); |
| } |
| |
| static void GenerateNoSuchMethodDispatcherCode(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ movl(EDX, FieldAddress( |
| ECX, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Load the receiver. |
| __ movl(EDI, FieldAddress(EDX, target::ArgumentsDescriptor::size_offset())); |
| __ movl(EAX, |
| Address(EBP, EDI, TIMES_HALF_WORD_SIZE, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| __ pushl(Immediate(0)); // Setup space on stack for result. |
| __ pushl(EAX); // Receiver. |
| __ pushl(ECX); // ICData/MegamorphicCache. |
| __ pushl(EDX); // Arguments descriptor array. |
| |
| // Adjust arguments count. |
| __ cmpl( |
| FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| __ movl(EDX, EDI); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addl(EDX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| |
| // EDX: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs); |
| __ Drop(4); |
| __ popl(EAX); // Return value. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| static void GenerateDispatcherCode(Assembler* assembler, |
| Label* call_target_function) { |
| __ Comment("NoSuchMethodDispatch"); |
| // When lazily generated invocation dispatchers are disabled, the |
| // miss-handler may return null. |
| const Immediate& raw_null = Immediate(target::ToRawPointer(NullObject())); |
| __ cmpl(EAX, raw_null); |
| __ j(NOT_EQUAL, call_target_function); |
| GenerateNoSuchMethodDispatcherCode(assembler); |
| } |
| |
| void StubCodeCompiler::GenerateNoSuchMethodDispatcherStub( |
| Assembler* assembler) { |
| GenerateNoSuchMethodDispatcherCode(assembler); |
| } |
| |
| // Called for inline allocation of arrays. |
| // Input registers (preserved): |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // AllocateArrayABI::kTypeArgumentsReg: type arguments of array. |
| // Output registers: |
| // AllocateArrayABI::kResultReg: newly allocated array. |
| // Clobbered: |
| // EBX, EDI |
| void StubCodeCompiler::GenerateAllocateArrayStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize( |
| // (array_length * kwordSize) + target::Array::header_size()). |
| // Assert that length is a Smi. |
| __ testl(AllocateArrayABI::kLengthReg, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &slow_case); |
| |
| // Check for maximum allowed length. |
| const Immediate& max_len = |
| Immediate(target::ToRawSmi(target::Array::kMaxNewSpaceElements)); |
| __ cmpl(AllocateArrayABI::kLengthReg, max_len); |
| __ j(ABOVE, &slow_case); |
| |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kArrayCid, |
| AllocateArrayABI::kResultReg, |
| &slow_case, Assembler::kFarJump)); |
| |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::Array::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| // AllocateArrayABI::kLengthReg is Smi. |
| __ leal(EBX, Address(AllocateArrayABI::kLengthReg, TIMES_2, |
| fixed_size_plus_alignment_padding)); |
| ASSERT(kSmiTagShift == 1); |
| __ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // EBX: allocation size. |
| |
| const intptr_t cid = kArrayCid; |
| __ movl(AllocateArrayABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| __ addl(EBX, AllocateArrayABI::kResultReg); |
| __ j(CARRY, &slow_case); |
| |
| // Check if the allocation fits into the remaining space. |
| // AllocateArrayABI::kResultReg: potential new object start. |
| // EBX: potential next object start. |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: array length as Smi). |
| __ cmpl(EBX, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, &slow_case); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movl(Address(THR, target::Thread::top_offset()), EBX); |
| __ subl(EBX, AllocateArrayABI::kResultReg); |
| __ addl(AllocateArrayABI::kResultReg, Immediate(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // EBX: allocation size. |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| { |
| Label size_tag_overflow, done; |
| __ movl(EDI, EBX); |
| __ cmpl(EDI, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shll(EDI, Immediate(target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ movl(EDI, Immediate(0)); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| uword tags = target::MakeTagWordForNewSpaceObject(cid, 0); |
| __ orl(EDI, Immediate(tags)); |
| __ movl(FieldAddress(AllocateArrayABI::kResultReg, |
| target::Object::tags_offset()), |
| EDI); // Tags. |
| } |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // EBX: allocation size. |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: Array length as Smi (preserved). |
| // Store the type argument field. |
| // No generational barrier needed, since we store into a new object. |
| __ StoreIntoObjectNoBarrier( |
| AllocateArrayABI::kResultReg, |
| FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::type_arguments_offset()), |
| AllocateArrayABI::kTypeArgumentsReg); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier(AllocateArrayABI::kResultReg, |
| FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::length_offset()), |
| AllocateArrayABI::kLengthReg); |
| |
| // Initialize all array elements to raw_null. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // EBX: allocation size. |
| // EDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| // AllocateArrayABI::kTypeArgumentsReg: array type arguments. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| __ leal(EBX, FieldAddress(AllocateArrayABI::kResultReg, EBX, TIMES_1, 0)); |
| __ leal(EDI, FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::header_size())); |
| Label done; |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ cmpl(EDI, EBX); |
| __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); |
| // No generational barrier needed, since we are storing null. |
| __ StoreIntoObjectNoBarrier(AllocateArrayABI::kResultReg, Address(EDI, 0), |
| NullObject()); |
| __ addl(EDI, Immediate(target::kWordSize)); |
| __ jmp(&init_loop, Assembler::kNearJump); |
| __ Bind(&done); |
| __ ret(); |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ pushl(AllocateArrayABI::kLengthReg); // Array length as Smi. |
| __ pushl(AllocateArrayABI::kTypeArgumentsReg); // Type arguments. |
| __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
| __ popl(AllocateArrayABI::kTypeArgumentsReg); // Pop type arguments. |
| __ popl(AllocateArrayABI::kLengthReg); // Pop array length argument. |
| __ popl(AllocateArrayABI::kResultReg); // Pop return value from return slot. |
| |
| // Write-barrier elimination might be enabled for this array (depending on the |
| // array length). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler); |
| |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| // Called when invoking dart code from C++ (VM code). |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : code object of the dart function to call. |
| // ESP + 8 : arguments descriptor array. |
| // ESP + 12 : arguments array. |
| // ESP + 16 : current thread. |
| // Uses EAX, EDX, ECX, EDI as temporary registers. |
| void StubCodeCompiler::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| const intptr_t kTargetCodeOffset = 3 * target::kWordSize; |
| const intptr_t kArgumentsDescOffset = 4 * target::kWordSize; |
| const intptr_t kArgumentsOffset = 5 * target::kWordSize; |
| const intptr_t kThreadOffset = 6 * target::kWordSize; |
| |
| __ pushl(Address(ESP, 0)); // Marker for the profiler. |
| __ EnterFrame(0); |
| |
| // Push code object to PC marker slot. |
| __ movl(EAX, Address(EBP, kThreadOffset)); |
| __ pushl(Address(EAX, target::Thread::invoke_dart_code_stub_offset())); |
| |
| // Save C++ ABI callee-saved registers. |
| __ pushl(EBX); |
| __ pushl(ESI); |
| __ pushl(EDI); |
| |
| // Set up THR, which caches the current thread in Dart code. |
| __ movl(THR, EAX); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Save the current VMTag on the stack. |
| __ movl(ECX, Assembler::VMTagAddress()); |
| __ pushl(ECX); |
| |
| // Save top resource and top exit frame info. Use EDX as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ movl(EDX, Address(THR, target::Thread::top_resource_offset())); |
| __ pushl(EDX); |
| __ movl(Address(THR, target::Thread::top_resource_offset()), Immediate(0)); |
| __ movl(EAX, Address(THR, target::Thread::exit_through_ffi_offset())); |
| __ pushl(EAX); |
| __ movl(Address(THR, target::Thread::exit_through_ffi_offset()), |
| Immediate(0)); |
| // The constant target::frame_layout.exit_link_slot_from_entry_fp must be |
| // kept in sync with the code below. |
| ASSERT(target::frame_layout.exit_link_slot_from_entry_fp == -8); |
| __ movl(EDX, Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ pushl(EDX); |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // In debug mode, verify that we've pushed the top exit frame info at the |
| // correct offset from FP. |
| __ EmitEntryFrameVerification(); |
| |
| // Mark that the thread is executing Dart code. Do this after initializing the |
| // exit link for the profiler. |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Load arguments descriptor array into EDX. |
| __ movl(EDX, Address(EBP, kArgumentsDescOffset)); |
| __ movl(EDX, Address(EDX, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load number of arguments into EBX and adjust count for type arguments. |
| __ movl(EBX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset())); |
| __ cmpl( |
| FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addl(EBX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| // Save number of arguments as Smi on stack, replacing ArgumentsDesc. |
| __ movl(Address(EBP, kArgumentsDescOffset), EBX); |
| __ SmiUntag(EBX); |
| |
| // Set up arguments for the dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ testl(EBX, EBX); // check if there are arguments. |
| __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
| __ movl(EAX, Immediate(0)); |
| |
| // Compute address of 'arguments array' data area into EDI. |
| __ movl(EDI, Address(EBP, kArgumentsOffset)); |
| __ movl(EDI, Address(EDI, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ leal(EDI, FieldAddress(EDI, target::Array::data_offset())); |
| |
| __ Bind(&push_arguments); |
| __ movl(ECX, Address(EDI, EAX, TIMES_4, 0)); |
| __ pushl(ECX); |
| __ incl(EAX); |
| __ cmpl(EAX, EBX); |
| __ j(LESS, &push_arguments, Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| // Call the dart code entrypoint. |
| __ movl(EAX, Address(EBP, kTargetCodeOffset)); |
| __ movl(EAX, Address(EAX, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ call(FieldAddress(EAX, target::Code::entry_point_offset())); |
| |
| // Read the saved number of passed arguments as Smi. |
| __ movl(EDX, Address(EBP, kArgumentsDescOffset)); |
| // Get rid of arguments pushed on the stack. |
| __ leal(ESP, Address(ESP, EDX, TIMES_2, 0)); // EDX is a Smi. |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. |
| __ popl(Address(THR, target::Thread::top_exit_frame_info_offset())); |
| __ popl(Address(THR, target::Thread::exit_through_ffi_offset())); |
| __ popl(Address(THR, target::Thread::top_resource_offset())); |
| |
| // Restore the current VMTag from the stack. |
| __ popl(Assembler::VMTagAddress()); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Restore C++ ABI callee-saved registers. |
| __ popl(EDI); |
| __ popl(ESI); |
| __ popl(EBX); |
| |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ popl(ECX); |
| |
| __ ret(); |
| } |
| |
| // Helper to generate space allocation of context stub. |
| // This does not initialise the fields of the context. |
| // Input: |
| // EDX: number of context variables. |
| // Output: |
| // EAX: new allocated Context object. |
| // Clobbered: |
| // EBX |
| static void GenerateAllocateContextSpaceStub(Assembler* assembler, |
| Label* slow_case) { |
| // First compute the rounded instance size. |
| // EDX: number of context variables. |
| intptr_t fixed_size_plus_alignment_padding = |
| (target::Context::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1); |
| __ leal(EBX, Address(EDX, TIMES_4, fixed_size_plus_alignment_padding)); |
| __ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kContextCid, EAX, slow_case, |
| Assembler::kFarJump)); |
| |
| // Now allocate the object. |
| // EDX: number of context variables. |
| __ movl(EAX, Address(THR, target::Thread::top_offset())); |
| __ addl(EBX, EAX); |
| // Check if the allocation fits into the remaining space. |
| // EAX: potential new object. |
| // EBX: potential next object start. |
| // EDX: number of context variables. |
| __ cmpl(EBX, Address(THR, target::Thread::end_offset())); |
| #if defined(DEBUG) |
| static auto const kJumpLength = Assembler::kFarJump; |
| #else |
| static auto const kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(ABOVE_EQUAL, slow_case, kJumpLength); |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // EAX: new object. |
| // EBX: next object start. |
| // EDX: number of context variables. |
| __ movl(Address(THR, target::Thread::top_offset()), EBX); |
| // EBX: Size of allocation in bytes. |
| __ subl(EBX, EAX); |
| __ addl(EAX, Immediate(kHeapObjectTag)); |
| // Generate isolate-independent code to allow sharing between isolates. |
| |
| // Calculate the size tag. |
| // EAX: new object. |
| // EDX: number of context variables. |
| { |
| Label size_tag_overflow, done; |
| __ leal(EBX, Address(EDX, TIMES_4, fixed_size_plus_alignment_padding)); |
| __ andl(EBX, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| __ cmpl(EBX, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shll(EBX, Immediate(target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done); |
| |
| __ Bind(&size_tag_overflow); |
| // Set overflow size tag value. |
| __ movl(EBX, Immediate(0)); |
| |
| __ Bind(&done); |
| // EAX: new object. |
| // EDX: number of context variables. |
| // EBX: size and bit tags. |
| uword tags = target::MakeTagWordForNewSpaceObject(kContextCid, 0); |
| __ orl(EBX, Immediate(tags)); |
| __ movl(FieldAddress(EAX, target::Object::tags_offset()), EBX); // Tags. |
| } |
| |
| // Setup up number of context variables field. |
| // EAX: new object. |
| // EDX: number of context variables as integer value (not object). |
| __ movl(FieldAddress(EAX, target::Context::num_variables_offset()), EDX); |
| } |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // EDX: number of context variables. |
| // Output: |
| // EAX: new allocated Context object. |
| // Clobbered: |
| // EBX, EDX |
| void StubCodeCompiler::GenerateAllocateContextStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| GenerateAllocateContextSpaceStub(assembler, &slow_case); |
| |
| // Setup the parent field. |
| // EAX: new object. |
| // EDX: number of context variables. |
| // No generational barrier needed, since we are storing null. |
| __ StoreIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, target::Context::parent_offset()), NullObject()); |
| |
| // Initialize the context variables. |
| // EAX: new object. |
| // EDX: number of context variables. |
| { |
| Label loop, entry; |
| __ leal(EBX, FieldAddress(EAX, target::Context::variable_offset(0))); |
| |
| __ jmp(&entry, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ decl(EDX); |
| // No generational barrier needed, since we are storing null. |
| __ StoreIntoObjectNoBarrier(EAX, Address(EBX, EDX, TIMES_4, 0), |
| NullObject()); |
| __ Bind(&entry); |
| __ cmpl(EDX, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // EAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ SmiTag(EDX); |
| __ pushl(EDX); |
| __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
| __ popl(EAX); // Pop number of context variables argument. |
| __ popl(EAX); // Pop the new context object. |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| // EAX: new object |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| |
| __ ret(); |
| } |
| |
| // Called for clone of contexts. |
| // Input: |
| // ECX: context variable. |
| // Output: |
| // EAX: new allocated Context object. |
| // Clobbered: |
| // EBX, ECX, EDX |
| void StubCodeCompiler::GenerateCloneContextStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| // Load num. variable in the existing context. |
| __ movl(EDX, FieldAddress(ECX, target::Context::num_variables_offset())); |
| |
| GenerateAllocateContextSpaceStub(assembler, &slow_case); |
| |
| // Setup the parent field. |
| // EAX: new object. |
| // ECX: old object to clone. |
| __ movl(EBX, FieldAddress(ECX, target::Context::parent_offset())); |
| __ StoreIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, target::Context::parent_offset()), EBX); |
| |
| // Initialize the context variables. |
| // EAX: new context. |
| // ECX: context to clone. |
| // EDX: number of context variables. |
| { |
| Label loop, entry; |
| __ jmp(&entry, Assembler::kNearJump); |
| |
| __ Bind(&loop); |
| __ decl(EDX); |
| |
| __ movl(EBX, FieldAddress(ECX, EDX, TIMES_4, |
| target::Context::variable_offset(0))); |
| __ StoreIntoObjectNoBarrier( |
| EAX, |
| FieldAddress(EAX, EDX, TIMES_4, target::Context::variable_offset(0)), |
| EBX); |
| |
| __ Bind(&entry); |
| __ cmpl(EDX, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // EAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ pushl(ECX); |
| __ CallRuntime(kCloneContextRuntimeEntry, 1); // Allocate context. |
| __ popl(EAX); // Pop number of context variables argument. |
| __ popl(EAX); // Pop the new context object. |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| // EAX: new object |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierWrappersStub(Assembler* assembler) { |
| // Not used on IA32. |
| __ Breakpoint(); |
| } |
| |
| // Helper stub to implement Assembler::StoreIntoObject/Array. |
| // Input parameters: |
| // EDX: Object (old) |
| // EDI: Slot |
| // If EDX is not remembered, mark as remembered and add to the store buffer. |
| COMPILE_ASSERT(kWriteBarrierObjectReg == EDX); |
| COMPILE_ASSERT(kWriteBarrierValueReg == kNoRegister); |
| COMPILE_ASSERT(kWriteBarrierSlotReg == EDI); |
| static void GenerateWriteBarrierStubHelper(Assembler* assembler, |
| Address stub_code, |
| bool cards) { |
| Label remember_card; |
| |
| // Save values being destroyed. |
| __ pushl(EAX); |
| __ pushl(ECX); |
| |
| Label add_to_buffer; |
| // Check whether this object has already been remembered. Skip adding to the |
| // store buffer if the object is in the store buffer already. |
| // Spilled: EAX, ECX |
| // EDX: Address being stored |
| __ movl(EAX, FieldAddress(EDX, target::Object::tags_offset())); |
| __ testl(EAX, |
| Immediate(1 << target::UntaggedObject::kOldAndNotRememberedBit)); |
| __ j(NOT_EQUAL, &add_to_buffer, Assembler::kNearJump); |
| __ popl(ECX); |
| __ popl(EAX); |
| __ ret(); |
| |
| // Update the tags that this object has been remembered. |
| // EDX: Address being stored |
| // EAX: Current tag value |
| __ Bind(&add_to_buffer); |
| |
| if (cards) { |
| // Check if this object is using remembered cards. |
| __ testl(EAX, Immediate(1 << target::UntaggedObject::kCardRememberedBit)); |
| __ j(NOT_EQUAL, &remember_card, Assembler::kFarJump); // Unlikely. |
| } else { |
| #if defined(DEBUG) |
| Label ok; |
| __ testl(EAX, Immediate(1 << target::UntaggedObject::kCardRememberedBit)); |
| __ j(ZERO, &ok, Assembler::kFarJump); // Unlikely. |
| __ Stop("Wrong barrier"); |
| __ Bind(&ok); |
| #endif |
| } |
| |
| // lock+andl is an atomic read-modify-write. |
| __ lock(); |
| __ andl(FieldAddress(EDX, target::Object::tags_offset()), |
| Immediate(~(1 << target::UntaggedObject::kOldAndNotRememberedBit))); |
| |
| // Load the StoreBuffer block out of the thread. Then load top_ out of the |
| // StoreBufferBlock and add the address to the pointers_. |
| // Spilled: EAX, ECX |
| // EDX: Address being stored |
| __ movl(EAX, Address(THR, target::Thread::store_buffer_block_offset())); |
| __ movl(ECX, Address(EAX, target::StoreBufferBlock::top_offset())); |
| __ movl( |
| Address(EAX, ECX, TIMES_4, target::StoreBufferBlock::pointers_offset()), |
| EDX); |
| |
| // Increment top_ and check for overflow. |
| // Spilled: EAX, ECX |
| // ECX: top_ |
| // EAX: StoreBufferBlock |
| Label overflow; |
| __ incl(ECX); |
| __ movl(Address(EAX, target::StoreBufferBlock::top_offset()), ECX); |
| __ cmpl(ECX, Immediate(target::StoreBufferBlock::kSize)); |
| // Restore values. |
| // Spilled: EAX, ECX |
| __ popl(ECX); |
| __ popl(EAX); |
| __ j(EQUAL, &overflow, Assembler::kNearJump); |
| __ ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&overflow); |
| // Setup frame, push callee-saved registers. |
| |
| __ EnterCallRuntimeFrame(1 * target::kWordSize); |
| __ movl(Address(ESP, 0), THR); // Push the thread as the only argument. |
| __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1); |
| // Restore callee-saved registers, tear down frame. |
| __ LeaveCallRuntimeFrame(); |
| __ ret(); |
| |
| if (cards) { |
| Label remember_card_slow; |
| |
| // Get card table. |
| __ Bind(&remember_card); |
| __ movl(EAX, EDX); // Object. |
| __ andl(EAX, Immediate(target::kOldPageMask)); // OldPage. |
| __ cmpl(Address(EAX, target::OldPage::card_table_offset()), Immediate(0)); |
| __ j(EQUAL, &remember_card_slow, Assembler::kNearJump); |
| |
| // Dirty the card. |
| __ subl(EDI, EAX); // Offset in page. |
| __ movl(EAX, |
| Address(EAX, target::OldPage::card_table_offset())); // Card table. |
| __ shrl( |
| EDI, |
| Immediate(target::OldPage::kBytesPerCardLog2)); // Index in card table. |
| __ movb(Address(EAX, EDI, TIMES_1, 0), Immediate(1)); |
| __ popl(ECX); |
| __ popl(EAX); |
| __ ret(); |
| |
| // Card table not yet allocated. |
| __ Bind(&remember_card_slow); |
| __ EnterCallRuntimeFrame(2 * target::kWordSize); |
| __ movl(Address(ESP, 0 * target::kWordSize), EDX); // Object |
| __ movl(Address(ESP, 1 * target::kWordSize), EDI); // Slot |
| __ CallRuntime(kRememberCardRuntimeEntry, 2); |
| __ LeaveCallRuntimeFrame(); |
| __ popl(ECX); |
| __ popl(EAX); |
| __ ret(); |
| } |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierStub(Assembler* assembler) { |
| GenerateWriteBarrierStubHelper( |
| assembler, Address(THR, target::Thread::write_barrier_code_offset()), |
| false); |
| } |
| |
| void StubCodeCompiler::GenerateArrayWriteBarrierStub(Assembler* assembler) { |
| GenerateWriteBarrierStubHelper( |
| assembler, |
| Address(THR, target::Thread::array_write_barrier_code_offset()), true); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectStub(Assembler* assembler) { |
| __ int3(); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectParameterizedStub( |
| Assembler* assembler) { |
| __ int3(); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectSlowStub(Assembler* assembler) { |
| __ int3(); |
| } |
| |
| // Called for inline allocation of objects. |
| // Input parameters: |
| // ESP : points to return address. |
| // AllocateObjectABI::kTypeArgumentsPos : type arguments object |
| // (only if class is parameterized). |
| // Uses AllocateObjectABI::kResultReg, EBX, ECX, EDI as temporary registers. |
| // Returns patch_code_pc offset where patching code for disabling the stub |
| // has been generated (similar to regularly generated Dart code). |
| void StubCodeCompiler::GenerateAllocationStubForClass( |
| Assembler* assembler, |
| UnresolvedPcRelativeCalls* unresolved_calls, |
| const Class& cls, |
| const Code& allocate_object, |
| const Code& allocat_object_parametrized) { |
| const Immediate& raw_null = Immediate(target::ToRawPointer(NullObject())); |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0; |
| ASSERT(!is_cls_parameterized || target::Class::TypeArgumentsFieldOffset( |
| cls) != target::Class::kNoTypeArguments); |
| // kInlineInstanceSize is a constant used as a threshold for determining |
| // when the object initialization should be done as a loop or as |
| // straight line code. |
| const int kInlineInstanceSize = 12; // In words. |
| const intptr_t instance_size = target::Class::GetInstanceSize(cls); |
| ASSERT(instance_size > 0); |
| |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| if (!FLAG_use_slow_path && FLAG_inline_alloc && |
| target::Heap::IsAllocatableInNewSpace(instance_size) && |
| !target::Class::TraceAllocation(cls)) { |
| Label slow_case; |
| // Allocate the object and update top to point to |
| // next object start and initialize the allocated object. |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| __ movl(AllocateObjectABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| __ leal(EBX, Address(AllocateObjectABI::kResultReg, instance_size)); |
| // Check if the allocation fits into the remaining space. |
| // AllocateObjectABI::kResultReg: potential new object start. |
| // EBX: potential next object start. |
| __ cmpl(EBX, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, &slow_case); |
| __ movl(Address(THR, target::Thread::top_offset()), EBX); |
| |
| // AllocateObjectABI::kResultReg: new object start (untagged). |
| // EBX: next object start. |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| // Set the tags. |
| ASSERT(target::Class::GetId(cls) != kIllegalCid); |
| uword tags = target::MakeTagWordForNewSpaceObject(target::Class::GetId(cls), |
| instance_size); |
| __ movl( |
| Address(AllocateObjectABI::kResultReg, target::Object::tags_offset()), |
| Immediate(tags)); |
| __ addl(AllocateObjectABI::kResultReg, Immediate(kHeapObjectTag)); |
| |
| // Initialize the remaining words of the object. |
| |
| // AllocateObjectABI::kResultReg: new object (tagged). |
| // EBX: next object start. |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| // First try inlining the initialization without a loop. |
| if (instance_size < (kInlineInstanceSize * target::kWordSize)) { |
| // Check if the object contains any non-header fields. |
| // Small objects are initialized using a consecutive set of writes. |
| for (intptr_t current_offset = target::Instance::first_field_offset(); |
| current_offset < instance_size; |
| current_offset += target::kWordSize) { |
| __ StoreIntoObjectNoBarrier( |
| AllocateObjectABI::kResultReg, |
| FieldAddress(AllocateObjectABI::kResultReg, current_offset), |
| NullObject()); |
| } |
| } else { |
| __ leal(ECX, FieldAddress(AllocateObjectABI::kResultReg, |
| target::Instance::first_field_offset())); |
| // Loop until the whole object is initialized. |
| // AllocateObjectABI::kResultReg: new object (tagged). |
| // EBX: next object start. |
| // ECX: next word to be initialized. |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments |
| // (if is_cls_parameterized). |
| Label init_loop; |
| Label done; |
| __ Bind(&init_loop); |
| __ cmpl(ECX, EBX); |
| __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); |
| __ StoreIntoObjectNoBarrier(AllocateObjectABI::kResultReg, |
| Address(ECX, 0), NullObject()); |
| __ addl(ECX, Immediate(target::kWordSize)); |
| __ jmp(&init_loop, Assembler::kNearJump); |
| __ Bind(&done); |
| } |
| if (is_cls_parameterized) { |
| // AllocateObjectABI::kResultReg: new object (tagged). |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments. |
| // Set the type arguments in the new object. |
| const intptr_t offset = target::Class::TypeArgumentsFieldOffset(cls); |
| __ StoreIntoObjectNoBarrier( |
| AllocateObjectABI::kResultReg, |
| FieldAddress(AllocateObjectABI::kResultReg, offset), |
| AllocateObjectABI::kTypeArgumentsReg); |
| } |
| // Done allocating and initializing the instance. |
| // AllocateObjectABI::kResultReg: new object (tagged). |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // If is_cls_parameterized: |
| // AllocateObjectABI::kTypeArgumentsReg: new object type arguments. |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(raw_null); // Setup space on stack for return value. |
| __ PushObject( |
| CastHandle<Object>(cls)); // Push class of object to be allocated. |
| if (is_cls_parameterized) { |
| // Push type arguments of object to be allocated. |
| __ pushl(AllocateObjectABI::kTypeArgumentsReg); |
| } else { |
| __ pushl(raw_null); // Push null type arguments. |
| } |
| __ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object. |
| __ popl(AllocateObjectABI::kResultReg); // Drop type arguments. |
| __ popl(AllocateObjectABI::kResultReg); // Drop class. |
| __ popl(AllocateObjectABI::kResultReg); // Pop allocated object. |
| |
| if (AllocateObjectInstr::WillAllocateNewOrRemembered(cls)) { |
| // Write-barrier elimination is enabled for [cls] and we therefore need to |
| // ensure that the object is in new-space or has remembered bit set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| } |
| |
| // AllocateObjectABI::kResultReg: new object |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
| // from the entry code of a dart function after an error in passed argument |
| // name or number is detected. |
| // Input parameters: |
| // ESP : points to return address. |
| // ESP + 4 : address of last argument. |
| // EDX : arguments descriptor array. |
| // Uses EAX, EBX, EDI as temporary registers. |
| void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub( |
| Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ movl(EDI, FieldAddress(EDX, target::ArgumentsDescriptor::size_offset())); |
| __ movl(EAX, |
| Address(EBP, EDI, TIMES_2, |
| target::frame_layout.param_end_from_fp * target::kWordSize)); |
| |
| // Load the function. |
| __ movl(EBX, FieldAddress(EAX, target::Closure::function_offset())); |
| |
| __ pushl(Immediate(0)); // Setup space on stack for result from noSuchMethod. |
| __ pushl(EAX); // Receiver. |
| __ pushl(EBX); // Function. |
| __ pushl(EDX); // Arguments descriptor array. |
| |
| // Adjust arguments count. |
| __ cmpl( |
| FieldAddress(EDX, target::ArgumentsDescriptor::type_args_len_offset()), |
| Immediate(0)); |
| __ movl(EDX, EDI); |
| Label args_count_ok; |
| __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
| __ addl(EDX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
| __ Bind(&args_count_ok); |
| |
| // EDX: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs); |
| // noSuchMethod on closures always throws an error, so it will never return. |
| __ int3(); |
| } |
| |
| // Cannot use function object from ICData as it may be the inlined |
| // function and not the top-scope function. |
| void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement( |
| Assembler* assembler) { |
| Register ic_reg = ECX; |
| Register func_reg = EAX; |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ pushl(func_reg); // Preserve |
| __ pushl(ic_reg); // Preserve. |
| __ pushl(ic_reg); // Argument. |
| __ pushl(func_reg); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry, 2); |
| __ popl(EAX); // Discard argument; |
| __ popl(EAX); // Discard argument; |
| __ popl(ic_reg); // Restore. |
| __ popl(func_reg); // Restore. |
| __ LeaveFrame(); |
| } |
| __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| |
| // Loads function into 'temp_reg'. |
| void StubCodeCompiler::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register temp_reg) { |
| if (FLAG_optimization_counter_threshold >= 0) { |
| Register ic_reg = ECX; |
| Register func_reg = temp_reg; |
| ASSERT(ic_reg != func_reg); |
| __ Comment("Increment function counter"); |
| __ movl(func_reg, FieldAddress(ic_reg, target::ICData::owner_offset())); |
| __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| } |
| |
| // Note: ECX must be preserved. |
| // Attempt a quick Smi operation for known operations ('kind'). The ICData |
| // must have been primed with a Smi/Smi check that will be used for counting |
| // the invocations. |
| static void EmitFastSmiOp(Assembler* assembler, |
| Token::Kind kind, |
| intptr_t num_args, |
| Label* not_smi_or_overflow) { |
| __ Comment("Fast Smi op"); |
| ASSERT(num_args == 2); |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); // Left |
| __ movl(EDI, Address(ESP, +1 * target::kWordSize)); // Right |
| __ movl(EBX, EDI); |
| __ orl(EBX, EAX); |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi_or_overflow, Assembler::kNearJump); |
| switch (kind) { |
| case Token::kADD: { |
| __ addl(EAX, EDI); |
| __ j(OVERFLOW, not_smi_or_overflow, Assembler::kNearJump); |
| break; |
| } |
| case Token::kLT: { |
| Label done, is_true; |
| __ cmpl(EAX, EDI); |
| __ setcc(GREATER_EQUAL, AL); |
| __ movzxb(EAX, AL); // EAX := EAX < EDI ? 0 : 1 |
| __ movl(EAX, |
| Address(THR, EAX, TIMES_4, target::Thread::bool_true_offset())); |
| ASSERT(target::Thread::bool_true_offset() + 4 == |
| target::Thread::bool_false_offset()); |
| break; |
| } |
| case Token::kEQ: { |
| Label done, is_true; |
| __ cmpl(EAX, EDI); |
| __ setcc(NOT_EQUAL, AL); |
| __ movzxb(EAX, AL); // EAX := EAX == EDI ? 0 : 1 |
| __ movl(EAX, |
| Address(THR, EAX, TIMES_4, target::Thread::bool_true_offset())); |
| ASSERT(target::Thread::bool_true_offset() + 4 == |
| target::Thread::bool_false_offset()); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| |
| // ECX: IC data object. |
| __ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset())); |
| // EBX: ic_data_array with check entries: classes and target functions. |
| __ leal(EBX, FieldAddress(EBX, target::Array::data_offset())); |
| #if defined(DEBUG) |
| // Check that first entry is for Smi/Smi. |
| Label error, ok; |
| const Immediate& imm_smi_cid = Immediate(target::ToRawSmi(kSmiCid)); |
| __ cmpl(Address(EBX, 0 * target::kWordSize), imm_smi_cid); |
| __ j(NOT_EQUAL, &error, Assembler::kNearJump); |
| __ cmpl(Address(EBX, 1 * target::kWordSize), imm_smi_cid); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Bind(&error); |
| __ Stop("Incorrect IC data"); |
| __ Bind(&ok); |
| #endif |
| if (FLAG_optimization_counter_threshold >= 0) { |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kWordSize; |
| // Update counter, ignore overflow. |
| __ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| __ ret(); |
| } |
| |
| // Generate inline cache check for 'num_args'. |
| // EBX: receiver (if instance call) |
| // ECX: ICData |
| // ESP[0]: return address |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub( |
| Assembler* assembler, |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| Optimized optimized, |
| CallType type, |
| Exactness exactness) { |
| GenerateNArgsCheckInlineCacheStubForEntryKind( |
| assembler, num_args, handle_ic_miss, kind, optimized, type, exactness, |
| CodeEntryKind::kNormal); |
| __ BindUncheckedEntryPoint(); |
| GenerateNArgsCheckInlineCacheStubForEntryKind( |
| assembler, num_args, handle_ic_miss, kind, optimized, type, exactness, |
| CodeEntryKind::kUnchecked); |
| } |
| |
| void StubCodeCompiler::GenerateNArgsCheckInlineCacheStubForEntryKind( |
| Assembler* assembler, |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| Optimized optimized, |
| CallType type, |
| Exactness exactness, |
| CodeEntryKind entry_kind) { |
| if (optimized == kOptimized) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| } else { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ EAX); |
| } |
| |
| ASSERT(exactness == kIgnoreExactness); // Unimplemented. |
| ASSERT(num_args == 1 || num_args == 2); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(EAX, FieldAddress(ECX, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andl(EAX, Immediate(target::ICData::NumArgsTestedMask())); |
| __ cmpl(EAX, Immediate(num_args)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| Label stepping, done_stepping; |
| if (optimized == kUnoptimized) { |
| __ Comment("Check single stepping"); |
| __ LoadIsolate(EAX); |
| __ cmpb(Address(EAX, target::Isolate::single_step_offset()), Immediate(0)); |
| __ j(NOT_EQUAL, &stepping); |
| __ Bind(&done_stepping); |
| } |
| #endif |
| Label not_smi_or_overflow; |
| if (kind != Token::kILLEGAL) { |
| EmitFastSmiOp(assembler, kind, num_args, ¬_smi_or_overflow); |
| } |
| __ Bind(¬_smi_or_overflow); |
| |
| __ Comment("Extract ICData initial values and receiver cid"); |
| // ECX: IC data object (preserved). |
| // Load arguments descriptor into EDX. |
| __ movl(EDX, FieldAddress( |
| ECX, target::CallSiteData::arguments_descriptor_offset())); |
| // Loop that checks if there is an IC data match. |
| Label loop, found, miss; |
| // ECX: IC data object (preserved). |
| __ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset())); |
| // EBX: ic_data_array with check entries: classes and target functions. |
| __ leal(EBX, FieldAddress(EBX, target::Array::data_offset())); |
| // EBX: points directly to the first ic data array element. |
| |
| // Get argument descriptor into EAX. In the 1-argument case this is the |
| // last time we need the argument descriptor, and we reuse EAX for the |
| // class IDs from the IC descriptor. In the 2-argument case we preserve |
| // the argument descriptor in EAX. |
| __ movl(EAX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset())); |
| if (num_args == 1) { |
| // Load receiver into EDI. |
| __ movl(EDI, |
| Address(ESP, EAX, TIMES_2, 0)); // EAX (argument count) is Smi. |
| __ LoadTaggedClassIdMayBeSmi(EAX, EDI); |
| // EAX: receiver class ID as Smi. |
| } |
| |
| __ Comment("ICData loop"); |
| |
| // We unroll the generic one that is generated once more than the others. |
| bool optimize = kind == Token::kILLEGAL; |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(num_args) * target::kWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kWordSize; |
| const intptr_t entry_size = target::ICData::TestEntryLengthFor( |
| num_args, exactness == kCheckExactness) * |
| target::kWordSize; |
| |
| __ Bind(&loop); |
| for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) { |
| Label update; |
| if (num_args == 1) { |
| __ movl(EDI, Address(EBX, 0)); |
| __ cmpl(EDI, EAX); // Class id match? |
| __ j(EQUAL, &found); // Break. |
| __ addl(EBX, Immediate(entry_size)); // Next entry. |
| __ cmpl(EDI, Immediate(target::ToRawSmi(kIllegalCid))); // Done? |
| } else { |
| ASSERT(num_args == 2); |
| // Load receiver into EDI. |
| __ movl(EDI, Address(ESP, EAX, TIMES_2, 0)); |
| __ LoadTaggedClassIdMayBeSmi(EDI, EDI); |
| __ cmpl(EDI, Address(EBX, 0)); // Class id match? |
| __ j(NOT_EQUAL, &update); // Continue. |
| |
| // Load second argument into EDI. |
| __ movl(EDI, Address(ESP, EAX, TIMES_2, -target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(EDI, EDI); |
| __ cmpl(EDI, Address(EBX, target::kWordSize)); // Class id match? |
| __ j(EQUAL, &found); // Break. |
| |
| __ Bind(&update); |
| __ addl(EBX, Immediate(entry_size)); // Next entry. |
| __ cmpl(Address(EBX, -entry_size), |
| Immediate(target::ToRawSmi(kIllegalCid))); // Done? |
| } |
| |
| if (unroll == 0) { |
| __ j(NOT_EQUAL, &loop); |
| } else { |
| __ j(EQUAL, &miss); |
| } |
| } |
| |
| __ Bind(&miss); |
| __ Comment("IC miss"); |
| // Compute address of arguments (first read number of arguments from |
| // arguments descriptor array and then compute address on the stack). |
| __ movl(EAX, FieldAddress(EDX, target::ArgumentsDescriptor::count_offset())); |
| __ leal(EAX, Address(ESP, EAX, TIMES_2, 0)); // EAX is Smi. |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushl(EDX); // Preserve arguments descriptor array. |
| __ pushl(ECX); // Preserve IC data object. |
| __ pushl(Immediate(0)); // Result slot. |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ movl(EBX, Address(EAX, -target::kWordSize * i)); |
| __ pushl(EBX); |
| } |
| __ pushl(ECX); // Pass IC data object. |
| __ CallRuntime(handle_ic_miss, num_args + 1); |
| // Remove the call arguments pushed earlier, including the IC data object. |
| for (intptr_t i = 0; i < num_args + 1; i++) { |
| __ popl(EAX); |
| } |
| __ popl(EAX); // Pop returned function object into EAX. |
| __ popl(ECX); // Restore IC data array. |
| __ popl(EDX); // Restore arguments descriptor array. |
| __ LeaveFrame(); |
| Label call_target_function; |
| if (!FLAG_lazy_dispatchers) { |
| GenerateDispatcherCode(assembler, &call_target_function); |
| } else { |
| __ jmp(&call_target_function); |
| } |
| |
| __ Bind(&found); |
| |
| // EBX: Pointer to an IC data check group. |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Update caller's counter"); |
| // Ignore overflow. |
| __ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| __ movl(EAX, Address(EBX, target_offset)); |
| __ Bind(&call_target_function); |
| __ Comment("Call target"); |
| // EAX: Target function. |
| __ jmp(FieldAddress(EAX, target::Function::entry_point_offset(entry_kind))); |
| |
| #if !defined(PRODUCT) |
| if (optimized == kUnoptimized) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ pushl(EBX); // Preserve receiver. |
| __ pushl(ECX); // Preserve ICData. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popl(ECX); // Restore ICData. |
| __ popl(EBX); // Restore receiver. |
| __ LeaveFrame(); |
| __ jmp(&done_stepping); |
| } |
| #endif |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub( |
| Assembler* assembler) { |
| __ Stop("Unimplemented"); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateMintSharedWithFPURegsStub( |
| Assembler* assembler) { |
| __ Stop("Unimplemented"); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateMintSharedWithoutFPURegsStub( |
| Assembler* assembler) { |
| __ Stop("Unimplemented"); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateSmiAddInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateSmiLessInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateSmiEqualInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // EAX: Function |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // EAX: Function |
| // ESP[0]: return address |
| void StubCodeCompiler:: |
| GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub( |
| Assembler* assembler) { |
| __ Stop("Unimplemented"); |
| } |
| |
| // EBX: receiver |
| // ECX: ICData |
| // EAX: Function |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // ECX: ICData |
| // ESP[0]: return address |
| static void GenerateZeroArgsUnoptimizedStaticCallForEntryKind( |
| Assembler* assembler, |
| CodeEntryKind entry_kind) { |
| StubCodeCompiler::GenerateUsageCounterIncrement(assembler, /* scratch */ EAX); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(EBX, FieldAddress(ECX, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andl(EBX, Immediate(target::ICData::NumArgsTestedMask())); |
| __ cmpl(EBX, Immediate(0)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect IC data for unoptimized static call"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(EAX); |
| __ cmpb(Address(EAX, target::Isolate::single_step_offset()), Immediate(0)); |
| __ j(NOT_EQUAL, &stepping, Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| #endif |
| |
| // ECX: IC data object (preserved). |
| __ movl(EBX, FieldAddress(ECX, target::ICData::entries_offset())); |
| // EBX: ic_data_array with entries: target functions and count. |
| __ leal(EBX, FieldAddress(EBX, target::Array::data_offset())); |
| // EBX: points directly to the first ic data array element. |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(0) * target::kWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(0) * target::kWordSize; |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Increment count for this call, ignore overflow. |
| __ addl(Address(EBX, count_offset), Immediate(target::ToRawSmi(1))); |
| } |
| |
| // Load arguments descriptor into EDX. |
| __ movl(EDX, FieldAddress( |
| ECX, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Get function and call it, if possible. |
| __ movl(EAX, Address(EBX, target_offset)); |
| __ jmp(FieldAddress(EAX, target::Function::entry_point_offset(entry_kind))); |
| |
| #if !defined(PRODUCT) |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ pushl(ECX); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popl(ECX); |
| __ LeaveFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| #endif |
| } |
| |
| void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateZeroArgsUnoptimizedStaticCallForEntryKind(assembler, |
| CodeEntryKind::kNormal); |
| __ BindUncheckedEntryPoint(); |
| GenerateZeroArgsUnoptimizedStaticCallForEntryKind(assembler, |
| CodeEntryKind::kUnchecked); |
| } |
| |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // ECX: ICData |
| // ESP[0]: return address |
| void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // Stub for compiling a function and jumping to the compiled code. |
| // EDX: Arguments descriptor. |
| // EAX: Function. |
| void StubCodeCompiler::GenerateLazyCompileStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushl(EDX); // Preserve arguments descriptor array. |
| __ pushl(EAX); // Pass function. |
| __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
| __ popl(EAX); // Restore function. |
| __ popl(EDX); // Restore arguments descriptor array. |
| __ LeaveFrame(); |
| |
| __ jmp(FieldAddress(EAX, target::Function::entry_point_offset())); |
| } |
| |
| // ECX: Contains an ICData. |
| void StubCodeCompiler::GenerateICCallBreakpointStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushl(EBX); // Preserve receiver. |
| __ pushl(ECX); // Preserve ICData. |
| __ pushl(Immediate(0)); // Room for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popl(EAX); // Code of original stub. |
| __ popl(ECX); // Restore ICData. |
| __ popl(EBX); // Restore receiver. |
| __ LeaveFrame(); |
| // Jump to original stub. |
| __ jmp(FieldAddress(EAX, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateUnoptStaticCallBreakpointStub( |
| Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ pushl(ECX); // Preserve ICData. |
| __ pushl(Immediate(0)); // Room for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popl(EAX); // Code of original stub. |
| __ popl(ECX); // Restore ICData. |
| __ LeaveFrame(); |
| // Jump to original stub. |
| __ jmp(FieldAddress(EAX, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateRuntimeCallBreakpointStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| // Room for result. Debugger stub returns address of the |
| // unpatched runtime stub. |
| __ pushl(Immediate(0)); // Room for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popl(EAX); // Code of the original stub |
| __ LeaveFrame(); |
| // Jump to original stub. |
| __ jmp(FieldAddress(EAX, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Called only from unoptimized code. |
| void StubCodeCompiler::GenerateDebugStepCheckStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(EAX); |
| __ movzxb(EAX, Address(EAX, target::Isolate::single_step_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(NOT_EQUAL, &stepping, Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| __ ret(); |
| |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ LeaveFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: function type arguments (only if n == 4, can be raw_null). |
| // TOS + 2: instantiator type arguments (only if n == 4, can be raw_null). |
| // TOS + 3: destination_type (only used if n >= 3). |
| // TOS + 4: instance. |
| // TOS + 5: SubtypeTestCache. |
| // |
| // No registers are preserved by this stub. |
| // |
| // Result in SubtypeTestCacheReg::kResultReg: null -> not found, otherwise |
| // result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| ASSERT(n == 1 || n == 3 || n == 5 || n == 7); |
| |
| // We represent the depth of as a depth from the top of the stack at the |
| // start of the stub. That is, depths for input values are non-negative and |
| // depths for values pushed during the stub are negative. |
| |
| // Used to initialize depths for conditionally-pushed values. |
| const intptr_t kNoDepth = kIntptrMin; |
| // Offset of the original top of the stack from the current top of stack. |
| intptr_t original_tos_offset = 0; |
| |
| // Inputs use relative depths. |
| static constexpr intptr_t kFunctionTypeArgumentsDepth = 1; |
| static constexpr intptr_t kInstantiatorTypeArgumentsDepth = 2; |
| static constexpr intptr_t kDestinationTypeDepth = 3; |
| static constexpr intptr_t kInstanceDepth = 4; |
| static constexpr intptr_t kCacheDepth = 5; |
| // Others use absolute depths. We initialize conditionally pushed values to |
| // kNoInput for extra checking. |
| intptr_t kInstanceParentFunctionTypeArgumentsDepth = kNoDepth; |
| intptr_t kInstanceDelayedFunctionTypeArgumentsDepth = kNoDepth; |
| |
| // Other values are stored in non-kInstanceReg registers from TypeTestABI. |
| const Register kCacheArrayReg = TypeTestABI::kInstantiatorTypeArgumentsReg; |
| const Register kScratchReg = TypeTestABI::kSubtypeTestCacheReg; |
| const Register kInstanceCidOrSignature = |
| TypeTestABI::kFunctionTypeArgumentsReg; |
| const Register kInstanceInstantiatorTypeArgumentsReg = |
| TypeTestABI::kDstTypeReg; |
| |
| // Loads a value at the given depth from the stack into dst. |
| auto load_from_stack = [&](Register dst, intptr_t depth) { |
| ASSERT(depth != kNoDepth); |
| __ LoadFromStack(dst, original_tos_offset + depth); |
| }; |
| |
| // Compares a value at the given depth from the stack to the value in src. |
| auto compare_to_stack = [&](Register src, intptr_t depth) { |
| ASSERT(depth != kNoDepth); |
| __ CompareToStack(src, original_tos_offset + depth); |
| }; |
| |
| const auto& raw_null = Immediate(target::ToRawPointer(NullObject())); |
| |
| load_from_stack(TypeTestABI::kInstanceReg, kInstanceDepth); |
| |
| // Loop initialization (moved up here to avoid having all dependent loads |
| // after each other) |
| load_from_stack(kCacheArrayReg, kCacheDepth); |
| // We avoid a load-acquire barrier here by relying on the fact that all other |
| // loads from the array are data-dependent loads. |
| __ movl( |
| kCacheArrayReg, |
| FieldAddress(kCacheArrayReg, target::SubtypeTestCache::cache_offset())); |
| __ addl(kCacheArrayReg, |
| Immediate(target::Array::data_offset() - kHeapObjectTag)); |
| |
| Label loop, not_closure; |
| if (n >= 5) { |
| __ LoadClassIdMayBeSmi(kInstanceCidOrSignature, TypeTestABI::kInstanceReg); |
| } else { |
| __ LoadClassId(kInstanceCidOrSignature, TypeTestABI::kInstanceReg); |
| } |
| __ cmpl(kInstanceCidOrSignature, Immediate(kClosureCid)); |
| __ j(NOT_EQUAL, ¬_closure, Assembler::kNearJump); |
| |
| // Closure handling. |
| { |
| __ movl(kInstanceCidOrSignature, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::function_offset())); |
| __ movl(kInstanceCidOrSignature, |
| FieldAddress(kInstanceCidOrSignature, |
| target::Function::signature_offset())); |
| if (n >= 3) { |
| __ movl( |
| kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::instantiator_type_arguments_offset())); |
| if (n >= 7) { |
| __ pushl( |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::delayed_type_arguments_offset())); |
| __ pushl( |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::function_type_arguments_offset())); |
| } |
| } |
| __ jmp(&loop, Assembler::kNearJump); |
| } |
| |
| // Non-Closure handling. |
| { |
| __ Bind(¬_closure); |
| if (n >= 3) { |
| Label has_no_type_arguments; |
| __ LoadClassById(kScratchReg, kInstanceCidOrSignature); |
| __ movl(kInstanceInstantiatorTypeArgumentsReg, raw_null); |
| __ movl( |
| kScratchReg, |
| FieldAddress(kScratchReg, |
| target::Class:: |
| host_type_arguments_field_offset_in_words_offset())); |
| __ cmpl(kScratchReg, Immediate(target::Class::kNoTypeArguments)); |
| __ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump); |
| __ movl(kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, kScratchReg, TIMES_4, 0)); |
| __ Bind(&has_no_type_arguments); |
| |
| if (n >= 7) { |
| __ pushl(raw_null); // delayed. |
| __ pushl(raw_null); // function. |
| } |
| } |
| __ SmiTag(kInstanceCidOrSignature); |
| } |
| |
| if (n >= 7) { |
| // Now that instance handling is done, both the delayed and parent function |
| // type arguments stack slots have been set, so any input uses must be |
| // offset by the new values and the new values can now be accessed in |
| // the following code without issue when n >= 6. |
| original_tos_offset = 2; |
| kInstanceDelayedFunctionTypeArgumentsDepth = -1; |
| kInstanceParentFunctionTypeArgumentsDepth = -2; |
| } |
| |
| Label done, next_iteration; |
| |
| // Loop header. |
| __ Bind(&loop); |
| __ movl(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstanceCidOrSignature)); |
| __ cmpl(kScratchReg, raw_null); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| __ cmpl(kScratchReg, kInstanceCidOrSignature); |
| if (n == 1) { |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| } else { |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ movl(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kDestinationType)); |
| compare_to_stack(kScratchReg, kDestinationTypeDepth); |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ cmpl(kInstanceInstantiatorTypeArgumentsReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstanceTypeArguments)); |
| if (n == 3) { |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| } else { |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ movl( |
| kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstantiatorTypeArguments)); |
| compare_to_stack(kScratchReg, kInstantiatorTypeArgumentsDepth); |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ movl(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kFunctionTypeArguments)); |
| compare_to_stack(kScratchReg, kFunctionTypeArgumentsDepth); |
| if (n == 5) { |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| } else { |
| ASSERT(n == 7); |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| |
| __ movl(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache:: |
| kInstanceParentFunctionTypeArguments)); |
| compare_to_stack(kScratchReg, |
| kInstanceParentFunctionTypeArgumentsDepth); |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ movl(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache:: |
| kInstanceDelayedFunctionTypeArguments)); |
| compare_to_stack(kScratchReg, |
| kInstanceDelayedFunctionTypeArgumentsDepth); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| } |
| } |
| } |
| __ Bind(&next_iteration); |
| __ addl(kCacheArrayReg, |
| Immediate(target::kWordSize * |
| target::SubtypeTestCache::kTestEntryLength)); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // In the not found case, the test result slot is null, so we can |
| // unconditionally load from the cache entry. |
| __ movl(TypeTestABI::kSubtypeTestCacheResultReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * target::SubtypeTestCache::kTestResult)); |
| if (n >= 7) { |
| __ Drop(2); |
| original_tos_offset = 0; // In case we add any input uses after this point. |
| } |
| __ ret(); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype3TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 3); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype5TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 5); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype7TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 7); |
| } |
| |
| // Return the current stack pointer address, used to do stack alignment checks. |
| // TOS + 0: return address |
| // Result in EAX. |
| void StubCodeCompiler::GenerateGetCStackPointerStub(Assembler* assembler) { |
| __ leal(EAX, Address(ESP, target::kWordSize)); |
| __ ret(); |
| } |
| |
| // Jump to a frame on the call stack. |
| // TOS + 0: return address |
| // TOS + 1: program_counter |
| // TOS + 2: stack_pointer |
| // TOS + 3: frame_pointer |
| // TOS + 4: thread |
| // No Result. |
| void StubCodeCompiler::GenerateJumpToFrameStub(Assembler* assembler) { |
| __ movl(THR, Address(ESP, 4 * target::kWordSize)); // Load target thread. |
| __ movl(EBP, |
| Address(ESP, 3 * target::kWordSize)); // Load target frame_pointer. |
| __ movl(EBX, |
| Address(ESP, 1 * target::kWordSize)); // Load target PC into EBX. |
| __ movl(ESP, |
| Address(ESP, 2 * target::kWordSize)); // Load target stack_pointer. |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| Label exit_through_non_ffi; |
| // Check if we exited generated from FFI. If so do transition. |
| __ cmpl(compiler::Address( |
| THR, compiler::target::Thread::exit_through_ffi_offset()), |
| compiler::Immediate(target::Thread::exit_through_ffi())); |
| __ j(NOT_EQUAL, &exit_through_non_ffi, compiler::Assembler::kNearJump); |
| __ TransitionNativeToGenerated(ECX, /*leave_safepoint=*/true); |
| __ Bind(&exit_through_non_ffi); |
| |
| // Set tag. |
| __ movl(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| // Clear top exit frame. |
| __ movl(Address(THR, target::Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| __ jmp(EBX); // Jump to the exception handler code. |
| } |
| |
| // Run an exception handler. Execution comes from JumpToFrame stub. |
| // |
| // The arguments are stored in the Thread object. |
| // No result. |
| void StubCodeCompiler::GenerateRunExceptionHandlerStub(Assembler* assembler) { |
| ASSERT(kExceptionObjectReg == EAX); |
| ASSERT(kStackTraceObjectReg == EDX); |
| __ movl(EBX, Address(THR, target::Thread::resume_pc_offset())); |
| |
| ASSERT(target::CanLoadFromThread(NullObject())); |
| __ movl(ECX, Address(THR, target::Thread::OffsetFromThread(NullObject()))); |
| |
| // Load the exception from the current thread. |
| Address exception_addr(THR, target::Thread::active_exception_offset()); |
| __ movl(kExceptionObjectReg, exception_addr); |
| __ movl(exception_addr, ECX); |
| |
| // Load the stacktrace from the current thread. |
| Address stacktrace_addr(THR, target::Thread::active_stacktrace_offset()); |
| __ movl(kStackTraceObjectReg, stacktrace_addr); |
| __ movl(stacktrace_addr, ECX); |
| |
| __ jmp(EBX); // Jump to continuation point. |
| } |
| |
| // Deoptimize a frame on the call stack before rewinding. |
| // The arguments are stored in the Thread object. |
| // No result. |
| void StubCodeCompiler::GenerateDeoptForRewindStub(Assembler* assembler) { |
| // Push the deopt pc. |
| __ pushl(Address(THR, target::Thread::resume_pc_offset())); |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| |
| // After we have deoptimized, jump to the correct frame. |
| __ EnterStubFrame(); |
| __ CallRuntime(kRewindPostDeoptRuntimeEntry, 0); |
| __ LeaveFrame(); |
| __ int3(); |
| } |
| |
| // Calls to the runtime to optimize the given function. |
| // EBX: function to be reoptimized. |
| // EDX: argument descriptor (preserved). |
| void StubCodeCompiler::GenerateOptimizeFunctionStub(Assembler* assembler) { |
| __ movl(CODE_REG, Address(THR, target::Thread::optimize_stub_offset())); |
| __ EnterStubFrame(); |
| __ pushl(EDX); |
| __ pushl(Immediate(0)); // Setup space on stack for return value. |
| __ pushl(EBX); |
| __ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry, 1); |
| __ popl(EAX); // Discard argument. |
| __ popl(EAX); // Get Function object |
| __ popl(EDX); // Restore argument descriptor. |
| __ LeaveFrame(); |
| __ movl(CODE_REG, FieldAddress(EAX, target::Function::code_offset())); |
| __ jmp(FieldAddress(EAX, target::Function::entry_point_offset())); |
| __ int3(); |
| } |
| |
| // Does identical check (object references are equal or not equal) with special |
| // checks for boxed numbers. |
| // Return ZF set. |
| // Note: A Mint cannot contain a value that would fit in Smi. |
| static void GenerateIdenticalWithNumberCheckStub(Assembler* assembler, |
| const Register left, |
| const Register right, |
| const Register temp) { |
| Label reference_compare, done, check_mint; |
| // If any of the arguments is Smi do reference compare. |
| __ testl(left, Immediate(kSmiTagMask)); |
| __ j(ZERO, &reference_compare, Assembler::kNearJump); |
| __ testl(right, Immediate(kSmiTagMask)); |
| __ j(ZERO, &reference_compare, Assembler::kNearJump); |
| |
| // Value compare for two doubles. |
| __ CompareClassId(left, kDoubleCid, temp); |
| __ j(NOT_EQUAL, &check_mint, Assembler::kNearJump); |
| __ CompareClassId(right, kDoubleCid, temp); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| |
| // Double values bitwise compare. |
| __ movl(temp, FieldAddress(left, target::Double::value_offset() + |
| 0 * target::kWordSize)); |
| __ cmpl(temp, FieldAddress(right, target::Double::value_offset() + |
| 0 * target::kWordSize)); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| __ movl(temp, FieldAddress(left, target::Double::value_offset() + |
| 1 * target::kWordSize)); |
| __ cmpl(temp, FieldAddress(right, target::Double::value_offset() + |
| 1 * target::kWordSize)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&check_mint); |
| __ CompareClassId(left, kMintCid, temp); |
| __ j(NOT_EQUAL, &reference_compare, Assembler::kNearJump); |
| __ CompareClassId(right, kMintCid, temp); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| __ movl(temp, FieldAddress(left, target::Mint::value_offset() + |
| 0 * target::kWordSize)); |
| __ cmpl(temp, FieldAddress(right, target::Mint::value_offset() + |
| 0 * target::kWordSize)); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| __ movl(temp, FieldAddress(left, target::Mint::value_offset() + |
| 1 * target::kWordSize)); |
| __ cmpl(temp, FieldAddress(right, target::Mint::value_offset() + |
| 1 * target::kWordSize)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&reference_compare); |
| __ cmpl(left, right); |
| __ Bind(&done); |
| } |
| |
| // Called only from unoptimized code. All relevant registers have been saved. |
| // TOS + 0: return address |
| // TOS + 1: right argument. |
| // TOS + 2: left argument. |
| // Returns ZF set. |
| void StubCodeCompiler::GenerateUnoptimizedIdenticalWithNumberCheckStub( |
| Assembler* assembler) { |
| #if !defined(PRODUCT) |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(EAX); |
| __ movzxb(EAX, Address(EAX, target::Isolate::single_step_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(NOT_EQUAL, &stepping); |
| __ Bind(&done_stepping); |
| #endif |
| |
| const Register left = EAX; |
| const Register right = EDX; |
| const Register temp = ECX; |
| __ movl(left, Address(ESP, 2 * target::kWordSize)); |
| __ movl(right, Address(ESP, 1 * target::kWordSize)); |
| GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp); |
| __ ret(); |
| |
| #if !defined(PRODUCT) |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ LeaveFrame(); |
| __ jmp(&done_stepping); |
| #endif |
| } |
| |
| // Called from optimized code only. |
| // TOS + 0: return address |
| // TOS + 1: right argument. |
| // TOS + 2: left argument. |
| // Returns ZF set. |
| void StubCodeCompiler::GenerateOptimizedIdenticalWithNumberCheckStub( |
| Assembler* assembler) { |
| const Register left = EAX; |
| const Register right = EDX; |
| const Register temp = ECX; |
| __ movl(left, Address(ESP, 2 * target::kWordSize)); |
| __ movl(right, Address(ESP, 1 * target::kWordSize)); |
| GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp); |
| __ ret(); |
| } |
| |
| // Called from megamorphic calls. |
| // EBX: receiver (passed to target) |
| // ECX: target::MegamorphicCache (preserved) |
| // Passed to target: |
| // EBX: target entry point |
| // EDX: argument descriptor |
| void StubCodeCompiler::GenerateMegamorphicCallStub(Assembler* assembler) { |
| // Jump if receiver is a smi. |
| Label smi_case; |
| // Check if object (in tmp) is a Smi. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| // Jump out of line for smi case. |
| __ j(ZERO, &smi_case, Assembler::kNearJump); |
| |
| // Loads the cid of the instance. |
| __ LoadClassId(EAX, EBX); |
| |
| Label cid_loaded; |
| __ Bind(&cid_loaded); |
| __ pushl(EBX); // save receiver |
| __ movl(EBX, FieldAddress(ECX, target::MegamorphicCache::mask_offset())); |
| __ movl(EDI, FieldAddress(ECX, target::MegamorphicCache::buckets_offset())); |
| // EDI: cache buckets array. |
| // EBX: mask as a smi. |
| |
| // Tag cid as a smi. |
| __ addl(EAX, EAX); |
| |
| // Compute the table index. |
| ASSERT(target::MegamorphicCache::kSpreadFactor == 7); |
| // Use leal and subl multiply with 7 == 8 - 1. |
| __ leal(EDX, Address(EAX, TIMES_8, 0)); |
| __ subl(EDX, EAX); |
| |
| Label loop; |
| __ Bind(&loop); |
| __ andl(EDX, EBX); |
| |
| const intptr_t base = target::Array::data_offset(); |
| Label probe_failed; |
| // EDX is smi tagged, but table entries are two words, so TIMES_4. |
| __ cmpl(EAX, FieldAddress(EDI, EDX, TIMES_4, base)); |
| __ j(NOT_EQUAL, &probe_failed, Assembler::kNearJump); |
| |
| Label load_target; |
| __ Bind(&load_target); |
| // Call the target found in the cache. For a class id match, this is a |
| // proper target for the given name and arguments descriptor. If the |
| // illegal class id was found, the target is a cache miss handler that can |
| // be invoked as a normal Dart function. |
| __ movl(EAX, FieldAddress(EDI, EDX, TIMES_4, base + target::kWordSize)); |
| __ movl(EDX, FieldAddress( |
| ECX, target::CallSiteData::arguments_descriptor_offset())); |
| __ popl(EBX); // restore receiver |
| __ jmp(FieldAddress(EAX, target::Function::entry_point_offset())); |
| |
| __ Bind(&probe_failed); |
| // Probe failed, check if it is a miss. |
| __ cmpl(FieldAddress(EDI, EDX, TIMES_4, base), |
| Immediate(target::ToRawSmi(kIllegalCid))); |
| Label miss; |
| __ j(ZERO, &miss, Assembler::kNearJump); |
| |
| // Try next entry in the table. |
| __ AddImmediate(EDX, Immediate(target::ToRawSmi(1))); |
| __ jmp(&loop); |
| |
| // Load cid for the Smi case. |
| __ Bind(&smi_case); |
| __ movl(EAX, Immediate(kSmiCid)); |
| __ jmp(&cid_loaded); |
| |
| __ Bind(&miss); |
| __ popl(EBX); // restore receiver |
| GenerateSwitchableCallMissStub(assembler); |
| } |
| |
| void StubCodeCompiler::GenerateICCallThroughCodeStub(Assembler* assembler) { |
| __ int3(); // AOT only. |
| } |
| |
| void StubCodeCompiler::GenerateMonomorphicSmiableCheckStub( |
| Assembler* assembler) { |
| __ int3(); // AOT only. |
| } |
| |
| // Called from switchable IC calls. |
| // EBX: receiver |
| void StubCodeCompiler::GenerateSwitchableCallMissStub(Assembler* assembler) { |
| __ movl(CODE_REG, |
| Address(THR, target::Thread::switchable_call_miss_stub_offset())); |
| __ EnterStubFrame(); |
| __ pushl(EBX); // Preserve receiver. |
| |
| __ pushl(Immediate(0)); // Result slot. |
| __ pushl(Immediate(0)); // Arg0: stub out. |
| __ pushl(EBX); // Arg1: Receiver |
| __ CallRuntime(kSwitchableCallMissRuntimeEntry, 2); |
| __ popl(ECX); |
| __ popl(CODE_REG); // result = stub |
| __ popl(ECX); // result = IC |
| |
| __ popl(EBX); // Restore receiver. |
| __ LeaveFrame(); |
| |
| __ movl(EAX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
| CodeEntryKind::kNormal))); |
| __ jmp(EAX); |
| } |
| |
| void StubCodeCompiler::GenerateSingleTargetCallStub(Assembler* assembler) { |
| __ int3(); // AOT only. |
| } |
| |
| // Instantiate type arguments from instantiator and function type args. |
| // EBX: uninstantiated type arguments. |
| // EDX: instantiator type arguments. |
| // ECX: function type arguments. |
| // Returns instantiated type arguments in EAX. |
| void StubCodeCompiler::GenerateInstantiateTypeArgumentsStub( |
| Assembler* assembler) { |
| // Lookup cache before calling runtime. |
| __ pushl(InstantiationABI::kUninstantiatedTypeArgumentsReg); // Preserve reg. |
| __ movl(EAX, compiler::FieldAddress( |
| InstantiationABI::kUninstantiatedTypeArgumentsReg, |
| target::TypeArguments::instantiations_offset())); |
| __ leal(EAX, compiler::FieldAddress(EAX, Array::data_offset())); |
| // The instantiations cache is initialized with Object::zero_array() and is |
| // therefore guaranteed to contain kNoInstantiator. No length check needed. |
| compiler::Label loop, next, found, call_runtime; |
| __ Bind(&loop); |
| |
| // Use load-acquire to test for sentinel, if we found non-sentinel it is safe |
| // to access the other entries. If we found a sentinel we go to runtime. |
| __ LoadAcquire(EDI, EAX, |
| TypeArguments::Instantiation::kInstantiatorTypeArgsIndex * |
| target::kWordSize); |
| __ CompareImmediate(EDI, Smi::RawValue(TypeArguments::kNoInstantiator)); |
| __ j(EQUAL, &call_runtime, compiler::Assembler::kNearJump); |
| |
| __ cmpl(EDI, InstantiationABI::kInstantiatorTypeArgumentsReg); |
| __ j(NOT_EQUAL, &next, compiler::Assembler::kNearJump); |
| __ movl(EBX, compiler::Address( |
| EAX, TypeArguments::Instantiation::kFunctionTypeArgsIndex * |
| target::kWordSize)); |
| __ cmpl(EBX, InstantiationABI::kFunctionTypeArgumentsReg); |
| __ j(EQUAL, &found, compiler::Assembler::kNearJump); |
| __ Bind(&next); |
| __ addl(EAX, compiler::Immediate(TypeArguments::Instantiation::kSizeInWords * |
| target::kWordSize)); |
| __ jmp(&loop, compiler::Assembler::kNearJump); |
| |
| // Instantiate non-null type arguments. |
| // A runtime call to instantiate the type arguments is required. |
| __ Bind(&call_runtime); |
| __ popl(InstantiationABI::kUninstantiatedTypeArgumentsReg); // Restore reg. |
| __ EnterStubFrame(); |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ pushl(InstantiationABI::kUninstantiatedTypeArgumentsReg); |
| __ pushl(InstantiationABI::kInstantiatorTypeArgumentsReg); |
| __ pushl(InstantiationABI::kFunctionTypeArgumentsReg); |
| __ CallRuntime(kInstantiateTypeArgumentsRuntimeEntry, 3); |
| __ Drop(3); // Drop 2 type vectors, and uninstantiated args. |
| __ popl(InstantiationABI::kResultTypeArgumentsReg); |
| __ LeaveFrame(); |
| __ ret(); |
| |
| __ Bind(&found); |
| __ popl(InstantiationABI::kUninstantiatedTypeArgumentsReg); // Drop reg. |
| __ movl(InstantiationABI::kResultTypeArgumentsReg, |
| compiler::Address( |
| EAX, TypeArguments::Instantiation::kInstantiatedTypeArgsIndex * |
| target::kWordSize)); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler:: |
| GenerateInstantiateTypeArgumentsMayShareInstantiatorTAStub( |
| Assembler* assembler) { |
| // Return the instantiator type arguments if its nullability is compatible for |
| // sharing, otherwise proceed to instantiation cache lookup. |
| compiler::Label cache_lookup; |
| __ movl(EAX, compiler::FieldAddress( |
| InstantiationABI::kUninstantiatedTypeArgumentsReg, |
| target::TypeArguments::nullability_offset())); |
| __ movl(EDI, compiler::FieldAddress( |
| InstantiationABI::kInstantiatorTypeArgumentsReg, |
| target::TypeArguments::nullability_offset())); |
| __ andl(EDI, EAX); |
| __ cmpl(EDI, EAX); |
| __ j(NOT_EQUAL, &cache_lookup, compiler::Assembler::kNearJump); |
| __ movl(InstantiationABI::kResultTypeArgumentsReg, |
| InstantiationABI::kInstantiatorTypeArgumentsReg); |
| __ ret(); |
| |
| __ Bind(&cache_lookup); |
| GenerateInstantiateTypeArgumentsStub(assembler); |
| } |
| |
| void StubCodeCompiler::GenerateInstantiateTypeArgumentsMayShareFunctionTAStub( |
| Assembler* assembler) { |
| // Return the function type arguments if its nullability is compatible for |
| // sharing, otherwise proceed to instantiation cache lookup. |
| compiler::Label cache_lookup; |
| __ movl(EAX, compiler::FieldAddress( |
| InstantiationABI::kUninstantiatedTypeArgumentsReg, |
| target::TypeArguments::nullability_offset())); |
| __ movl(EDI, |
| compiler::FieldAddress(InstantiationABI::kFunctionTypeArgumentsReg, |
| target::TypeArguments::nullability_offset())); |
| __ andl(EDI, EAX); |
| __ cmpl(EDI, EAX); |
| __ j(NOT_EQUAL, &cache_lookup, compiler::Assembler::kNearJump); |
| __ movl(InstantiationABI::kResultTypeArgumentsReg, |
| InstantiationABI::kFunctionTypeArgumentsReg); |
| __ ret(); |
| |
| __ Bind(&cache_lookup); |
| GenerateInstantiateTypeArgumentsStub(assembler); |
| } |
| |
| static ScaleFactor GetScaleFactor(intptr_t size) { |
| switch (size) { |
| case 1: |
| return TIMES_1; |
| case 2: |
| return TIMES_2; |
| case 4: |
| return TIMES_4; |
| case 8: |
| return TIMES_8; |
| case 16: |
| return TIMES_16; |
| } |
| UNREACHABLE(); |
| return static_cast<ScaleFactor>(0); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateTypedDataArrayStub(Assembler* assembler, |
| intptr_t cid) { |
| const intptr_t element_size = TypedDataElementSizeInBytes(cid); |
| const intptr_t max_len = TypedDataMaxNewSpaceElements(cid); |
| ScaleFactor scale_factor = GetScaleFactor(element_size); |
| |
| COMPILE_ASSERT(AllocateTypedDataArrayABI::kLengthReg == EAX); |
| COMPILE_ASSERT(AllocateTypedDataArrayABI::kResultReg == EAX); |
| |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| // Save length argument for possible runtime call, as |
| // EAX is clobbered. |
| Label call_runtime; |
| __ pushl(AllocateTypedDataArrayABI::kLengthReg); |
| |
| NOT_IN_PRODUCT( |
| __ MaybeTraceAllocation(cid, ECX, &call_runtime, Assembler::kFarJump)); |
| __ movl(EDI, AllocateTypedDataArrayABI::kLengthReg); |
| /* Check that length is a positive Smi. */ |
| /* EDI: requested array length argument. */ |
| __ testl(EDI, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &call_runtime); |
| __ SmiUntag(EDI); |
| /* Check for length >= 0 && length <= max_len. */ |
| /* EDI: untagged array length. */ |
| __ cmpl(EDI, Immediate(max_len)); |
| __ j(ABOVE, &call_runtime); |
| /* Special case for scaling by 16. */ |
| if (scale_factor == TIMES_16) { |
| /* double length of array. */ |
| __ addl(EDI, EDI); |
| /* only scale by 8. */ |
| scale_factor = TIMES_8; |
| } |
| |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::TypedData::HeaderSize() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| __ leal(EDI, Address(EDI, scale_factor, fixed_size_plus_alignment_padding)); |
| __ andl(EDI, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| __ movl(EAX, Address(THR, target::Thread::top_offset())); |
| __ movl(EBX, EAX); |
| /* EDI: allocation size. */ |
| __ addl(EBX, EDI); |
| __ j(CARRY, &call_runtime); |
| |