blob: 892a2967853107eeabbaa743c06dfc9d78e9a1f3 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM64.
#if defined(TARGET_ARCH_ARM64)
#include "vm/intermediate_language.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph.h"
#include "vm/flow_graph_compiler.h"
#include "vm/flow_graph_range_analysis.h"
#include "vm/locations.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/simulator.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#define __ compiler->assembler()->
namespace dart {
DECLARE_FLAG(bool, allow_absolute_addresses);
DECLARE_FLAG(bool, emit_edge_counters);
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, use_osr);
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register R0.
LocationSummary* Instruction::MakeCallSummary(Zone* zone) {
LocationSummary* result = new(zone) LocationSummary(
zone, 0, 0, LocationSummary::kCall);
result->set_out(0, Location::RegisterLocation(R0));
return result;
}
LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::AnyOrConstant(value()));
return locs;
}
void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// In SSA mode, we need an explicit push. Nothing to do in non-SSA mode
// where PushArgument is handled by BindInstr::EmitNativeCode.
if (compiler->is_optimizing()) {
Location value = locs()->in(0);
if (value.IsRegister()) {
__ Push(value.reg());
} else if (value.IsConstant()) {
__ PushObject(value.constant());
} else {
ASSERT(value.IsStackSlot());
const intptr_t value_offset = value.ToStackSlotOffset();
__ LoadFromOffset(TMP, value.base_reg(), value_offset);
__ Push(TMP);
}
}
}
LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterLocation(R0));
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instructions: a branch macro sequence.
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->in(0).reg();
ASSERT(result == R0);
if (compiler->intrinsic_mode()) {
// Intrinsics don't have a frame.
__ ret();
return;
}
#if defined(DEBUG)
Label stack_ok;
__ Comment("Stack Check");
const intptr_t fp_sp_dist =
(kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize;
ASSERT(fp_sp_dist <= 0);
__ sub(R2, SP, Operand(FP));
__ CompareImmediate(R2, fp_sp_dist);
__ b(&stack_ok, EQ);
__ brk(0);
__ Bind(&stack_ok);
#endif
ASSERT(__ constant_pool_allowed());
__ LeaveDartFrame(); // Disallows constant pool use.
__ ret();
// This ReturnInstr may be emitted out of order by the optimizer. The next
// block may be a target expecting a properly set constant pool pointer.
__ set_constant_pool_allowed(true);
}
static Condition NegateCondition(Condition condition) {
switch (condition) {
case EQ: return NE;
case NE: return EQ;
case LT: return GE;
case LE: return GT;
case GT: return LE;
case GE: return LT;
case CC: return CS;
case LS: return HI;
case HI: return LS;
case CS: return CC;
default:
UNREACHABLE();
return EQ;
}
}
// Detect pattern when one value is zero and another is a power of 2.
static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) {
return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) ||
(Utils::IsPowerOfTwo(v2) && (v1 == 0));
}
LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
return comparison()->locs();
}
void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
Location left = locs()->in(0);
Location right = locs()->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
// Emit comparison code. This must not overwrite the result register.
BranchLabels labels = { NULL, NULL, NULL };
Condition true_condition = comparison()->EmitComparisonCode(compiler, labels);
const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_);
intptr_t true_value = if_true_;
intptr_t false_value = if_false_;
if (is_power_of_two_kind) {
if (true_value == 0) {
// We need to have zero in result on true_condition.
true_condition = NegateCondition(true_condition);
}
} else {
if (true_value == 0) {
// Swap values so that false_value is zero.
intptr_t temp = true_value;
true_value = false_value;
false_value = temp;
} else {
true_condition = NegateCondition(true_condition);
}
}
__ cset(result, true_condition);
if (is_power_of_two_kind) {
const intptr_t shift =
Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value));
__ LslImmediate(result, result, shift + kSmiTagSize);
} else {
__ sub(result, result, Operand(1));
const int64_t val =
Smi::RawValue(true_value) - Smi::RawValue(false_value);
__ AndImmediate(result, result, val);
if (false_value != 0) {
__ AddImmediate(result, result, Smi::RawValue(false_value));
}
}
}
LocationSummary* ClosureCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0)); // Function.
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Load arguments descriptor in R4.
int argument_count = ArgumentCount();
const Array& arguments_descriptor =
Array::ZoneHandle(ArgumentsDescriptor::New(argument_count,
argument_names()));
__ LoadObject(R4, arguments_descriptor);
// R4: Arguments descriptor.
// R0: Function.
ASSERT(locs()->in(0).reg() == R0);
__ LoadFieldFromOffset(CODE_REG, R0, Function::code_offset());
__ LoadFieldFromOffset(R2, R0, Function::entry_point_offset());
// R2: instructions.
// R5: Smi 0 (no IC data; the lazy-compile stub expects a GC-safe value).
__ LoadImmediate(R5, 0);
//??
__ blr(R2);
compiler->RecordSafepoint(locs());
// Marks either the continuation point in unoptimized code or the
// deoptimization point in optimized code, after call.
const intptr_t deopt_id_after = Thread::ToDeoptAfter(deopt_id());
if (compiler->is_optimizing()) {
compiler->AddDeoptIndexAtCall(deopt_id_after, token_pos());
}
// Add deoptimization continuation point after the call and before the
// arguments are removed.
// In optimized code this descriptor is needed for exception handling.
compiler->AddCurrentDescriptor(RawPcDescriptors::kDeopt,
deopt_id_after,
token_pos());
__ Drop(argument_count);
}
LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone,
0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
__ LoadFromOffset(result, FP, local().index() * kWordSize);
}
LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone,
1,
Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ StoreToOffset(value, FP, local().index() * kWordSize);
}
LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone,
0,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out(0).IsInvalid()) {
const Register result = locs()->out(0).reg();
__ LoadObject(result, value());
}
}
LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const Location out = (representation_ == kUnboxedInt32) ?
Location::RequiresRegister() : Location::RequiresFpuRegister();
return LocationSummary::Make(zone,
kNumInputs,
out,
LocationSummary::kNoCall);
}
void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!locs()->out(0).IsInvalid()) {
switch (representation_) {
case kUnboxedDouble:
if (Utils::DoublesBitEqual(Double::Cast(value()).value(), 0.0)) {
const VRegister dst = locs()->out(0).fpu_reg();
__ veor(dst, dst, dst);
} else {
const VRegister dst = locs()->out(0).fpu_reg();
__ LoadDImmediate(dst, Double::Cast(value()).value());
}
break;
case kUnboxedInt32:
__ LoadImmediate(locs()->out(0).reg(),
static_cast<int32_t>(Smi::Cast(value()).Value()));
break;
default:
UNREACHABLE();
break;
}
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0)); // Value.
summary->set_in(1, Location::RegisterLocation(R2)); // Instantiator.
summary->set_in(2, Location::RegisterLocation(R1)); // Type arguments.
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
LocationSummary* AssertBooleanInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
static void EmitAssertBoolean(Register reg,
intptr_t token_pos,
intptr_t deopt_id,
LocationSummary* locs,
FlowGraphCompiler* compiler) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
ASSERT(locs->always_calls());
Label done;
if (Isolate::Current()->flags().type_checks()) {
__ CompareObject(reg, Bool::True());
__ b(&done, EQ);
__ CompareObject(reg, Bool::False());
__ b(&done, EQ);
} else {
ASSERT(Isolate::Current()->flags().asserts());
__ CompareObject(reg, Object::null_instance());
__ b(&done, NE);
}
__ Push(reg); // Push the source object.
compiler->GenerateRuntimeCall(token_pos,
deopt_id,
kNonBoolTypeErrorRuntimeEntry,
1,
locs);
// We should never return here.
__ brk(0);
__ Bind(&done);
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register obj = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler);
ASSERT(obj == result);
}
static Condition TokenKindToSmiCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQ;
case Token::kNE: return NE;
case Token::kLT: return LT;
case Token::kGT: return GT;
case Token::kLTE: return LE;
case Token::kGTE: return GE;
default:
UNREACHABLE();
return VS;
}
}
static Condition FlipCondition(Condition condition) {
switch (condition) {
case EQ: return EQ;
case NE: return NE;
case LT: return GT;
case LE: return GE;
case GT: return LT;
case GE: return LE;
case CC: return HI;
case LS: return CS;
case HI: return CC;
case CS: return LS;
default:
UNREACHABLE();
return EQ;
}
}
static void EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition,
BranchLabels labels) {
if (labels.fall_through == labels.false_label) {
// If the next block is the false successor we will fall through to it.
__ b(labels.true_label, true_condition);
} else {
// If the next block is not the false successor we will branch to it.
Condition false_condition = NegateCondition(true_condition);
__ b(labels.false_label, false_condition);
// Fall through or jump to the true successor.
if (labels.fall_through != labels.true_label) {
__ b(labels.true_label);
}
}
}
static Condition EmitSmiComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind) {
Location left = locs->in(0);
Location right = locs->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToSmiCondition(kind);
if (left.IsConstant()) {
__ CompareObject(right.reg(), left.constant());
true_condition = FlipCondition(true_condition);
} else if (right.IsConstant()) {
__ CompareObject(left.reg(), right.constant());
} else {
__ CompareRegisters(left.reg(), right.reg());
}
return true_condition;
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
if (operation_cid() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
if (operation_cid() == kSmiCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
// Only right can be a stack slot.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
UNREACHABLE();
return NULL;
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ: return EQ;
case Token::kNE: return NE;
case Token::kLT: return LT;
case Token::kGT: return GT;
case Token::kLTE: return LE;
case Token::kGTE: return GE;
default:
UNREACHABLE();
return VS;
}
}
static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind) {
const VRegister left = locs->in(0).fpu_reg();
const VRegister right = locs->in(1).fpu_reg();
__ fcmpd(left, right);
Condition true_condition = TokenKindToDoubleCondition(kind);
return true_condition;
}
Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, locs(), kind());
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, locs(), kind());
}
}
void EqualityCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((kind() == Token::kEQ) || (kind() == Token::kNE));
Label is_true, is_false;
BranchLabels labels = { &is_true, &is_false, &is_false };
Condition true_condition = EmitComparisonCode(compiler, labels);
if ((operation_cid() == kDoubleCid) && (true_condition != NE)) {
// Special case for NaN comparison. Result is always false unless
// relational operator is !=.
__ b(&is_false, VS);
}
EmitBranchOnCondition(compiler, true_condition, labels);
// TODO(zra): instead of branching, use the csel instruction to get
// True or False into result.
const Register result = locs()->out(0).reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False());
__ b(&done);
__ Bind(&is_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
}
void EqualityCompareInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
ASSERT((kind() == Token::kNE) || (kind() == Token::kEQ));
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
if ((operation_cid() == kDoubleCid) && (true_condition != NE)) {
// Special case for NaN comparison. Result is always false unless
// relational operator is !=.
__ b(labels.false_label, VS);
}
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, Location::RegisterOrConstant(right()));
return locs;
}
Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
const Register left = locs()->in(0).reg();
Location right = locs()->in(1);
if (right.IsConstant()) {
ASSERT(right.constant().IsSmi());
const int64_t imm =
reinterpret_cast<int64_t>(right.constant().raw());
__ TestImmediate(left, imm);
} else {
__ tst(left, Operand(right.reg()));
}
Condition true_condition = (kind() == Token::kNE) ? NE : EQ;
return true_condition;
}
void TestSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Never emitted outside of the BranchInstr.
UNREACHABLE();
}
void TestSmiInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT));
const Register val_reg = locs()->in(0).reg();
const Register cid_reg = locs()->temp(0).reg();
Label* deopt = CanDeoptimize() ?
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptTestCids) : NULL;
const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0;
const ZoneGrowableArray<intptr_t>& data = cid_results();
ASSERT(data[0] == kSmiCid);
bool result = data[1] == true_result;
__ tsti(val_reg, Immediate(kSmiTagMask));
__ b(result ? labels.true_label : labels.false_label, EQ);
__ LoadClassId(cid_reg, val_reg);
for (intptr_t i = 2; i < data.length(); i += 2) {
const intptr_t test_cid = data[i];
ASSERT(test_cid != kSmiCid);
result = data[i + 1] == true_result;
__ CompareImmediate(cid_reg, test_cid);
__ b(result ? labels.true_label : labels.false_label, EQ);
}
// No match found, deoptimize or false.
if (deopt == NULL) {
Label* target = result ? labels.false_label : labels.true_label;
if (target != labels.fall_through) {
__ b(target);
}
} else {
__ b(deopt);
}
// Dummy result as the last instruction is a jump, any conditional
// branch using the result will therefore be skipped.
return EQ;
}
void TestCidsInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
EmitComparisonCode(compiler, labels);
}
void TestCidsInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result_reg = locs()->out(0).reg();
Label is_true, is_false, done;
BranchLabels labels = { &is_true, &is_false, &is_false };
EmitComparisonCode(compiler, labels);
// TODO(zra): instead of branching, use the csel instruction to get
// True or False into result.
__ Bind(&is_false);
__ LoadObject(result_reg, Bool::False());
__ b(&done);
__ Bind(&is_true);
__ LoadObject(result_reg, Bool::True());
__ Bind(&done);
}
LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operation_cid() == kDoubleCid) {
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
ASSERT(operation_cid() == kSmiCid);
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, locs(), kind());
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, locs(), kind());
}
}
void RelationalOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label is_true, is_false;
BranchLabels labels = { &is_true, &is_false, &is_false };
Condition true_condition = EmitComparisonCode(compiler, labels);
if ((operation_cid() == kDoubleCid) && (true_condition != NE)) {
// Special case for NaN comparison. Result is always false unless
// relational operator is !=.
__ b(&is_false, VS);
}
EmitBranchOnCondition(compiler, true_condition, labels);
// TODO(zra): instead of branching, use the csel instruction to get
// True or False into result.
const Register result = locs()->out(0).reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False());
__ b(&done);
__ Bind(&is_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
}
void RelationalOpInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
if ((operation_cid() == kDoubleCid) && (true_condition != NE)) {
// Special case for NaN comparison. Result is always false unless
// relational operator is !=.
__ b(labels.false_label, VS);
}
EmitBranchOnCondition(compiler, true_condition, labels);
}
LocationSummary* NativeCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return MakeCallSummary(zone);
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
// Push the result place holder initialized to NULL.
__ PushObject(Object::null_object());
// Pass a pointer to the first argument in R2.
if (!function().HasOptionalParameters()) {
__ AddImmediate(R2, FP, (kParamEndSlotFromFp +
function().NumParameters()) * kWordSize);
} else {
__ AddImmediate(R2, FP, kFirstLocalSlotFromFp * kWordSize);
}
// Compute the effective address. When running under the simulator,
// this is a redirection address that forces the simulator to call
// into the runtime system.
uword entry;
const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function());
const bool is_leaf_call =
(argc_tag & NativeArguments::AutoSetupScopeMask()) == 0;
const StubEntry* stub_entry;
if (link_lazily()) {
stub_entry = StubCode::CallBootstrapCFunction_entry();
entry = NativeEntry::LinkNativeCallEntry();
} else {
entry = reinterpret_cast<uword>(native_c_function());
if (is_bootstrap_native() || is_leaf_call) {
stub_entry = StubCode::CallBootstrapCFunction_entry();
#if defined(USING_SIMULATOR)
entry = Simulator::RedirectExternalReference(
entry, Simulator::kBootstrapNativeCall, NativeEntry::kNumArguments);
#endif
} else {
// In the case of non bootstrap native methods the CallNativeCFunction
// stub generates the redirection address when running under the simulator
// and hence we do not change 'entry' here.
stub_entry = StubCode::CallNativeCFunction_entry();
#if defined(USING_SIMULATOR)
if (!function().IsNativeAutoSetupScope()) {
entry = Simulator::RedirectExternalReference(
entry, Simulator::kBootstrapNativeCall, NativeEntry::kNumArguments);
}
#endif
}
}
__ LoadImmediate(R1, argc_tag);
ExternalLabel label(entry);
__ LoadNativeEntry(R5, &label);
compiler->GenerateCall(token_pos(),
*stub_entry,
RawPcDescriptors::kOther,
locs());
__ Pop(result);
}
LocationSummary* StringFromCharCodeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
// TODO(fschneider): Allow immediate operands for the char code.
return LocationSummary::Make(zone,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringFromCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(compiler->is_optimizing());
const Register char_code = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ ldr(result, Address(THR, Thread::predefined_symbols_address_offset()));
__ AddImmediate(
result, result, Symbols::kNullCharCodeSymbolOffset * kWordSize);
__ SmiUntag(TMP, char_code); // Untag to use scaled adress mode.
__ ldr(result, Address(result, TMP, UXTX, Address::Scaled));
}
LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(cid_ == kOneByteStringCid);
const Register str = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ LoadFieldFromOffset(result, str, String::length_offset());
__ ldr(TMP, FieldAddress(str, OneByteString::data_offset()), kUnsignedByte);
__ CompareImmediate(result, Smi::RawValue(1));
__ LoadImmediate(result, -1);
__ csel(result, TMP, result, EQ);
__ SmiTag(result);
}
LocationSummary* StringInterpolateInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0));
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register array = locs()->in(0).reg();
__ Push(array);
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
compiler->GenerateStaticCall(deopt_id(),
token_pos(),
CallFunction(),
kNumberOfArguments,
kNoArgumentNames,
locs(),
ICData::Handle());
ASSERT(locs()->out(0).reg() == R0);
}
LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register obj = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
if (object()->definition()->representation() == kUntagged) {
__ LoadFromOffset(result, obj, offset());
} else {
ASSERT(object()->definition()->representation() == kTagged);
__ LoadFieldFromOffset(result, obj, offset());
}
}
LocationSummary* LoadClassIdInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone,
kNumInputs,
Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register object = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ LoadTaggedClassIdMayBeSmi(result, object);
}
CompileType LoadIndexedInstr::ComputeType() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
return CompileType::Dynamic();
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return CompileType::FromCid(kDoubleCid);
case kTypedDataFloat32x4ArrayCid:
return CompileType::FromCid(kFloat32x4Cid);
case kTypedDataInt32x4ArrayCid:
return CompileType::FromCid(kInt32x4Cid);
case kTypedDataFloat64x2ArrayCid:
return CompileType::FromCid(kFloat64x2Cid);
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
return CompileType::FromCid(kSmiCid);
default:
UNIMPLEMENTED();
return CompileType::Dynamic();
}
}
Representation LoadIndexedInstr::representation() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
return kTagged;
case kTypedDataInt32ArrayCid:
return kUnboxedInt32;
case kTypedDataUint32ArrayCid:
return kUnboxedUint32;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNIMPLEMENTED();
return kTagged;
}
}
static bool CanBeImmediateIndex(Value* value, intptr_t cid, bool is_external) {
ConstantInstr* constant = value->definition()->AsConstant();
if ((constant == NULL) || !constant->value().IsSmi()) {
return false;
}
const int64_t index = Smi::Cast(constant->value()).AsInt64Value();
const intptr_t scale = Instance::ElementSizeFor(cid);
const int64_t offset = index * scale +
(is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag));
if (!Utils::IsInt(32, offset)) {
return false;
}
return Address::CanHoldOffset(static_cast<int32_t>(offset),
Address::Offset,
Address::OperandSizeFor(cid));
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (CanBeImmediateIndex(index(), class_id(), IsExternal())) {
locs->set_in(1, Location::Constant(index()->definition()->AsConstant()));
} else {
locs->set_in(1, Location::RequiresRegister());
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
locs->set_out(0, Location::RequiresFpuRegister());
} else {
locs->set_out(0, Location::RequiresRegister());
}
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address = index.IsRegister()
? __ ElementAddressForRegIndex(true, // Load.
IsExternal(), class_id(), index_scale(),
array, index.reg())
: __ ElementAddressForIntIndex(
IsExternal(), class_id(), index_scale(),
array, Smi::Cast(index.constant()).Value());
// Warning: element_address may use register TMP as base.
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
const VRegister result = locs()->out(0).fpu_reg();
switch (class_id()) {
case kTypedDataFloat32ArrayCid:
// Load single precision float.
__ fldrs(result, element_address);
break;
case kTypedDataFloat64ArrayCid:
// Load double precision float.
__ fldrd(result, element_address);
break;
case kTypedDataFloat64x2ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
__ fldrq(result, element_address);
break;
default:
UNREACHABLE();
}
return;
}
if ((representation() == kUnboxedInt32) ||
(representation() == kUnboxedUint32)) {
const Register result = locs()->out(0).reg();
switch (class_id()) {
case kTypedDataInt32ArrayCid:
ASSERT(representation() == kUnboxedInt32);
__ ldr(result, element_address, kWord);
break;
case kTypedDataUint32ArrayCid:
ASSERT(representation() == kUnboxedUint32);
__ ldr(result, element_address, kUnsignedWord);
break;
default:
UNREACHABLE();
}
return;
}
ASSERT(representation() == kTagged);
const Register result = locs()->out(0).reg();
switch (class_id()) {
case kTypedDataInt8ArrayCid:
ASSERT(index_scale() == 1);
__ ldr(result, element_address, kByte);
__ SmiTag(result);
break;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
ASSERT(index_scale() == 1);
__ ldr(result, element_address, kUnsignedByte);
__ SmiTag(result);
break;
case kTypedDataInt16ArrayCid:
__ ldr(result, element_address, kHalfword);
__ SmiTag(result);
break;
case kTypedDataUint16ArrayCid:
case kTwoByteStringCid:
__ ldr(result, element_address, kUnsignedHalfword);
__ SmiTag(result);
break;
default:
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid));
__ ldr(result, element_address);
break;
}
}
LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The string register points to the backing store for external strings.
const Register str = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address = __ ElementAddressForRegIndex(
true, IsExternal(), class_id(), index_scale(), str, index.reg());
// Warning: element_address may use register TMP as base.
Register result = locs()->out(0).reg();
switch (class_id()) {
case kOneByteStringCid:
case kExternalOneByteStringCid:
switch (element_count()) {
case 1: __ ldr(result, element_address, kUnsignedByte); break;
case 2: __ ldr(result, element_address, kUnsignedHalfword); break;
case 4: __ ldr(result, element_address, kUnsignedWord); break;
default: UNREACHABLE();
}
__ SmiTag(result);
break;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
switch (element_count()) {
case 1: __ ldr(result, element_address, kUnsignedHalfword); break;
case 2: __ ldr(result, element_address, kUnsignedWord); break;
default: UNREACHABLE();
}
__ SmiTag(result);
break;
default:
UNREACHABLE();
break;
}
}
Representation StoreIndexedInstr::RequiredInputRepresentation(
intptr_t idx) const {
// Array can be a Dart object or a pointer to external data.
if (idx == 0) return kNoRepresentation; // Flexible input representation.
if (idx == 1) return kTagged; // Index is a smi.
ASSERT(idx == 2);
switch (class_id_) {
case kArrayCid:
case kOneByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
return kTagged;
case kTypedDataInt32ArrayCid:
return kUnboxedInt32;
case kTypedDataUint32ArrayCid:
return kUnboxedUint32;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNREACHABLE();
return kTagged;
}
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (CanBeImmediateIndex(index(), class_id(), IsExternal())) {
locs->set_in(1, Location::Constant(index()->definition()->AsConstant()));
} else {
locs->set_in(1, Location::WritableRegister());
}
switch (class_id()) {
case kArrayCid:
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
break;
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
locs->set_in(2, Location::RequiresRegister());
break;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid: // TODO(srdjan): Support Float64 constants.
locs->set_in(2, Location::RequiresFpuRegister());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
locs->set_in(2, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
return NULL;
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address = index.IsRegister()
? __ ElementAddressForRegIndex(false, // Store.
IsExternal(), class_id(), index_scale(),
array, index.reg())
: __ ElementAddressForIntIndex(
IsExternal(), class_id(), index_scale(),
array, Smi::Cast(index.constant()).Value());
switch (class_id()) {
case kArrayCid:
if (ShouldEmitStoreBarrier()) {
const Register value = locs()->in(2).reg();
__ StoreIntoObject(array, element_address, value);
} else if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreIntoObjectNoBarrier(array, element_address, constant);
} else {
const Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, element_address, value);
}
break;
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kOneByteStringCid: {
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
__ LoadImmediate(TMP, static_cast<int8_t>(constant.Value()));
__ str(TMP, element_address, kUnsignedByte);
} else {
const Register value = locs()->in(2).reg();
__ SmiUntag(TMP, value);
__ str(TMP, element_address, kUnsignedByte);
}
break;
}
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid: {
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
intptr_t value = constant.Value();
// Clamp to 0x0 or 0xFF respectively.
if (value > 0xFF) {
value = 0xFF;
} else if (value < 0) {
value = 0;
}
__ LoadImmediate(TMP, static_cast<int8_t>(value));
__ str(TMP, element_address, kUnsignedByte);
} else {
const Register value = locs()->in(2).reg();
__ CompareImmediate(value, 0x1FE); // Smi value and smi 0xFF.
// Clamp to 0x00 or 0xFF respectively.
__ csetm(TMP, GT); // TMP = value > 0x1FE ? -1 : 0.
__ csel(TMP, value, TMP, LS); // TMP = value in range ? value : TMP.
__ SmiUntag(TMP);
__ str(TMP, element_address, kUnsignedByte);
}
break;
}
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid: {
const Register value = locs()->in(2).reg();
__ SmiUntag(TMP, value);
__ str(TMP, element_address, kUnsignedHalfword);
break;
}
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid: {
const Register value = locs()->in(2).reg();
__ str(value, element_address, kUnsignedWord);
break;
}
case kTypedDataFloat32ArrayCid: {
const VRegister value_reg = locs()->in(2).fpu_reg();
__ fstrs(value_reg, element_address);
break;
}
case kTypedDataFloat64ArrayCid: {
const VRegister value_reg = locs()->in(2).fpu_reg();
__ fstrd(value_reg, element_address);
break;
}
case kTypedDataFloat64x2ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid: {
const VRegister value_reg = locs()->in(2).fpu_reg();
__ fstrq(value_reg, element_address);
break;
}
default:
UNREACHABLE();
}
}
static void LoadValueCid(FlowGraphCompiler* compiler,
Register value_cid_reg,
Register value_reg,
Label* value_is_smi = NULL) {
Label done;
if (value_is_smi == NULL) {
__ LoadImmediate(value_cid_reg, kSmiCid);
}
__ tsti(value_reg, Immediate(kSmiTagMask));
if (value_is_smi == NULL) {
__ b(&done, EQ);
} else {
__ b(value_is_smi, EQ);
}
__ LoadClassId(value_cid_reg, value_reg);
__ Bind(&done);
}
LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const bool emit_full_guard =
!opt || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg = emit_full_guard ||
((value_cid == kDynamicCid) && (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
intptr_t num_temps = 0;
if (needs_value_cid_temp_reg) {
num_temps++;
}
if (needs_field_temp_reg) {
num_temps++;
}
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
for (intptr_t i = 0; i < num_temps; i++) {
summary->set_temp(i, Location::RequiresRegister());
}
return summary;
}
void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(sizeof(classid_t) == kInt32Size);
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid;
if (field_cid == kDynamicCid) {
ASSERT(!compiler->is_optimizing());
return; // Nothing to emit.
}
const bool emit_full_guard =
!compiler->is_optimizing() || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg = emit_full_guard ||
((value_cid == kDynamicCid) && (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
const Register value_reg = locs()->in(0).reg();
const Register value_cid_reg = needs_value_cid_temp_reg ?
locs()->temp(0).reg() : kNoRegister;
const Register field_reg = needs_field_temp_reg ?
locs()->temp(locs()->temp_count() - 1).reg() : kNoRegister;
Label ok, fail_label;
Label* deopt = compiler->is_optimizing() ?
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) : NULL;
Label* fail = (deopt != NULL) ? deopt : &fail_label;
if (emit_full_guard) {
__ LoadObject(field_reg, Field::ZoneHandle(field().raw()));
FieldAddress field_cid_operand(
field_reg, Field::guarded_cid_offset(), kUnsignedWord);
FieldAddress field_nullability_operand(
field_reg, Field::is_nullable_offset(), kUnsignedWord);
if (value_cid == kDynamicCid) {
LoadValueCid(compiler, value_cid_reg, value_reg);
Label skip_length_check;
__ ldr(TMP, field_cid_operand, kUnsignedWord);
__ CompareRegisters(value_cid_reg, TMP);
__ b(&ok, EQ);
__ ldr(TMP, field_nullability_operand, kUnsignedWord);
__ CompareRegisters(value_cid_reg, TMP);
} else if (value_cid == kNullCid) {
__ ldr(value_cid_reg, field_nullability_operand, kUnsignedWord);
__ CompareImmediate(value_cid_reg, value_cid);
} else {
Label skip_length_check;
__ ldr(value_cid_reg, field_cid_operand, kUnsignedWord);
__ CompareImmediate(value_cid_reg, value_cid);
}
__ b(&ok, EQ);
// Check if the tracked state of the guarded field can be initialized
// inline. If the field needs length check we fall through to runtime
// which is responsible for computing offset of the length field
// based on the class id.
// Length guard will be emitted separately when needed via GuardFieldLength
// instruction after GuardFieldClass.
if (!field().needs_length_check()) {
// Uninitialized field can be handled inline. Check if the
// field is still unitialized.
__ ldr(TMP, field_cid_operand, kUnsignedWord);
__ CompareImmediate(TMP, kIllegalCid);
__ b(fail, NE);
if (value_cid == kDynamicCid) {
__ str(value_cid_reg, field_cid_operand, kUnsignedWord);
__ str(value_cid_reg, field_nullability_operand, kUnsignedWord);
} else {
__ LoadImmediate(TMP, value_cid);
__ str(TMP, field_cid_operand, kUnsignedWord);
__ str(TMP, field_nullability_operand, kUnsignedWord);
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ b(&ok);
}
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ Bind(fail);
__ LoadFieldFromOffset(
TMP, field_reg, Field::guarded_cid_offset(), kUnsignedWord);
__ CompareImmediate(TMP, kDynamicCid);
__ b(&ok, EQ);
__ Push(field_reg);
__ Push(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
}
} else {
ASSERT(compiler->is_optimizing());
ASSERT(deopt != NULL);
// Field guard class has been initialized and is known.
if (value_cid == kDynamicCid) {
// Value's class id is not known.
__ tsti(value_reg, Immediate(kSmiTagMask));
if (field_cid != kSmiCid) {
__ b(fail, EQ);
__ LoadClassId(value_cid_reg, value_reg);
__ CompareImmediate(value_cid_reg, field_cid);
}
if (field().is_nullable() && (field_cid != kNullCid)) {
__ b(&ok, EQ);
__ CompareObject(value_reg, Object::null_object());
}
__ b(fail, NE);
} else {
// Both value's and field's class id is known.
ASSERT((value_cid != field_cid) && (value_cid != nullability));
__ b(fail);
}
}
__ Bind(&ok);
}
LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) {
const intptr_t kNumTemps = 3;
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We need temporaries for field object, length offset and expected length.
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, Location::RequiresRegister());
return summary;
} else {
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, 0, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
}
void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (field().guarded_list_length() == Field::kNoFixedLength) {
ASSERT(!compiler->is_optimizing());
return; // Nothing to emit.
}
Label* deopt = compiler->is_optimizing() ?
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) : NULL;
const Register value_reg = locs()->in(0).reg();
if (!compiler->is_optimizing() ||
(field().guarded_list_length() == Field::kUnknownFixedLength)) {
const Register field_reg = locs()->temp(0).reg();
const Register offset_reg = locs()->temp(1).reg();
const Register length_reg = locs()->temp(2).reg();
Label ok;
__ LoadObject(field_reg, Field::ZoneHandle(field().raw()));
__ ldr(offset_reg,
FieldAddress(field_reg,
Field::guarded_list_length_in_object_offset_offset()),
kByte);
__ ldr(length_reg, FieldAddress(field_reg,
Field::guarded_list_length_offset()));
__ tst(offset_reg, Operand(offset_reg));
__ b(&ok, MI);
// Load the length from the value. GuardFieldClass already verified that
// value's class matches guarded class id of the field.
// offset_reg contains offset already corrected by -kHeapObjectTag that is
// why we use Address instead of FieldAddress.
__ ldr(TMP, Address(value_reg, offset_reg));
__ CompareRegisters(length_reg, TMP);
if (deopt == NULL) {
__ b(&ok, EQ);
__ Push(field_reg);
__ Push(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ b(deopt, NE);
}
__ Bind(&ok);
} else {
ASSERT(compiler->is_optimizing());
ASSERT(field().guarded_list_length() >= 0);
ASSERT(field().guarded_list_length_in_object_offset() !=
Field::kUnknownLengthOffset);
__ ldr(TMP, FieldAddress(value_reg,
field().guarded_list_length_in_object_offset()));
__ CompareImmediate(TMP, Smi::RawValue(field().guarded_list_length()));
__ b(deopt, NE);
}
}
class BoxAllocationSlowPath : public SlowPathCode {
public:
BoxAllocationSlowPath(Instruction* instruction,
const Class& cls,
Register result)
: instruction_(instruction),
cls_(cls),
result_(result) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (Assembler::EmittingComments()) {
__ Comment("%s slow path allocation of %s",
instruction_->DebugName(),
String::Handle(cls_.PrettyName()).ToCString());
}
__ Bind(entry_label());
const Code& stub = Code::ZoneHandle(compiler->zone(),
StubCode::GetAllocationStubForClass(cls_));
const StubEntry stub_entry(stub);
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(Location::RegisterLocation(result_));
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(Scanner::kNoSourcePos, // No token position.
stub_entry,
RawPcDescriptors::kOther,
locs);
compiler->AddStubCallTarget(stub);
__ mov(result_, R0);
compiler->RestoreLiveRegisters(locs);
__ b(exit_label());
}
static void Allocate(FlowGraphCompiler* compiler,
Instruction* instruction,
const Class& cls,
Register result,
Register temp) {
if (compiler->intrinsic_mode()) {
__ TryAllocate(cls, compiler->intrinsic_slow_path_label(), result, temp);
} else {
BoxAllocationSlowPath* slow_path =
new BoxAllocationSlowPath(instruction, cls, result);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(cls, slow_path->entry_label(), result, temp);
__ Bind(slow_path->exit_label());
}
}
private:
Instruction* instruction_;
const Class& cls_;
const Register result_;
};
static void EnsureMutableBox(FlowGraphCompiler* compiler,
StoreInstanceFieldInstr* instruction,
Register box_reg,
const Class& cls,
Register instance_reg,
intptr_t offset,
Register temp) {
Label done;
__ LoadFieldFromOffset(box_reg, instance_reg, offset);
__ CompareObject(box_reg, Object::null_object());
__ b(&done, NE);
BoxAllocationSlowPath::Allocate(
compiler, instruction, cls, box_reg, temp);
__ mov(temp, box_reg);
__ StoreIntoObjectOffset(instance_reg, offset, temp);
__ Bind(&done);
}
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps =
(IsUnboxedStore() && opt) ? 2 :
((IsPotentialUnboxedStore()) ? 2 : 0);
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps,
((IsUnboxedStore() && opt && is_potential_unboxed_initialization_) ||
IsPotentialUnboxedStore())
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (IsUnboxedStore() && opt) {
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
} else if (IsPotentialUnboxedStore()) {
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
} else {
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
}
return summary;
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(sizeof(classid_t) == kInt32Size);
Label skip_store;
const Register instance_reg = locs()->in(0).reg();
if (IsUnboxedStore() && compiler->is_optimizing()) {
const VRegister value = locs()->in(1).fpu_reg();
const Register temp = locs()->temp(0).reg();
const Register temp2 = locs()->temp(1).reg();
const intptr_t cid = field().UnboxedFieldCid();
if (is_potential_unboxed_initialization_) {
const Class* cls = NULL;
switch (cid) {
case kDoubleCid:
cls = &compiler->double_class();
break;
case kFloat32x4Cid:
cls = &compiler->float32x4_class();
break;
case kFloat64x2Cid:
cls = &compiler->float64x2_class();
break;
default:
UNREACHABLE();
}
BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2);
__ mov(temp2, temp);
__ StoreIntoObjectOffset(instance_reg, offset_in_bytes_, temp2);
} else {
__ LoadFieldFromOffset(temp, instance_reg, offset_in_bytes_);
}
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleStoreInstanceFieldInstr");
__ StoreDFieldToOffset(value, temp, Double::value_offset());
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4StoreInstanceFieldInstr");
__ StoreQFieldToOffset(value, temp, Float32x4::value_offset());
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2StoreInstanceFieldInstr");
__ StoreQFieldToOffset(value, temp, Float64x2::value_offset());
break;
default:
UNREACHABLE();
}
return;
}
if (IsPotentialUnboxedStore()) {
const Register value_reg = locs()->in(1).reg();
const Register temp = locs()->temp(0).reg();
const Register temp2 = locs()->temp(1).reg();
if (ShouldEmitStoreBarrier()) {
// Value input is a writable register and should be manually preserved
// across allocation slow-path.
locs()->live_registers()->Add(locs()->in(1), kTagged);
}
Label store_pointer;
Label store_double;
Label store_float32x4;
Label store_float64x2;
__ LoadObject(temp, Field::ZoneHandle(field().raw()));
__ LoadFieldFromOffset(temp2, temp, Field::is_nullable_offset(),
kUnsignedWord);
__ CompareImmediate(temp2, kNullCid);
__ b(&store_pointer, EQ);
__ LoadFromOffset(
temp2, temp, Field::kind_bits_offset() - kHeapObjectTag,
kUnsignedByte);
__ tsti(temp2, Immediate(1 << Field::kUnboxingCandidateBit));
__ b(&store_pointer, EQ);
__ LoadFieldFromOffset(temp2, temp, Field::guarded_cid_offset(),
kUnsignedWord);
__ CompareImmediate(temp2, kDoubleCid);
__ b(&store_double, EQ);
__ LoadFieldFromOffset(temp2, temp, Field::guarded_cid_offset(),
kUnsignedWord);
__ CompareImmediate(temp2, kFloat32x4Cid);
__ b(&store_float32x4, EQ);
__ LoadFieldFromOffset(temp2, temp, Field::guarded_cid_offset(),
kUnsignedWord);
__ CompareImmediate(temp2, kFloat64x2Cid);
__ b(&store_float64x2, EQ);
// Fall through.
__ b(&store_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
locs()->live_registers()->Add(locs()->in(1));
}
{
__ Bind(&store_double);
EnsureMutableBox(compiler,
this,
temp,
compiler->double_class(),
instance_reg,
offset_in_bytes_,
temp2);
__ LoadDFieldFromOffset(VTMP, value_reg, Double::value_offset());
__ StoreDFieldToOffset(VTMP, temp, Double::value_offset());
__ b(&skip_store);
}
{
__ Bind(&store_float32x4);
EnsureMutableBox(compiler,
this,
temp,
compiler->float32x4_class(),
instance_reg,
offset_in_bytes_,
temp2);
__ LoadQFieldFromOffset(VTMP, value_reg, Float32x4::value_offset());
__ StoreQFieldToOffset(VTMP, temp, Float32x4::value_offset());
__ b(&skip_store);
}
{
__ Bind(&store_float64x2);
EnsureMutableBox(compiler,
this,
temp,
compiler->float64x2_class(),
instance_reg,
offset_in_bytes_,
temp2);
__ LoadQFieldFromOffset(VTMP, value_reg, Float64x2::value_offset());
__ StoreQFieldToOffset(VTMP, temp, Float64x2::value_offset());
__ b(&skip_store);
}
__ Bind(&store_pointer);
}
if (ShouldEmitStoreBarrier()) {
const Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectOffset(
instance_reg, offset_in_bytes_, value_reg, CanValueBeSmi());
} else {
if (locs()->in(1).IsConstant()) {
__ StoreIntoObjectOffsetNoBarrier(
instance_reg, offset_in_bytes_, locs()->in(1).constant());
} else {
const Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectOffsetNoBarrier(
instance_reg, offset_in_bytes_, value_reg);
}
}
__ Bind(&skip_store);
}
LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
// When the parser is building an implicit static getter for optimization,
// it can generate a function body where deoptimization ids do not line up
// with the unoptimized code.
//
// This is safe only so long as LoadStaticFieldInstr cannot deoptimize.
void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register field = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ LoadFieldFromOffset(result, field, Field::static_value_offset());
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
LocationSummary* locs = new(zone) LocationSummary(
zone, 1, 1, LocationSummary::kNoCall);
locs->set_in(0, value()->NeedsStoreBuffer() ? Location::WritableRegister()
: Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register temp = locs()->temp(0).reg();
__ LoadObject(temp, field());
if (this->value()->NeedsStoreBuffer()) {
__ StoreIntoObjectOffset(
temp, Field::static_value_offset(), value, CanValueBeSmi());
} else {
__ StoreIntoObjectOffsetNoBarrier(temp,
Field::static_value_offset(),
value);
}
}
LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(R0));
summary->set_in(1, Location::RegisterLocation(R2));
summary->set_in(2, Location::RegisterLocation(R1));
summary->set_out(0, Location::RegisterLocation(R0));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == R0); // Value.
ASSERT(locs()->in(1).reg() == R2); // Instantiator.
ASSERT(locs()->in(2).reg() == R1); // Instantiator type arguments.
compiler->GenerateInstanceOf(token_pos(),
deopt_id(),
type(),
negate_result(),
locs());
ASSERT(locs()->out(0).reg() == R0);
}
LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(kElementTypePos, Location::RegisterLocation(R1));
locs->set_in(kLengthPos, Location::RegisterLocation(R2));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
// Inlines array allocation for known constant values.
static void InlineArrayAllocation(FlowGraphCompiler* compiler,
intptr_t num_elements,
Label* slow_path,
Label* done) {
const int kInlineArraySize = 12; // Same as kInlineInstanceSize.
const Register kLengthReg = R2;
const Register kElemTypeReg = R1;
const intptr_t instance_size = Array::InstanceSize(num_elements);
__ TryAllocateArray(kArrayCid, instance_size, slow_path,
R0, // instance
R3, // end address
R6,
R8);
// R0: new object start as a tagged pointer.
// R3: new object end address.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(R0,
FieldAddress(R0, Array::type_arguments_offset()),
kElemTypeReg);
// Set the length field.
__ StoreIntoObjectNoBarrier(R0,
FieldAddress(R0, Array::length_offset()),
kLengthReg);
// TODO(zra): Use stp once added.
// Initialize all array elements to raw_null.
// R0: new object start as a tagged pointer.
// R3: new object end address.
// R8: iterator which initially points to the start of the variable
// data area to be initialized.
// R6: null
if (num_elements > 0) {
const intptr_t array_size = instance_size - sizeof(RawArray);
__ LoadObject(R6, Object::null_object());
__ AddImmediate(R8, R0, sizeof(RawArray) - kHeapObjectTag);
if (array_size < (kInlineArraySize * kWordSize)) {
intptr_t current_offset = 0;
while (current_offset < array_size) {
__ str(R6, Address(R8, current_offset));
current_offset += kWordSize;
}
} else {
Label end_loop, init_loop;
__ Bind(&init_loop);
__ CompareRegisters(R8, R3);
__ b(&end_loop, CS);
__ str(R6, Address(R8));
__ AddImmediate(R8, R8, kWordSize);
__ b(&init_loop);
__ Bind(&end_loop);
}
}
__ b(done);
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register kLengthReg = R2;
const Register kElemTypeReg = R1;
const Register kResultReg = R0;
ASSERT(locs()->in(kElementTypePos).reg() == kElemTypeReg);
ASSERT(locs()->in(kLengthPos).reg() == kLengthReg);
if (compiler->is_optimizing() &&
num_elements()->BindsToConstant() &&
num_elements()->BoundConstant().IsSmi()) {
const intptr_t length = Smi::Cast(num_elements()->BoundConstant()).Value();
if ((length >= 0) && (length <= Array::kMaxElements)) {
Label slow_path, done;
InlineArrayAllocation(compiler, length, &slow_path, &done);
__ Bind(&slow_path);
__ PushObject(Object::null_object()); // Make room for the result.
__ Push(kLengthReg); // length.
__ Push(kElemTypeReg);
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kAllocateArrayRuntimeEntry,
2,
locs());
__ Drop(2);
__ Pop(kResultReg);
__ Bind(&done);
return;
}
}
const Code& stub = Code::ZoneHandle(compiler->zone(),
StubCode::AllocateArray_entry()->code());
compiler->AddStubCallTarget(stub);
compiler->GenerateCall(token_pos(),
*StubCode::AllocateArray_entry(),
RawPcDescriptors::kOther,
locs());
ASSERT(locs()->out(0).reg() == kResultReg);
}
LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps =
(IsUnboxedLoad() && opt) ? 1 :
((IsPotentialUnboxedLoad()) ? 1 : 0);
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps,
(opt && !IsPotentialUnboxedLoad())
? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath);
locs->set_in(0, Location::RequiresRegister());
if (IsUnboxedLoad() && opt) {
locs->set_temp(0, Location::RequiresRegister());
} else if (IsPotentialUnboxedLoad()) {
locs->set_temp(0, Location::RequiresRegister());
}
locs->set_out(0, Location::RequiresRegister());
return locs;
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(sizeof(classid_t) == kInt32Size);
const Register instance_reg = locs()->in(0).reg();
if (IsUnboxedLoad() && compiler->is_optimizing()) {
const VRegister result = locs()->out(0).fpu_reg();
const Register temp = locs()->temp(0).reg();
__ LoadFieldFromOffset(temp, instance_reg, offset_in_bytes());
const intptr_t cid = field()->UnboxedFieldCid();
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleLoadFieldInstr");
__ LoadDFieldFromOffset(result, temp, Double::value_offset());
break;
case kFloat32x4Cid:
__ LoadQFieldFromOffset(result, temp, Float32x4::value_offset());
break;
case kFloat64x2Cid:
__ LoadQFieldFromOffset(result, temp, Float64x2::value_offset());
break;
default:
UNREACHABLE();
}
return;
}
Label done;
const Register result_reg = locs()->out(0).reg();
if (IsPotentialUnboxedLoad()) {
const Register temp = locs()->temp(0).reg();
Label load_pointer;
Label load_double;
Label load_float32x4;
Label load_float64x2;
__ LoadObject(result_reg, Field::ZoneHandle(field()->raw()));
FieldAddress field_cid_operand(
result_reg, Field::guarded_cid_offset(), kUnsignedWord);
FieldAddress field_nullability_operand(
result_reg, Field::is_nullable_offset(), kUnsignedWord);
__ ldr(temp, field_nullability_operand, kUnsignedWord);
__ CompareImmediate(temp, kNullCid);
__ b(&load_pointer, EQ);
__ ldr(temp, field_cid_operand, kUnsignedWord);
__ CompareImmediate(temp, kDoubleCid);
__ b(&load_double, EQ);
__ ldr(temp, field_cid_operand, kUnsignedWord);
__ CompareImmediate(temp, kFloat32x4Cid);
__ b(&load_float32x4, EQ);
__ ldr(temp, field_cid_operand, kUnsignedWord);
__ CompareImmediate(temp, kFloat64x2Cid);
__ b(&load_float64x2, EQ);
// Fall through.
__ b(&load_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
}
{
__ Bind(&load_double);
BoxAllocationSlowPath::Allocate(compiler,
this,
compiler->double_class(),
result_reg,
temp);
__ LoadFieldFromOffset(temp, instance_reg, offset_in_bytes());
__ LoadDFieldFromOffset(VTMP, temp, Double::value_offset());
__ StoreDFieldToOffset(VTMP, result_reg, Double::value_offset());
__ b(&done);
}
{
__ Bind(&load_float32x4);
BoxAllocationSlowPath::Allocate(compiler,
this,
compiler->float32x4_class(),
result_reg,
temp);
__ LoadFieldFromOffset(temp, instance_reg, offset_in_bytes());
__ LoadQFieldFromOffset(VTMP, temp, Float32x4::value_offset());
__ StoreQFieldToOffset(VTMP, result_reg, Float32x4::value_offset());
__ b(&done);
}
{
__ Bind(&load_float64x2);
BoxAllocationSlowPath::Allocate(compiler,
this,
compiler->float64x2_class(),
result_reg,
temp);
__ LoadFieldFromOffset(temp, instance_reg, offset_in_bytes());
__ LoadQFieldFromOffset(VTMP, temp, Float64x2::value_offset());
__ StoreQFieldToOffset(VTMP, result_reg, Float64x2::value_offset());
__ b(&done);
}
__ Bind(&load_pointer);
}
__ LoadFieldFromOffset(result_reg, instance_reg, offset_in_bytes());
__ Bind(&done);
}
LocationSummary* InstantiateTypeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register instantiator_reg = locs()->in(0).reg();
const Register result_reg = locs()->out(0).reg();
// 'instantiator_reg' is the instantiator TypeArguments object (or null).
// A runtime call to instantiate the type is required.
__ PushObject(Object::null_object()); // Make room for the result.
__ PushObject(type());
__ Push(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kInstantiateTypeRuntimeEntry,
2,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type.
__ Pop(result_reg); // Pop instantiated type.
ASSERT(instantiator_reg == result_reg);
}
LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary(
Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
void InstantiateTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
const Register instantiator_reg = locs()->in(0).reg();
const Register result_reg = locs()->out(0).reg();
ASSERT(instantiator_reg == R0);
ASSERT(instantiator_reg == result_reg);
// 'instantiator_reg' is the instantiator TypeArguments object (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawInstantiatedRaw(len)) {
__ CompareObject(instantiator_reg, Object::null_object());
__ b(&type_arguments_instantiated, EQ);
}
__ LoadObject(R2, type_arguments());
__ LoadFieldFromOffset(R2, R2, TypeArguments::instantiations_offset());
__ AddImmediate(R2, R2, Array::data_offset() - kHeapObjectTag);
// The instantiations cache is initialized with Object::zero_array() and is
// therefore guaranteed to contain kNoInstantiator. No length check needed.
Label loop, found, slow_case;
__ Bind(&loop);
__ LoadFromOffset(R1, R2, 0 * kWordSize); // Cached instantiator.
__ CompareRegisters(R1, R0);
__ b(&found, EQ);
__ AddImmediate(R2, R2, 2 * kWordSize);
__ CompareImmediate(R1, Smi::RawValue(StubCode::kNoInstantiator));
__ b(&loop, NE);
__ b(&slow_case);
__ Bind(&found);
__ LoadFromOffset(R0, R2, 1 * kWordSize); // Cached instantiated args.
__ b(&type_arguments_instantiated);
__ Bind(&slow_case);
// Instantiate non-null type arguments.
// A runtime call to instantiate the type arguments is required.
__ PushObject(Object::null_object()); // Make room for the result.
__ PushObject(type_arguments());
__ Push(instantiator_reg); // Push instantiator type arguments.
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kInstantiateTypeArgumentsRuntimeEntry,
2,
locs());
__ Drop(2); // Drop instantiator and uninstantiated type arguments.
__ Pop(result_reg); // Pop instantiated type arguments.
__ Bind(&type_arguments_instantiated);
}
LocationSummary* AllocateUninitializedContextInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
ASSERT(opt);
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 3;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
locs->set_temp(0, Location::RegisterLocation(R1));
locs->set_temp(1, Location::RegisterLocation(R2));
locs->set_temp(2, Location::RegisterLocation(R3));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
class AllocateContextSlowPath : public SlowPathCode {
public:
explicit AllocateContextSlowPath(
AllocateUninitializedContextInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("AllocateContextSlowPath");
__ Bind(entry_label());
LocationSummary* locs = instruction_->locs();
locs->live_registers()->Remove(locs->out(0));
compiler->SaveLiveRegisters(locs);
__ LoadImmediate(R1, instruction_->num_context_variables());
const Code& stub = Code::ZoneHandle(
compiler->zone(), StubCode::AllocateContext_entry()->code());
compiler->AddStubCallTarget(stub);
compiler->GenerateCall(instruction_->token_pos(),
*StubCode::AllocateContext_entry(),
RawPcDescriptors::kOther,
locs);
ASSERT(instruction_->locs()->out(0).reg() == R0);
compiler->RestoreLiveRegisters(instruction_->locs());
__ b(exit_label());
}
private:
AllocateUninitializedContextInstr* instruction_;
};
void AllocateUninitializedContextInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register temp0 = locs()->temp(0).reg();
Register temp1 = locs()->temp(1).reg();
Register temp2 = locs()->temp(2).reg();
Register result = locs()->out(0).reg();
// Try allocate the object.
AllocateContextSlowPath* slow_path = new AllocateContextSlowPath(this);
compiler->AddSlowPathCode(slow_path);
intptr_t instance_size = Context::InstanceSize(num_context_variables());
__ TryAllocateArray(kContextCid, instance_size, slow_path->entry_label(),
result, // instance
temp0,
temp1,
temp2);
// Setup up number of context variables field.
__ LoadImmediate(temp0, num_context_variables());
__ str(temp0, FieldAddress(result, Context::num_variables_offset()));
__ Bind(slow_path->exit_label());
}
LocationSummary* AllocateContextInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(R1));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == R1);
ASSERT(locs()->out(0).reg() == R0);
__ LoadImmediate(R1, num_context_variables());
compiler->GenerateCall(token_pos(),
*StubCode::AllocateContext_entry(),
RawPcDescriptors::kOther,
locs());
}
LocationSummary* InitStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_temp(0, Location::RegisterLocation(R1));
return locs;
}
void InitStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register field = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
Label call_runtime, no_call;
__ ldr(temp, FieldAddress(field, Field::static_value_offset()));
__ CompareObject(temp, Object::sentinel());
__ b(&call_runtime, EQ);
__ CompareObject(temp, Object::transition_sentinel());
__ b(&no_call, NE);
__ Bind(&call_runtime);
__ PushObject(Object::null_object()); // Make room for (unused) result.
__ Push(field);
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kInitStaticFieldRuntimeEntry,
1,
locs());
__ Drop(2); // Remove argument and result placeholder.
__ Bind(&no_call);
}
LocationSummary* CloneContextInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(R0));
locs->set_out(0, Location::RegisterLocation(R0));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register context_value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ PushObject(Object::null_object()); // Make room for the result.
__ Push(context_value);
compiler->GenerateRuntimeCall(token_pos(),
deopt_id(),
kCloneContextRuntimeEntry,
1,
locs());
__ Drop(1); // Remove argument.
__ Pop(result); // Get result (cloned context).
}
LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
UNREACHABLE();
return NULL;
}
void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
compiler->AddExceptionHandler(catch_try_index(),
try_index(),
compiler->assembler()->CodeSize(),
catch_handler_types_,
needs_stacktrace());
// Restore the pool pointer.
__ RestoreCodePointer();
__ LoadPoolPointer();
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// Restore SP from FP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t fp_sp_dist =
(kFirstLocalSlotFromFp + 1 - compiler->StackSize()) * kWordSize;
ASSERT(fp_sp_dist <= 0);
__ AddImmediate(SP, FP, fp_sp_dist);
// Restore stack and initialize the two exception variables:
// exception and stack trace variables.
__ StoreToOffset(kExceptionObjectReg,
FP, exception_var().index() * kWordSize);
__ StoreToOffset(kStackTraceObjectReg,
FP, stacktrace_var().index() * kWordSize);
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new(zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
class CheckStackOverflowSlowPath : public SlowPathCode {
public:
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: instruction_(instruction) { }
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (FLAG_use_osr && osr_entry_label()->IsLinked()) {
uword flags_address = Isolate::Current()->stack_overflow_flags_address();
const Register value = instruction_->locs()->temp(0).reg();
__ Comment("CheckStackOverflowSlowPathOsr");
__ Bind(osr_entry_label());
ASSERT(FLAG_allow_absolute_addresses);
__ LoadImmediate(TMP, flags_address);
__ LoadImmediate(value, Isolate::kOsrRequest);
__ str(value, Address(TMP));
}
__ Comment("CheckStackOverflowSlowPath");
__ Bind(entry_label());
compiler->SaveLiveRegisters(instruction_->locs());
// pending_deoptimization_env_ is needed to generate a runtime call that
// may throw an exception.
ASSERT(compiler->pending_deoptimization_env_ == NULL);
Environment* env = compiler->SlowPathEnvironmentFor(instruction_);
compiler->pending_deoptimization_env_ = env;
compiler->GenerateRuntimeCall(instruction_->token_pos(),
instruction_->deopt_id(),
kStackOverflowRuntimeEntry,
0,
instruction_->locs());
if (FLAG_use_osr && !compiler->is_optimizing() && instruction_->in_loop()) {
// In unoptimized code, record loop stack checks as possible OSR entries.
compiler->AddCurrentDescriptor(RawPcDescriptors::kOsrEntry,
instruction_->deopt_id(),
0); // No token position.
}
compiler->pending_deoptimization_env_ = NULL;
compiler->RestoreLiveRegisters(instruction_->locs());
__ b(exit_label());
}
Label* osr_entry_label() {
ASSERT(FLAG_use_osr);
return &osr_entry_label_;
}
private:
CheckStackOverflowInstr* instruction_;
Label osr_entry_label_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
if (compiler->is_optimizing() && FLAG_allow_absolute_addresses) {
__ LoadImmediate(TMP, Isolate::Current()->stack_limit_address());
__ ldr(TMP, Address(TMP));
} else {
__ LoadIsolate(TMP);
__ ldr(TMP, Address(TMP, Isolate::stack_limit_offset()));
}
__ CompareRegisters(SP, TMP);
__ b(slow_path->entry_label(), LS);
if (compiler->CanOSRFunction() && in_loop()) {
const Register temp = locs()->temp(0).reg();
// In unoptimized code check the usage counter to trigger OSR at loop
// stack checks. Use progressively higher thresholds for more deeply
// nested loops to attempt to hit outer loops with OSR when possible.
__ LoadObject(temp, compiler->parsed_function().function());
intptr_t threshold =
FLAG_optimization_counter_threshold * (loop_depth() + 1);
__ LoadFieldFromOffset(
temp, temp, Function::usage_counter_offset(), kWord);
__ CompareImmediate(temp, threshold);
__ b(slow_path->osr_entry_label(), GE);
}
if (compiler->ForceSlowPathForStackOverflow()) {
__ b(slow_path->entry_label());
}
__ Bind(slow_path->exit_label());
}
static void EmitJavascriptOverflowCheck(FlowGraphCompiler* compiler,
Range* range,
Label* overflow,
Register result) {
if (!RangeUtils::IsWithin(range, -0x20000000000000LL, 0x20000000000000LL)) {
ASSERT(overflow != NULL);
__ LoadImmediate(TMP, 0x20000000000000LL);
__ add(TMP2, result, Operand(TMP));
__ cmp(TMP2, Operand(TMP, LSL, 1));
__ b(overflow, HI);
}
}
static void EmitSmiShiftLeft(FlowGraphCompiler* compiler,
BinarySmiOpInstr* shift_left) {
const LocationSummary& locs = *shift_left->locs();
const Register left = locs.in(0).reg();
const Register result = locs.out(0).reg();
Label* deopt = shift_left->CanDeoptimize() ?
compiler->AddDeoptStub(shift_left->deopt_id(), ICData::kDeoptBinarySmiOp)
: NULL;
if (locs.in(1).IsConstant()) {
const Object& constant = locs.in(1).constant();
ASSERT(constant.IsSmi());
// Immediate shift operation takes 6 bits for the count.
const intptr_t kCountLimit = 0x3F;
const intptr_t value = Smi::Cast(constant).Value();
ASSERT((0 < value) && (value < kCountLimit));
if (shift_left->can_overflow()) {
// Check for overflow (preserve left).
__ LslImmediate(TMP, left, value);
__ cmp(left, Operand(TMP, ASR, value));
__ b(deopt, NE); // Overflow.
}
// Shift for result now we know there is no overflow.
__ LslImmediate(result, left, value);
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, shift_left->range(), deopt, result);
}
return;
}
// Right (locs.in(1)) is not constant.
const Register right = locs.in(1).reg();
Range* right_range = shift_left->right()->definition()->range();
if (shift_left->left()->BindsToConstant() && shift_left->can_overflow()) {
// TODO(srdjan): Implement code below for is_truncating().
// If left is constant, we know the maximal allowed size for right.
const Object& obj = shift_left->left()->BoundConstant();
if (obj.IsSmi()) {
const intptr_t left_int = Smi::Cast(obj).Value();
if (left_int == 0) {
__ CompareRegisters(right, ZR);
__ b(deopt, MI);
__ mov(result, ZR);
return;
}
const intptr_t max_right = kSmiBits - Utils::HighestBit(left_int);
const bool right_needs_check =
!RangeUtils::IsWithin(right_range, 0, max_right - 1);
if (right_needs_check) {
__ CompareImmediate(right,
reinterpret_cast<int64_t>(Smi::New(max_right)));
__ b(deopt, CS);
}
__ SmiUntag(TMP, right);
__ lslv(result, left, TMP);
}
if (FLAG_throw_on_javascript_int_overflow) {
EmitJavascriptOverflowCheck(compiler, shift_left->range(), deopt, result);
}
return;
}
const bool right_needs_check =
!RangeUtils::IsWithin(right_range, 0, (Smi::kBits - 1));
if (!shift_left->can_overflow()) {
if (right_needs_check) {
const bool right_may_be_negative =
(right_range == NULL) || !right_range->IsPositive();
if (right_may_be_negative) {
ASSERT(shift_left->CanDeoptimize());
__ CompareRegisters(right, ZR);
__ b(deopt, MI);
}
__ CompareImmediate(
right, reinterpret_cast<int64_t>(Smi::New(Smi::kBits)));
__ csel(result, ZR, result, CS);
__ SmiUntag(TMP, right);
__ lslv(TMP, left, TMP);
__ csel(result, TMP, result, CC);
} else {
__ SmiUntag(TMP, right);
__ lslv(result, left, TMP);
}
} else {
if (right_needs_check) {
ASSERT(shift_left->CanDeoptimize());
__ CompareImmediate(
right, reinterpret_cast<int64_t>(Smi::New(Smi::kBits)));
__ b(deopt, CS);
}
// Left is not a constant.
// Check if count too large for handling it inlined.
__ SmiUntag(TMP, right);
// Overflow test (preserve left, right, and TMP);
const Register temp = locs.temp(0).reg();
__ lslv(temp, left, TMP);
__ asrv(TMP2, temp, TMP);
__ CompareRegisters(left, TMP2);
__ b(deopt, NE); // Overflow.
// Shift for result now we know there is no overflow.
__ lslv(result, left, TMP);
}