| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/compiler/relocation.h" |
| |
| #include "vm/code_patcher.h" |
| #include "vm/heap/pages.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/stub_code.h" |
| |
| namespace dart { |
| |
| #if defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) |
| |
| // Only for testing. |
| DEFINE_FLAG(bool, |
| always_generate_trampolines_for_testing, |
| false, |
| "Generate always trampolines (for testing purposes)."); |
| |
| DEFINE_FLAG(int, |
| lower_tail_pc_relative_call_distance, |
| -1, |
| "Lower tail call distance."); |
| DEFINE_FLAG(int, |
| upper_tail_pc_relative_call_distance, |
| -1, |
| "Upper tail call distance."); |
| DEFINE_FLAG(int, lower_pc_relative_call_distance, -1, "Lower call distance."); |
| DEFINE_FLAG(int, upper_pc_relative_call_distance, -1, "Upper call distance."); |
| |
| struct TailCallDistanceLimits { |
| static intptr_t Lower() { |
| if (FLAG_lower_tail_pc_relative_call_distance != -1) { |
| return FLAG_lower_tail_pc_relative_call_distance; |
| } |
| return PcRelativeTailCallPattern::kLowerCallingRange; |
| } |
| static intptr_t Upper() { |
| if (FLAG_upper_tail_pc_relative_call_distance != -1) { |
| return FLAG_upper_tail_pc_relative_call_distance; |
| } |
| return PcRelativeTailCallPattern::kUpperCallingRange; |
| } |
| }; |
| |
| struct CallDistanceLimits { |
| static intptr_t Lower() { |
| if (FLAG_lower_pc_relative_call_distance != -1) { |
| return FLAG_lower_pc_relative_call_distance; |
| } |
| return PcRelativeCallPattern::kLowerCallingRange; |
| } |
| static intptr_t Upper() { |
| if (FLAG_upper_pc_relative_call_distance != -1) { |
| return FLAG_upper_pc_relative_call_distance; |
| } |
| return PcRelativeCallPattern::kUpperCallingRange; |
| } |
| }; |
| |
| const intptr_t kTrampolineSize = |
| Utils::RoundUp(PcRelativeTrampolineJumpPattern::kLengthInBytes, |
| compiler::target::Instructions::kBarePayloadAlignment); |
| |
| CodeRelocator::CodeRelocator(Thread* thread, |
| GrowableArray<CodePtr>* code_objects, |
| GrowableArray<ImageWriterCommand>* commands) |
| : StackResource(thread), |
| thread_(thread), |
| code_objects_(code_objects), |
| commands_(commands), |
| kind_type_and_offset_(Smi::Handle(thread->zone())), |
| target_(Object::Handle(thread->zone())), |
| destination_(Code::Handle(thread->zone())) {} |
| |
| void CodeRelocator::Relocate(bool is_vm_isolate) { |
| Zone* zone = Thread::Current()->zone(); |
| auto& current_caller = Code::Handle(zone); |
| auto& call_targets = Array::Handle(zone); |
| |
| auto& next_caller = Code::Handle(zone); |
| auto& next_caller_targets = Array::Handle(zone); |
| |
| // Emit all instructions and do relocations on the way. |
| for (intptr_t i = 0; i < code_objects_->length(); ++i) { |
| current_caller = (*code_objects_)[i]; |
| |
| const intptr_t code_text_offset = next_text_offset_; |
| if (!AddInstructionsToText(current_caller.ptr())) { |
| continue; |
| } |
| |
| call_targets = current_caller.static_calls_target_table(); |
| ScanCallTargets(current_caller, call_targets, code_text_offset); |
| |
| // Any unresolved calls to this instruction can be fixed now. |
| ResolveUnresolvedCallsTargeting(current_caller.instructions()); |
| |
| // If we have forward/backwards calls which are almost out-of-range, we'll |
| // create trampolines now. |
| if (i < (code_objects_->length() - 1)) { |
| next_caller = (*code_objects_)[i + 1]; |
| next_caller_targets = next_caller.static_calls_target_table(); |
| } else { |
| next_caller = Code::null(); |
| next_caller_targets = Array::null(); |
| } |
| BuildTrampolinesForAlmostOutOfRangeCalls(next_caller, next_caller_targets); |
| } |
| |
| // We're guaranteed to have all calls resolved, since |
| // * backwards calls are resolved eagerly |
| // * forward calls are resolved once the target is written |
| if (!all_unresolved_calls_.IsEmpty()) { |
| for (auto call : all_unresolved_calls_) { |
| OS::PrintErr("Unresolved call to %s from %s\n", |
| Object::Handle(call->callee).ToCString(), |
| Object::Handle(call->caller).ToCString()); |
| } |
| } |
| RELEASE_ASSERT(all_unresolved_calls_.IsEmpty()); |
| RELEASE_ASSERT(unresolved_calls_by_destination_.IsEmpty()); |
| |
| // Any trampolines we created must be patched with the right offsets. |
| auto it = trampolines_by_destination_.GetIterator(); |
| while (true) { |
| auto entry = it.Next(); |
| if (entry == nullptr) break; |
| |
| UnresolvedTrampolineList* trampoline_list = entry->value; |
| while (!trampoline_list->IsEmpty()) { |
| auto unresolved_trampoline = trampoline_list->RemoveFirst(); |
| ResolveTrampoline(unresolved_trampoline); |
| delete unresolved_trampoline; |
| } |
| delete trampoline_list; |
| } |
| trampolines_by_destination_.Clear(); |
| |
| // Don't drop static call targets table yet. Snapshotter will skip it anyway |
| // however we might need it to write information into V8 snapshot profile. |
| } |
| |
| bool CodeRelocator::AddInstructionsToText(CodePtr code) { |
| InstructionsPtr instructions = Code::InstructionsOf(code); |
| |
| // If two [Code] objects point to the same [Instructions] object, we'll just |
| // use the first one (they are equivalent for all practical purposes). |
| if (text_offsets_.HasKey(instructions)) { |
| return false; |
| } |
| text_offsets_.Insert({instructions, next_text_offset_}); |
| commands_->Add(ImageWriterCommand(next_text_offset_, code)); |
| next_text_offset_ += ImageWriter::SizeInSnapshot(instructions); |
| |
| return true; |
| } |
| |
| UnresolvedTrampoline* CodeRelocator::FindTrampolineFor( |
| UnresolvedCall* unresolved_call) { |
| auto destination = Code::InstructionsOf(unresolved_call->callee); |
| auto entry = trampolines_by_destination_.Lookup(destination); |
| if (entry != nullptr) { |
| UnresolvedTrampolineList* trampolines = entry->value; |
| ASSERT(!trampolines->IsEmpty()); |
| |
| // For the destination of [unresolved_call] we might have multiple |
| // trampolines. The trampolines are sorted according to insertion order, |
| // which guarantees increasing text_offset's. So we go from the back of the |
| // list as long as we have trampolines that are in-range and then check |
| // whether the target offset matches. |
| auto it = trampolines->End(); |
| --it; |
| do { |
| UnresolvedTrampoline* trampoline = *it; |
| if (!IsTargetInRangeFor(unresolved_call, trampoline->text_offset)) { |
| break; |
| } |
| if (trampoline->offset_into_target == |
| unresolved_call->offset_into_target) { |
| return trampoline; |
| } |
| --it; |
| } while (it != trampolines->Begin()); |
| } |
| return nullptr; |
| } |
| |
| void CodeRelocator::AddTrampolineToText(InstructionsPtr destination, |
| uint8_t* trampoline_bytes, |
| intptr_t trampoline_length) { |
| commands_->Add(ImageWriterCommand(next_text_offset_, trampoline_bytes, |
| trampoline_length)); |
| next_text_offset_ += trampoline_length; |
| } |
| |
| void CodeRelocator::ScanCallTargets(const Code& code, |
| const Array& call_targets, |
| intptr_t code_text_offset) { |
| if (call_targets.IsNull()) { |
| return; |
| } |
| StaticCallsTable calls(call_targets); |
| for (auto call : calls) { |
| kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>(); |
| const auto kind = Code::KindField::decode(kind_type_and_offset_.Value()); |
| const auto return_pc_offset = |
| Code::OffsetField::decode(kind_type_and_offset_.Value()); |
| const auto call_entry_point = |
| Code::EntryPointField::decode(kind_type_and_offset_.Value()); |
| |
| if (kind == Code::kCallViaCode) { |
| continue; |
| } |
| |
| destination_ = GetTarget(call); |
| |
| // A call site can decide to jump not to the beginning of a function but |
| // rather jump into it at a certain offset. |
| int32_t offset_into_target = 0; |
| bool is_tail_call; |
| intptr_t call_instruction_offset; |
| if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) { |
| call_instruction_offset = |
| return_pc_offset - PcRelativeCallPattern::kLengthInBytes; |
| PcRelativeCallPattern call(code.PayloadStart() + call_instruction_offset); |
| ASSERT(call.IsValid()); |
| offset_into_target = call.distance(); |
| is_tail_call = false; |
| } else { |
| ASSERT(kind == Code::kPcRelativeTailCall); |
| call_instruction_offset = |
| return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes; |
| PcRelativeTailCallPattern call(code.PayloadStart() + |
| call_instruction_offset); |
| ASSERT(call.IsValid()); |
| offset_into_target = call.distance(); |
| is_tail_call = true; |
| } |
| |
| const uword destination_payload = destination_.PayloadStart(); |
| const uword entry_point = call_entry_point == Code::kUncheckedEntry |
| ? destination_.UncheckedEntryPoint() |
| : destination_.EntryPoint(); |
| |
| offset_into_target += (entry_point - destination_payload); |
| |
| const intptr_t text_offset = |
| code_text_offset + AdjustPayloadOffset(call_instruction_offset); |
| |
| UnresolvedCall unresolved_call(code.ptr(), call_instruction_offset, |
| text_offset, destination_.ptr(), |
| offset_into_target, is_tail_call); |
| if (!TryResolveBackwardsCall(&unresolved_call)) { |
| EnqueueUnresolvedCall(new UnresolvedCall(unresolved_call)); |
| } |
| } |
| } |
| |
| void CodeRelocator::EnqueueUnresolvedCall(UnresolvedCall* unresolved_call) { |
| // Add it to the min-heap by .text offset. |
| all_unresolved_calls_.Append(unresolved_call); |
| |
| // Add it to callers of destination. |
| InstructionsPtr destination = Code::InstructionsOf(unresolved_call->callee); |
| if (!unresolved_calls_by_destination_.HasKey(destination)) { |
| unresolved_calls_by_destination_.Insert( |
| {destination, new SameDestinationUnresolvedCallsList()}); |
| } |
| unresolved_calls_by_destination_.LookupValue(destination) |
| ->Append(unresolved_call); |
| } |
| |
| void CodeRelocator::EnqueueUnresolvedTrampoline( |
| UnresolvedTrampoline* unresolved_trampoline) { |
| auto destination = Code::InstructionsOf(unresolved_trampoline->callee); |
| auto entry = trampolines_by_destination_.Lookup(destination); |
| |
| UnresolvedTrampolineList* trampolines = nullptr; |
| if (entry == nullptr) { |
| trampolines = new UnresolvedTrampolineList(); |
| trampolines_by_destination_.Insert({destination, trampolines}); |
| } else { |
| trampolines = entry->value; |
| } |
| trampolines->Append(unresolved_trampoline); |
| } |
| |
| bool CodeRelocator::TryResolveBackwardsCall(UnresolvedCall* unresolved_call) { |
| auto callee = Code::InstructionsOf(unresolved_call->callee); |
| auto map_entry = text_offsets_.Lookup(callee); |
| if (map_entry == nullptr) return false; |
| |
| if (IsTargetInRangeFor(unresolved_call, map_entry->value)) { |
| ResolveCall(unresolved_call); |
| return true; |
| } |
| return false; |
| } |
| |
| void CodeRelocator::ResolveUnresolvedCallsTargeting( |
| const InstructionsPtr instructions) { |
| if (unresolved_calls_by_destination_.HasKey(instructions)) { |
| SameDestinationUnresolvedCallsList* calls = |
| unresolved_calls_by_destination_.LookupValue(instructions); |
| auto it = calls->Begin(); |
| while (it != calls->End()) { |
| UnresolvedCall* unresolved_call = *it; |
| ++it; |
| ASSERT(Code::InstructionsOf(unresolved_call->callee) == instructions); |
| ResolveCall(unresolved_call); |
| |
| // Remove the call from both lists. |
| calls->Remove(unresolved_call); |
| all_unresolved_calls_.Remove(unresolved_call); |
| |
| delete unresolved_call; |
| } |
| ASSERT(calls->IsEmpty()); |
| delete calls; |
| bool ok = unresolved_calls_by_destination_.Remove(instructions); |
| ASSERT(ok); |
| } |
| } |
| |
| void CodeRelocator::ResolveCall(UnresolvedCall* unresolved_call) { |
| const intptr_t destination_text = |
| FindDestinationInText(Code::InstructionsOf(unresolved_call->callee), |
| unresolved_call->offset_into_target); |
| |
| ResolveCallToDestination(unresolved_call, destination_text); |
| } |
| |
| void CodeRelocator::ResolveCallToDestination(UnresolvedCall* unresolved_call, |
| intptr_t destination_text) { |
| const intptr_t call_text_offset = unresolved_call->text_offset; |
| const intptr_t call_offset = unresolved_call->call_offset; |
| |
| const int32_t distance = destination_text - call_text_offset; |
| { |
| auto const caller = unresolved_call->caller; |
| uword addr = Code::PayloadStartOf(caller) + call_offset; |
| if (FLAG_write_protect_code) { |
| addr -= OldPage::Of(Code::InstructionsOf(caller))->AliasOffset(); |
| } |
| if (unresolved_call->is_tail_call) { |
| PcRelativeTailCallPattern call(addr); |
| ASSERT(call.IsValid()); |
| call.set_distance(static_cast<int32_t>(distance)); |
| ASSERT(call.distance() == distance); |
| } else { |
| PcRelativeCallPattern call(addr); |
| ASSERT(call.IsValid()); |
| call.set_distance(static_cast<int32_t>(distance)); |
| ASSERT(call.distance() == distance); |
| } |
| } |
| |
| unresolved_call->caller = nullptr; |
| unresolved_call->callee = nullptr; |
| } |
| |
| void CodeRelocator::ResolveTrampoline( |
| UnresolvedTrampoline* unresolved_trampoline) { |
| const intptr_t trampoline_text_offset = unresolved_trampoline->text_offset; |
| const uword trampoline_start = |
| reinterpret_cast<uword>(unresolved_trampoline->trampoline_bytes); |
| |
| auto callee = Code::InstructionsOf(unresolved_trampoline->callee); |
| auto destination_text = |
| FindDestinationInText(callee, unresolved_trampoline->offset_into_target); |
| const int32_t distance = destination_text - trampoline_text_offset; |
| |
| PcRelativeTrampolineJumpPattern pattern(trampoline_start); |
| pattern.Initialize(); |
| pattern.set_distance(distance); |
| ASSERT(pattern.distance() == distance); |
| } |
| |
| bool CodeRelocator::IsTargetInRangeFor(UnresolvedCall* unresolved_call, |
| intptr_t target_text_offset) { |
| const auto forward_distance = |
| target_text_offset - unresolved_call->text_offset; |
| if (unresolved_call->is_tail_call) { |
| return TailCallDistanceLimits::Lower() <= forward_distance && |
| forward_distance <= TailCallDistanceLimits::Upper(); |
| } else { |
| return CallDistanceLimits::Lower() <= forward_distance && |
| forward_distance <= CallDistanceLimits::Upper(); |
| } |
| } |
| |
| CodePtr CodeRelocator::GetTarget(const StaticCallsTableEntry& call) { |
| // The precompiler should have already replaced all function entries |
| // with code entries. |
| ASSERT(call.Get<Code::kSCallTableFunctionTarget>() == Function::null()); |
| |
| target_ = call.Get<Code::kSCallTableCodeOrTypeTarget>(); |
| if (target_.IsAbstractType()) { |
| target_ = AbstractType::Cast(target_).type_test_stub(); |
| destination_ = Code::Cast(target_).ptr(); |
| |
| // The AssertAssignableInstr will emit pc-relative calls to the TTS iff |
| // dst_type is instantiated. If we happened to not install an optimized |
| // TTS but rather a default one, it will live in the vm-isolate (to |
| // which we cannot make pc-relative calls). |
| // Though we have "equivalent" isolate-specific stubs we can use as |
| // targets instead. |
| // |
| // (We could make the AOT compiler install isolate-specific stubs |
| // into the types directly, but that does not work for types which |
| // live in the "vm-isolate" - such as `Type::dynamic_type()`). |
| if (destination_.InVMIsolateHeap()) { |
| auto object_store = thread_->isolate_group()->object_store(); |
| |
| if (destination_.ptr() == StubCode::DefaultTypeTest().ptr()) { |
| destination_ = object_store->default_tts_stub(); |
| } else if (destination_.ptr() == |
| StubCode::DefaultNullableTypeTest().ptr()) { |
| destination_ = object_store->default_nullable_tts_stub(); |
| } else if (destination_.ptr() == StubCode::TopTypeTypeTest().ptr()) { |
| destination_ = object_store->top_type_tts_stub(); |
| } else if (destination_.ptr() == StubCode::UnreachableTypeTest().ptr()) { |
| destination_ = object_store->unreachable_tts_stub(); |
| } else if (destination_.ptr() == StubCode::SlowTypeTest().ptr()) { |
| destination_ = object_store->slow_tts_stub(); |
| } else if (destination_.ptr() == |
| StubCode::NullableTypeParameterTypeTest().ptr()) { |
| destination_ = object_store->nullable_type_parameter_tts_stub(); |
| } else if (destination_.ptr() == |
| StubCode::TypeParameterTypeTest().ptr()) { |
| destination_ = object_store->type_parameter_tts_stub(); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| } else { |
| ASSERT(target_.IsCode()); |
| destination_ = Code::Cast(target_).ptr(); |
| } |
| ASSERT(!destination_.InVMIsolateHeap()); |
| return destination_.ptr(); |
| } |
| |
| void CodeRelocator::BuildTrampolinesForAlmostOutOfRangeCalls( |
| const Code& next_caller, |
| const Array& next_caller_targets) { |
| const bool all_functions_emitted = next_caller.IsNull(); |
| |
| uword next_size = 0; |
| uword next_call_count = 0; |
| if (!all_functions_emitted) { |
| next_size = ImageWriter::SizeInSnapshot(next_caller.instructions()); |
| if (!next_caller_targets.IsNull()) { |
| StaticCallsTable calls(next_caller_targets); |
| next_call_count = calls.Length(); |
| } |
| } |
| |
| while (!all_unresolved_calls_.IsEmpty()) { |
| UnresolvedCall* unresolved_call = all_unresolved_calls_.First(); |
| |
| if (!all_functions_emitted) { |
| // If we can emit another instructions object without causing the |
| // unresolved forward calls to become out-of-range, we'll not resolve it |
| // yet (maybe the target function will come very soon and we don't need |
| // a trampoline at all). |
| const intptr_t future_boundary = |
| next_text_offset_ + next_size + |
| kTrampolineSize * |
| (unresolved_calls_by_destination_.Length() + next_call_count - 1); |
| if (IsTargetInRangeFor(unresolved_call, future_boundary) && |
| !FLAG_always_generate_trampolines_for_testing) { |
| break; |
| } |
| } |
| |
| // We have a "critical" [unresolved_call] we have to resolve. If an |
| // existing trampoline is in range, we use that otherwise we create a new |
| // trampoline. |
| |
| // In the worst case we'll make a new trampoline here, in which case the |
| // current text offset must be in range for the "critical" |
| // [unresolved_call]. |
| ASSERT(IsTargetInRangeFor(unresolved_call, next_text_offset_)); |
| |
| // See if there is already a trampoline we could use. |
| intptr_t trampoline_text_offset = -1; |
| auto callee = Code::InstructionsOf(unresolved_call->callee); |
| |
| if (!FLAG_always_generate_trampolines_for_testing) { |
| auto old_trampoline_entry = FindTrampolineFor(unresolved_call); |
| if (old_trampoline_entry != nullptr) { |
| trampoline_text_offset = old_trampoline_entry->text_offset; |
| } |
| } |
| |
| // If there is no trampoline yet, we'll create a new one. |
| if (trampoline_text_offset == -1) { |
| // The ownership of the trampoline bytes will be transferred to the |
| // [ImageWriter], which will eventually write out the bytes and delete the |
| // buffer. |
| auto trampoline_bytes = new uint8_t[kTrampolineSize]; |
| ASSERT((kTrampolineSize % compiler::target::kWordSize) == 0); |
| for (uint8_t* cur = trampoline_bytes; |
| cur < trampoline_bytes + kTrampolineSize; |
| cur += compiler::target::kWordSize) { |
| *reinterpret_cast<compiler::target::uword*>(cur) = |
| kBreakInstructionFiller; |
| } |
| auto unresolved_trampoline = new UnresolvedTrampoline{ |
| unresolved_call->callee, |
| unresolved_call->offset_into_target, |
| trampoline_bytes, |
| next_text_offset_, |
| }; |
| AddTrampolineToText(callee, trampoline_bytes, kTrampolineSize); |
| EnqueueUnresolvedTrampoline(unresolved_trampoline); |
| trampoline_text_offset = unresolved_trampoline->text_offset; |
| } |
| |
| // Let the unresolved call to [destination] jump to the trampoline |
| // instead. |
| auto destination = Code::InstructionsOf(unresolved_call->callee); |
| ResolveCallToDestination(unresolved_call, trampoline_text_offset); |
| |
| // Remove this unresolved call from the global list and the per-destination |
| // list. |
| auto calls = unresolved_calls_by_destination_.LookupValue(destination); |
| calls->Remove(unresolved_call); |
| all_unresolved_calls_.Remove(unresolved_call); |
| delete unresolved_call; |
| |
| // If this destination has no longer any unresolved calls, remove it. |
| if (calls->IsEmpty()) { |
| unresolved_calls_by_destination_.Remove(destination); |
| delete calls; |
| } |
| } |
| } |
| |
| intptr_t CodeRelocator::FindDestinationInText(const InstructionsPtr destination, |
| intptr_t offset_into_target) { |
| auto const destination_offset = text_offsets_.LookupValue(destination); |
| return destination_offset + AdjustPayloadOffset(offset_into_target); |
| } |
| |
| intptr_t CodeRelocator::AdjustPayloadOffset(intptr_t payload_offset) { |
| if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
| return payload_offset; |
| } |
| return compiler::target::Instructions::HeaderSize() + payload_offset; |
| } |
| |
| #endif // defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) |
| |
| } // namespace dart |