| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| // |
| // The intrinsic code below is executed before a method has built its frame. |
| // The return address is on the stack and the arguments below it. |
| // Registers EDX (arguments descriptor) and ECX (function) must be preserved. |
| // Each intrinsification method returns true if the corresponding |
| // Dart method was intrinsified. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32. |
| #if defined(TARGET_ARCH_IA32) |
| |
| #define SHOULD_NOT_INCLUDE_RUNTIME |
| |
| #include "vm/class_id.h" |
| #include "vm/compiler/asm_intrinsifier.h" |
| #include "vm/compiler/assembler/assembler.h" |
| |
| namespace dart { |
| namespace compiler { |
| |
| // When entering intrinsics code: |
| // ECX: IC Data |
| // EDX: Arguments descriptor |
| // TOS: Return address |
| // The ECX, EDX registers can be destroyed only if there is no slow-path, i.e. |
| // if the intrinsified method always executes a return. |
| // The EBP register should not be modified, because it is used by the profiler. |
| // The THR register (see constants_ia32.h) must be preserved. |
| |
| #define __ assembler-> |
| |
| intptr_t AsmIntrinsifier::ParameterSlotFromSp() { |
| return 0; |
| } |
| |
| void AsmIntrinsifier::IntrinsicCallPrologue(Assembler* assembler) { |
| COMPILE_ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG); |
| |
| assembler->Comment("IntrinsicCallPrologue"); |
| assembler->movl(CALLEE_SAVED_TEMP, ARGS_DESC_REG); |
| } |
| |
| void AsmIntrinsifier::IntrinsicCallEpilogue(Assembler* assembler) { |
| assembler->Comment("IntrinsicCallEpilogue"); |
| assembler->movl(ARGS_DESC_REG, CALLEE_SAVED_TEMP); |
| } |
| |
| // Allocate a GrowableObjectArray:: using the backing array specified. |
| // On stack: type argument (+2), data (+1), return-address (+0). |
| void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler, |
| Label* normal_ir_body) { |
| // This snippet of inlined code uses the following registers: |
| // EAX, EBX |
| // and the newly allocated object is returned in EAX. |
| const intptr_t kTypeArgumentsOffset = 2 * target::kWordSize; |
| |
| const intptr_t kArrayOffset = 1 * target::kWordSize; |
| |
| // Try allocating in new space. |
| const Class& cls = GrowableObjectArrayClass(); |
| __ TryAllocate(cls, normal_ir_body, Assembler::kNearJump, EAX, EBX); |
| |
| // Store backing array object in growable array object. |
| __ movl(EBX, Address(ESP, kArrayOffset)); // data argument. |
| // EAX is new, no barrier needed. |
| __ StoreIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, target::GrowableObjectArray::data_offset()), EBX); |
| |
| // EAX: new growable array object start as a tagged pointer. |
| // Store the type argument field in the growable array object. |
| __ movl(EBX, Address(ESP, kTypeArgumentsOffset)); // type argument. |
| __ StoreIntoObjectNoBarrier( |
| EAX, |
| FieldAddress(EAX, target::GrowableObjectArray::type_arguments_offset()), |
| EBX); |
| |
| __ ZeroInitSmiField( |
| FieldAddress(EAX, target::GrowableObjectArray::length_offset())); |
| __ ret(); // returns the newly allocated object in EAX. |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| // Tests if two top most arguments are smis, jumps to label not_smi if not. |
| // Topmost argument is in EAX. |
| static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ movl(EBX, Address(ESP, +2 * target::kWordSize)); |
| __ orl(EBX, EAX); |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi, Assembler::kNearJump); |
| } |
| |
| void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { |
| ASSERT(kSmiTagShift == 1); |
| ASSERT(kSmiTag == 0); |
| Label overflow; |
| TestBothArgumentsSmis(assembler, normal_ir_body); |
| // Shift value is in EAX. Compare with tagged Smi. |
| __ cmpl(EAX, Immediate(target::ToRawSmi(target::kSmiBits))); |
| __ j(ABOVE_EQUAL, normal_ir_body, Assembler::kNearJump); |
| |
| __ SmiUntag(EAX); |
| __ movl(ECX, EAX); // Shift amount must be in ECX. |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); // Value. |
| |
| // Overflow test - all the shifted-out bits must be same as the sign bit. |
| __ movl(EBX, EAX); |
| __ shll(EAX, ECX); |
| __ sarl(EAX, ECX); |
| __ cmpl(EAX, EBX); |
| __ j(NOT_EQUAL, &overflow, Assembler::kNearJump); |
| |
| __ shll(EAX, ECX); // Shift for result now we know there is no overflow. |
| |
| // EAX is a correctly tagged Smi. |
| __ ret(); |
| |
| __ Bind(&overflow); |
| // Arguments are Smi but the shift produced an overflow to Mint. |
| __ cmpl(EBX, Immediate(0)); |
| // TODO(srdjan): Implement negative values, for now fall through. |
| __ j(LESS, normal_ir_body, Assembler::kNearJump); |
| __ SmiUntag(EBX); |
| __ movl(EAX, EBX); |
| __ shll(EBX, ECX); |
| __ xorl(EDI, EDI); |
| __ shldl(EDI, EAX, ECX); |
| // Result in EDI (high) and EBX (low). |
| const Class& mint_class = MintClass(); |
| __ TryAllocate(mint_class, normal_ir_body, Assembler::kNearJump, |
| EAX, // Result register. |
| ECX); // temp |
| // EBX and EDI are not objects but integer values. |
| __ movl(FieldAddress(EAX, target::Mint::value_offset()), EBX); |
| __ movl(FieldAddress(EAX, target::Mint::value_offset() + target::kWordSize), |
| EDI); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| } |
| |
| static void Push64SmiOrMint(Assembler* assembler, |
| Register reg, |
| Register tmp, |
| Label* not_smi_or_mint) { |
| Label not_smi, done; |
| __ testl(reg, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, ¬_smi, Assembler::kNearJump); |
| __ SmiUntag(reg); |
| // Sign extend to 64 bit |
| __ movl(tmp, reg); |
| __ sarl(tmp, Immediate(31)); |
| __ pushl(tmp); |
| __ pushl(reg); |
| __ jmp(&done); |
| __ Bind(¬_smi); |
| __ CompareClassId(reg, kMintCid, tmp); |
| __ j(NOT_EQUAL, not_smi_or_mint); |
| // Mint. |
| __ pushl(FieldAddress(reg, target::Mint::value_offset() + target::kWordSize)); |
| __ pushl(FieldAddress(reg, target::Mint::value_offset())); |
| __ Bind(&done); |
| } |
| |
| static void CompareIntegers(Assembler* assembler, |
| Label* normal_ir_body, |
| Condition true_condition) { |
| Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; |
| TestBothArgumentsSmis(assembler, &try_mint_smi); |
| // EAX contains the right argument. |
| __ cmpl(Address(ESP, +2 * target::kWordSize), EAX); |
| __ j(true_condition, &is_true, Assembler::kNearJump); |
| __ Bind(&is_false); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| // 64-bit comparison |
| Condition hi_true_cond, hi_false_cond, lo_false_cond; |
| switch (true_condition) { |
| case LESS: |
| case LESS_EQUAL: |
| hi_true_cond = LESS; |
| hi_false_cond = GREATER; |
| lo_false_cond = (true_condition == LESS) ? ABOVE_EQUAL : ABOVE; |
| break; |
| case GREATER: |
| case GREATER_EQUAL: |
| hi_true_cond = GREATER; |
| hi_false_cond = LESS; |
| lo_false_cond = (true_condition == GREATER) ? BELOW_EQUAL : BELOW; |
| break; |
| default: |
| UNREACHABLE(); |
| hi_true_cond = hi_false_cond = lo_false_cond = OVERFLOW; |
| } |
| __ Bind(&try_mint_smi); |
| // Note that EDX and ECX must be preserved in case we fall through to main |
| // method. |
| // EAX contains the right argument. |
| __ movl(EBX, Address(ESP, +2 * target::kWordSize)); // Left argument. |
| // Push left as 64 bit integer. |
| Push64SmiOrMint(assembler, EBX, EDI, normal_ir_body); |
| // Push right as 64 bit integer. |
| Push64SmiOrMint(assembler, EAX, EDI, &drop_two_fall_through); |
| __ popl(EBX); // Right.LO. |
| __ popl(ECX); // Right.HI. |
| __ popl(EAX); // Left.LO. |
| __ popl(EDX); // Left.HI. |
| __ cmpl(EDX, ECX); // cmpl left.HI, right.HI. |
| __ j(hi_false_cond, &is_false, Assembler::kNearJump); |
| __ j(hi_true_cond, &is_true, Assembler::kNearJump); |
| __ cmpl(EAX, EBX); // cmpl left.LO, right.LO. |
| __ j(lo_false_cond, &is_false, Assembler::kNearJump); |
| // Else is true. |
| __ jmp(&is_true); |
| |
| __ Bind(&drop_two_fall_through); |
| __ Drop(2); |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareIntegers(assembler, normal_ir_body, LESS); |
| } |
| |
| void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareIntegers(assembler, normal_ir_body, GREATER); |
| } |
| |
| void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareIntegers(assembler, normal_ir_body, LESS_EQUAL); |
| } |
| |
| void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareIntegers(assembler, normal_ir_body, GREATER_EQUAL); |
| } |
| |
| // This is called for Smi and Mint receivers. The right argument |
| // can be Smi, Mint or double. |
| void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label true_label, check_for_mint; |
| // For integer receiver '===' check first. |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ cmpl(EAX, Address(ESP, +2 * target::kWordSize)); |
| __ j(EQUAL, &true_label, Assembler::kNearJump); |
| __ movl(EBX, Address(ESP, +2 * target::kWordSize)); |
| __ orl(EAX, EBX); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &check_for_mint, Assembler::kNearJump); |
| // Both arguments are smi, '===' is good enough. |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| // At least one of the arguments was not Smi. |
| Label receiver_not_smi; |
| __ Bind(&check_for_mint); |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); // Receiver. |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &receiver_not_smi); |
| |
| // Left (receiver) is Smi, return false if right is not Double. |
| // Note that an instance of Mint never contains a value that can be |
| // represented by Smi. |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); // Right argument. |
| __ CompareClassId(EAX, kDoubleCid, EDI); |
| __ j(EQUAL, normal_ir_body); |
| __ LoadObject(EAX, |
| CastHandle<Object>(FalseObject())); // Smi == Mint -> false. |
| __ ret(); |
| |
| __ Bind(&receiver_not_smi); |
| // EAX:: receiver. |
| __ CompareClassId(EAX, kMintCid, EDI); |
| __ j(NOT_EQUAL, normal_ir_body); |
| // Receiver is Mint, return false if right is Smi. |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); // Right argument. |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, normal_ir_body); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| // TODO(srdjan): Implement Mint == Mint comparison. |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Integer_equal(Assembler* assembler, |
| Label* normal_ir_body) { |
| Integer_equalToInteger(assembler, normal_ir_body); |
| } |
| |
| // Argument is Smi (receiver). |
| void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, |
| Label* normal_ir_body) { |
| ASSERT(kSmiTagShift == 1); |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); // Receiver. |
| // XOR with sign bit to complement bits if value is negative. |
| __ movl(ECX, EAX); |
| __ sarl(ECX, Immediate(31)); // All 0 or all 1. |
| __ xorl(EAX, ECX); |
| // BSR does not write the destination register if source is zero. Put a 1 in |
| // the Smi tag bit to ensure BSR writes to destination register. |
| __ orl(EAX, Immediate(kSmiTagMask)); |
| __ bsrl(EAX, EAX); |
| __ SmiTag(EAX); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { |
| // static void _lsh(Uint32List x_digits, int x_used, int n, |
| // Uint32List r_digits) |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| __ movl(EDI, Address(ESP, 5 * target::kWordSize)); // x_digits |
| __ movl(ECX, Address(ESP, 3 * target::kWordSize)); // n is Smi |
| __ SmiUntag(ECX); |
| __ movl(EBX, Address(ESP, 2 * target::kWordSize)); // r_digits |
| __ movl(ESI, ECX); |
| __ sarl(ESI, Immediate(5)); // ESI = n ~/ _DIGIT_BITS. |
| __ leal(EBX, |
| FieldAddress(EBX, ESI, TIMES_4, target::TypedData::data_offset())); |
| __ movl(ESI, Address(ESP, 4 * target::kWordSize)); // x_used > 0, Smi. |
| __ SmiUntag(ESI); |
| __ decl(ESI); |
| __ xorl(EAX, EAX); // EAX = 0. |
| __ movl(EDX, |
| FieldAddress(EDI, ESI, TIMES_4, target::TypedData::data_offset())); |
| __ shldl(EAX, EDX, ECX); |
| __ movl(Address(EBX, ESI, TIMES_4, kBytesPerBigIntDigit), EAX); |
| Label last; |
| __ cmpl(ESI, Immediate(0)); |
| __ j(EQUAL, &last, Assembler::kNearJump); |
| Label loop; |
| __ Bind(&loop); |
| __ movl(EAX, EDX); |
| __ movl(EDX, FieldAddress( |
| EDI, ESI, TIMES_4, |
| target::TypedData::data_offset() - kBytesPerBigIntDigit)); |
| __ shldl(EAX, EDX, ECX); |
| __ movl(Address(EBX, ESI, TIMES_4, 0), EAX); |
| __ decl(ESI); |
| __ j(NOT_ZERO, &loop, Assembler::kNearJump); |
| __ Bind(&last); |
| __ shldl(EDX, ESI, ECX); // ESI == 0. |
| __ movl(Address(EBX, 0), EDX); |
| |
| // Restore THR and return. |
| __ popl(THR); |
| __ LoadObject(EAX, NullObject()); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { |
| // static void _rsh(Uint32List x_digits, int x_used, int n, |
| // Uint32List r_digits) |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| __ movl(EDI, Address(ESP, 5 * target::kWordSize)); // x_digits |
| __ movl(ECX, Address(ESP, 3 * target::kWordSize)); // n is Smi |
| __ SmiUntag(ECX); |
| __ movl(EBX, Address(ESP, 2 * target::kWordSize)); // r_digits |
| __ movl(EDX, ECX); |
| __ sarl(EDX, Immediate(5)); // EDX = n ~/ _DIGIT_BITS. |
| __ movl(ESI, Address(ESP, 4 * target::kWordSize)); // x_used > 0, Smi. |
| __ SmiUntag(ESI); |
| __ decl(ESI); |
| // EDI = &x_digits[x_used - 1]. |
| __ leal(EDI, |
| FieldAddress(EDI, ESI, TIMES_4, target::TypedData::data_offset())); |
| __ subl(ESI, EDX); |
| // EBX = &r_digits[x_used - 1 - (n ~/ 32)]. |
| __ leal(EBX, |
| FieldAddress(EBX, ESI, TIMES_4, target::TypedData::data_offset())); |
| __ negl(ESI); |
| __ movl(EDX, Address(EDI, ESI, TIMES_4, 0)); |
| Label last; |
| __ cmpl(ESI, Immediate(0)); |
| __ j(EQUAL, &last, Assembler::kNearJump); |
| Label loop; |
| __ Bind(&loop); |
| __ movl(EAX, EDX); |
| __ movl(EDX, Address(EDI, ESI, TIMES_4, kBytesPerBigIntDigit)); |
| __ shrdl(EAX, EDX, ECX); |
| __ movl(Address(EBX, ESI, TIMES_4, 0), EAX); |
| __ incl(ESI); |
| __ j(NOT_ZERO, &loop, Assembler::kNearJump); |
| __ Bind(&last); |
| __ shrdl(EDX, ESI, ECX); // ESI == 0. |
| __ movl(Address(EBX, 0), EDX); |
| |
| // Restore THR and return. |
| __ popl(THR); |
| __ LoadObject(EAX, NullObject()); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, |
| Label* normal_ir_body) { |
| // static void _absAdd(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| __ movl(EDI, Address(ESP, 6 * target::kWordSize)); // digits |
| __ movl(EAX, Address(ESP, 5 * target::kWordSize)); // used is Smi |
| __ SmiUntag(EAX); // used > 0. |
| __ movl(ESI, Address(ESP, 4 * target::kWordSize)); // a_digits |
| __ movl(ECX, Address(ESP, 3 * target::kWordSize)); // a_used is Smi |
| __ SmiUntag(ECX); // a_used > 0. |
| __ movl(EBX, Address(ESP, 2 * target::kWordSize)); // r_digits |
| |
| // Precompute 'used - a_used' now so that carry flag is not lost later. |
| __ subl(EAX, ECX); |
| __ incl(EAX); // To account for the extra test between loops. |
| __ pushl(EAX); |
| |
| __ xorl(EDX, EDX); // EDX = 0, carry flag = 0. |
| Label add_loop; |
| __ Bind(&add_loop); |
| // Loop a_used times, ECX = a_used, ECX > 0. |
| __ movl(EAX, |
| FieldAddress(EDI, EDX, TIMES_4, target::TypedData::data_offset())); |
| __ adcl(EAX, |
| FieldAddress(ESI, EDX, TIMES_4, target::TypedData::data_offset())); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), |
| EAX); |
| __ incl(EDX); // Does not affect carry flag. |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &add_loop, Assembler::kNearJump); |
| |
| Label last_carry; |
| __ popl(ECX); |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(ZERO, &last_carry, Assembler::kNearJump); // If used - a_used == 0. |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop used - a_used times, ECX = used - a_used, ECX > 0. |
| __ movl(EAX, |
| FieldAddress(EDI, EDX, TIMES_4, target::TypedData::data_offset())); |
| __ adcl(EAX, Immediate(0)); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), |
| EAX); |
| __ incl(EDX); // Does not affect carry flag. |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&last_carry); |
| __ movl(EAX, Immediate(0)); |
| __ adcl(EAX, Immediate(0)); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), |
| EAX); |
| |
| // Restore THR and return. |
| __ popl(THR); |
| __ LoadObject(EAX, NullObject()); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, |
| Label* normal_ir_body) { |
| // static void _absSub(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| __ movl(EDI, Address(ESP, 6 * target::kWordSize)); // digits |
| __ movl(EAX, Address(ESP, 5 * target::kWordSize)); // used is Smi |
| __ SmiUntag(EAX); // used > 0. |
| __ movl(ESI, Address(ESP, 4 * target::kWordSize)); // a_digits |
| __ movl(ECX, Address(ESP, 3 * target::kWordSize)); // a_used is Smi |
| __ SmiUntag(ECX); // a_used > 0. |
| __ movl(EBX, Address(ESP, 2 * target::kWordSize)); // r_digits |
| |
| // Precompute 'used - a_used' now so that carry flag is not lost later. |
| __ subl(EAX, ECX); |
| __ incl(EAX); // To account for the extra test between loops. |
| __ pushl(EAX); |
| |
| __ xorl(EDX, EDX); // EDX = 0, carry flag = 0. |
| Label sub_loop; |
| __ Bind(&sub_loop); |
| // Loop a_used times, ECX = a_used, ECX > 0. |
| __ movl(EAX, |
| FieldAddress(EDI, EDX, TIMES_4, target::TypedData::data_offset())); |
| __ sbbl(EAX, |
| FieldAddress(ESI, EDX, TIMES_4, target::TypedData::data_offset())); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), |
| EAX); |
| __ incl(EDX); // Does not affect carry flag. |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &sub_loop, Assembler::kNearJump); |
| |
| Label done; |
| __ popl(ECX); |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(ZERO, &done, Assembler::kNearJump); // If used - a_used == 0. |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop used - a_used times, ECX = used - a_used, ECX > 0. |
| __ movl(EAX, |
| FieldAddress(EDI, EDX, TIMES_4, target::TypedData::data_offset())); |
| __ sbbl(EAX, Immediate(0)); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), |
| EAX); |
| __ incl(EDX); // Does not affect carry flag. |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // Restore THR and return. |
| __ popl(THR); |
| __ LoadObject(EAX, NullObject()); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Pseudo code: |
| // static int _mulAdd(Uint32List x_digits, int xi, |
| // Uint32List m_digits, int i, |
| // Uint32List a_digits, int j, int n) { |
| // uint32_t x = x_digits[xi >> 1]; // xi is Smi. |
| // if (x == 0 || n == 0) { |
| // return 1; |
| // } |
| // uint32_t* mip = &m_digits[i >> 1]; // i is Smi. |
| // uint32_t* ajp = &a_digits[j >> 1]; // j is Smi. |
| // uint32_t c = 0; |
| // SmiUntag(n); |
| // do { |
| // uint32_t mi = *mip++; |
| // uint32_t aj = *ajp; |
| // uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit. |
| // *ajp++ = low32(t); |
| // c = high32(t); |
| // } while (--n > 0); |
| // while (c != 0) { |
| // uint64_t t = *ajp + c; |
| // *ajp++ = low32(t); |
| // c = high32(t); // c == 0 or 1. |
| // } |
| // return 1; |
| // } |
| |
| Label no_op; |
| // EBX = x, no_op if x == 0 |
| __ movl(ECX, Address(ESP, 7 * target::kWordSize)); // x_digits |
| __ movl(EAX, Address(ESP, 6 * target::kWordSize)); // xi is Smi |
| __ movl(EBX, |
| FieldAddress(ECX, EAX, TIMES_2, target::TypedData::data_offset())); |
| __ testl(EBX, EBX); |
| __ j(ZERO, &no_op, Assembler::kNearJump); |
| |
| // EDX = SmiUntag(n), no_op if n == 0 |
| __ movl(EDX, Address(ESP, 1 * target::kWordSize)); |
| __ SmiUntag(EDX); |
| __ j(ZERO, &no_op, Assembler::kNearJump); |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| // EDI = mip = &m_digits[i >> 1] |
| __ movl(EDI, Address(ESP, 6 * target::kWordSize)); // m_digits |
| __ movl(EAX, Address(ESP, 5 * target::kWordSize)); // i is Smi |
| __ leal(EDI, |
| FieldAddress(EDI, EAX, TIMES_2, target::TypedData::data_offset())); |
| |
| // ESI = ajp = &a_digits[j >> 1] |
| __ movl(ESI, Address(ESP, 4 * target::kWordSize)); // a_digits |
| __ movl(EAX, Address(ESP, 3 * target::kWordSize)); // j is Smi |
| __ leal(ESI, |
| FieldAddress(ESI, EAX, TIMES_2, target::TypedData::data_offset())); |
| |
| // Save n |
| __ pushl(EDX); |
| Address n_addr = Address(ESP, 0 * target::kWordSize); |
| |
| // ECX = c = 0 |
| __ xorl(ECX, ECX); |
| |
| Label muladd_loop; |
| __ Bind(&muladd_loop); |
| // x: EBX |
| // mip: EDI |
| // ajp: ESI |
| // c: ECX |
| // t: EDX:EAX (not live at loop entry) |
| // n: ESP[0] |
| |
| // uint32_t mi = *mip++ |
| __ movl(EAX, Address(EDI, 0)); |
| __ addl(EDI, Immediate(kBytesPerBigIntDigit)); |
| |
| // uint64_t t = x*mi |
| __ mull(EBX); // t = EDX:EAX = EAX * EBX |
| __ addl(EAX, ECX); // t += c |
| __ adcl(EDX, Immediate(0)); |
| |
| // uint32_t aj = *ajp; t += aj |
| __ addl(EAX, Address(ESI, 0)); |
| __ adcl(EDX, Immediate(0)); |
| |
| // *ajp++ = low32(t) |
| __ movl(Address(ESI, 0), EAX); |
| __ addl(ESI, Immediate(kBytesPerBigIntDigit)); |
| |
| // c = high32(t) |
| __ movl(ECX, EDX); |
| |
| // while (--n > 0) |
| __ decl(n_addr); // --n |
| __ j(NOT_ZERO, &muladd_loop, Assembler::kNearJump); |
| |
| Label done; |
| __ testl(ECX, ECX); |
| __ j(ZERO, &done, Assembler::kNearJump); |
| |
| // *ajp += c |
| __ addl(Address(ESI, 0), ECX); |
| __ j(NOT_CARRY, &done, Assembler::kNearJump); |
| |
| Label propagate_carry_loop; |
| __ Bind(&propagate_carry_loop); |
| __ addl(ESI, Immediate(kBytesPerBigIntDigit)); |
| __ incl(Address(ESI, 0)); // c == 0 or 1 |
| __ j(CARRY, &propagate_carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| __ Drop(1); // n |
| // Restore THR and return. |
| __ popl(THR); |
| |
| __ Bind(&no_op); |
| __ movl(EAX, Immediate(target::ToRawSmi(1))); // One digit processed. |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Pseudo code: |
| // static int _sqrAdd(Uint32List x_digits, int i, |
| // Uint32List a_digits, int used) { |
| // uint32_t* xip = &x_digits[i >> 1]; // i is Smi. |
| // uint32_t x = *xip++; |
| // if (x == 0) return 1; |
| // uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| // uint32_t aj = *ajp; |
| // uint64_t t = x*x + aj; |
| // *ajp++ = low32(t); |
| // uint64_t c = high32(t); |
| // int n = ((used - i) >> 1) - 1; // used and i are Smi. |
| // while (--n >= 0) { |
| // uint32_t xi = *xip++; |
| // uint32_t aj = *ajp; |
| // uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit. |
| // *ajp++ = low32(t); |
| // c = high64(t); // 33-bit. |
| // } |
| // uint32_t aj = *ajp; |
| // uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit. |
| // *ajp++ = low32(t); |
| // *ajp = high32(t); |
| // return 1; |
| // } |
| |
| // EDI = xip = &x_digits[i >> 1] |
| __ movl(EDI, Address(ESP, 4 * target::kWordSize)); // x_digits |
| __ movl(EAX, Address(ESP, 3 * target::kWordSize)); // i is Smi |
| __ leal(EDI, |
| FieldAddress(EDI, EAX, TIMES_2, target::TypedData::data_offset())); |
| |
| // EBX = x = *xip++, return if x == 0 |
| Label x_zero; |
| __ movl(EBX, Address(EDI, 0)); |
| __ cmpl(EBX, Immediate(0)); |
| __ j(EQUAL, &x_zero, Assembler::kNearJump); |
| __ addl(EDI, Immediate(kBytesPerBigIntDigit)); |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| // ESI = ajp = &a_digits[i] |
| __ movl(ESI, Address(ESP, 3 * target::kWordSize)); // a_digits |
| __ leal(ESI, |
| FieldAddress(ESI, EAX, TIMES_4, target::TypedData::data_offset())); |
| |
| // EDX:EAX = t = x*x + *ajp |
| __ movl(EAX, EBX); |
| __ mull(EBX); |
| __ addl(EAX, Address(ESI, 0)); |
| __ adcl(EDX, Immediate(0)); |
| |
| // *ajp++ = low32(t) |
| __ movl(Address(ESI, 0), EAX); |
| __ addl(ESI, Immediate(kBytesPerBigIntDigit)); |
| |
| // int n = used - i - 1 |
| __ movl(EAX, Address(ESP, 2 * target::kWordSize)); // used is Smi |
| __ subl(EAX, Address(ESP, 4 * target::kWordSize)); // i is Smi |
| __ SmiUntag(EAX); |
| __ decl(EAX); |
| __ pushl(EAX); // Save n on stack. |
| |
| // uint64_t c = high32(t) |
| __ pushl(Immediate(0)); // push high32(c) == 0 |
| __ pushl(EDX); // push low32(c) == high32(t) |
| |
| Address n_addr = Address(ESP, 2 * target::kWordSize); |
| Address ch_addr = Address(ESP, 1 * target::kWordSize); |
| Address cl_addr = Address(ESP, 0 * target::kWordSize); |
| |
| Label loop, done; |
| __ Bind(&loop); |
| // x: EBX |
| // xip: EDI |
| // ajp: ESI |
| // c: ESP[1]:ESP[0] |
| // t: ECX:EDX:EAX (not live at loop entry) |
| // n: ESP[2] |
| |
| // while (--n >= 0) |
| __ decl(Address(ESP, 2 * target::kWordSize)); // --n |
| __ j(NEGATIVE, &done, Assembler::kNearJump); |
| |
| // uint32_t xi = *xip++ |
| __ movl(EAX, Address(EDI, 0)); |
| __ addl(EDI, Immediate(kBytesPerBigIntDigit)); |
| |
| // uint96_t t = ECX:EDX:EAX = 2*x*xi + aj + c |
| __ mull(EBX); // EDX:EAX = EAX * EBX |
| __ xorl(ECX, ECX); // ECX = 0 |
| __ shldl(ECX, EDX, Immediate(1)); |
| __ shldl(EDX, EAX, Immediate(1)); |
| __ shll(EAX, Immediate(1)); // ECX:EDX:EAX <<= 1 |
| __ addl(EAX, Address(ESI, 0)); // t += aj |
| __ adcl(EDX, Immediate(0)); |
| __ adcl(ECX, Immediate(0)); |
| __ addl(EAX, cl_addr); // t += low32(c) |
| __ adcl(EDX, ch_addr); // t += high32(c) << 32 |
| __ adcl(ECX, Immediate(0)); |
| |
| // *ajp++ = low32(t) |
| __ movl(Address(ESI, 0), EAX); |
| __ addl(ESI, Immediate(kBytesPerBigIntDigit)); |
| |
| // c = high64(t) |
| __ movl(cl_addr, EDX); |
| __ movl(ch_addr, ECX); |
| |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // uint64_t t = aj + c |
| __ movl(EAX, cl_addr); // t = c |
| __ movl(EDX, ch_addr); |
| __ addl(EAX, Address(ESI, 0)); // t += *ajp |
| __ adcl(EDX, Immediate(0)); |
| |
| // *ajp++ = low32(t) |
| // *ajp = high32(t) |
| __ movl(Address(ESI, 0), EAX); |
| __ movl(Address(ESI, kBytesPerBigIntDigit), EDX); |
| |
| // Restore THR and return. |
| __ Drop(3); |
| __ popl(THR); |
| __ Bind(&x_zero); |
| __ movl(EAX, Immediate(target::ToRawSmi(1))); // One digit processed. |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Pseudo code: |
| // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { |
| // uint32_t yt = args[_YT]; // _YT == 1. |
| // uint32_t* dp = &digits[i >> 1]; // i is Smi. |
| // uint32_t dh = dp[0]; // dh == digits[i >> 1]. |
| // uint32_t qd; |
| // if (dh == yt) { |
| // qd = DIGIT_MASK; |
| // } else { |
| // dl = dp[-1]; // dl == digits[(i - 1) >> 1]. |
| // qd = dh:dl / yt; // No overflow possible, because dh < yt. |
| // } |
| // args[_QD] = qd; // _QD == 2. |
| // return 1; |
| // } |
| |
| // EDI = args |
| __ movl(EDI, Address(ESP, 3 * target::kWordSize)); // args |
| |
| // ECX = yt = args[1] |
| __ movl(ECX, FieldAddress(EDI, target::TypedData::data_offset() + |
| kBytesPerBigIntDigit)); |
| |
| // EBX = dp = &digits[i >> 1] |
| __ movl(EBX, Address(ESP, 2 * target::kWordSize)); // digits |
| __ movl(EAX, Address(ESP, 1 * target::kWordSize)); // i is Smi |
| __ leal(EBX, |
| FieldAddress(EBX, EAX, TIMES_2, target::TypedData::data_offset())); |
| |
| // EDX = dh = dp[0] |
| __ movl(EDX, Address(EBX, 0)); |
| |
| // EAX = qd = DIGIT_MASK = -1 |
| __ movl(EAX, Immediate(-1)); |
| |
| // Return qd if dh == yt |
| Label return_qd; |
| __ cmpl(EDX, ECX); |
| __ j(EQUAL, &return_qd, Assembler::kNearJump); |
| |
| // EAX = dl = dp[-1] |
| __ movl(EAX, Address(EBX, -kBytesPerBigIntDigit)); |
| |
| // EAX = qd = dh:dl / yt = EDX:EAX / ECX |
| __ divl(ECX); |
| |
| __ Bind(&return_qd); |
| // args[2] = qd |
| __ movl(FieldAddress( |
| EDI, target::TypedData::data_offset() + 2 * kBytesPerBigIntDigit), |
| EAX); |
| |
| __ movl(EAX, Immediate(target::ToRawSmi(1))); // One digit processed. |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Pseudo code: |
| // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| // uint32_t rho = args[_RHO]; // _RHO == 2. |
| // uint32_t d = digits[i >> 1]; // i is Smi. |
| // uint64_t t = rho*d; |
| // args[_MU] = t mod DIGIT_BASE; // _MU == 4. |
| // return 1; |
| // } |
| |
| // EDI = args |
| __ movl(EDI, Address(ESP, 3 * target::kWordSize)); // args |
| |
| // ECX = rho = args[2] |
| __ movl(ECX, FieldAddress(EDI, target::TypedData::data_offset() + |
| 2 * kBytesPerBigIntDigit)); |
| |
| // EAX = digits[i >> 1] |
| __ movl(EBX, Address(ESP, 2 * target::kWordSize)); // digits |
| __ movl(EAX, Address(ESP, 1 * target::kWordSize)); // i is Smi |
| __ movl(EAX, |
| FieldAddress(EBX, EAX, TIMES_2, target::TypedData::data_offset())); |
| |
| // EDX:EAX = t = rho*d |
| __ mull(ECX); |
| |
| // args[4] = t mod DIGIT_BASE = low32(t) |
| __ movl(FieldAddress( |
| EDI, target::TypedData::data_offset() + 4 * kBytesPerBigIntDigit), |
| EAX); |
| |
| __ movl(EAX, Immediate(target::ToRawSmi(1))); // One digit processed. |
| __ ret(); |
| } |
| |
| // Check if the last argument is a double, jump to label 'is_smi' if smi |
| // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| // Returns the last argument in EAX. |
| static void TestLastArgumentIsDouble(Assembler* assembler, |
| Label* is_smi, |
| Label* not_double_smi) { |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(ZERO, is_smi, Assembler::kNearJump); // Jump if Smi. |
| __ CompareClassId(EAX, kDoubleCid, EBX); |
| __ j(NOT_EQUAL, not_double_smi, Assembler::kNearJump); |
| // Fall through if double. |
| } |
| |
| // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
| // type. Return true or false object in the register EAX. Any NaN argument |
| // returns false. Any non-double arg1 causes control flow to fall through to the |
| // slow case (compiled method body). |
| static void CompareDoubles(Assembler* assembler, |
| Label* normal_ir_body, |
| Condition true_condition) { |
| Label is_false, is_true, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| // Both arguments are double, right operand is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, target::Double::value_offset())); |
| __ Bind(&double_op); |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); // Left argument. |
| __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); |
| __ comisd(XMM0, XMM1); |
| __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false; |
| __ j(true_condition, &is_true, Assembler::kNearJump); |
| // Fall through false. |
| __ Bind(&is_false); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ jmp(&double_op); |
| __ Bind(normal_ir_body); |
| } |
| |
| // arg0 is Double, arg1 is unknown. |
| void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareDoubles(assembler, normal_ir_body, ABOVE); |
| } |
| |
| // arg0 is Double, arg1 is unknown. |
| void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareDoubles(assembler, normal_ir_body, ABOVE_EQUAL); |
| } |
| |
| // arg0 is Double, arg1 is unknown. |
| void AsmIntrinsifier::Double_lessThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareDoubles(assembler, normal_ir_body, BELOW); |
| } |
| |
| // arg0 is Double, arg1 is unknown. |
| void AsmIntrinsifier::Double_equal(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareDoubles(assembler, normal_ir_body, EQUAL); |
| } |
| |
| // arg0 is Double, arg1 is unknown. |
| void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, |
| Label* normal_ir_body) { |
| CompareDoubles(assembler, normal_ir_body, BELOW_EQUAL); |
| } |
| |
| // Expects left argument to be double (receiver). Right argument is unknown. |
| // Both arguments are on stack. |
| static void DoubleArithmeticOperations(Assembler* assembler, |
| Label* normal_ir_body, |
| Token::Kind kind) { |
| Label is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| // Both arguments are double, right operand is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, target::Double::value_offset())); |
| __ Bind(&double_op); |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); // Left argument. |
| __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); |
| switch (kind) { |
| case Token::kADD: |
| __ addsd(XMM0, XMM1); |
| break; |
| case Token::kSUB: |
| __ subsd(XMM0, XMM1); |
| break; |
| case Token::kMUL: |
| __ mulsd(XMM0, XMM1); |
| break; |
| case Token::kDIV: |
| __ divsd(XMM0, XMM1); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| const Class& double_class = DoubleClass(); |
| __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, |
| EAX, // Result register. |
| EBX); |
| __ movsd(FieldAddress(EAX, target::Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ jmp(&double_op); |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { |
| DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); |
| } |
| |
| void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { |
| DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); |
| } |
| |
| void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { |
| DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); |
| } |
| |
| void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { |
| DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); |
| } |
| |
| // Left is double, right is integer (Mint or Smi) |
| void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, |
| Label* normal_ir_body) { |
| // Only smis allowed. |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, normal_ir_body, Assembler::kNearJump); |
| // Is Smi. |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); |
| __ mulsd(XMM0, XMM1); |
| const Class& double_class = DoubleClass(); |
| __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, |
| EAX, // Result register. |
| EBX); |
| __ movsd(FieldAddress(EAX, target::Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, normal_ir_body, Assembler::kNearJump); |
| // Is Smi. |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM0, EAX); |
| const Class& double_class = DoubleClass(); |
| __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, |
| EAX, // Result register. |
| EBX); |
| __ movsd(FieldAddress(EAX, target::Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label is_true; |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); |
| __ comisd(XMM0, XMM0); |
| __ j(PARITY_EVEN, &is_true, Assembler::kNearJump); // NaN -> true; |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label not_inf; |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ movl(EBX, FieldAddress(EAX, target::Double::value_offset())); |
| |
| // If the low word isn't zero, then it isn't infinity. |
| __ cmpl(EBX, Immediate(0)); |
| __ j(NOT_EQUAL, ¬_inf, Assembler::kNearJump); |
| // Check the high word. |
| __ movl(EBX, FieldAddress( |
| EAX, target::Double::value_offset() + target::kWordSize)); |
| // Mask off sign bit. |
| __ andl(EBX, Immediate(0x7FFFFFFF)); |
| // Compare with +infinity. |
| __ cmpl(EBX, Immediate(0x7FF00000)); |
| __ j(NOT_EQUAL, ¬_inf, Assembler::kNearJump); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(¬_inf); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label is_false, is_true, is_zero; |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); |
| __ xorpd(XMM1, XMM1); // 0.0 -> XMM1. |
| __ comisd(XMM0, XMM1); |
| __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false. |
| __ j(EQUAL, &is_zero, Assembler::kNearJump); // Check for negative zero. |
| __ j(ABOVE_EQUAL, &is_false, Assembler::kNearJump); // >= 0 -> false. |
| __ Bind(&is_true); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| __ Bind(&is_false); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&is_zero); |
| // Check for negative zero (get the sign bit). |
| __ movmskpd(EAX, XMM0); |
| __ testl(EAX, Immediate(1)); |
| __ j(NOT_ZERO, &is_true, Assembler::kNearJump); |
| __ jmp(&is_false, Assembler::kNearJump); |
| } |
| |
| void AsmIntrinsifier::DoubleToInteger(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); |
| __ cvttsd2si(EAX, XMM0); |
| // Overflow is signalled with minint. |
| // Check for overflow and that it fits into Smi. |
| __ cmpl(EAX, Immediate(0xC0000000)); |
| __ j(NEGATIVE, normal_ir_body, Assembler::kNearJump); |
| __ SmiTag(EAX); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::Double_hashCode(Assembler* assembler, |
| Label* normal_ir_body) { |
| // TODO(dartbug.com/31174): Convert this to a graph intrinsic. |
| |
| // Convert double value to signed 32-bit int in EAX and |
| // back to a double in XMM1. |
| __ movl(ECX, Address(ESP, +1 * target::kWordSize)); |
| __ movsd(XMM0, FieldAddress(ECX, target::Double::value_offset())); |
| __ cvttsd2si(EAX, XMM0); |
| __ cvtsi2sd(XMM1, EAX); |
| |
| // Tag the int as a Smi, making sure that it fits; this checks for |
| // overflow and NaN in the conversion from double to int. Conversion |
| // overflow from cvttsd2si is signalled with an INT32_MIN value. |
| ASSERT(kSmiTag == 0 && kSmiTagShift == 1); |
| __ addl(EAX, EAX); |
| __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); |
| |
| // Compare the two double values. If they are equal, we return the |
| // Smi tagged result immediately as the hash code. |
| Label double_hash; |
| __ comisd(XMM0, XMM1); |
| __ j(NOT_EQUAL, &double_hash, Assembler::kNearJump); |
| __ ret(); |
| |
| // Convert the double bits to a hash code that fits in a Smi. |
| __ Bind(&double_hash); |
| __ movl(EAX, FieldAddress(ECX, target::Double::value_offset())); |
| __ movl(ECX, FieldAddress(ECX, target::Double::value_offset() + 4)); |
| __ xorl(EAX, ECX); |
| __ andl(EAX, Immediate(target::kSmiMax)); |
| __ SmiTag(EAX); |
| __ ret(); |
| |
| // Fall into the native C++ implementation. |
| __ Bind(normal_ir_body); |
| } |
| |
| // Argument type is not known |
| void AsmIntrinsifier::MathSqrt(Assembler* assembler, Label* normal_ir_body) { |
| Label is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); |
| // Argument is double and is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, target::Double::value_offset())); |
| __ Bind(&double_op); |
| __ sqrtsd(XMM0, XMM1); |
| const Class& double_class = DoubleClass(); |
| __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, |
| EAX, // Result register. |
| EBX); |
| __ movsd(FieldAddress(EAX, target::Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ jmp(&double_op); |
| __ Bind(normal_ir_body); |
| } |
| |
| // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
| // _state[kSTATE_LO] = state & _MASK_32; |
| // _state[kSTATE_HI] = state >> 32; |
| void AsmIntrinsifier::Random_nextState(Assembler* assembler, |
| Label* normal_ir_body) { |
| const Field& state_field = LookupMathRandomStateFieldOffset(); |
| const int64_t a_int_value = AsmIntrinsifier::kRandomAValue; |
| |
| // 'a_int_value' is a mask. |
| ASSERT(Utils::IsUint(32, a_int_value)); |
| int32_t a_int32_value = static_cast<int32_t>(a_int_value); |
| |
| // Receiver. |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| // Field '_state'. |
| __ movl(EBX, FieldAddress(EAX, LookupFieldOffsetInBytes(state_field))); |
| // Addresses of _state[0] and _state[1]. |
| const intptr_t scale = |
| target::Instance::ElementSizeFor(kTypedDataUint32ArrayCid); |
| const intptr_t offset = |
| target::Instance::DataOffsetFor(kTypedDataUint32ArrayCid); |
| Address addr_0 = FieldAddress(EBX, 0 * scale + offset); |
| Address addr_1 = FieldAddress(EBX, 1 * scale + offset); |
| __ movl(EAX, Immediate(a_int32_value)); |
| // 64-bit multiply EAX * value -> EDX:EAX. |
| __ mull(addr_0); |
| __ addl(EAX, addr_1); |
| __ adcl(EDX, Immediate(0)); |
| __ movl(addr_1, EDX); |
| __ movl(addr_0, EAX); |
| ASSERT(target::ToRawSmi(0) == 0); |
| __ xorl(EAX, EAX); |
| __ ret(); |
| } |
| |
| // Identity comparison. |
| void AsmIntrinsifier::ObjectEquals(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label is_true; |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ cmpl(EAX, Address(ESP, +2 * target::kWordSize)); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| } |
| |
| static void RangeCheck(Assembler* assembler, |
| Register reg, |
| intptr_t low, |
| intptr_t high, |
| Condition cc, |
| Label* target) { |
| __ subl(reg, Immediate(low)); |
| __ cmpl(reg, Immediate(high - low)); |
| __ j(cc, target); |
| } |
| |
| const Condition kIfNotInRange = ABOVE; |
| const Condition kIfInRange = BELOW_EQUAL; |
| |
| static void JumpIfInteger(Assembler* assembler, Register cid, Label* target) { |
| RangeCheck(assembler, cid, kSmiCid, kMintCid, kIfInRange, target); |
| } |
| |
| static void JumpIfNotInteger(Assembler* assembler, |
| Register cid, |
| Label* target) { |
| RangeCheck(assembler, cid, kSmiCid, kMintCid, kIfNotInRange, target); |
| } |
| |
| static void JumpIfString(Assembler* assembler, Register cid, Label* target) { |
| RangeCheck(assembler, cid, kOneByteStringCid, kExternalTwoByteStringCid, |
| kIfInRange, target); |
| } |
| |
| static void JumpIfNotString(Assembler* assembler, Register cid, Label* target) { |
| RangeCheck(assembler, cid, kOneByteStringCid, kExternalTwoByteStringCid, |
| kIfNotInRange, target); |
| } |
| |
| static void JumpIfType(Assembler* assembler, Register cid, Label* target) { |
| RangeCheck(assembler, cid, kTypeCid, kFunctionTypeCid, kIfInRange, target); |
| } |
| |
| static void JumpIfNotType(Assembler* assembler, Register cid, Label* target) { |
| RangeCheck(assembler, cid, kTypeCid, kFunctionTypeCid, kIfNotInRange, target); |
| } |
| |
| // Return type quickly for simple types (not parameterized and not signature). |
| void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label use_declaration_type, not_double, not_integer, not_string; |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ LoadClassIdMayBeSmi(EDI, EAX); |
| |
| __ cmpl(EDI, Immediate(kClosureCid)); |
| __ j(EQUAL, normal_ir_body); // Instance is a closure. |
| |
| __ cmpl(EDI, Immediate(kNumPredefinedCids)); |
| __ j(ABOVE, &use_declaration_type); |
| |
| // If object is a instance of _Double return double type. |
| __ cmpl(EDI, Immediate(kDoubleCid)); |
| __ j(NOT_EQUAL, ¬_double); |
| |
| __ LoadIsolateGroup(EAX); |
| __ movl(EAX, Address(EAX, target::IsolateGroup::object_store_offset())); |
| __ movl(EAX, Address(EAX, target::ObjectStore::double_type_offset())); |
| __ ret(); |
| |
| __ Bind(¬_double); |
| // If object is an integer (smi, mint or bigint) return int type. |
| __ movl(EAX, EDI); |
| JumpIfNotInteger(assembler, EAX, ¬_integer); |
| |
| __ LoadIsolateGroup(EAX); |
| __ movl(EAX, Address(EAX, target::IsolateGroup::object_store_offset())); |
| __ movl(EAX, Address(EAX, target::ObjectStore::int_type_offset())); |
| __ ret(); |
| |
| __ Bind(¬_integer); |
| // If object is a string (one byte, two byte or external variants) return |
| // string type. |
| __ movl(EAX, EDI); |
| JumpIfNotString(assembler, EAX, ¬_string); |
| |
| __ LoadIsolateGroup(EAX); |
| __ movl(EAX, Address(EAX, target::IsolateGroup::object_store_offset())); |
| __ movl(EAX, Address(EAX, target::ObjectStore::string_type_offset())); |
| __ ret(); |
| |
| __ Bind(¬_string); |
| // If object is a type or function type, return Dart type. |
| __ movl(EAX, EDI); |
| JumpIfNotType(assembler, EAX, &use_declaration_type); |
| |
| __ LoadIsolateGroup(EAX); |
| __ movl(EAX, Address(EAX, target::IsolateGroup::object_store_offset())); |
| __ movl(EAX, Address(EAX, target::ObjectStore::type_type_offset())); |
| __ ret(); |
| |
| // Object is neither double, nor integer, nor string, nor type. |
| __ Bind(&use_declaration_type); |
| __ LoadClassById(EBX, EDI); |
| __ movzxw(EDI, FieldAddress(EBX, target::Class::num_type_arguments_offset())); |
| __ cmpl(EDI, Immediate(0)); |
| __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); |
| __ movl(EAX, FieldAddress(EBX, target::Class::declaration_type_offset())); |
| __ CompareObject(EAX, NullObject()); |
| __ j(EQUAL, normal_ir_body, Assembler::kNearJump); // Not yet set. |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| // Compares cid1 and cid2 to see if they're syntactically equivalent. If this |
| // can be determined by this fast path, it jumps to either equal or not_equal, |
| // if equal but belonging to a generic class, it falls through with the scratch |
| // register containing host_type_arguments_field_offset_in_words, |
| // otherwise it jumps to normal_ir_body. May clobber scratch. |
| static void EquivalentClassIds(Assembler* assembler, |
| Label* normal_ir_body, |
| Label* equal, |
| Label* not_equal, |
| Register cid1, |
| Register cid2, |
| Register scratch, |
| bool testing_instance_cids) { |
| Label different_cids, equal_cids_but_generic, not_integer, |
| not_integer_or_string; |
| |
| // Check if left hand side is a closure. Closures are handled in the runtime. |
| __ cmpl(cid1, Immediate(kClosureCid)); |
| __ j(EQUAL, normal_ir_body); |
| |
| // Check whether class ids match. If class ids don't match types may still be |
| // considered equivalent (e.g. multiple string implementation classes map to a |
| // single String type). |
| __ cmpl(cid1, cid2); |
| __ j(NOT_EQUAL, &different_cids); |
| |
| // Types have the same class and neither is a closure type. |
| // Check if there are no type arguments. In this case we can return true. |
| // Otherwise fall through into the runtime to handle comparison. |
| __ LoadClassById(scratch, cid1); |
| __ movl( |
| scratch, |
| FieldAddress( |
| scratch, |
| target::Class::host_type_arguments_field_offset_in_words_offset())); |
| __ cmpl(scratch, Immediate(target::Class::kNoTypeArguments)); |
| __ j(NOT_EQUAL, &equal_cids_but_generic, Assembler::kNearJump); |
| __ jmp(equal); |
| |
| // Class ids are different. Check if we are comparing two string types (with |
| // different representations) or two integer types or two type types. |
| __ Bind(&different_cids); |
| __ cmpl(cid1, Immediate(kNumPredefinedCids)); |
| __ j(ABOVE_EQUAL, not_equal); |
| |
| // Check if both are integer types. |
| __ movl(scratch, cid1); |
| JumpIfNotInteger(assembler, scratch, ¬_integer); |
| |
| // First type is an integer. Check if the second is an integer too. |
| JumpIfInteger(assembler, cid2, equal); |
| // Integer types are only equivalent to other integer types. |
| __ jmp(not_equal); |
| |
| __ Bind(¬_integer); |
| // Check if both are String types. |
| JumpIfNotString(assembler, cid1, |
| testing_instance_cids ? ¬_integer_or_string : not_equal); |
| |
| // First type is a String. Check if the second is a String too. |
| JumpIfString(assembler, cid2, equal); |
| // String types are only equivalent to other String types. |
| __ jmp(not_equal); |
| |
| if (testing_instance_cids) { |
| __ Bind(¬_integer_or_string); |
| // Check if the first type is a Type. If it is not then types are not |
| // equivalent because they have different class ids and they are not String |
| // or integer or Type. |
| JumpIfNotType(assembler, cid1, not_equal); |
| |
| // First type is a Type. Check if the second is a Type too. |
| JumpIfType(assembler, cid2, equal); |
| // Type types are only equivalent to other Type types. |
| __ jmp(not_equal); |
| } |
| |
| // The caller must compare the type arguments. |
| __ Bind(&equal_cids_but_generic); |
| } |
| |
| void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); |
| __ LoadClassIdMayBeSmi(EDI, EAX); |
| |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); |
| __ LoadClassIdMayBeSmi(EBX, EAX); |
| |
| Label equal, not_equal; |
| EquivalentClassIds(assembler, normal_ir_body, &equal, ¬_equal, EDI, EBX, |
| EAX, /* testing_instance_cids = */ true); |
| |
| // Compare type arguments, host_type_arguments_field_offset_in_words in EAX. |
| __ movl(EDI, Address(ESP, +1 * target::kWordSize)); |
| __ movl(EBX, Address(ESP, +2 * target::kWordSize)); |
| __ movl(EDI, FieldAddress(EDI, EAX, TIMES_4, 0)); |
| __ movl(EBX, FieldAddress(EBX, EAX, TIMES_4, 0)); |
| __ cmpl(EDI, EBX); |
| __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); |
| // Fall through to equal case if type arguments are equal. |
| |
| __ Bind(&equal); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(¬_equal); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::String_getHashCode(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); // String object. |
| __ movl(EAX, FieldAddress(EAX, target::String::hash_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, normal_ir_body, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| // Hash not yet computed. |
| } |
| |
| void AsmIntrinsifier::Type_getHashCode(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); // Type object. |
| __ movl(EAX, FieldAddress(EAX, target::Type::hash_offset())); |
| __ testl(EAX, EAX); |
| __ j(EQUAL, normal_ir_body, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| // Hash not yet computed. |
| } |
| |
| void AsmIntrinsifier::Type_equality(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label equal, not_equal, equiv_cids, check_legacy; |
| |
| __ movl(EDI, Address(ESP, +1 * target::kWordSize)); |
| __ movl(EBX, Address(ESP, +2 * target::kWordSize)); |
| __ cmpl(EDI, EBX); |
| __ j(EQUAL, &equal); |
| |
| // EDI might not be a Type object, so check that first (EBX should be though, |
| // since this is a method on the Type class). |
| __ LoadClassIdMayBeSmi(EAX, EDI); |
| __ cmpl(EAX, Immediate(kTypeCid)); |
| __ j(NOT_EQUAL, normal_ir_body); |
| |
| // Check if types are syntactically equal. |
| __ movl(ECX, FieldAddress(EDI, target::Type::type_class_id_offset())); |
| __ SmiUntag(ECX); |
| __ movl(EDX, FieldAddress(EBX, target::Type::type_class_id_offset())); |
| __ SmiUntag(EDX); |
| // We are not testing instance cids, but type class cids of Type instances. |
| EquivalentClassIds(assembler, normal_ir_body, &equiv_cids, ¬_equal, ECX, |
| EDX, EAX, /* testing_instance_cids = */ false); |
| |
| // Compare type arguments in Type instances. |
| __ movl(ECX, FieldAddress(EDI, target::Type::arguments_offset())); |
| __ movl(EDX, FieldAddress(EBX, target::Type::arguments_offset())); |
| __ cmpl(ECX, EDX); |
| __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); |
| // Fall through to check nullability if type arguments are equal. |
| |
| // Check nullability. |
| __ Bind(&equiv_cids); |
| __ movzxb(EDI, FieldAddress(EDI, target::Type::nullability_offset())); |
| __ movzxb(EBX, FieldAddress(EBX, target::Type::nullability_offset())); |
| __ cmpl(EDI, EBX); |
| __ j(NOT_EQUAL, &check_legacy, Assembler::kNearJump); |
| // Fall through to equal case if nullability is strictly equal. |
| |
| __ Bind(&equal); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| // At this point the nullabilities are different, so they can only be |
| // syntactically equivalent if they're both either kNonNullable or kLegacy. |
| // These are the two largest values of the enum, so we can just do a < check. |
| ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable && |
| target::Nullability::kNonNullable < target::Nullability::kLegacy); |
| __ Bind(&check_legacy); |
| __ cmpl(EDI, Immediate(target::Nullability::kNonNullable)); |
| __ j(LESS, ¬_equal, Assembler::kNearJump); |
| __ cmpl(EBX, Immediate(target::Nullability::kNonNullable)); |
| __ j(GREATER_EQUAL, &equal, Assembler::kNearJump); |
| |
| __ Bind(¬_equal); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::FunctionType_getHashCode(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); // FunctionType object. |
| __ movl(EAX, FieldAddress(EAX, target::FunctionType::hash_offset())); |
| __ testl(EAX, EAX); |
| __ j(EQUAL, normal_ir_body, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| // Hash not yet computed. |
| } |
| |
| void AsmIntrinsifier::FunctionType_equality(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EDI, Address(ESP, +1 * target::kWordSize)); |
| __ movl(EBX, Address(ESP, +2 * target::kWordSize)); |
| __ cmpl(EDI, EBX); |
| __ j(NOT_EQUAL, normal_ir_body); |
| |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| // bool _substringMatches(int start, String other) |
| void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, |
| Label* normal_ir_body) { |
| // For precompilation, not implemented on IA32. |
| } |
| |
| void AsmIntrinsifier::Object_getHash(Assembler* assembler, |
| Label* normal_ir_body) { |
| UNREACHABLE(); |
| } |
| |
| void AsmIntrinsifier::Object_setHashIfNotSetYet(Assembler* assembler, |
| Label* normal_ir_body) { |
| UNREACHABLE(); |
| } |
| |
| void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label try_two_byte_string; |
| __ movl(EBX, Address(ESP, +1 * target::kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); // String. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, normal_ir_body, Assembler::kNearJump); // Non-smi index. |
| // Range check. |
| __ cmpl(EBX, FieldAddress(EAX, target::String::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, normal_ir_body, Assembler::kNearJump); |
| __ CompareClassId(EAX, kOneByteStringCid, EDI); |
| __ j(NOT_EQUAL, &try_two_byte_string, Assembler::kNearJump); |
| __ SmiUntag(EBX); |
| __ movzxb(EBX, FieldAddress(EAX, EBX, TIMES_1, |
| target::OneByteString::data_offset())); |
| __ cmpl(EBX, Immediate(target::Symbols::kNumberOfOneCharCodeSymbols)); |
| __ j(GREATER_EQUAL, normal_ir_body); |
| __ movl(EAX, Immediate(SymbolsPredefinedAddress())); |
| __ movl(EAX, Address(EAX, EBX, TIMES_4, |
| target::Symbols::kNullCharCodeSymbolOffset * |
| target::kWordSize)); |
| __ ret(); |
| |
| __ Bind(&try_two_byte_string); |
| __ CompareClassId(EAX, kTwoByteStringCid, EDI); |
| __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); |
| ASSERT(kSmiTagShift == 1); |
| __ movzxw(EBX, FieldAddress(EAX, EBX, TIMES_1, |
| target::TwoByteString::data_offset())); |
| __ cmpl(EBX, Immediate(target::Symbols::kNumberOfOneCharCodeSymbols)); |
| __ j(GREATER_EQUAL, normal_ir_body); |
| __ movl(EAX, Immediate(SymbolsPredefinedAddress())); |
| __ movl(EAX, Address(EAX, EBX, TIMES_4, |
| target::Symbols::kNullCharCodeSymbolOffset * |
| target::kWordSize)); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label is_true; |
| // Get length. |
| __ movl(EAX, Address(ESP, +1 * target::kWordSize)); // String object. |
| __ movl(EAX, FieldAddress(EAX, target::String::length_offset())); |
| __ cmpl(EAX, Immediate(target::ToRawSmi(0))); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, |
| Label* normal_ir_body) { |
| Label compute_hash; |
| __ movl(EBX, Address(ESP, +1 * target::kWordSize)); // OneByteString object. |
| __ movl(EAX, FieldAddress(EBX, target::String::hash_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &compute_hash, Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(&compute_hash); |
| // Hash not yet computed, use algorithm of class StringHasher. |
| __ movl(ECX, FieldAddress(EBX, target::String::length_offset())); |
| __ SmiUntag(ECX); |
| __ xorl(EAX, EAX); |
| __ xorl(EDI, EDI); |
| // EBX: Instance of OneByteString. |
| // ECX: String length, untagged integer. |
| // EDI: Loop counter, untagged integer. |
| // EAX: Hash code, untagged integer. |
| Label loop, done, set_hash_code; |
| __ Bind(&loop); |
| __ cmpl(EDI, ECX); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| // Add to hash code: (hash_ is uint32) |
| // hash_ += ch; |
| // hash_ += hash_ << 10; |
| // hash_ ^= hash_ >> 6; |
| // Get one characters (ch). |
| __ movzxb(EDX, FieldAddress(EBX, EDI, TIMES_1, |
| target::OneByteString::data_offset())); |
| // EDX: ch and temporary. |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(10)); |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shrl(EDX, Immediate(6)); |
| __ xorl(EAX, EDX); |
| |
| __ incl(EDI); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // Finalize: |
| // hash_ += hash_ << 3; |
| // hash_ ^= hash_ >> 11; |
| // hash_ += hash_ << 15; |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(3)); |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shrl(EDX, Immediate(11)); |
| __ xorl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(15)); |
| __ addl(EAX, EDX); |
| // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| __ andl( |
| EAX, |
| Immediate(((static_cast<intptr_t>(1) << target::String::kHashBits) - 1))); |
| |
| // return hash_ == 0 ? 1 : hash_; |
| __ cmpl(EAX, Immediate(0)); |
| __ j(NOT_EQUAL, &set_hash_code, Assembler::kNearJump); |
| __ incl(EAX); |
| __ Bind(&set_hash_code); |
| __ SmiTag(EAX); |
| __ StoreIntoSmiField(FieldAddress(EBX, target::String::hash_offset()), EAX); |
| __ ret(); |
| } |
| |
| // Allocates a _OneByteString or _TwoByteString. The content is not initialized. |
| // 'length_reg' contains the desired length as a _Smi or _Mint. |
| // Returns new string as tagged pointer in EAX. |
| static void TryAllocateString(Assembler* assembler, |
| classid_t cid, |
| Label* ok, |
| Label* failure, |
| Register length_reg) { |
| ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); |
| // _Mint length: call to runtime to produce error. |
| __ BranchIfNotSmi(length_reg, failure); |
| // negative length: call to runtime to produce error. |
| __ cmpl(length_reg, Immediate(0)); |
| __ j(LESS, failure); |
| |
| NOT_IN_PRODUCT( |
| __ MaybeTraceAllocation(cid, EAX, failure, Assembler::kFarJump)); |
| if (length_reg != EDI) { |
| __ movl(EDI, length_reg); |
| } |
| Label pop_and_fail; |
| __ pushl(EDI); // Preserve length. |
| if (cid == kOneByteStringCid) { |
| __ SmiUntag(EDI); |
| } else { |
| // Untag length and multiply by element size -> no-op. |
| } |
| const intptr_t fixed_size_plus_alignment_padding = |
| target::String::InstanceSize() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| __ leal(EDI, Address(EDI, TIMES_1, |
| fixed_size_plus_alignment_padding)); // EDI is untagged. |
| __ andl(EDI, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
| |
| __ movl(EAX, Address(THR, target::Thread::top_offset())); |
| __ movl(EBX, EAX); |
| |
| // EDI: allocation size. |
| __ addl(EBX, EDI); |
| __ j(CARRY, &pop_and_fail); |
| |
| // Check if the allocation fits into the remaining space. |
| // EAX: potential new object start. |
| // EBX: potential next object start. |
| // EDI: allocation size. |
| __ cmpl(EBX, Address(THR, target::Thread::end_offset())); |
| __ j(ABOVE_EQUAL, &pop_and_fail); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movl(Address(THR, target::Thread::top_offset()), EBX); |
| __ addl(EAX, Immediate(kHeapObjectTag)); |
| |
| // Initialize the tags. |
| // EAX: new object start as a tagged pointer. |
| // EBX: new object end address. |
| // EDI: allocation size. |
| { |
| Label size_tag_overflow, done; |
| __ cmpl(EDI, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shll(EDI, Immediate(target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ xorl(EDI, EDI); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
| __ orl(EDI, Immediate(tags)); |
| __ movl(FieldAddress(EAX, target::Object::tags_offset()), EDI); // Tags. |
| } |
| |
| // Set the length field. |
| __ popl(EDI); |
| __ StoreIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, target::String::length_offset()), EDI); |
| // Clear hash. |
| __ ZeroInitSmiField(FieldAddress(EAX, target::String::hash_offset())); |
| __ jmp(ok, Assembler::kNearJump); |
| |
| __ Bind(&pop_and_fail); |
| __ popl(EDI); |
| __ jmp(failure); |
| } |
| |
| // Arg0: OneByteString (receiver) |
| // Arg1: Start index as Smi. |
| // Arg2: End index as Smi. |
| // The indexes must be valid. |
| void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, |
| Label* normal_ir_body) { |
| const intptr_t kStringOffset = 3 * target::kWordSize; |
| const intptr_t kStartIndexOffset = 2 * target::kWordSize; |
| const intptr_t kEndIndexOffset = 1 * target::kWordSize; |
| Label ok; |
| __ movl(EAX, Address(ESP, +kStartIndexOffset)); |
| __ movl(EDI, Address(ESP, +kEndIndexOffset)); |
| __ orl(EAX, EDI); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, normal_ir_body); // 'start', 'end' not Smi. |
| |
| __ subl(EDI, Address(ESP, +kStartIndexOffset)); |
| TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body, EDI); |
| __ Bind(&ok); |
| // EAX: new string as tagged pointer. |
| // Copy string. |
| __ movl(EDI, Address(ESP, +kStringOffset)); |
| __ movl(EBX, Address(ESP, +kStartIndexOffset)); |
| __ SmiUntag(EBX); |
| __ leal(EDI, FieldAddress(EDI, EBX, TIMES_1, |
| target::OneByteString::data_offset())); |
| // EDI: Start address to copy from (untagged). |
| // EBX: Untagged start index. |
| __ movl(ECX, Address(ESP, +kEndIndexOffset)); |
| __ SmiUntag(ECX); |
| __ subl(ECX, EBX); |
| __ xorl(EDX, EDX); |
| // EDI: Start address to copy from (untagged). |
| // ECX: Untagged number of bytes to copy. |
| // EAX: Tagged result string. |
| // EDX: Loop counter. |
| // EBX: Scratch register. |
| Label loop, check; |
| __ jmp(&check, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ movzxb(EBX, Address(EDI, EDX, TIMES_1, 0)); |
| __ movb(FieldAddress(EAX, EDX, TIMES_1, target::OneByteString::data_offset()), |
| BL); |
| __ incl(EDX); |
| __ Bind(&check); |
| __ cmpl(EDX, ECX); |
| __ j(LESS, &loop, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(ECX, Address(ESP, +1 * target::kWordSize)); // Value. |
| __ movl(EBX, Address(ESP, +2 * target::kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, +3 * target::kWordSize)); // OneByteString. |
| __ SmiUntag(EBX); |
| __ SmiUntag(ECX); |
| __ movb(FieldAddress(EAX, EBX, TIMES_1, target::OneByteString::data_offset()), |
| CL); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(ECX, Address(ESP, +1 * target::kWordSize)); // Value. |
| __ movl(EBX, Address(ESP, +2 * target::kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, +3 * target::kWordSize)); // TwoByteString. |
| // Untag index and multiply by element size -> no-op. |
| __ SmiUntag(ECX); |
| __ movw(FieldAddress(EAX, EBX, TIMES_1, target::TwoByteString::data_offset()), |
| ECX); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EDI, Address(ESP, +1 * target::kWordSize)); // Length. |
| Label ok; |
| TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body, EDI); |
| // EDI: Start address to copy from (untagged). |
| |
| __ Bind(&ok); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ movl(EDI, Address(ESP, +1 * target::kWordSize)); // Length. |
| Label ok; |
| TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body, EDI); |
| // EDI: Start address to copy from (untagged). |
| |
| __ Bind(&ok); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
| static void StringEquality(Assembler* assembler, |
| Label* normal_ir_body, |
| intptr_t string_cid) { |
| Label is_true, is_false, loop; |
| __ movl(EAX, Address(ESP, +2 * target::kWordSize)); // This. |
| __ movl(EBX, Address(ESP, +1 * target::kWordSize)); // Other. |
| |
| // Are identical? |
| __ cmpl(EAX, EBX); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| |
| // Is other OneByteString? |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(ZERO, &is_false); // Smi |
| __ CompareClassId(EBX, string_cid, EDI); |
| __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); |
| |
| // Have same length? |
| __ movl(EDI, FieldAddress(EAX, target::String::length_offset())); |
| __ cmpl(EDI, FieldAddress(EBX, target::String::length_offset())); |
| __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); |
| |
| // Check contents, no fall-through possible. |
| // TODO(srdjan): write a faster check. |
| __ SmiUntag(EDI); |
| __ Bind(&loop); |
| __ decl(EDI); |
| __ cmpl(EDI, Immediate(0)); |
| __ j(LESS, &is_true, Assembler::kNearJump); |
| if (string_cid == kOneByteStringCid) { |
| __ movzxb(ECX, FieldAddress(EAX, EDI, TIMES_1, |
| target::OneByteString::data_offset())); |
| __ movzxb(EDX, FieldAddress(EBX, EDI, TIMES_1, |
| target::OneByteString::data_offset())); |
| } else if (string_cid == kTwoByteStringCid) { |
| __ movzxw(ECX, FieldAddress(EAX, EDI, TIMES_2, |
| target::TwoByteString::data_offset())); |
| __ movzxw(EDX, FieldAddress(EBX, EDI, TIMES_2, |
| target::TwoByteString::data_offset())); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| __ cmpl(ECX, EDX); |
| __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&is_true); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| |
| __ Bind(&is_false); |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| |
| __ Bind(normal_ir_body); |
| } |
| |
| void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, |
| Label* normal_ir_body) { |
| StringEquality(assembler, normal_ir_body, kOneByteStringCid); |
| } |
| |
| void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, |
| Label* normal_ir_body) { |
| StringEquality(assembler, normal_ir_body, kTwoByteStringCid); |
| } |
| |
| void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
| Label* normal_ir_body, |
| bool sticky) { |
| if (FLAG_interpret_irregexp) return; |
| |
| static const intptr_t kRegExpParamOffset = 3 * target::kWordSize; |
| static const intptr_t kStringParamOffset = 2 * target::kWordSize; |
| // start_index smi is located at offset 1. |
| |
| // Incoming registers: |
| // EAX: Function. (Will be loaded with the specialized matcher function.) |
| // ECX: Unknown. (Must be GC safe on tail call.) |
| // EDX: Arguments descriptor. (Will be preserved.) |
| |
| // Load the specialized function pointer into EAX. Leverage the fact the |
| // string CIDs as well as stored function pointers are in sequence. |
| __ movl(EBX, Address(ESP, kRegExpParamOffset)); |
| __ movl(EDI, Address(ESP, kStringParamOffset)); |
| __ LoadClassId(EDI, EDI); |
| __ SubImmediate(EDI, Immediate(kOneByteStringCid)); |
| __ movl(EAX, FieldAddress( |
| EBX, EDI, TIMES_4, |
| target::RegExp::function_offset(kOneByteStringCid, sticky))); |
| |
| // Registers are now set up for the lazy compile stub. It expects the function |
| // in EAX, the argument descriptor in EDX, and IC-Data in ECX. |
| __ xorl(ECX, ECX); |
| |
| // Tail-call the function. |
| __ jmp(FieldAddress(EAX, target::Function::entry_point_offset())); |
| } |
| |
| void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ LoadIsolate(EAX); |
| __ movl(EAX, Address(EAX, target::Isolate::default_tag_offset())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, |
| Label* normal_ir_body) { |
| __ LoadIsolate(EAX); |
| __ movl(EAX, Address(EAX, target::Isolate::current_tag_offset())); |
| __ ret(); |
| } |
| |
| void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, |
| Label* normal_ir_body) { |
| #if !defined(SUPPORT_TIMELINE) |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| #else |
| Label true_label; |
| // Load TimelineStream*. |
| __ movl(EAX, Address(THR, target::Thread::dart_stream_offset())); |
| // Load uintptr_t from TimelineStream*. |
| __ movl(EAX, Address(EAX, target::TimelineStream::enabled_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(NOT_ZERO, &true_label, Assembler::kNearJump); |
| // Not enabled. |
| __ LoadObject(EAX, CastHandle<Object>(FalseObject())); |
| __ ret(); |
| // Enabled. |
| __ Bind(&true_label); |
| __ LoadObject(EAX, CastHandle<Object>(TrueObject())); |
| __ ret(); |
| #endif |
| } |
| |
| #undef __ |
| |
| } // namespace compiler |
| } // namespace dart |
| |
| #endif // defined(TARGET_ARCH_IA32) |