| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/compiler/runtime_api.h" |
| #include "vm/globals.h" |
| |
| // For `AllocateObjectInstr::WillAllocateNewOrRemembered` |
| // For `GenericCheckBoundInstr::UseUnboxedRepresentation` |
| #include "vm/compiler/backend/il.h" |
| |
| #define SHOULD_NOT_INCLUDE_RUNTIME |
| |
| #include "vm/compiler/stub_code_compiler.h" |
| |
| #if defined(TARGET_ARCH_ARM) |
| |
| #include "vm/class_id.h" |
| #include "vm/code_entry_kind.h" |
| #include "vm/compiler/api/type_check_mode.h" |
| #include "vm/compiler/assembler/assembler.h" |
| #include "vm/compiler/backend/locations.h" |
| #include "vm/constants.h" |
| #include "vm/instructions.h" |
| #include "vm/static_type_exactness_state.h" |
| #include "vm/tags.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| namespace compiler { |
| |
| // Ensures that [R0] is a new object, if not it will be added to the remembered |
| // set via a leaf runtime call. |
| // |
| // WARNING: This might clobber all registers except for [R0], [THR] and [FP]. |
| // The caller should simply call LeaveStubFrame() and return. |
| void StubCodeCompiler::EnsureIsNewOrRemembered(Assembler* assembler, |
| bool preserve_registers) { |
| // If the object is not remembered we call a leaf-runtime to add it to the |
| // remembered set. |
| Label done; |
| __ tst(R0, Operand(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
| __ BranchIf(NOT_ZERO, &done); |
| |
| if (preserve_registers) { |
| __ EnterCallRuntimeFrame(0); |
| } else { |
| __ ReserveAlignedFrameSpace(0); |
| } |
| // [R0] already contains first argument. |
| __ mov(R1, Operand(THR)); |
| __ CallRuntime(kEnsureRememberedAndMarkingDeferredRuntimeEntry, 2); |
| if (preserve_registers) { |
| __ LeaveCallRuntimeFrame(); |
| } |
| |
| __ Bind(&done); |
| } |
| |
| // Input parameters: |
| // LR : return address. |
| // SP : address of last argument in argument array. |
| // SP + 4*R4 - 4 : address of first argument in argument array. |
| // SP + 4*R4 : address of return value. |
| // R9 : address of the runtime function to call. |
| // R4 : number of arguments to the call. |
| void StubCodeCompiler::GenerateCallToRuntimeStub(Assembler* assembler) { |
| const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
| const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
| |
| __ ldr(CODE_REG, Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ StoreToOffset(FP, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ LoadImmediate(R8, target::Thread::exit_through_runtime_call()); |
| __ StoreToOffset(R8, THR, target::Thread::exit_through_ffi_offset()); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ LoadFromOffset(R8, THR, target::Thread::vm_tag_offset()); |
| __ CompareImmediate(R8, VMTag::kDartTagId); |
| __ b(&ok, EQ); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing VM code. |
| __ StoreToOffset(R9, THR, target::Thread::vm_tag_offset()); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| // target::NativeArguments are passed in registers. |
| ASSERT(target::NativeArguments::StructSize() == 4 * target::kWordSize); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Pass target::NativeArguments structure by value and call runtime. |
| // Registers R0, R1, R2, and R3 are used. |
| |
| ASSERT(thread_offset == 0 * target::kWordSize); |
| // Set thread in NativeArgs. |
| __ mov(R0, Operand(THR)); |
| |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * target::kWordSize); |
| __ mov(R1, Operand(R4)); // Set argc in target::NativeArguments. |
| |
| ASSERT(argv_offset == 2 * target::kWordSize); |
| __ add(R2, FP, Operand(R4, LSL, 2)); // Compute argv. |
| // Set argv in target::NativeArguments. |
| __ AddImmediate(R2, |
| target::frame_layout.param_end_from_fp * target::kWordSize); |
| |
| ASSERT(retval_offset == 3 * target::kWordSize); |
| __ add(R3, R2, |
| Operand(target::kWordSize)); // Retval is next to 1st argument. |
| |
| // Call runtime or redirection via simulator. |
| __ blx(R9); |
| |
| // Mark that the thread is executing Dart code. |
| __ LoadImmediate(R2, VMTag::kDartTagId); |
| __ StoreToOffset(R2, THR, target::Thread::vm_tag_offset()); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ LoadImmediate(R2, 0); |
| __ StoreToOffset(R2, THR, target::Thread::exit_through_ffi_offset()); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ StoreToOffset(R2, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ SetupGlobalPoolAndDispatchTable(); |
| } |
| |
| __ LeaveStubFrame(); |
| |
| // The following return can jump to a lazy-deopt stub, which assumes R0 |
| // contains a return value and will save it in a GC-visible way. We therefore |
| // have to ensure R0 does not contain any garbage value left from the C |
| // function we called (which has return type "void"). |
| // (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.) |
| __ LoadImmediate(R0, 0); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStubGeneric( |
| Assembler* assembler, |
| bool save_fpu_registers, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| std::function<void()> perform_runtime_call) { |
| // If the target CPU does not support VFP the caller should always use the |
| // non-FPU stub. |
| if (save_fpu_registers && !TargetCPUFeatures::vfp_supported()) { |
| __ Breakpoint(); |
| return; |
| } |
| |
| // We want the saved registers to appear like part of the caller's frame, so |
| // we push them before calling EnterStubFrame. |
| RegisterSet all_registers; |
| all_registers.AddAllNonReservedRegisters(save_fpu_registers); |
| |
| // To make the stack map calculation architecture independent we do the same |
| // as on intel. |
| READS_RETURN_ADDRESS_FROM_LR(__ Push(LR)); |
| __ PushRegisters(all_registers); |
| __ ldr(CODE_REG, Address(THR, self_code_stub_offset_from_thread)); |
| __ EnterStubFrame(); |
| perform_runtime_call(); |
| if (!allow_return) { |
| __ Breakpoint(); |
| return; |
| } |
| __ LeaveStubFrame(); |
| __ PopRegisters(all_registers); |
| __ Drop(1); // We use the LR restored via LeaveStubFrame. |
| READS_RETURN_ADDRESS_FROM_LR(__ bx(LR)); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStub( |
| Assembler* assembler, |
| bool save_fpu_registers, |
| const RuntimeEntry* target, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| bool store_runtime_result_in_result_register) { |
| ASSERT(!store_runtime_result_in_result_register || allow_return); |
| auto perform_runtime_call = [&]() { |
| if (store_runtime_result_in_result_register) { |
| // Reserve space for the result on the stack. This needs to be a GC |
| // safe value. |
| __ PushImmediate(Smi::RawValue(0)); |
| } |
| __ CallRuntime(*target, /*argument_count=*/0); |
| if (store_runtime_result_in_result_register) { |
| __ PopRegister(R0); |
| __ str(R0, |
| Address(FP, target::kWordSize * |
| StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
| SharedSlowPathStubABI::kResultReg))); |
| } |
| }; |
| GenerateSharedStubGeneric(assembler, save_fpu_registers, |
| self_code_stub_offset_from_thread, allow_return, |
| perform_runtime_call); |
| } |
| |
| // R1: The extracted method. |
| // R4: The type_arguments_field_offset (or 0) |
| // SP+0: The object from which we are tearing a method off. |
| void StubCodeCompiler::GenerateBuildMethodExtractorStub( |
| Assembler* assembler, |
| const Code& closure_allocation_stub, |
| const Code& context_allocation_stub) { |
| const intptr_t kReceiverOffset = target::frame_layout.param_end_from_fp + 1; |
| |
| __ EnterStubFrame(); |
| |
| // Build type_arguments vector (or null) |
| __ cmp(R4, Operand(0)); |
| __ ldr(R3, Address(THR, target::Thread::object_null_offset()), EQ); |
| __ ldr(R0, Address(FP, kReceiverOffset * target::kWordSize), NE); |
| __ ldr(R3, Address(R0, R4), NE); |
| |
| // Push type arguments & extracted method. |
| __ Push(R3); |
| __ Push(R1); |
| |
| // Allocate context. |
| { |
| Label done, slow_path; |
| __ TryAllocateArray(kContextCid, target::Context::InstanceSize(1), |
| &slow_path, |
| R0, // instance |
| R1, // end address |
| R2, R3); |
| __ ldr(R1, Address(THR, target::Thread::object_null_offset())); |
| __ str(R1, FieldAddress(R0, target::Context::parent_offset())); |
| __ LoadImmediate(R1, 1); |
| __ str(R1, FieldAddress(R0, target::Context::num_variables_offset())); |
| __ b(&done); |
| |
| __ Bind(&slow_path); |
| |
| __ LoadImmediate(/*num_vars=*/R1, 1); |
| __ LoadObject(CODE_REG, context_allocation_stub); |
| __ ldr(R0, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ blx(R0); |
| |
| __ Bind(&done); |
| } |
| |
| // Put context in right register for AllocateClosure call. |
| __ MoveRegister(AllocateClosureABI::kContextReg, R0); |
| |
| // Store receiver in context |
| __ ldr(AllocateClosureABI::kScratchReg, |
| Address(FP, target::kWordSize * kReceiverOffset)); |
| __ StoreIntoObject(AllocateClosureABI::kContextReg, |
| FieldAddress(AllocateClosureABI::kContextReg, |
| target::Context::variable_offset(0)), |
| AllocateClosureABI::kScratchReg); |
| |
| // Pop function. |
| __ Pop(AllocateClosureABI::kFunctionReg); |
| |
| // Allocate closure. After this point, we only use the registers in |
| // AllocateClosureABI. |
| __ LoadObject(CODE_REG, closure_allocation_stub); |
| __ ldr(AllocateClosureABI::kScratchReg, |
| FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ blx(AllocateClosureABI::kScratchReg); |
| |
| // Populate closure object. |
| __ Pop(AllocateClosureABI::kScratchReg); // Pop type arguments. |
| __ StoreIntoObjectNoBarrier( |
| AllocateClosureABI::kResultReg, |
| FieldAddress(AllocateClosureABI::kResultReg, |
| target::Closure::instantiator_type_arguments_offset()), |
| AllocateClosureABI::kScratchReg); |
| __ LoadObject(AllocateClosureABI::kScratchReg, EmptyTypeArguments()); |
| __ StoreIntoObjectNoBarrier( |
| AllocateClosureABI::kResultReg, |
| FieldAddress(AllocateClosureABI::kResultReg, |
| target::Closure::delayed_type_arguments_offset()), |
| AllocateClosureABI::kScratchReg); |
| |
| __ LeaveStubFrame(); |
| // No-op if the two are the same. |
| __ MoveRegister(R0, AllocateClosureABI::kResultReg); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateEnterSafepointStub(Assembler* assembler) { |
| RegisterSet all_registers; |
| all_registers.AddAllGeneralRegisters(); |
| __ PushRegisters(all_registers); |
| |
| SPILLS_LR_TO_FRAME(__ EnterFrame((1 << FP) | (1 << LR), 0)); |
| __ ReserveAlignedFrameSpace(0); |
| __ ldr(R0, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread())); |
| __ blx(R0); |
| RESTORES_LR_FROM_FRAME(__ LeaveFrame((1 << FP) | (1 << LR), 0)); |
| |
| __ PopRegisters(all_registers); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointStub(Assembler* assembler) { |
| RegisterSet all_registers; |
| all_registers.AddAllGeneralRegisters(); |
| __ PushRegisters(all_registers); |
| |
| SPILLS_LR_TO_FRAME(__ EnterFrame((1 << FP) | (1 << LR), 0)); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Set the execution state to VM while waiting for the safepoint to end. |
| // This isn't strictly necessary but enables tests to check that we're not |
| // in native code anymore. See tests/ffi/function_gc_test.dart for example. |
| __ LoadImmediate(R0, target::Thread::vm_execution_state()); |
| __ str(R0, Address(THR, target::Thread::execution_state_offset())); |
| |
| __ ldr(R0, Address(THR, kExitSafepointRuntimeEntry.OffsetFromThread())); |
| __ blx(R0); |
| RESTORES_LR_FROM_FRAME(__ LeaveFrame((1 << FP) | (1 << LR), 0)); |
| |
| __ PopRegisters(all_registers); |
| __ Ret(); |
| } |
| |
| // Call a native function within a safepoint. |
| // |
| // On entry: |
| // Stack: set up for call, incl. alignment |
| // R8: target to call |
| // |
| // On exit: |
| // Stack: preserved |
| // NOTFP, R4: clobbered, although normally callee-saved |
| void StubCodeCompiler::GenerateCallNativeThroughSafepointStub( |
| Assembler* assembler) { |
| COMPILE_ASSERT(IsAbiPreservedRegister(R4)); |
| |
| // TransitionGeneratedToNative might clobber LR if it takes the slow path. |
| SPILLS_RETURN_ADDRESS_FROM_LR_TO_REGISTER(__ mov(R4, Operand(LR))); |
| |
| __ LoadImmediate(R9, target::Thread::exit_through_ffi()); |
| __ TransitionGeneratedToNative(R8, FPREG, R9 /*volatile*/, NOTFP, |
| /*enter_safepoint=*/true); |
| |
| __ blx(R8); |
| |
| __ TransitionNativeToGenerated(R9 /*volatile*/, NOTFP, |
| /*exit_safepoint=*/true); |
| |
| __ bx(R4); |
| } |
| |
| #if !defined(DART_PRECOMPILER) |
| void StubCodeCompiler::GenerateJITCallbackTrampolines( |
| Assembler* assembler, |
| intptr_t next_callback_id) { |
| #if defined(USING_SIMULATOR) |
| // TODO(37299): FFI is not support in SIMARM. |
| __ Breakpoint(); |
| #else |
| Label done; |
| |
| // TMP is volatile and not used for passing any arguments. |
| COMPILE_ASSERT(!IsCalleeSavedRegister(TMP) && !IsArgumentRegister(TMP)); |
| |
| for (intptr_t i = 0; |
| i < NativeCallbackTrampolines::NumCallbackTrampolinesPerPage(); ++i) { |
| // We don't use LoadImmediate because we need the trampoline size to be |
| // fixed independently of the callback ID. |
| // |
| // PC points two instructions ahead of the current one -- directly where we |
| // store the callback ID. |
| __ ldr(TMP, Address(PC, 0)); |
| __ b(&done); |
| __ Emit(next_callback_id + i); |
| } |
| |
| ASSERT(__ CodeSize() == |
| kNativeCallbackTrampolineSize * |
| NativeCallbackTrampolines::NumCallbackTrampolinesPerPage()); |
| |
| __ Bind(&done); |
| |
| const intptr_t shared_stub_start = __ CodeSize(); |
| |
| // Save THR (callee-saved), R4 & R5 (temporaries, callee-saved), and LR. |
| COMPILE_ASSERT(StubCodeCompiler::kNativeCallbackTrampolineStackDelta == 4); |
| SPILLS_LR_TO_FRAME( |
| __ PushList((1 << LR) | (1 << THR) | (1 << R4) | (1 << R5))); |
| |
| // Don't rely on TMP being preserved by assembler macros anymore. |
| __ mov(R4, Operand(TMP)); |
| |
| COMPILE_ASSERT(IsCalleeSavedRegister(R4)); |
| COMPILE_ASSERT(!IsArgumentRegister(THR)); |
| |
| RegisterSet argument_registers; |
| argument_registers.AddAllArgumentRegisters(); |
| __ PushRegisters(argument_registers); |
| |
| // Load the thread, verify the callback ID and exit the safepoint. |
| // |
| // We exit the safepoint inside DLRT_GetThreadForNativeCallbackTrampoline |
| // in order to safe code size on this shared stub. |
| { |
| __ EnterFrame(1 << FP, 0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| __ mov(R0, Operand(R4)); |
| |
| // Since DLRT_GetThreadForNativeCallbackTrampoline can theoretically be |
| // loaded anywhere, we use the same trick as before to ensure a predictable |
| // instruction sequence. |
| Label call; |
| __ ldr(R1, Address(PC, 0)); |
| __ b(&call); |
| __ Emit( |
| reinterpret_cast<intptr_t>(&DLRT_GetThreadForNativeCallbackTrampoline)); |
| |
| __ Bind(&call); |
| __ blx(R1); |
| __ mov(THR, Operand(R0)); |
| |
| __ LeaveFrame(1 << FP); |
| } |
| |
| __ PopRegisters(argument_registers); |
| |
| COMPILE_ASSERT(!IsArgumentRegister(R8)); |
| |
| // Load the code object. |
| __ LoadFromOffset(R5, THR, compiler::target::Thread::callback_code_offset()); |
| __ LoadFieldFromOffset(R5, R5, |
| compiler::target::GrowableObjectArray::data_offset()); |
| __ ldr(R5, __ ElementAddressForRegIndex( |
| /*is_load=*/true, |
| /*external=*/false, |
| /*array_cid=*/kArrayCid, |
| /*index_scale, smi-tagged=*/compiler::target::kWordSize * 2, |
| /*index_unboxed=*/false, |
| /*array=*/R5, |
| /*index=*/R4)); |
| __ LoadFieldFromOffset(R5, R5, compiler::target::Code::entry_point_offset()); |
| |
| // On entry to the function, there will be four extra slots on the stack: |
| // saved THR, R4, R5 and the return address. The target will know to skip |
| // them. |
| __ blx(R5); |
| |
| // Clobbers R4, R5 and TMP, all saved or volatile. |
| __ EnterFullSafepoint(R4, R5); |
| |
| // Returns. |
| __ PopList((1 << PC) | (1 << THR) | (1 << R4) | (1 << R5)); |
| |
| ASSERT((__ CodeSize() - shared_stub_start) == kNativeCallbackSharedStubSize); |
| ASSERT(__ CodeSize() <= VirtualMemory::PageSize()); |
| |
| #if defined(DEBUG) |
| while (__ CodeSize() < VirtualMemory::PageSize()) { |
| __ Breakpoint(); |
| } |
| #endif |
| #endif |
| } |
| #endif // !defined(DART_PRECOMPILER) |
| |
| void StubCodeCompiler::GenerateDispatchTableNullErrorStub( |
| Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ SmiTag(DispatchTableNullErrorABI::kClassIdReg); |
| __ PushRegister(DispatchTableNullErrorABI::kClassIdReg); |
| __ CallRuntime(kDispatchTableNullErrorRuntimeEntry, /*argument_count=*/1); |
| // The NullError runtime entry does not return. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateRangeError(Assembler* assembler, |
| bool with_fpu_regs) { |
| auto perform_runtime_call = [&]() { |
| ASSERT(!GenericCheckBoundInstr::UseUnboxedRepresentation()); |
| __ PushRegister(RangeErrorABI::kLengthReg); |
| __ PushRegister(RangeErrorABI::kIndexReg); |
| __ CallRuntime(kRangeErrorRuntimeEntry, /*argument_count=*/2); |
| __ Breakpoint(); |
| }; |
| |
| GenerateSharedStubGeneric( |
| assembler, /*save_fpu_registers=*/with_fpu_regs, |
| with_fpu_regs |
| ? target::Thread::range_error_shared_with_fpu_regs_stub_offset() |
| : target::Thread::range_error_shared_without_fpu_regs_stub_offset(), |
| /*allow_return=*/false, perform_runtime_call); |
| } |
| |
| // Input parameters: |
| // LR : return address. |
| // SP : address of return value. |
| // R9 : address of the native function to call. |
| // R2 : address of first argument in argument array. |
| // R1 : argc_tag including number of arguments and function kind. |
| static void GenerateCallNativeWithWrapperStub(Assembler* assembler, |
| Address wrapper) { |
| const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
| const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ StoreToOffset(FP, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ LoadImmediate(R8, target::Thread::exit_through_runtime_call()); |
| __ StoreToOffset(R8, THR, target::Thread::exit_through_ffi_offset()); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ LoadFromOffset(R8, THR, target::Thread::vm_tag_offset()); |
| __ CompareImmediate(R8, VMTag::kDartTagId); |
| __ b(&ok, EQ); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ StoreToOffset(R9, THR, target::Thread::vm_tag_offset()); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // R0) and align frame before entering the C++ world. |
| __ ReserveAlignedFrameSpace(target::NativeArguments::StructSize()); |
| |
| // Initialize target::NativeArguments structure and call native function. |
| // Registers R0, R1, R2, and R3 are used. |
| |
| ASSERT(thread_offset == 0 * target::kWordSize); |
| // Set thread in NativeArgs. |
| __ mov(R0, Operand(THR)); |
| |
| // There are no native calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * target::kWordSize); |
| // Set argc in target::NativeArguments: R1 already contains argc. |
| |
| ASSERT(argv_offset == 2 * target::kWordSize); |
| // Set argv in target::NativeArguments: R2 already contains argv. |
| |
| // Set retval in NativeArgs. |
| ASSERT(retval_offset == 3 * target::kWordSize); |
| __ add(R3, FP, Operand(2 * target::kWordSize)); |
| |
| // Passing the structure by value as in runtime calls would require changing |
| // Dart API for native functions. |
| // For now, space is reserved on the stack and we pass a pointer to it. |
| __ stm(IA, SP, (1 << R0) | (1 << R1) | (1 << R2) | (1 << R3)); |
| __ mov(R0, Operand(SP)); // Pass the pointer to the target::NativeArguments. |
| |
| __ mov(R1, Operand(R9)); // Pass the function entrypoint to call. |
| |
| // Call native function invocation wrapper or redirection via simulator. |
| __ Call(wrapper); |
| |
| // Mark that the thread is executing Dart code. |
| __ LoadImmediate(R2, VMTag::kDartTagId); |
| __ StoreToOffset(R2, THR, target::Thread::vm_tag_offset()); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ LoadImmediate(R2, 0); |
| __ StoreToOffset(R2, THR, target::Thread::exit_through_ffi_offset()); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ StoreToOffset(R2, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ SetupGlobalPoolAndDispatchTable(); |
| } |
| |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateCallNoScopeNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::no_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| void StubCodeCompiler::GenerateCallAutoScopeNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::auto_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // LR : return address. |
| // SP : address of return value. |
| // R9 : address of the native function to call. |
| // R2 : address of first argument in argument array. |
| // R1 : argc_tag including number of arguments and function kind. |
| void StubCodeCompiler::GenerateCallBootstrapNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::bootstrap_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // R4: arguments descriptor array. |
| void StubCodeCompiler::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| __ LoadImmediate(R0, 0); |
| __ PushList((1 << R0) | (1 << R4)); |
| __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
| // Get Code object result and restore arguments descriptor array. |
| __ PopList((1 << R0) | (1 << R4)); |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ mov(CODE_REG, Operand(R0)); |
| __ Branch(FieldAddress(R0, target::Code::entry_point_offset())); |
| } |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // R4: arguments descriptor array. |
| void StubCodeCompiler::GenerateFixCallersTargetStub(Assembler* assembler) { |
| Label monomorphic; |
| __ BranchOnMonomorphicCheckedEntryJIT(&monomorphic); |
| |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ ldr(CODE_REG, |
| Address(THR, target::Thread::fix_callers_target_code_offset())); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| __ LoadImmediate(R0, 0); |
| __ PushList((1 << R0) | (1 << R4)); |
| __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
| // Get Code object result and restore arguments descriptor array. |
| __ PopList((1 << R0) | (1 << R4)); |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ mov(CODE_REG, Operand(R0)); |
| __ Branch(FieldAddress(R0, target::Code::entry_point_offset())); |
| |
| __ Bind(&monomorphic); |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ ldr(CODE_REG, |
| Address(THR, target::Thread::fix_callers_target_code_offset())); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(R1, 0); |
| __ Push(R1); // Result slot. |
| __ Push(R0); // Preserve receiver. |
| __ Push(R9); // Preserve cache. |
| __ CallRuntime(kFixCallersTargetMonomorphicRuntimeEntry, 2); |
| __ Pop(R9); // Restore cache. |
| __ Pop(R0); // Restore receiver. |
| __ Pop(CODE_REG); // Get target Code object. |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ Branch(FieldAddress( |
| CODE_REG, target::Code::entry_point_offset(CodeEntryKind::kMonomorphic))); |
| } |
| |
| // Called from object allocate instruction when the allocation stub has been |
| // disabled. |
| void StubCodeCompiler::GenerateFixAllocationStubTargetStub( |
| Assembler* assembler) { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ ldr(CODE_REG, |
| Address(THR, target::Thread::fix_allocation_stub_code_offset())); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ LoadImmediate(R0, 0); |
| __ Push(R0); |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| // Get Code object result. |
| __ Pop(R0); |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ mov(CODE_REG, Operand(R0)); |
| __ Branch(FieldAddress(R0, target::Code::entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // R2: smi-tagged argument count, may be zero. |
| // FP[target::frame_layout.param_end_from_fp + 1]: last argument. |
| static void PushArrayOfArguments(Assembler* assembler) { |
| // Allocate array to store arguments of caller. |
| __ LoadObject(R1, NullObject()); |
| // R1: null element type for raw Array. |
| // R2: smi-tagged argument count, may be zero. |
| __ BranchLink(StubCodeAllocateArray()); |
| // R0: newly allocated array. |
| // R2: smi-tagged argument count, may be zero (was preserved by the stub). |
| __ Push(R0); // Array is in R0 and on top of stack. |
| __ AddImmediate(R1, FP, |
| target::frame_layout.param_end_from_fp * target::kWordSize); |
| __ AddImmediate(R3, R0, target::Array::data_offset() - kHeapObjectTag); |
| // Copy arguments from stack to array (starting at the end). |
| // R1: address just beyond last argument on stack. |
| // R3: address of first argument in array. |
| Label enter; |
| __ b(&enter); |
| Label loop; |
| __ Bind(&loop); |
| __ ldr(R8, Address(R1, target::kWordSize, Address::PreIndex)); |
| // Generational barrier is needed, array is not necessarily in new space. |
| __ StoreIntoObject(R0, Address(R3, R2, LSL, 1), R8); |
| __ Bind(&enter); |
| __ subs(R2, R2, Operand(target::ToRawSmi(1))); // R2 is Smi. |
| __ b(&loop, PL); |
| } |
| |
| // Used by eager and lazy deoptimization. Preserve result in R0 if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterFrame(...) below: |
| // +------------------+ |
| // | Saved PP | <- TOS |
| // +------------------+ |
| // | Saved FP | <- FP of stub |
| // +------------------+ |
| // | Saved LR | (deoptimization point) |
| // +------------------+ |
| // | pc marker | |
| // +------------------+ |
| // | Saved CODE_REG | |
| // +------------------+ |
| // | ... | <- SP of optimized frame |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| DeoptStubKind kind) { |
| // DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterDartFrame(0); |
| __ LoadPoolPointer(); |
| |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_result_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - R0); |
| const intptr_t saved_exception_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - R0); |
| const intptr_t saved_stacktrace_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - R1); |
| // Result in R0 is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) { |
| if (i == CODE_REG) { |
| // Save the original value of CODE_REG pushed before invoking this stub |
| // instead of the value used to call this stub. |
| __ ldr(IP, Address(FP, 2 * target::kWordSize)); |
| __ Push(IP); |
| } else if (i == SP) { |
| // Push(SP) has unpredictable behavior. |
| __ mov(IP, Operand(SP)); |
| __ Push(IP); |
| } else { |
| __ Push(static_cast<Register>(i)); |
| } |
| } |
| |
| if (TargetCPUFeatures::vfp_supported()) { |
| ASSERT(kFpuRegisterSize == 4 * target::kWordSize); |
| if (kNumberOfDRegisters > 16) { |
| __ vstmd(DB_W, SP, D16, kNumberOfDRegisters - 16); |
| __ vstmd(DB_W, SP, D0, 16); |
| } else { |
| __ vstmd(DB_W, SP, D0, kNumberOfDRegisters); |
| } |
| } else { |
| __ AddImmediate(SP, -kNumberOfFpuRegisters * kFpuRegisterSize); |
| } |
| |
| __ mov(R0, Operand(SP)); // Pass address of saved registers block. |
| bool is_lazy = |
| (kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow); |
| __ mov(R1, Operand(is_lazy ? 1 : 0)); |
| __ ReserveAlignedFrameSpace(0); |
| __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2); |
| // Result (R0) is stack-size (FP - SP) in bytes. |
| |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into R1 temporarily. |
| __ ldr(R1, Address(FP, saved_result_slot_from_fp * target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into R1 temporarily. |
| __ ldr(R1, Address(FP, saved_exception_slot_from_fp * target::kWordSize)); |
| __ ldr(R2, Address(FP, saved_stacktrace_slot_from_fp * target::kWordSize)); |
| } |
| |
| __ RestoreCodePointer(); |
| __ LeaveDartFrame(); |
| __ sub(SP, FP, Operand(R0)); |
| |
| // DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| __ mov(R0, Operand(FP)); // Get last FP address. |
| if (kind == kLazyDeoptFromReturn) { |
| __ Push(R1); // Preserve result as first local. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ Push(R1); // Preserve exception as first local. |
| __ Push(R2); // Preserve stacktrace as second local. |
| } |
| __ ReserveAlignedFrameSpace(0); |
| __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); // Pass last FP in R0. |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into R1. |
| __ ldr(R1, Address(FP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into R1. |
| __ ldr(R1, Address(FP, target::frame_layout.first_local_from_fp * |
| target::kWordSize)); |
| __ ldr(R2, Address(FP, (target::frame_layout.first_local_from_fp - 1) * |
| target::kWordSize)); |
| } |
| // Code above cannot cause GC. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| // Enter stub frame with loading PP. The caller's PP is not materialized yet. |
| __ EnterStubFrame(); |
| if (kind == kLazyDeoptFromReturn) { |
| __ Push(R1); // Preserve result, it will be GC-d here. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ Push(R1); // Preserve exception, it will be GC-d here. |
| __ Push(R2); // Preserve stacktrace, it will be GC-d here. |
| } |
| __ PushObject(NullObject()); // Space for the result. |
| __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
| // Result tells stub how many bytes to remove from the expression stack |
| // of the bottom-most frame. They were used as materialization arguments. |
| __ Pop(R2); |
| if (kind == kLazyDeoptFromReturn) { |
| __ Pop(R0); // Restore result. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ Pop(R1); // Restore stacktrace. |
| __ Pop(R0); // Restore exception. |
| } |
| __ LeaveStubFrame(); |
| // Remove materialization arguments. |
| __ add(SP, SP, Operand(R2, ASR, kSmiTagSize)); |
| // The caller is responsible for emitting the return instruction. |
| } |
| |
| // R0: result, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub( |
| Assembler* assembler) { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ LoadImmediate(IP, kZapCodeReg); |
| __ Push(IP); |
| // Return address for "call" to deopt stub. |
| WRITES_RETURN_ADDRESS_TO_LR(__ LoadImmediate(LR, kZapReturnAddress)); |
| __ ldr(CODE_REG, |
| Address(THR, target::Thread::lazy_deopt_from_return_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn); |
| __ Ret(); |
| } |
| |
| // R0: exception, must be preserved |
| // R1: stacktrace, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub( |
| Assembler* assembler) { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ LoadImmediate(IP, kZapCodeReg); |
| __ Push(IP); |
| // Return address for "call" to deopt stub. |
| WRITES_RETURN_ADDRESS_TO_LR(__ LoadImmediate(LR, kZapReturnAddress)); |
| __ ldr(CODE_REG, |
| Address(THR, target::Thread::lazy_deopt_from_throw_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateDeoptimizeStub(Assembler* assembler) { |
| __ Push(CODE_REG); |
| __ ldr(CODE_REG, Address(THR, target::Thread::deoptimize_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| __ Ret(); |
| } |
| |
| // R9: ICData/MegamorphicCache |
| static void GenerateNoSuchMethodDispatcherBody(Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| __ ldr(R4, |
| FieldAddress(R9, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Load the receiver. |
| __ ldr(R2, FieldAddress(R4, target::ArgumentsDescriptor::size_offset())); |
| __ add(IP, FP, Operand(R2, LSL, 1)); // R2 is Smi. |
| __ ldr(R8, Address(IP, target::frame_layout.param_end_from_fp * |
| target::kWordSize)); |
| __ LoadImmediate(IP, 0); |
| __ Push(IP); // Result slot. |
| __ Push(R8); // Receiver. |
| __ Push(R9); // ICData/MegamorphicCache. |
| __ Push(R4); // Arguments descriptor. |
| |
| // Adjust arguments count. |
| __ ldr(R3, |
| FieldAddress(R4, target::ArgumentsDescriptor::type_args_len_offset())); |
| __ cmp(R3, Operand(0)); |
| __ AddImmediate(R2, R2, target::ToRawSmi(1), |
| NE); // Include the type arguments. |
| |
| // R2: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs); |
| __ Drop(4); |
| __ Pop(R0); // Return value. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| static void GenerateDispatcherCode(Assembler* assembler, |
| Label* call_target_function) { |
| __ Comment("NoSuchMethodDispatch"); |
| // When lazily generated invocation dispatchers are disabled, the |
| // miss-handler may return null. |
| __ CompareObject(R0, NullObject()); |
| __ b(call_target_function, NE); |
| |
| GenerateNoSuchMethodDispatcherBody(assembler); |
| } |
| |
| // Input: |
| // R4 - arguments descriptor |
| // R9 - icdata/megamorphic_cache |
| void StubCodeCompiler::GenerateNoSuchMethodDispatcherStub( |
| Assembler* assembler) { |
| GenerateNoSuchMethodDispatcherBody(assembler); |
| } |
| |
| // Called for inline allocation of arrays. |
| // Input registers (preserved): |
| // LR: return address. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // AllocateArrayABI::kTypeArgumentsReg: type arguments of array. |
| // Output registers: |
| // AllocateArrayABI::kResultReg: newly allocated array. |
| // Clobbered: |
| // R3, R4, R8, R9 |
| void StubCodeCompiler::GenerateAllocateArrayStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize( |
| // (array_length * kwordSize) + target::Array::header_size()). |
| __ mov(R3, Operand(AllocateArrayABI::kLengthReg)); // Array length. |
| // Check that length is a Smi. |
| __ tst(R3, Operand(kSmiTagMask)); |
| __ b(&slow_case, NE); |
| |
| // Check length >= 0 && length <= kMaxNewSpaceElements |
| const intptr_t max_len = |
| target::ToRawSmi(target::Array::kMaxNewSpaceElements); |
| __ CompareImmediate(R3, max_len); |
| __ b(&slow_case, HI); |
| |
| const intptr_t cid = kArrayCid; |
| NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R4, cid)); |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(R4, &slow_case)); |
| |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::Array::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| __ LoadImmediate(R9, fixed_size_plus_alignment_padding); |
| __ add(R9, R9, Operand(R3, LSL, 1)); // R3 is a Smi. |
| ASSERT(kSmiTagShift == 1); |
| __ bic(R9, R9, Operand(target::ObjectAlignment::kObjectAlignment - 1)); |
| |
| // R9: Allocation size. |
| // Potential new object start. |
| __ ldr(AllocateArrayABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| __ adds(R3, AllocateArrayABI::kResultReg, |
| Operand(R9)); // Potential next object start. |
| __ b(&slow_case, CS); // Branch if unsigned overflow. |
| |
| // Check if the allocation fits into the remaining space. |
| // AllocateArrayABI::kResultReg: potential new object start. |
| // R3: potential next object start. |
| // R9: allocation size. |
| __ ldr(TMP, Address(THR, target::Thread::end_offset())); |
| __ cmp(R3, Operand(TMP)); |
| __ b(&slow_case, CS); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ str(R3, Address(THR, target::Thread::top_offset())); |
| __ add(AllocateArrayABI::kResultReg, AllocateArrayABI::kResultReg, |
| Operand(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // R3: new object end address. |
| // R9: allocation size. |
| { |
| const intptr_t shift = target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2; |
| |
| __ CompareImmediate(R9, target::UntaggedObject::kSizeTagMaxSizeTag); |
| __ mov(R8, Operand(R9, LSL, shift), LS); |
| __ mov(R8, Operand(0), HI); |
| |
| // Get the class index and insert it into the tags. |
| // R8: size and bit tags. |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
| __ LoadImmediate(TMP, tags); |
| __ orr(R8, R8, Operand(TMP)); |
| __ str(R8, FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::tags_offset())); // Store tags. |
| } |
| |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // R3: new object end address. |
| // Store the type argument field. |
| __ StoreIntoObjectNoBarrier( |
| AllocateArrayABI::kResultReg, |
| FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::type_arguments_offset()), |
| AllocateArrayABI::kTypeArgumentsReg); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier(AllocateArrayABI::kResultReg, |
| FieldAddress(AllocateArrayABI::kResultReg, |
| target::Array::length_offset()), |
| AllocateArrayABI::kLengthReg); |
| |
| // Initialize all array elements to raw_null. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // R8, R9: null |
| // R4: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| // R3: new object end address. |
| // R9: allocation size. |
| |
| __ LoadObject(R8, NullObject()); |
| __ mov(R9, Operand(R8)); |
| __ AddImmediate(R4, AllocateArrayABI::kResultReg, |
| target::Array::header_size() - kHeapObjectTag); |
| __ InitializeFieldsNoBarrier(AllocateArrayABI::kResultReg, R4, R3, R8, R9); |
| __ Ret(); |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(TMP, 0); |
| // Setup space on stack for return value. |
| // Push array length as Smi and element type. |
| __ PushList((1 << AllocateArrayABI::kTypeArgumentsReg) | |
| (1 << AllocateArrayABI::kLengthReg) | (1 << IP)); |
| __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
| // Pop arguments; result is popped in IP. |
| __ PopList((1 << AllocateArrayABI::kTypeArgumentsReg) | |
| (1 << AllocateArrayABI::kLengthReg) | (1 << IP)); |
| __ mov(AllocateArrayABI::kResultReg, Operand(IP)); |
| __ LeaveStubFrame(); |
| |
| // Write-barrier elimination might be enabled for this array (depending on the |
| // array length). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler); |
| |
| __ Ret(); |
| } |
| |
| // Called for allocation of Mint. |
| void StubCodeCompiler::GenerateAllocateMintSharedWithFPURegsStub( |
| Assembler* assembler) { |
| // For test purpose call allocation stub without inline allocation attempt. |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| __ TryAllocate(compiler::MintClass(), &slow_case, Assembler::kNearJump, |
| AllocateMintABI::kResultReg, AllocateMintABI::kTempReg); |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| COMPILE_ASSERT(AllocateMintABI::kResultReg == |
| SharedSlowPathStubABI::kResultReg); |
| GenerateSharedStub(assembler, /*save_fpu_registers=*/true, |
| &kAllocateMintRuntimeEntry, |
| target::Thread::allocate_mint_with_fpu_regs_stub_offset(), |
| /*allow_return=*/true, |
| /*store_runtime_result_in_result_register=*/true); |
| } |
| |
| // Called for allocation of Mint. |
| void StubCodeCompiler::GenerateAllocateMintSharedWithoutFPURegsStub( |
| Assembler* assembler) { |
| // For test purpose call allocation stub without inline allocation attempt. |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| __ TryAllocate(compiler::MintClass(), &slow_case, Assembler::kNearJump, |
| AllocateMintABI::kResultReg, AllocateMintABI::kTempReg); |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| COMPILE_ASSERT(AllocateMintABI::kResultReg == |
| SharedSlowPathStubABI::kResultReg); |
| GenerateSharedStub( |
| assembler, /*save_fpu_registers=*/false, &kAllocateMintRuntimeEntry, |
| target::Thread::allocate_mint_without_fpu_regs_stub_offset(), |
| /*allow_return=*/true, |
| /*store_runtime_result_in_result_register=*/true); |
| } |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // LR : points to return address. |
| // R0 : target code or entry point (in bare instructions mode). |
| // R1 : arguments descriptor array. |
| // R2 : arguments array. |
| // R3 : current thread. |
| void StubCodeCompiler::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| READS_RETURN_ADDRESS_FROM_LR(__ Push(LR)); // Marker for the profiler. |
| SPILLS_LR_TO_FRAME(__ EnterFrame((1 << FP) | (1 << LR), 0)); |
| |
| // Push code object to PC marker slot. |
| __ ldr(IP, Address(R3, target::Thread::invoke_dart_code_stub_offset())); |
| __ Push(IP); |
| |
| __ PushNativeCalleeSavedRegisters(); |
| |
| // Set up THR, which caches the current thread in Dart code. |
| if (THR != R3) { |
| __ mov(THR, Operand(R3)); |
| } |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // Save the current VMTag on the stack. |
| __ LoadFromOffset(R9, THR, target::Thread::vm_tag_offset()); |
| __ Push(R9); |
| |
| // Save top resource and top exit frame info. Use R4-6 as temporary registers. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ LoadFromOffset(R4, THR, target::Thread::top_resource_offset()); |
| __ Push(R4); |
| __ LoadImmediate(R8, 0); |
| __ StoreToOffset(R8, THR, target::Thread::top_resource_offset()); |
| |
| __ LoadFromOffset(R8, THR, target::Thread::exit_through_ffi_offset()); |
| __ Push(R8); |
| __ LoadImmediate(R8, 0); |
| __ StoreToOffset(R8, THR, target::Thread::exit_through_ffi_offset()); |
| |
| __ LoadFromOffset(R9, THR, target::Thread::top_exit_frame_info_offset()); |
| __ StoreToOffset(R8, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // target::frame_layout.exit_link_slot_from_entry_fp must be kept in sync |
| // with the code below. |
| #if defined(TARGET_OS_MACOS) || defined(TARGET_OS_MACOS_IOS) |
| ASSERT(target::frame_layout.exit_link_slot_from_entry_fp == -27); |
| #else |
| ASSERT(target::frame_layout.exit_link_slot_from_entry_fp == -28); |
| #endif |
| __ Push(R9); |
| |
| __ EmitEntryFrameVerification(R9); |
| |
| // Mark that the thread is executing Dart code. Do this after initializing the |
| // exit link for the profiler. |
| __ LoadImmediate(R9, VMTag::kDartTagId); |
| __ StoreToOffset(R9, THR, target::Thread::vm_tag_offset()); |
| |
| // Load arguments descriptor array into R4, which is passed to Dart code. |
| __ ldr(R4, Address(R1, target::VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load number of arguments into R9 and adjust count for type arguments. |
| __ ldr(R3, |
| FieldAddress(R4, target::ArgumentsDescriptor::type_args_len_offset())); |
| __ ldr(R9, FieldAddress(R4, target::ArgumentsDescriptor::count_offset())); |
| __ cmp(R3, Operand(0)); |
| __ AddImmediate(R9, R9, target::ToRawSmi(1), |
| NE); // Include the type arguments. |
| __ SmiUntag(R9); |
| |
| // Compute address of 'arguments array' data area into R2. |
| __ ldr(R2, Address(R2, target::VMHandles::kOffsetOfRawPtrInHandle)); |
| __ AddImmediate(R2, target::Array::data_offset() - kHeapObjectTag); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ CompareImmediate(R9, 0); // check if there are arguments. |
| __ b(&done_push_arguments, EQ); |
| __ LoadImmediate(R1, 0); |
| __ Bind(&push_arguments); |
| __ ldr(R3, Address(R2)); |
| __ Push(R3); |
| __ AddImmediate(R2, target::kWordSize); |
| __ AddImmediate(R1, 1); |
| __ cmp(R1, Operand(R9)); |
| __ b(&push_arguments, LT); |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ SetupGlobalPoolAndDispatchTable(); |
| __ LoadImmediate(CODE_REG, 0); // GC safe value into CODE_REG. |
| } else { |
| __ LoadImmediate(PP, 0); // GC safe value into PP. |
| __ ldr(CODE_REG, Address(R0, target::VMHandles::kOffsetOfRawPtrInHandle)); |
| __ ldr(R0, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| } |
| __ blx(R0); // R4 is the arguments descriptor array. |
| |
| // Get rid of arguments pushed on the stack. |
| __ AddImmediate( |
| SP, FP, |
| target::frame_layout.exit_link_slot_from_entry_fp * target::kWordSize); |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. Uses R9 as a temporary register for this. |
| __ Pop(R9); |
| __ StoreToOffset(R9, THR, target::Thread::top_exit_frame_info_offset()); |
| __ Pop(R9); |
| __ StoreToOffset(R9, THR, target::Thread::exit_through_ffi_offset()); |
| __ Pop(R9); |
| __ StoreToOffset(R9, THR, target::Thread::top_resource_offset()); |
| |
| // Restore the current VMTag from the stack. |
| __ Pop(R4); |
| __ StoreToOffset(R4, THR, target::Thread::vm_tag_offset()); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| __ PopNativeCalleeSavedRegisters(); |
| |
| __ set_constant_pool_allowed(false); |
| |
| // Restore the frame pointer and return. |
| RESTORES_LR_FROM_FRAME(__ LeaveFrame((1 << FP) | (1 << LR))); |
| __ Drop(1); |
| __ Ret(); |
| } |
| |
| // Helper to generate space allocation of context stub. |
| // This does not initialise the fields of the context. |
| // Input: |
| // R1: number of context variables. |
| // Output: |
| // R0: new allocated Context object. |
| // Clobbered: |
| // R2, R3, R8, R9 |
| static void GenerateAllocateContext(Assembler* assembler, Label* slow_case) { |
| // First compute the rounded instance size. |
| // R1: number of context variables. |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::Context::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| __ LoadImmediate(R2, fixed_size_plus_alignment_padding); |
| __ add(R2, R2, Operand(R1, LSL, 2)); |
| ASSERT(kSmiTagShift == 1); |
| __ bic(R2, R2, Operand(target::ObjectAlignment::kObjectAlignment - 1)); |
| |
| NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R8, kContextCid)); |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(R8, slow_case)); |
| // Now allocate the object. |
| // R1: number of context variables. |
| // R2: object size. |
| __ ldr(R0, Address(THR, target::Thread::top_offset())); |
| __ add(R3, R2, Operand(R0)); |
| // Check if the allocation fits into the remaining space. |
| // R0: potential new object. |
| // R1: number of context variables. |
| // R2: object size. |
| // R3: potential next object start. |
| __ ldr(IP, Address(THR, target::Thread::end_offset())); |
| __ cmp(R3, Operand(IP)); |
| __ b(slow_case, CS); // Branch if unsigned higher or equal. |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // R0: new object start (untagged). |
| // R1: number of context variables. |
| // R2: object size. |
| // R3: next object start. |
| __ str(R3, Address(THR, target::Thread::top_offset())); |
| __ add(R0, R0, Operand(kHeapObjectTag)); |
| |
| // Calculate the size tag. |
| // R0: new object (tagged). |
| // R1: number of context variables. |
| // R2: object size. |
| // R3: next object start. |
| const intptr_t shift = target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2; |
| __ CompareImmediate(R2, target::UntaggedObject::kSizeTagMaxSizeTag); |
| // If no size tag overflow, shift R2 left, else set R2 to zero. |
| __ mov(R9, Operand(R2, LSL, shift), LS); |
| __ mov(R9, Operand(0), HI); |
| |
| // Get the class index and insert it into the tags. |
| // R9: size and bit tags. |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(kContextCid, /*instance_size=*/0); |
| |
| __ LoadImmediate(IP, tags); |
| __ orr(R9, R9, Operand(IP)); |
| __ str(R9, FieldAddress(R0, target::Object::tags_offset())); |
| |
| // Setup up number of context variables field. |
| // R0: new object. |
| // R1: number of context variables as integer value (not object). |
| // R2: object size. |
| // R3: next object start. |
| __ str(R1, FieldAddress(R0, target::Context::num_variables_offset())); |
| } |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // R1: number of context variables. |
| // Output: |
| // R0: new allocated Context object. |
| // Clobbered: |
| // Potentially any since is can go to runtime. |
| void StubCodeCompiler::GenerateAllocateContextStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| GenerateAllocateContext(assembler, &slow_case); |
| |
| // Setup the parent field. |
| // R0: new object. |
| // R2: object size. |
| // R3: next object start. |
| __ LoadObject(R8, NullObject()); |
| __ MoveRegister(R9, R8); // Needed for InitializeFieldsNoBarrier. |
| __ StoreIntoObjectNoBarrier( |
| R0, FieldAddress(R0, target::Context::parent_offset()), R8); |
| |
| // Initialize the context variables. |
| // R0: new object. |
| // R2: object size. |
| // R3: next object start. |
| // R8, R9: raw null. |
| __ AddImmediate(R1, R0, |
| target::Context::variable_offset(0) - kHeapObjectTag); |
| __ InitializeFieldsNoBarrier(R0, R1, R3, R8, R9); |
| |
| // Done allocating and initializing the context. |
| // R0: new object. |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ LoadImmediate(R2, 0); |
| __ SmiTag(R1); |
| __ PushList((1 << R1) | (1 << R2)); |
| __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
| __ Drop(1); // Pop number of context variables argument. |
| __ Pop(R0); // Pop the new context object. |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| // R0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| |
| __ Ret(); |
| } |
| |
| // Called for clone of contexts. |
| // Input: |
| // R4: context variable to clone. |
| // Output: |
| // R0: new allocated Context object. |
| // Clobbered: |
| // Potentially any since it can go to runtime. |
| void StubCodeCompiler::GenerateCloneContextStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| // Load num. variable in the existing context. |
| __ ldr(R1, FieldAddress(R4, target::Context::num_variables_offset())); |
| |
| GenerateAllocateContext(assembler, &slow_case); |
| |
| // Load parent in the existing context. |
| __ ldr(R2, FieldAddress(R4, target::Context::parent_offset())); |
| // Setup the parent field. |
| // R0: new object. |
| __ StoreIntoObjectNoBarrier( |
| R0, FieldAddress(R0, target::Context::parent_offset()), R2); |
| |
| // Clone the context variables. |
| // R0: new object. |
| // R1: number of context variables. |
| { |
| Label loop, done; |
| __ AddImmediate(R2, R0, |
| target::Context::variable_offset(0) - kHeapObjectTag); |
| __ AddImmediate(R3, R4, |
| target::Context::variable_offset(0) - kHeapObjectTag); |
| |
| __ Bind(&loop); |
| __ subs(R1, R1, Operand(1)); |
| __ b(&done, MI); |
| |
| __ ldr(R9, Address(R3, R1, LSL, target::kWordSizeLog2)); |
| __ str(R9, Address(R2, R1, LSL, target::kWordSizeLog2)); |
| |
| __ b(&loop, NE); // Loop if R1 not zero. |
| |
| __ Bind(&done); |
| } |
| |
| // Done allocating and initializing the context. |
| // R0: new object. |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ LoadImmediate(R0, 0); |
| __ PushRegisterPair(R4, R0); |
| __ CallRuntime(kCloneContextRuntimeEntry, 1); // Clone context. |
| // R4: Pop number of context variables argument. |
| // R0: Pop the new context object. |
| __ PopRegisterPair(R4, R0); |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| // R0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierWrappersStub(Assembler* assembler) { |
| for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
| if ((kDartAvailableCpuRegs & (1 << i)) == 0) continue; |
| |
| Register reg = static_cast<Register>(i); |
| intptr_t start = __ CodeSize(); |
| SPILLS_LR_TO_FRAME(__ PushList((1 << LR) | (1 << kWriteBarrierObjectReg))); |
| __ mov(kWriteBarrierObjectReg, Operand(reg)); |
| __ Call(Address(THR, target::Thread::write_barrier_entry_point_offset())); |
| RESTORES_LR_FROM_FRAME( |
| __ PopList((1 << LR) | (1 << kWriteBarrierObjectReg))); |
| READS_RETURN_ADDRESS_FROM_LR(__ bx(LR)); |
| intptr_t end = __ CodeSize(); |
| |
| RELEASE_ASSERT(end - start == kStoreBufferWrapperSize); |
| } |
| } |
| |
| // Helper stub to implement Assembler::StoreIntoObject. |
| // Input parameters: |
| // R1: Object (old) |
| // R0: Value (old or new) |
| // R9: Slot |
| // If R0 is new, add R1 to the store buffer. Otherwise R0 is old, mark R0 |
| // and add it to the mark list. |
| COMPILE_ASSERT(kWriteBarrierObjectReg == R1); |
| COMPILE_ASSERT(kWriteBarrierValueReg == R0); |
| COMPILE_ASSERT(kWriteBarrierSlotReg == R9); |
| static void GenerateWriteBarrierStubHelper(Assembler* assembler, |
| Address stub_code, |
| bool cards) { |
| Label add_to_mark_stack, remember_card; |
| __ tst(R0, Operand(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
| __ b(&add_to_mark_stack, ZERO); |
| |
| if (cards) { |
| __ ldr(TMP, FieldAddress(R1, target::Object::tags_offset())); |
| __ tst(TMP, Operand(1 << target::UntaggedObject::kCardRememberedBit)); |
| __ b(&remember_card, NOT_ZERO); |
| } else { |
| #if defined(DEBUG) |
| Label ok; |
| __ ldr(TMP, FieldAddress(R1, target::Object::tags_offset())); |
| __ tst(TMP, Operand(1 << target::UntaggedObject::kCardRememberedBit)); |
| __ b(&ok, ZERO); |
| __ Stop("Wrong barrier"); |
| __ Bind(&ok); |
| #endif |
| } |
| |
| // Save values being destroyed. |
| __ PushList((1 << R2) | (1 << R3) | (1 << R4)); |
| |
| // Atomically set the remembered bit of the object header. |
| ASSERT(target::Object::tags_offset() == 0); |
| __ sub(R3, R1, Operand(kHeapObjectTag)); |
| // R3: Untagged address of header word (ldrex/strex do not support offsets). |
| Label retry; |
| __ Bind(&retry); |
| __ ldrex(R2, R3); |
| __ bic(R2, R2, Operand(1 << target::UntaggedObject::kOldAndNotRememberedBit)); |
| __ strex(R4, R2, R3); |
| __ cmp(R4, Operand(1)); |
| __ b(&retry, EQ); |
| |
| // Load the StoreBuffer block out of the thread. Then load top_ out of the |
| // StoreBufferBlock and add the address to the pointers_. |
| __ ldr(R4, Address(THR, target::Thread::store_buffer_block_offset())); |
| __ ldr(R2, Address(R4, target::StoreBufferBlock::top_offset())); |
| __ add(R3, R4, Operand(R2, LSL, target::kWordSizeLog2)); |
| __ str(R1, Address(R3, target::StoreBufferBlock::pointers_offset())); |
| |
| // Increment top_ and check for overflow. |
| // R2: top_. |
| // R4: StoreBufferBlock. |
| Label overflow; |
| __ add(R2, R2, Operand(1)); |
| __ str(R2, Address(R4, target::StoreBufferBlock::top_offset())); |
| __ CompareImmediate(R2, target::StoreBufferBlock::kSize); |
| // Restore values. |
| __ PopList((1 << R2) | (1 << R3) | (1 << R4)); |
| __ b(&overflow, EQ); |
| __ Ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&overflow); |
| // Setup frame, push callee-saved registers. |
| |
| __ Push(CODE_REG); |
| __ ldr(CODE_REG, stub_code); |
| __ EnterCallRuntimeFrame(0 * target::kWordSize); |
| __ mov(R0, Operand(THR)); |
| __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1); |
| // Restore callee-saved registers, tear down frame. |
| __ LeaveCallRuntimeFrame(); |
| __ Pop(CODE_REG); |
| __ Ret(); |
| |
| __ Bind(&add_to_mark_stack); |
| __ PushList((1 << R2) | (1 << R3) | (1 << R4)); // Spill. |
| |
| Label marking_retry, lost_race, marking_overflow; |
| // Atomically clear kOldAndNotMarkedBit. |
| ASSERT(target::Object::tags_offset() == 0); |
| __ sub(R3, R0, Operand(kHeapObjectTag)); |
| // R3: Untagged address of header word (ldrex/strex do not support offsets). |
| __ Bind(&marking_retry); |
| __ ldrex(R2, R3); |
| __ tst(R2, Operand(1 << target::UntaggedObject::kOldAndNotMarkedBit)); |
| __ b(&lost_race, ZERO); |
| __ bic(R2, R2, Operand(1 << target::UntaggedObject::kOldAndNotMarkedBit)); |
| __ strex(R4, R2, R3); |
| __ cmp(R4, Operand(1)); |
| __ b(&marking_retry, EQ); |
| |
| __ ldr(R4, Address(THR, target::Thread::marking_stack_block_offset())); |
| __ ldr(R2, Address(R4, target::MarkingStackBlock::top_offset())); |
| __ add(R3, R4, Operand(R2, LSL, target::kWordSizeLog2)); |
| __ str(R0, Address(R3, target::MarkingStackBlock::pointers_offset())); |
| __ add(R2, R2, Operand(1)); |
| __ str(R2, Address(R4, target::MarkingStackBlock::top_offset())); |
| __ CompareImmediate(R2, target::MarkingStackBlock::kSize); |
| __ PopList((1 << R4) | (1 << R2) | (1 << R3)); // Unspill. |
| __ b(&marking_overflow, EQ); |
| __ Ret(); |
| |
| __ Bind(&marking_overflow); |
| __ Push(CODE_REG); |
| __ ldr(CODE_REG, stub_code); |
| __ EnterCallRuntimeFrame(0 * target::kWordSize); |
| __ mov(R0, Operand(THR)); |
| __ CallRuntime(kMarkingStackBlockProcessRuntimeEntry, 1); |
| __ LeaveCallRuntimeFrame(); |
| __ Pop(CODE_REG); |
| __ Ret(); |
| |
| __ Bind(&lost_race); |
| __ PopList((1 << R2) | (1 << R3) | (1 << R4)); // Unspill. |
| __ Ret(); |
| |
| if (cards) { |
| Label remember_card_slow; |
| |
| // Get card table. |
| __ Bind(&remember_card); |
| __ AndImmediate(TMP, R1, target::kOldPageMask); // OldPage. |
| __ ldr(TMP, |
| Address(TMP, target::OldPage::card_table_offset())); // Card table. |
| __ cmp(TMP, Operand(0)); |
| __ b(&remember_card_slow, EQ); |
| |
| // Dirty the card. |
| __ AndImmediate(TMP, R1, target::kOldPageMask); // OldPage. |
| __ sub(R9, R9, Operand(TMP)); // Offset in page. |
| __ ldr(TMP, |
| Address(TMP, target::OldPage::card_table_offset())); // Card table. |
| __ add(TMP, TMP, |
| Operand(R9, LSR, |
| target::OldPage::kBytesPerCardLog2)); // Card address. |
| __ strb(R1, |
| Address(TMP, 0)); // Low byte of R0 is non-zero from object tag. |
| __ Ret(); |
| |
| // Card table not yet allocated. |
| __ Bind(&remember_card_slow); |
| __ Push(CODE_REG); |
| __ Push(R0); |
| __ Push(R1); |
| __ ldr(CODE_REG, stub_code); |
| __ mov(R0, Operand(R1)); // Arg0 = Object |
| __ mov(R1, Operand(R9)); // Arg1 = Slot |
| __ EnterCallRuntimeFrame(0); |
| __ CallRuntime(kRememberCardRuntimeEntry, 2); |
| __ LeaveCallRuntimeFrame(); |
| __ Pop(R1); |
| __ Pop(R0); |
| __ Pop(CODE_REG); |
| __ Ret(); |
| } |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierStub(Assembler* assembler) { |
| GenerateWriteBarrierStubHelper( |
| assembler, Address(THR, target::Thread::write_barrier_code_offset()), |
| false); |
| } |
| |
| void StubCodeCompiler::GenerateArrayWriteBarrierStub(Assembler* assembler) { |
| GenerateWriteBarrierStubHelper( |
| assembler, |
| Address(THR, target::Thread::array_write_barrier_code_offset()), true); |
| } |
| |
| static void GenerateAllocateObjectHelper(Assembler* assembler, |
| bool is_cls_parameterized) { |
| const Register kTagsReg = R2; |
| |
| { |
| Label slow_case; |
| |
| const Register kNewTopReg = R8; |
| |
| // Bump allocation. |
| { |
| const Register kEndReg = R1; |
| const Register kInstanceSizeReg = R9; |
| |
| __ ExtractInstanceSizeFromTags(kInstanceSizeReg, kTagsReg); |
| |
| // Load two words from Thread::top: top and end. |
| // AllocateObjectABI::kResultReg: potential next object start. |
| __ ldrd(AllocateObjectABI::kResultReg, kEndReg, THR, |
| target::Thread::top_offset()); |
| |
| __ add(kNewTopReg, AllocateObjectABI::kResultReg, |
| Operand(kInstanceSizeReg)); |
| |
| __ CompareRegisters(kEndReg, kNewTopReg); |
| __ b(&slow_case, UNSIGNED_LESS_EQUAL); |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and store the class in the class field of object. |
| __ str(kNewTopReg, Address(THR, target::Thread::top_offset())); |
| } // kEndReg = R1, kInstanceSizeReg = R9 |
| |
| // Tags. |
| __ str(kTagsReg, Address(AllocateObjectABI::kResultReg, |
| target::Object::tags_offset())); |
| |
| // Initialize the remaining words of the object. |
| { |
| const Register kFieldReg = R1; |
| const Register kNullReg = R9; |
| |
| __ LoadObject(kNullReg, NullObject()); |
| |
| __ AddImmediate(kFieldReg, AllocateObjectABI::kResultReg, |
| target::Instance::first_field_offset()); |
| Label done, init_loop; |
| __ Bind(&init_loop); |
| __ CompareRegisters(kFieldReg, kNewTopReg); |
| __ b(&done, UNSIGNED_GREATER_EQUAL); |
| __ str(kNullReg, |
| Address(kFieldReg, target::kWordSize, Address::PostIndex)); |
| __ b(&init_loop); |
| |
| __ Bind(&done); |
| } // kFieldReg = R1, kNullReg = R9 |
| |
| // Store parameterized type. |
| if (is_cls_parameterized) { |
| Label not_parameterized_case; |
| |
| const Register kClsIdReg = R2; |
| const Register kTypeOffestReg = R9; |
| |
| __ ExtractClassIdFromTags(kClsIdReg, kTagsReg); |
| |
| // Load class' type_arguments_field offset in words. |
| __ LoadClassById(kTypeOffestReg, kClsIdReg); |
| __ ldr( |
| kTypeOffestReg, |
| FieldAddress(kTypeOffestReg, |
| target::Class:: |
| host_type_arguments_field_offset_in_words_offset())); |
| |
| // Set the type arguments in the new object. |
| __ StoreIntoObjectNoBarrier( |
| AllocateObjectABI::kResultReg, |
| Address(AllocateObjectABI::kResultReg, kTypeOffestReg, LSL, |
| target::kWordSizeLog2), |
| AllocateObjectABI::kTypeArgumentsReg); |
| |
| __ Bind(¬_parameterized_case); |
| } // kClsIdReg = R1, kTypeOffestReg = R9 |
| |
| __ AddImmediate(AllocateObjectABI::kResultReg, |
| AllocateObjectABI::kResultReg, kHeapObjectTag); |
| |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } // kNewTopReg = R8 |
| |
| // Fall back on slow case: |
| { |
| const Register kStubReg = R8; |
| |
| if (!is_cls_parameterized) { |
| __ LoadObject(AllocateObjectABI::kTypeArgumentsReg, NullObject()); |
| } |
| |
| // Tail call to generic allocation stub. |
| __ ldr(kStubReg, |
| Address(THR, |
| target::Thread::allocate_object_slow_entry_point_offset())); |
| __ bx(kStubReg); |
| } // kStubReg = R8 |
| } |
| |
| // Called for inline allocation of objects (any class). |
| void StubCodeCompiler::GenerateAllocateObjectStub(Assembler* assembler) { |
| GenerateAllocateObjectHelper(assembler, /*is_cls_parameterized=*/false); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectParameterizedStub( |
| Assembler* assembler) { |
| GenerateAllocateObjectHelper(assembler, /*is_cls_parameterized=*/true); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectSlowStub(Assembler* assembler) { |
| const Register kClsReg = R1; |
| const Register kTagsReg = R2; |
| |
| if (!FLAG_use_bare_instructions) { |
| __ ldr(CODE_REG, |
| Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| |
| __ ExtractClassIdFromTags(AllocateObjectABI::kResultReg, kTagsReg); |
| __ LoadClassById(kClsReg, AllocateObjectABI::kResultReg); |
| |
| __ LoadObject(AllocateObjectABI::kResultReg, NullObject()); |
| |
| // Pushes result slot, then parameter class. |
| __ PushRegisterPair(kClsReg, AllocateObjectABI::kResultReg); |
| |
| // Should be Object::null() if class is non-parameterized. |
| __ Push(AllocateObjectABI::kTypeArgumentsReg); |
| |
| __ CallRuntime(kAllocateObjectRuntimeEntry, 2); |
| |
| // Load result off the stack into result register. |
| __ ldr(AllocateObjectABI::kResultReg, Address(SP, 2 * target::kWordSize)); |
| |
| // Write-barrier elimination is enabled for [cls] and we therefore need to |
| // ensure that the object is in new-space or has remembered bit set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| __ LeaveDartFrameAndReturn(); |
| } |
| |
| // Called for inline allocation of objects. |
| void StubCodeCompiler::GenerateAllocationStubForClass( |
| Assembler* assembler, |
| UnresolvedPcRelativeCalls* unresolved_calls, |
| const Class& cls, |
| const Code& allocate_object, |
| const Code& allocat_object_parametrized) { |
| classid_t cls_id = target::Class::GetId(cls); |
| ASSERT(cls_id != kIllegalCid); |
| |
| RELEASE_ASSERT(AllocateObjectInstr::WillAllocateNewOrRemembered(cls)); |
| |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0; |
| ASSERT(!is_cls_parameterized || target::Class::TypeArgumentsFieldOffset( |
| cls) != target::Class::kNoTypeArguments); |
| |
| const intptr_t instance_size = target::Class::GetInstanceSize(cls); |
| ASSERT(instance_size > 0); |
| RELEASE_ASSERT(target::Heap::IsAllocatableInNewSpace(instance_size)); |
| |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(cls_id, instance_size); |
| |
| const Register kTagsReg = R2; |
| |
| __ LoadImmediate(kTagsReg, tags); |
| |
| if (!FLAG_use_slow_path && FLAG_inline_alloc && |
| !target::Class::TraceAllocation(cls) && |
| target::SizeFitsInSizeTag(instance_size)) { |
| if (is_cls_parameterized) { |
| // TODO(41974): Assign all allocation stubs to the root loading unit? |
| if (false && |
| !IsSameObject(NullObject(), |
| CastHandle<Object>(allocat_object_parametrized))) { |
| __ GenerateUnRelocatedPcRelativeTailCall(); |
| unresolved_calls->Add(new UnresolvedPcRelativeCall( |
| __ CodeSize(), allocat_object_parametrized, /*is_tail_call=*/true)); |
| } else { |
| __ ldr(PC, |
| Address(THR, |
| target::Thread:: |
| allocate_object_parameterized_entry_point_offset())); |
| } |
| } else { |
| // TODO(41974): Assign all allocation stubs to the root loading unit? |
| if (false && |
| !IsSameObject(NullObject(), CastHandle<Object>(allocate_object))) { |
| __ GenerateUnRelocatedPcRelativeTailCall(); |
| unresolved_calls->Add(new UnresolvedPcRelativeCall( |
| __ CodeSize(), allocate_object, /*is_tail_call=*/true)); |
| } else { |
| __ ldr( |
| PC, |
| Address(THR, target::Thread::allocate_object_entry_point_offset())); |
| } |
| } |
| } else { |
| if (!is_cls_parameterized) { |
| __ LoadObject(AllocateObjectABI::kTypeArgumentsReg, NullObject()); |
| } |
| __ ldr(PC, |
| Address(THR, |
| target::Thread::allocate_object_slow_entry_point_offset())); |
| } |
| } |
| |
| // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
| // from the entry code of a dart function after an error in passed argument |
| // name or number is detected. |
| // Input parameters: |
| // LR : return address. |
| // SP : address of last argument. |
| // R4: arguments descriptor array. |
| void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub( |
| Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ ldr(R2, FieldAddress(R4, target::ArgumentsDescriptor::count_offset())); |
| __ add(IP, FP, Operand(R2, LSL, 1)); // R2 is Smi. |
| __ ldr(R8, Address(IP, target::frame_layout.param_end_from_fp * |
| target::kWordSize)); |
| |
| // Load the function. |
| __ ldr(R6, FieldAddress(R8, target::Closure::function_offset())); |
| |
| // Push space for the return value. |
| // Push the receiver. |
| // Push arguments descriptor array. |
| __ LoadImmediate(IP, 0); |
| __ PushList((1 << R4) | (1 << R6) | (1 << R8) | (1 << IP)); |
| |
| // Adjust arguments count. |
| __ ldr(R3, |
| FieldAddress(R4, target::ArgumentsDescriptor::type_args_len_offset())); |
| __ cmp(R3, Operand(0)); |
| __ AddImmediate(R2, R2, target::ToRawSmi(1), |
| NE); // Include the type arguments. |
| |
| // R2: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs); |
| // noSuchMethod on closures always throws an error, so it will never return. |
| __ bkpt(0); |
| } |
| |
| // R8: function object. |
| // R9: inline cache data object. |
| // Cannot use function object from ICData as it may be the inlined |
| // function and not the top-scope function. |
| void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement( |
| Assembler* assembler) { |
| Register ic_reg = R9; |
| Register func_reg = R8; |
| if (FLAG_precompiled_mode) { |
| __ Breakpoint(); |
| return; |
| } |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ PushList((1 << R9) | (1 << R8)); // Preserve. |
| __ Push(ic_reg); // Argument. |
| __ Push(func_reg); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry, 2); |
| __ Drop(2); // Discard argument; |
| __ PopList((1 << R9) | (1 << R8)); // Restore. |
| __ LeaveStubFrame(); |
| } |
| __ ldr(TMP, FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| __ add(TMP, TMP, Operand(1)); |
| __ str(TMP, FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| |
| // Loads function into 'temp_reg'. |
| void StubCodeCompiler::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register temp_reg) { |
| if (FLAG_precompiled_mode) { |
| __ Breakpoint(); |
| return; |
| } |
| if (FLAG_optimization_counter_threshold >= 0) { |
| Register ic_reg = R9; |
| Register func_reg = temp_reg; |
| ASSERT(temp_reg == R8); |
| __ Comment("Increment function counter"); |
| __ ldr(func_reg, FieldAddress(ic_reg, target::ICData::owner_offset())); |
| __ ldr(TMP, |
| FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| __ add(TMP, TMP, Operand(1)); |
| __ str(TMP, |
| FieldAddress(func_reg, target::Function::usage_counter_offset())); |
| } |
| } |
| |
| // Note: R9 must be preserved. |
| // Attempt a quick Smi operation for known operations ('kind'). The ICData |
| // must have been primed with a Smi/Smi check that will be used for counting |
| // the invocations. |
| static void EmitFastSmiOp(Assembler* assembler, |
| Token::Kind kind, |
| intptr_t num_args, |
| Label* not_smi_or_overflow) { |
| __ Comment("Fast Smi op"); |
| __ ldr(R0, Address(SP, 1 * target::kWordSize)); // Left. |
| __ ldr(R1, Address(SP, 0 * target::kWordSize)); // Right. |
| __ orr(TMP, R0, Operand(R1)); |
| __ tst(TMP, Operand(kSmiTagMask)); |
| __ b(not_smi_or_overflow, NE); |
| switch (kind) { |
| case Token::kADD: { |
| __ adds(R0, R1, Operand(R0)); // Adds. |
| __ b(not_smi_or_overflow, VS); // Branch if overflow. |
| break; |
| } |
| case Token::kLT: { |
| __ cmp(R0, Operand(R1)); |
| __ LoadObject(R0, CastHandle<Object>(TrueObject()), LT); |
| __ LoadObject(R0, CastHandle<Object>(FalseObject()), GE); |
| break; |
| } |
| case Token::kEQ: { |
| __ cmp(R0, Operand(R1)); |
| __ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ); |
| __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| // R9: IC data object (preserved). |
| __ ldr(R8, FieldAddress(R9, target::ICData::entries_offset())); |
| // R8: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(R8, target::Array::data_offset() - kHeapObjectTag); |
| // R8: points directly to the first ic data array element. |
| #if defined(DEBUG) |
| // Check that first entry is for Smi/Smi. |
| Label error, ok; |
| const intptr_t imm_smi_cid = target::ToRawSmi(kSmiCid); |
| __ ldr(R1, Address(R8, 0)); |
| __ CompareImmediate(R1, imm_smi_cid); |
| __ b(&error, NE); |
| __ ldr(R1, Address(R8, target::kWordSize)); |
| __ CompareImmediate(R1, imm_smi_cid); |
| __ b(&ok, EQ); |
| __ Bind(&error); |
| __ Stop("Incorrect IC data"); |
| __ Bind(&ok); |
| #endif |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Update counter, ignore overflow. |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kWordSize; |
| __ LoadFromOffset(R1, R8, count_offset); |
| __ adds(R1, R1, Operand(target::ToRawSmi(1))); |
| __ StoreIntoSmiField(Address(R8, count_offset), R1); |
| } |
| __ Ret(); |
| } |
| |
| // Saves the offset of the target entry-point (from the Function) into R3. |
| // |
| // Must be the first code generated, since any code before will be skipped in |
| // the unchecked entry-point. |
| static void GenerateRecordEntryPoint(Assembler* assembler) { |
| Label done; |
| __ mov(R3, Operand(target::Function::entry_point_offset() - kHeapObjectTag)); |
| __ b(&done); |
| __ BindUncheckedEntryPoint(); |
| __ mov( |
| R3, |
| Operand(target::Function::entry_point_offset(CodeEntryKind::kUnchecked) - |
| kHeapObjectTag)); |
| __ Bind(&done); |
| } |
| |
| // Generate inline cache check for 'num_args'. |
| // R0: receiver (if instance call) |
| // R9: ICData |
| // LR: return address |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub( |
| Assembler* assembler, |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| Optimized optimized, |
| CallType type, |
| Exactness exactness) { |
| if (FLAG_precompiled_mode) { |
| __ Breakpoint(); |
| return; |
| } |
| |
| const bool save_entry_point = kind == Token::kILLEGAL; |
| if (save_entry_point) { |
| GenerateRecordEntryPoint(assembler); |
| } |
| |
| if (optimized == kOptimized) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| } else { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ R8); |
| } |
| |
| ASSERT(exactness == kIgnoreExactness); // Unimplemented. |
| __ CheckCodePointer(); |
| ASSERT(num_args == 1 || num_args == 2); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ ldr(R8, FieldAddress(R9, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ and_(R8, R8, Operand(target::ICData::NumArgsTestedMask())); |
| __ CompareImmediate(R8, num_args); |
| __ b(&ok, EQ); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| Label stepping, done_stepping; |
| if (optimized == kUnoptimized) { |
| __ Comment("Check single stepping"); |
| __ LoadIsolate(R8); |
| __ ldrb(R8, Address(R8, target::Isolate::single_step_offset())); |
| __ CompareImmediate(R8, 0); |
| __ b(&stepping, NE); |
| __ Bind(&done_stepping); |
| } |
| #endif |
| |
| Label not_smi_or_overflow; |
| if (kind != Token::kILLEGAL) { |
| EmitFastSmiOp(assembler, kind, num_args, ¬_smi_or_overflow); |
| } |
| __ Bind(¬_smi_or_overflow); |
| |
| __ Comment("Extract ICData initial values and receiver cid"); |
| // R9: IC data object (preserved). |
| __ ldr(R8, FieldAddress(R9, target::ICData::entries_offset())); |
| // R8: ic_data_array with check entries: classes and target functions. |
| const int kIcDataOffset = target::Array::data_offset() - kHeapObjectTag; |
| // R8: points at the IC data array. |
| |
| if (type == kInstanceCall) { |
| __ LoadTaggedClassIdMayBeSmi(R0, R0); |
| __ ldr(R4, FieldAddress( |
| R9, target::CallSiteData::arguments_descriptor_offset())); |
| if (num_args == 2) { |
| __ ldr(R1, FieldAddress(R4, target::ArgumentsDescriptor::count_offset())); |
| __ sub(R1, R1, Operand(target::ToRawSmi(2))); |
| __ ldr(R1, Address(SP, R1, LSL, 1)); // R1 (argument_count - 2) is Smi. |
| __ LoadTaggedClassIdMayBeSmi(R1, R1); |
| } |
| } else { |
| // Load arguments descriptor into R4. |
| __ ldr(R4, FieldAddress( |
| R9, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Get the receiver's class ID (first read number of arguments from |
| // arguments descriptor array and then access the receiver from the stack). |
| __ ldr(R1, FieldAddress(R4, target::ArgumentsDescriptor::count_offset())); |
| __ sub(R1, R1, Operand(target::ToRawSmi(1))); |
| // R1: argument_count - 1 (smi). |
| |
| __ ldr(R0, Address(SP, R1, LSL, 1)); // R1 (argument_count - 1) is Smi. |
| __ LoadTaggedClassIdMayBeSmi(R0, R0); |
| |
| if (num_args == 2) { |
| __ sub(R1, R1, Operand(target::ToRawSmi(1))); |
| __ ldr(R1, Address(SP, R1, LSL, 1)); // R1 (argument_count - 2) is Smi. |
| __ LoadTaggedClassIdMayBeSmi(R1, R1); |
| } |
| } |
| // R0: first argument class ID as Smi. |
| // R1: second argument class ID as Smi. |
| // R4: args descriptor |
| |
| // Loop that checks if there is an IC data match. |
| Label loop, found, miss; |
| __ Comment("ICData loop"); |
| |
| // We unroll the generic one that is generated once more than the others. |
| const bool optimize = kind == Token::kILLEGAL; |
| |
| __ Bind(&loop); |
| for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) { |
| Label update; |
| |
| __ ldr(R2, Address(R8, kIcDataOffset)); |
| __ cmp(R0, Operand(R2)); // Class id match? |
| if (num_args == 2) { |
| __ b(&update, NE); // Continue. |
| __ ldr(R2, Address(R8, kIcDataOffset + target::kWordSize)); |
| __ cmp(R1, Operand(R2)); // Class id match? |
| } |
| __ b(&found, EQ); // Break. |
| |
| __ Bind(&update); |
| |
| const intptr_t entry_size = target::ICData::TestEntryLengthFor( |
| num_args, exactness == kCheckExactness) * |
| target::kWordSize; |
| __ AddImmediate(R8, entry_size); // Next entry. |
| |
| __ CompareImmediate(R2, target::ToRawSmi(kIllegalCid)); // Done? |
| if (unroll == 0) { |
| __ b(&loop, NE); |
| } else { |
| __ b(&miss, EQ); |
| } |
| } |
| |
| __ Bind(&miss); |
| __ Comment("IC miss"); |
| // Compute address of arguments. |
| __ ldr(R1, FieldAddress(R4, target::ArgumentsDescriptor::count_offset())); |
| __ sub(R1, R1, Operand(target::ToRawSmi(1))); |
| // R1: argument_count - 1 (smi). |
| __ add(R1, SP, Operand(R1, LSL, 1)); // R1 is Smi. |
| // R1: address of receiver. |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ LoadImmediate(R0, 0); |
| // Preserve IC data object and arguments descriptor array and |
| // setup space on stack for result (target code object). |
| RegList regs = (1 << R0) | (1 << R4) | (1 << R9); |
| if (save_entry_point) { |
| __ SmiTag(R3); |
| regs |= 1 << R3; |
| } |
| __ PushList(regs); |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ LoadFromOffset(TMP, R1, -i * target::kWordSize); |
| __ Push(TMP); |
| } |
| // Pass IC data object. |
| __ Push(R9); |
| __ CallRuntime(handle_ic_miss, num_args + 1); |
| // Remove the call arguments pushed earlier, including the IC data object. |
| __ Drop(num_args + 1); |
| // Pop returned function object into R0. |
| // Restore arguments descriptor array and IC data array. |
| __ PopList(regs); |
| if (save_entry_point) { |
| __ SmiUntag(R3); |
| } |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| Label call_target_function; |
| if (!FLAG_lazy_dispatchers) { |
| GenerateDispatcherCode(assembler, &call_target_function); |
| } else { |
| __ b(&call_target_function); |
| } |
| |
| __ Bind(&found); |
| // R8: pointer to an IC data check group. |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(num_args) * target::kWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kWordSize; |
| __ LoadFromOffset(R0, R8, kIcDataOffset + target_offset); |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Update caller's counter"); |
| __ LoadFromOffset(R1, R8, kIcDataOffset + count_offset); |
| // Ignore overflow. |
| __ adds(R1, R1, Operand(target::ToRawSmi(1))); |
| __ StoreIntoSmiField(Address(R8, kIcDataOffset + count_offset), R1); |
| } |
| |
| __ Comment("Call target"); |
| __ Bind(&call_target_function); |
| // R0: target function. |
| __ ldr(CODE_REG, FieldAddress(R0, target::Function::code_offset())); |
| |
| if (save_entry_point) { |
| __ Branch(Address(R0, R3)); |
| } else { |
| __ Branch(FieldAddress(R0, target::Function::entry_point_offset())); |
| } |
| |
| #if !defined(PRODUCT) |
| if (optimized == kUnoptimized) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| if (type == kInstanceCall) { |
| __ Push(R0); // Preserve receiver. |
| } |
| RegList regs = 1 << R9; |
| if (save_entry_point) { |
| regs |= 1 << R3; |
| __ SmiTag(R3); // Entry-point is not Smi. |
| } |
| __ PushList(regs); // Preserve IC data and entry-point. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ PopList(regs); // Restore IC data and entry-point |
| if (save_entry_point) { |
| __ SmiUntag(R3); |
| } |
| if (type == kInstanceCall) { |
| __ Pop(R0); |
| } |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ b(&done_stepping); |
| } |
| #endif |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub( |
| Assembler* assembler) { |
| __ Stop("Unimplemented"); |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateSmiAddInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateSmiLessInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateSmiEqualInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // R8: Function |
| // LR: return address |
| void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // R8: Function |
| // LR: return address |
| void StubCodeCompiler:: |
| GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub( |
| Assembler* assembler) { |
| __ Stop("Unimplemented"); |
| } |
| |
| // R0: receiver |
| // R9: ICData |
| // R8: Function |
| // LR: return address |
| void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateRecordEntryPoint(assembler); |
| GenerateUsageCounterIncrement(assembler, /* scratch */ R8); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == 0. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ ldr(R8, FieldAddress(R9, target::ICData::state_bits_offset())); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ and_(R8, R8, Operand(target::ICData::NumArgsTestedMask())); |
| __ CompareImmediate(R8, 0); |
| __ b(&ok, EQ); |
| __ Stop("Incorrect IC data for unoptimized static call"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(R8); |
| __ ldrb(R8, Address(R8, target::Isolate::single_step_offset())); |
| __ CompareImmediate(R8, 0); |
| __ b(&stepping, NE); |
| __ Bind(&done_stepping); |
| #endif |
| |
| // R9: IC data object (preserved). |
| __ ldr(R8, FieldAddress(R9, target::ICData::entries_offset())); |
| // R8: ic_data_array with entries: target functions and count. |
| __ AddImmediate(R8, target::Array::data_offset() - kHeapObjectTag); |
| // R8: points directly to the first ic data array element. |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(0) * target::kWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(0) * target::kWordSize; |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Increment count for this call, ignore overflow. |
| __ LoadFromOffset(R1, R8, count_offset); |
| __ adds(R1, R1, Operand(target::ToRawSmi(1))); |
| __ StoreIntoSmiField(Address(R8, count_offset), R1); |
| } |
| |
| // Load arguments descriptor into R4. |
| __ ldr(R4, |
| FieldAddress(R9, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Get function and call it, if possible. |
| __ LoadFromOffset(R0, R8, target_offset); |
| __ ldr(CODE_REG, FieldAddress(R0, target::Function::code_offset())); |
| |
| __ Branch(Address(R0, R3)); |
| |
| #if !defined(PRODUCT) |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ SmiTag(R3); // Entry-point is not Smi. |
| __ PushList((1 << R9) | (1 << R3)); // Preserve IC data and entry-point. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ PopList((1 << R9) | (1 << R3)); |
| __ SmiUntag(R3); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ b(&done_stepping); |
| #endif |
| } |
| |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ R8); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kStaticCallMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // R9: ICData |
| // LR: return address |
| void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ R8); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // Stub for compiling a function and jumping to the compiled code. |
| // R4: Arguments descriptor. |
| // R0: Function. |
| void StubCodeCompiler::GenerateLazyCompileStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ PushList((1 << R0) | (1 << R4)); // Preserve arg desc, pass function. |
| __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
| __ PopList((1 << R0) | (1 << R4)); |
| __ LeaveStubFrame(); |
| |
| __ ldr(CODE_REG, FieldAddress(R0, target::Function::code_offset())); |
| __ Branch(FieldAddress(R0, target::Function::entry_point_offset())); |
| } |
| |
| // R9: Contains an ICData. |
| void StubCodeCompiler::GenerateICCallBreakpointStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ Push(R0); // Preserve receiver. |
| __ Push(R9); // Preserve IC data. |
| __ PushImmediate(0); // Space for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ Pop(CODE_REG); // Original stub. |
| __ Pop(R9); // Restore IC data. |
| __ Pop(R0); // Restore receiver. |
| __ LeaveStubFrame(); |
| __ Branch(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateUnoptStaticCallBreakpointStub( |
| Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ Push(R9); // Preserve IC data. |
| __ PushImmediate(0); // Space for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ Pop(CODE_REG); // Original stub. |
| __ Pop(R9); // Restore IC data. |
| __ LeaveStubFrame(); |
| __ Branch(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateRuntimeCallBreakpointStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ LoadImmediate(R0, 0); |
| // Make room for result. |
| __ PushList((1 << R0)); |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ PopList((1 << CODE_REG)); |
| __ LeaveStubFrame(); |
| __ Branch(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Called only from unoptimized code. All relevant registers have been saved. |
| void StubCodeCompiler::GenerateDebugStepCheckStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(R1); |
| __ ldrb(R1, Address(R1, target::Isolate::single_step_offset())); |
| __ CompareImmediate(R1, 0); |
| __ b(&stepping, NE); |
| __ Bind(&done_stepping); |
| __ Ret(); |
| |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ LeaveStubFrame(); |
| __ b(&done_stepping); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // |
| // Inputs (mostly from TypeTestABI struct): |
| // - kSubtypeTestCacheReg: SubtypeTestCacheLayout |
| // - kInstanceReg: instance to test against. |
| // - kDstTypeReg: destination type (for n>=3). |
| // - kInstantiatorTypeArgumentsReg: instantiator type arguments (for n=5). |
| // - kFunctionTypeArgumentsReg: function type arguments (for n=5). |
| // - LR: return address. |
| // |
| // All TypeTestABI registers are preserved but kSubtypeTestCacheReg, which must |
| // be saved by the caller if the original value is needed after the call. |
| // |
| // Result in SubtypeTestCacheABI::kResultReg: null -> not found, otherwise |
| // result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| ASSERT(n == 1 || n == 3 || n == 5 || n == 7); |
| |
| // Safe as the original value of TypeTestABI::kSubtypeTestCacheReg is only |
| // used to initialize this register. |
| const Register kCacheArrayReg = TypeTestABI::kSubtypeTestCacheReg; |
| const Register kScratchReg = TypeTestABI::kScratchReg; |
| |
| // Registers that are only used for n >= 3 and must be preserved if used. |
| Register kInstanceInstantiatorTypeArgumentsReg = kNoRegister; |
| // Registers that are only used for n >= 7 and must be preserved if used. |
| Register kInstanceParentFunctionTypeArgumentsReg = kNoRegister; |
| // There is no register for InstanceDelayedFunctionTypeArguments, it is |
| // instead placed on the stack and pulled into TMP for comparison against |
| // the corresponding slot in the current cache entry. |
| |
| // NOTFP must be preserved for bare payloads, otherwise CODE_REG. |
| const bool use_bare_payloads = |
| FLAG_precompiled_mode && FLAG_use_bare_instructions; |
| // For this, we choose the register that need not be preserved of the pair. |
| const Register kNullReg = use_bare_payloads ? CODE_REG : NOTFP; |
| __ LoadObject(kNullReg, NullObject()); |
| |
| // Free up registers to be used if performing a 3, 5, or 7 value test. |
| RegList pushed_registers = 0; |
| if (n >= 3) { |
| kInstanceInstantiatorTypeArgumentsReg = PP; |
| pushed_registers |= 1 << kInstanceInstantiatorTypeArgumentsReg; |
| } |
| if (n >= 7) { |
| // For this, we choose the register that must be preserved of the pair. |
| kInstanceParentFunctionTypeArgumentsReg = |
| use_bare_payloads ? NOTFP : CODE_REG; |
| pushed_registers |= 1 << kInstanceParentFunctionTypeArgumentsReg; |
| } |
| if (pushed_registers != 0) { |
| __ PushList(pushed_registers); |
| } |
| |
| // Loop initialization (moved up here to avoid having all dependent loads |
| // after each other). |
| |
| // We avoid a load-acquire barrier here by relying on the fact that all other |
| // loads from the array are data-dependent loads. |
| __ ldr(kCacheArrayReg, |
| FieldAddress(TypeTestABI::kSubtypeTestCacheReg, |
| target::SubtypeTestCache::cache_offset())); |
| __ AddImmediate(kCacheArrayReg, |
| target::Array::data_offset() - kHeapObjectTag); |
| |
| Label loop, not_closure; |
| if (n >= 5) { |
| __ LoadClassIdMayBeSmi(STCInternalRegs::kInstanceCidOrSignatureReg, |
| TypeTestABI::kInstanceReg); |
| } else { |
| __ LoadClassId(STCInternalRegs::kInstanceCidOrSignatureReg, |
| TypeTestABI::kInstanceReg); |
| } |
| __ CompareImmediate(STCInternalRegs::kInstanceCidOrSignatureReg, kClosureCid); |
| __ b(¬_closure, NE); |
| |
| // Closure handling. |
| { |
| __ ldr(STCInternalRegs::kInstanceCidOrSignatureReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::function_offset())); |
| __ ldr(STCInternalRegs::kInstanceCidOrSignatureReg, |
| FieldAddress(STCInternalRegs::kInstanceCidOrSignatureReg, |
| target::Function::signature_offset())); |
| if (n >= 3) { |
| __ ldr( |
| kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::instantiator_type_arguments_offset())); |
| if (n >= 7) { |
| __ ldr(kInstanceParentFunctionTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::function_type_arguments_offset())); |
| __ ldr(kScratchReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::delayed_type_arguments_offset())); |
| __ PushRegister(kScratchReg); |
| } |
| } |
| __ b(&loop); |
| } |
| |
| // Non-Closure handling. |
| { |
| __ Bind(¬_closure); |
| if (n >= 3) { |
| Label has_no_type_arguments; |
| __ LoadClassById(kScratchReg, |
| STCInternalRegs::kInstanceCidOrSignatureReg); |
| __ mov(kInstanceInstantiatorTypeArgumentsReg, Operand(kNullReg)); |
| __ ldr( |
| kScratchReg, |
| FieldAddress(kScratchReg, |
| target::Class:: |
| host_type_arguments_field_offset_in_words_offset())); |
| __ CompareImmediate(kScratchReg, target::Class::kNoTypeArguments); |
| __ b(&has_no_type_arguments, EQ); |
| __ add(kScratchReg, TypeTestABI::kInstanceReg, |
| Operand(kScratchReg, LSL, 2)); |
| __ ldr(kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(kScratchReg, 0)); |
| __ Bind(&has_no_type_arguments); |
| |
| if (n >= 7) { |
| __ mov(kInstanceParentFunctionTypeArgumentsReg, Operand(kNullReg)); |
| __ PushRegister(kNullReg); |
| } |
| } |
| __ SmiTag(STCInternalRegs::kInstanceCidOrSignatureReg); |
| } |
| |
| const intptr_t kNoDepth = -1; |
| const intptr_t kInstanceDelayedFunctionTypeArgumentsDepth = |
| n >= 7 ? 0 : kNoDepth; |
| |
| Label found, not_found, next_iteration; |
| |
| // Loop header. |
| __ Bind(&loop); |
| __ ldr(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstanceCidOrSignature)); |
| __ cmp(kScratchReg, Operand(kNullReg)); |
| __ b(¬_found, EQ); |
| __ cmp(kScratchReg, Operand(STCInternalRegs::kInstanceCidOrSignatureReg)); |
| if (n == 1) { |
| __ b(&found, EQ); |
| } else { |
| __ b(&next_iteration, NE); |
| __ ldr(kScratchReg, |
| Address( |
| kCacheArrayReg, |
| target::kWordSize * target::SubtypeTestCache::kDestinationType)); |
| __ cmp(kScratchReg, Operand(TypeTestABI::kDstTypeReg)); |
| __ b(&next_iteration, NE); |
| __ ldr(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstanceTypeArguments)); |
| __ cmp(kScratchReg, Operand(kInstanceInstantiatorTypeArgumentsReg)); |
| if (n == 3) { |
| __ b(&found, EQ); |
| } else { |
| __ b(&next_iteration, NE); |
| __ ldr(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kInstantiatorTypeArguments)); |
| __ cmp(kScratchReg, Operand(TypeTestABI::kInstantiatorTypeArgumentsReg)); |
| __ b(&next_iteration, NE); |
| __ ldr(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache::kFunctionTypeArguments)); |
| __ cmp(kScratchReg, Operand(TypeTestABI::kFunctionTypeArgumentsReg)); |
| if (n == 5) { |
| __ b(&found, EQ); |
| } else { |
| ASSERT(n == 7); |
| __ b(&next_iteration, NE); |
| |
| __ ldr(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache:: |
| kInstanceParentFunctionTypeArguments)); |
| __ cmp(kScratchReg, Operand(kInstanceParentFunctionTypeArgumentsReg)); |
| __ b(&next_iteration, NE); |
| |
| __ ldr(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * |
| target::SubtypeTestCache:: |
| kInstanceDelayedFunctionTypeArguments)); |
| __ CompareToStack(kScratchReg, |
| kInstanceDelayedFunctionTypeArgumentsDepth); |
| __ b(&found, EQ); |
| } |
| } |
| } |
| __ Bind(&next_iteration); |
| __ AddImmediate( |
| kCacheArrayReg, |
| target::kWordSize * target::SubtypeTestCache::kTestEntryLength); |
| __ b(&loop); |
| |
| __ Bind(&found); |
| __ ldr(TypeTestABI::kSubtypeTestCacheResultReg, |
| Address(kCacheArrayReg, |
| target::kWordSize * target::SubtypeTestCache::kTestResult)); |
| if (n >= 7) { |
| __ Drop(1); // delayed function type args. |
| } |
| if (pushed_registers != 0) { |
| __ PopList(pushed_registers); |
| } |
| __ Ret(); |
| |
| __ Bind(¬_found); |
| __ mov(TypeTestABI::kSubtypeTestCacheResultReg, Operand(kNullReg)); |
| if (n >= 7) { |
| __ Drop(1); // delayed function type args. |
| } |
| if (pushed_registers != 0) { |
| __ PopList(pushed_registers); |
| } |
| __ Ret(); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype3TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 3); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype5TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 5); |
| } |
| |
| // See comment on[GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype7TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 7); |
| } |
| |
| // Return the current stack pointer address, used to do stack alignment checks. |
| void StubCodeCompiler::GenerateGetCStackPointerStub(Assembler* assembler) { |
| __ mov(R0, Operand(SP)); |
| __ Ret(); |
| } |
| |
| // Jump to a frame on the call stack. |
| // LR: return address. |
| // R0: program_counter. |
| // R1: stack_pointer. |
| // R2: frame_pointer. |
| // R3: thread. |
| // Does not return. |
| // |
| // Notice: We need to keep this in sync with `Simulator::JumpToFrame()`. |
| void StubCodeCompiler::GenerateJumpToFrameStub(Assembler* assembler) { |
| COMPILE_ASSERT(kExceptionObjectReg == R0); |
| COMPILE_ASSERT(kStackTraceObjectReg == R1); |
| COMPILE_ASSERT(IsAbiPreservedRegister(R4)); |
| COMPILE_ASSERT(IsAbiPreservedRegister(THR)); |
| __ mov(IP, Operand(R1)); // Copy Stack pointer into IP. |
| // TransitionGeneratedToNative might clobber LR if it takes the slow path. |
| __ mov(R4, Operand(R0)); // Program counter. |
| __ mov(THR, Operand(R3)); // Thread. |
| __ mov(FP, Operand(R2)); // Frame_pointer. |
| __ mov(SP, Operand(IP)); // Set Stack pointer. |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| Label exit_through_non_ffi; |
| Register tmp1 = R0, tmp2 = R1; |
| // Check if we exited generated from FFI. If so do transition. |
| __ LoadFromOffset(tmp1, THR, |
| compiler::target::Thread::exit_through_ffi_offset()); |
| __ LoadImmediate(tmp2, target::Thread::exit_through_ffi()); |
| __ cmp(tmp1, Operand(tmp2)); |
| __ b(&exit_through_non_ffi, NE); |
| __ TransitionNativeToGenerated(tmp1, tmp2, |
| /*leave_safepoint=*/true); |
| __ Bind(&exit_through_non_ffi); |
| |
| // Set the tag. |
| __ LoadImmediate(R2, VMTag::kDartTagId); |
| __ StoreToOffset(R2, THR, target::Thread::vm_tag_offset()); |
| // Clear top exit frame. |
| __ LoadImmediate(R2, 0); |
| __ StoreToOffset(R2, THR, target::Thread::top_exit_frame_info_offset()); |
| // Restore the pool pointer. |
| __ RestoreCodePointer(); |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| __ SetupGlobalPoolAndDispatchTable(); |
| __ set_constant_pool_allowed(true); |
| } else { |
| __ LoadPoolPointer(); |
| } |
| __ bx(R4); // Jump to continuation point. |
| } |
| |
| // Run an exception handler. Execution comes from JumpToFrame |
| // stub or from the simulator. |
| // |
| // The arguments are stored in the Thread object. |
| // Does not return. |
| void StubCodeCompiler::GenerateRunExceptionHandlerStub(Assembler* assembler) { |
| WRITES_RETURN_ADDRESS_TO_LR( |
| __ LoadFromOffset(LR, THR, target::Thread::resume_pc_offset())); |
| |
| word offset_from_thread = 0; |
| bool ok = target::CanLoadFromThread(NullObject(), &offset_from_thread); |
| ASSERT(ok); |
| __ LoadFromOffset(R2, THR, offset_from_thread); |
| |
| // Exception object. |
| __ LoadFromOffset(R0, THR, target::Thread::active_exception_offset()); |
| __ StoreToOffset(R2, THR, target::Thread::active_exception_offset()); |
| |
| // StackTrace object. |
| __ LoadFromOffset(R1, THR, target::Thread::active_stacktrace_offset()); |
| __ StoreToOffset(R2, THR, target::Thread::active_stacktrace_offset()); |
| |
| READS_RETURN_ADDRESS_FROM_LR( |
| __ bx(LR)); // Jump to the exception handler code. |
| } |
| |
| // Deoptimize a frame on the call stack before rewinding. |
| // The arguments are stored in the Thread object. |
| // No result. |
| void StubCodeCompiler::GenerateDeoptForRewindStub(Assembler* assembler) { |
| // Push zap value instead of CODE_REG. |
| __ LoadImmediate(IP, kZapCodeReg); |
| __ Push(IP); |
| |
| // Load the deopt pc into LR. |
| WRITES_RETURN_ADDRESS_TO_LR( |
| __ LoadFromOffset(LR, THR, target::Thread::resume_pc_offset())); |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| |
| // After we have deoptimized, jump to the correct frame. |
| __ EnterStubFrame(); |
| __ CallRuntime(kRewindPostDeoptRuntimeEntry, 0); |
| __ LeaveStubFrame(); |
| __ bkpt(0); |
| } |
| |
| // Calls to the runtime to optimize the given function. |
| // R8: function to be reoptimized. |
| // R4: argument descriptor (preserved). |
| void StubCodeCompiler::GenerateOptimizeFunctionStub(Assembler* assembler) { |
| __ ldr(CODE_REG,<
|