| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "platform/globals.h" |
| #if defined(TARGET_OS_LINUX) |
| |
| #include "bin/thread.h" |
| |
| #include <errno.h> // NOLINT |
| #include <sys/resource.h> // NOLINT |
| #include <sys/time.h> // NOLINT |
| |
| #include "platform/assert.h" |
| |
| namespace dart { |
| namespace bin { |
| |
| #define VALIDATE_PTHREAD_RESULT(result) \ |
| if (result != 0) { \ |
| const int kBufferSize = 1024; \ |
| char error_buf[kBufferSize]; \ |
| FATAL2("pthread error: %d (%s)", result, \ |
| strerror_r(result, error_buf, kBufferSize)); \ |
| } |
| |
| |
| #ifdef DEBUG |
| #define RETURN_ON_PTHREAD_FAILURE(result) \ |
| if (result != 0) { \ |
| const int kBufferSize = 1024; \ |
| char error_buf[kBufferSize]; \ |
| fprintf(stderr, "%s:%d: pthread error: %d (%s)\n", \ |
| __FILE__, __LINE__, result, \ |
| strerror_r(result, error_buf, kBufferSize)); \ |
| return result; \ |
| } |
| #else |
| #define RETURN_ON_PTHREAD_FAILURE(result) \ |
| if (result != 0) return result; |
| #endif |
| |
| |
| static void ComputeTimeSpecMicros(struct timespec* ts, int64_t micros) { |
| int64_t secs = micros / kMicrosecondsPerSecond; |
| int64_t nanos = |
| (micros - (secs * kMicrosecondsPerSecond)) * kNanosecondsPerMicrosecond; |
| int result = clock_gettime(CLOCK_MONOTONIC, ts); |
| ASSERT(result == 0); |
| ts->tv_sec += secs; |
| ts->tv_nsec += nanos; |
| if (ts->tv_nsec >= kNanosecondsPerSecond) { |
| ts->tv_sec += 1; |
| ts->tv_nsec -= kNanosecondsPerSecond; |
| } |
| } |
| |
| |
| class ThreadStartData { |
| public: |
| ThreadStartData(Thread::ThreadStartFunction function, |
| uword parameter) |
| : function_(function), parameter_(parameter) {} |
| |
| Thread::ThreadStartFunction function() const { return function_; } |
| uword parameter() const { return parameter_; } |
| |
| private: |
| Thread::ThreadStartFunction function_; |
| uword parameter_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ThreadStartData); |
| }; |
| |
| |
| // Dispatch to the thread start function provided by the caller. This trampoline |
| // is used to ensure that the thread is properly destroyed if the thread just |
| // exits. |
| static void* ThreadStart(void* data_ptr) { |
| ThreadStartData* data = reinterpret_cast<ThreadStartData*>(data_ptr); |
| |
| Thread::ThreadStartFunction function = data->function(); |
| uword parameter = data->parameter(); |
| delete data; |
| |
| // Call the supplied thread start function handing it its parameters. |
| function(parameter); |
| |
| return NULL; |
| } |
| |
| |
| int Thread::Start(ThreadStartFunction function, uword parameter) { |
| pthread_attr_t attr; |
| int result = pthread_attr_init(&attr); |
| RETURN_ON_PTHREAD_FAILURE(result); |
| |
| result = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); |
| RETURN_ON_PTHREAD_FAILURE(result); |
| |
| result = pthread_attr_setstacksize(&attr, Thread::GetMaxStackSize()); |
| RETURN_ON_PTHREAD_FAILURE(result); |
| |
| ThreadStartData* data = new ThreadStartData(function, parameter); |
| |
| pthread_t tid; |
| result = pthread_create(&tid, &attr, ThreadStart, data); |
| RETURN_ON_PTHREAD_FAILURE(result); |
| |
| result = pthread_attr_destroy(&attr); |
| RETURN_ON_PTHREAD_FAILURE(result); |
| |
| return 0; |
| } |
| |
| |
| ThreadLocalKey Thread::kUnsetThreadLocalKey = static_cast<pthread_key_t>(-1); |
| ThreadId Thread::kInvalidThreadId = static_cast<ThreadId>(0); |
| |
| ThreadLocalKey Thread::CreateThreadLocal() { |
| pthread_key_t key = kUnsetThreadLocalKey; |
| int result = pthread_key_create(&key, NULL); |
| VALIDATE_PTHREAD_RESULT(result); |
| ASSERT(key != kUnsetThreadLocalKey); |
| return key; |
| } |
| |
| |
| void Thread::DeleteThreadLocal(ThreadLocalKey key) { |
| ASSERT(key != kUnsetThreadLocalKey); |
| int result = pthread_key_delete(key); |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| |
| void Thread::SetThreadLocal(ThreadLocalKey key, uword value) { |
| ASSERT(key != kUnsetThreadLocalKey); |
| int result = pthread_setspecific(key, reinterpret_cast<void*>(value)); |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| |
| intptr_t Thread::GetMaxStackSize() { |
| const int kStackSize = (128 * kWordSize * KB); |
| return kStackSize; |
| } |
| |
| |
| ThreadId Thread::GetCurrentThreadId() { |
| return pthread_self(); |
| } |
| |
| |
| bool Thread::Join(ThreadId id) { |
| return false; |
| } |
| |
| |
| intptr_t Thread::ThreadIdToIntPtr(ThreadId id) { |
| ASSERT(sizeof(id) == sizeof(intptr_t)); |
| return static_cast<intptr_t>(id); |
| } |
| |
| |
| bool Thread::Compare(ThreadId a, ThreadId b) { |
| return pthread_equal(a, b) != 0; |
| } |
| |
| |
| void Thread::GetThreadCpuUsage(ThreadId thread_id, int64_t* cpu_usage) { |
| ASSERT(thread_id == GetCurrentThreadId()); |
| ASSERT(cpu_usage != NULL); |
| struct timespec ts; |
| int r = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts); |
| ASSERT(r == 0); |
| *cpu_usage = (ts.tv_sec * kNanosecondsPerSecond + ts.tv_nsec) / |
| kNanosecondsPerMicrosecond; |
| } |
| |
| |
| void Thread::InitOnce() { |
| // Nothing to be done. |
| } |
| |
| |
| Mutex::Mutex() { |
| pthread_mutexattr_t attr; |
| int result = pthread_mutexattr_init(&attr); |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| #if defined(DEBUG) |
| result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK); |
| VALIDATE_PTHREAD_RESULT(result); |
| #endif // defined(DEBUG) |
| |
| result = pthread_mutex_init(data_.mutex(), &attr); |
| // Verify that creating a pthread_mutex succeeded. |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| result = pthread_mutexattr_destroy(&attr); |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| |
| Mutex::~Mutex() { |
| int result = pthread_mutex_destroy(data_.mutex()); |
| // Verify that the pthread_mutex was destroyed. |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| |
| void Mutex::Lock() { |
| int result = pthread_mutex_lock(data_.mutex()); |
| // Specifically check for dead lock to help debugging. |
| ASSERT(result != EDEADLK); |
| ASSERT(result == 0); // Verify no other errors. |
| // TODO(iposva): Do we need to track lock owners? |
| } |
| |
| |
| bool Mutex::TryLock() { |
| int result = pthread_mutex_trylock(data_.mutex()); |
| // Return false if the lock is busy and locking failed. |
| if (result == EBUSY) { |
| return false; |
| } |
| ASSERT(result == 0); // Verify no other errors. |
| // TODO(iposva): Do we need to track lock owners? |
| return true; |
| } |
| |
| |
| void Mutex::Unlock() { |
| // TODO(iposva): Do we need to track lock owners? |
| int result = pthread_mutex_unlock(data_.mutex()); |
| // Specifically check for wrong thread unlocking to aid debugging. |
| ASSERT(result != EPERM); |
| ASSERT(result == 0); // Verify no other errors. |
| } |
| |
| |
| Monitor::Monitor() { |
| pthread_mutexattr_t mutex_attr; |
| int result = pthread_mutexattr_init(&mutex_attr); |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| #if defined(DEBUG) |
| result = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_ERRORCHECK); |
| VALIDATE_PTHREAD_RESULT(result); |
| #endif // defined(DEBUG) |
| |
| result = pthread_mutex_init(data_.mutex(), &mutex_attr); |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| result = pthread_mutexattr_destroy(&mutex_attr); |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| pthread_condattr_t cond_attr; |
| result = pthread_condattr_init(&cond_attr); |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| result = pthread_condattr_setclock(&cond_attr, CLOCK_MONOTONIC); |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| result = pthread_cond_init(data_.cond(), &cond_attr); |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| result = pthread_condattr_destroy(&cond_attr); |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| |
| Monitor::~Monitor() { |
| int result = pthread_mutex_destroy(data_.mutex()); |
| VALIDATE_PTHREAD_RESULT(result); |
| |
| result = pthread_cond_destroy(data_.cond()); |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| |
| void Monitor::Enter() { |
| int result = pthread_mutex_lock(data_.mutex()); |
| VALIDATE_PTHREAD_RESULT(result); |
| // TODO(iposva): Do we need to track lock owners? |
| } |
| |
| |
| void Monitor::Exit() { |
| // TODO(iposva): Do we need to track lock owners? |
| int result = pthread_mutex_unlock(data_.mutex()); |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| |
| Monitor::WaitResult Monitor::Wait(int64_t millis) { |
| return WaitMicros(millis * kMicrosecondsPerMillisecond); |
| } |
| |
| |
| Monitor::WaitResult Monitor::WaitMicros(int64_t micros) { |
| // TODO(iposva): Do we need to track lock owners? |
| Monitor::WaitResult retval = kNotified; |
| if (micros == kNoTimeout) { |
| // Wait forever. |
| int result = pthread_cond_wait(data_.cond(), data_.mutex()); |
| VALIDATE_PTHREAD_RESULT(result); |
| } else { |
| struct timespec ts; |
| ComputeTimeSpecMicros(&ts, micros); |
| int result = pthread_cond_timedwait(data_.cond(), data_.mutex(), &ts); |
| ASSERT((result == 0) || (result == ETIMEDOUT)); |
| if (result == ETIMEDOUT) { |
| retval = kTimedOut; |
| } |
| } |
| return retval; |
| } |
| |
| |
| void Monitor::Notify() { |
| // TODO(iposva): Do we need to track lock owners? |
| int result = pthread_cond_signal(data_.cond()); |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| |
| void Monitor::NotifyAll() { |
| // TODO(iposva): Do we need to track lock owners? |
| int result = pthread_cond_broadcast(data_.cond()); |
| VALIDATE_PTHREAD_RESULT(result); |
| } |
| |
| } // namespace bin |
| } // namespace dart |
| |
| #endif // defined(TARGET_OS_LINUX) |