blob: dedb4e2ecbdfab549799619f05147a4d5c1f581a [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library compiler.src.inferrer.type_graph_nodes;
import 'dart:collection' show IterableBase;
import '../common.dart';
import '../common/names.dart' show Identifiers;
import '../compiler.dart' show Compiler;
import '../constants/values.dart';
import '../cps_ir/cps_ir_nodes.dart' as cps_ir show Node;
import '../dart_types.dart' show DartType, FunctionType, TypeKind;
import '../elements/elements.dart';
import '../native/native.dart' as native;
import '../tree/tree.dart' as ast show DartString, Node, LiteralBool, Send;
import '../types/types.dart'
show
ContainerTypeMask,
DictionaryTypeMask,
MapTypeMask,
TypeMask,
ValueTypeMask;
import '../universe/selector.dart' show Selector;
import '../util/util.dart' show ImmutableEmptySet, Setlet;
import '../world.dart' show ClassWorld;
import 'debug.dart' as debug;
import 'inferrer_visitor.dart' show ArgumentsTypes;
import 'type_graph_inferrer.dart'
show TypeGraphInferrerEngine, TypeInformationSystem;
/**
* Common class for all nodes in the graph. The current nodes are:
*
* - Concrete types
* - Elements
* - Call sites
* - Narrowing instructions
* - Phi instructions
* - Containers (for lists)
* - Type of the element in a container
*
* A node has a set of assignments and users. Assignments are used to
* compute the type of the node ([TypeInformation.computeType]). Users are
* added to the inferrer's work queue when the type of the node
* changes.
*/
abstract class TypeInformation {
Set<TypeInformation> users;
var /* List|ParameterAssignments */ _assignments;
/// The type the inferrer has found for this [TypeInformation].
/// Initially empty.
TypeMask type = const TypeMask.nonNullEmpty();
/// The graph node of the member this [TypeInformation] node belongs to.
final MemberTypeInformation context;
/// The element this [TypeInformation] node belongs to.
TypedElement get contextMember => context == null ? null : context.element;
Iterable<TypeInformation> get assignments => _assignments;
/// We abandon inference in certain cases (complex cyclic flow, native
/// behaviours, etc.). In some case, we might resume inference in the
/// closure tracer, which is handled by checking whether [assignments] has
/// been set to [STOP_TRACKING_ASSIGNMENTS_MARKER].
bool abandonInferencing = false;
bool get mightResume =>
!identical(assignments, STOP_TRACKING_ASSIGNMENTS_MARKER);
/// Number of times this [TypeInformation] has changed type.
int refineCount = 0;
/// Whether this [TypeInformation] is currently in the inferrer's
/// work queue.
bool inQueue = false;
/// Used to disable enqueueing of type informations where we know that their
/// type will not change for other reasons than being stable. For example,
/// if inference is disabled for a type and it is hardwired to dynamic, this
/// is set to true to spare recomputing dynamic again and again. Changing this
/// to false should never change inference outcome, just make is slower.
bool doNotEnqueue = false;
/// Whether this [TypeInformation] has a stable [type] that will not
/// change.
bool isStable = false;
// TypeInformations are unique. Store an arbitrary identity hash code.
static int _staticHashCode = 0;
final int hashCode = _staticHashCode = (_staticHashCode + 1).toUnsigned(30);
bool get isConcrete => false;
TypeInformation(this.context)
: _assignments = <TypeInformation>[],
users = new Setlet<TypeInformation>();
TypeInformation.noAssignments(this.context)
: _assignments = const <TypeInformation>[],
users = new Setlet<TypeInformation>();
TypeInformation.untracked()
: _assignments = const <TypeInformation>[],
users = const ImmutableEmptySet(),
context = null;
TypeInformation.withAssignments(this.context, this._assignments)
: users = new Setlet<TypeInformation>();
void addUser(TypeInformation user) {
assert(!user.isConcrete);
users.add(user);
}
void addUsersOf(TypeInformation other) {
users.addAll(other.users);
}
void removeUser(TypeInformation user) {
assert(!user.isConcrete);
users.remove(user);
}
// The below is not a compile time constant to make it differentiable
// from other empty lists of [TypeInformation].
static final STOP_TRACKING_ASSIGNMENTS_MARKER = new List<TypeInformation>(0);
bool areAssignmentsTracked() {
return assignments != STOP_TRACKING_ASSIGNMENTS_MARKER;
}
void addAssignment(TypeInformation assignment) {
// Cheap one-level cycle detection.
if (assignment == this) return;
if (areAssignmentsTracked()) {
_assignments.add(assignment);
}
// Even if we abandon inferencing on this [TypeInformation] we
// need to collect the users, so that phases that track where
// elements flow in still work.
assignment.addUser(this);
}
void removeAssignment(TypeInformation assignment) {
if (!abandonInferencing || mightResume) {
_assignments.remove(assignment);
}
// We can have multiple assignments of the same [TypeInformation].
if (!assignments.contains(assignment)) {
assignment.removeUser(this);
}
}
TypeMask refine(TypeGraphInferrerEngine inferrer) {
return abandonInferencing ? safeType(inferrer) : computeType(inferrer);
}
/**
* Computes a new type for this [TypeInformation] node depending on its
* potentially updated inputs.
*/
TypeMask computeType(TypeGraphInferrerEngine inferrer);
/**
* Returns an approximation for this [TypeInformation] node that is always
* safe to use. Used when abandoning inference on a node.
*/
TypeMask safeType(TypeGraphInferrerEngine inferrer) {
return inferrer.types.dynamicType.type;
}
void giveUp(TypeGraphInferrerEngine inferrer, {bool clearAssignments: true}) {
abandonInferencing = true;
// Do not remove [this] as a user of nodes in [assignments],
// because our tracing analysis could be interested in tracing
// this node.
if (clearAssignments) _assignments = STOP_TRACKING_ASSIGNMENTS_MARKER;
// Do not remove users because our tracing analysis could be
// interested in tracing the users of this node.
}
void clear() {
_assignments = STOP_TRACKING_ASSIGNMENTS_MARKER;
users = const ImmutableEmptySet();
}
/// Reset the analysis of this node by making its type empty.
bool reset(TypeGraphInferrerEngine inferrer) {
if (abandonInferencing) return false;
type = const TypeMask.nonNullEmpty();
refineCount = 0;
return true;
}
accept(TypeInformationVisitor visitor);
/// The [Element] where this [TypeInformation] was created. May be `null`
/// for some [TypeInformation] nodes, where we do not need to store
/// the information.
Element get owner => (context != null) ? context.element : null;
/// Returns whether the type cannot change after it has been
/// inferred.
bool hasStableType(TypeGraphInferrerEngine inferrer) {
return !mightResume && assignments.every((e) => e.isStable);
}
void removeAndClearReferences(TypeGraphInferrerEngine inferrer) {
assignments.forEach((info) {
info.removeUser(this);
});
}
void stabilize(TypeGraphInferrerEngine inferrer) {
removeAndClearReferences(inferrer);
// Do not remove users because the tracing analysis could be interested
// in tracing the users of this node.
_assignments = STOP_TRACKING_ASSIGNMENTS_MARKER;
abandonInferencing = true;
isStable = true;
}
void maybeResume() {
if (!mightResume) return;
abandonInferencing = false;
doNotEnqueue = false;
}
/// Destroys information not needed after type inference.
void cleanup() {
users = null;
_assignments = null;
}
}
abstract class ApplyableTypeInformation implements TypeInformation {
bool mightBePassedToFunctionApply = false;
}
/**
* Marker node used only during tree construction but not during actual type
* refinement.
*
* Currently, this is used to give a type to an optional parameter even before
* the corresponding default expression has been analyzed. See
* [getDefaultTypeOfParameter] and [setDefaultTypeOfParameter] for details.
*/
class PlaceholderTypeInformation extends TypeInformation {
PlaceholderTypeInformation(MemberTypeInformation context) : super(context);
void accept(TypeInformationVisitor visitor) {
throw new UnsupportedError("Cannot visit placeholder");
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
throw new UnsupportedError("Cannot refine placeholder");
}
toString() => "Placeholder [$hashCode]";
}
/**
* Parameters of instance functions behave differently than other
* elements because the inferrer may remove assignments. This happens
* when the receiver of a dynamic call site can be refined
* to a type where we know more about which instance method is being
* called.
*/
class ParameterAssignments extends IterableBase<TypeInformation> {
final Map<TypeInformation, int> assignments = new Map<TypeInformation, int>();
void remove(TypeInformation info) {
int existing = assignments[info];
if (existing == null) return;
if (existing == 1) {
assignments.remove(info);
} else {
assignments[info] = existing - 1;
}
}
void add(TypeInformation info) {
int existing = assignments[info];
if (existing == null) {
assignments[info] = 1;
} else {
assignments[info] = existing + 1;
}
}
void replace(TypeInformation old, TypeInformation replacement) {
int existing = assignments[old];
if (existing != null) {
int other = assignments[replacement];
if (other != null) existing += other;
assignments[replacement] = existing;
assignments.remove(old);
}
}
Iterator<TypeInformation> get iterator => assignments.keys.iterator;
Iterable<TypeInformation> where(Function f) => assignments.keys.where(f);
bool contains(TypeInformation info) => assignments.containsKey(info);
String toString() => assignments.keys.toList().toString();
}
/**
* A node representing a resolved element of the program. The kind of
* elements that need an [ElementTypeInformation] are:
*
* - Functions (including getters and setters)
* - Constructors (factory or generative)
* - Fields
* - Parameters
* - Local variables mutated in closures
*
* The [ElementTypeInformation] of a function and a constructor is its
* return type.
*
* Note that a few elements of these kinds must be treated specially,
* and they are dealt in [ElementTypeInformation.handleSpecialCases]:
*
* - Parameters of closures, [noSuchMethod] and [call] instance
* methods: we currently do not infer types for those.
*
* - Fields and parameters being assigned by synthesized calls done by
* the backend: we do not know what types the backend will use.
*
* - Native functions and fields: because native methods contain no Dart
* code, and native fields do not have Dart assignments, we just
* trust their type annotation.
*
*/
abstract class ElementTypeInformation extends TypeInformation {
final Element element;
/// Marker to disable inference for closures in [handleSpecialCases].
bool disableInferenceForClosures = true;
factory ElementTypeInformation(Element element, TypeInformationSystem types) {
if (element.isRegularParameter || element.isInitializingFormal) {
ParameterElement parameter = element;
if (parameter.functionDeclaration.isInstanceMember) {
return new ParameterTypeInformation._instanceMember(element, types);
}
return new ParameterTypeInformation._internal(element, types);
}
return new MemberTypeInformation._internal(element);
}
ElementTypeInformation._internal(MemberTypeInformation context, this.element)
: super(context);
ElementTypeInformation._withAssignments(
MemberTypeInformation context, this.element, assignments)
: super.withAssignments(context, assignments);
}
/**
* A node representing members in the broadest sense:
*
* - Functions
* - Constructors
* - Fields (also synthetic ones due to closures)
* - Local functions (closures)
*
* These should never be created directly but instead are constructed by
* the [ElementTypeInformation] factory.
*/
class MemberTypeInformation extends ElementTypeInformation
with ApplyableTypeInformation {
TypedElement get element => super.element;
/**
* If [element] is a function, [closurizedCount] is the number of
* times it is closurized. The value gets updated while infering.
*/
int closurizedCount = 0;
// Strict `bool` value is computed in cleanup(). Also used as a flag to see if
// cleanup has been called.
bool _isCalledOnce = null;
/**
* This map contains the callers of [element]. It stores all unique call sites
* to enable counting the global number of call sites of [element].
*
* A call site is either an AST [ast.Node], a [cps_ir.Node] or in the case of
* synthesized calls, an [Element] (see uses of [synthesizeForwardingCall]
* in [SimpleTypeInferrerVisitor]).
*
* The global information is summarized in [cleanup], after which [_callers]
* is set to `null`.
*/
Map<Element, Setlet<Spannable>> _callers;
MemberTypeInformation._internal(Element element)
: super._internal(null, element);
void addCall(Element caller, Spannable node) {
assert(node is ast.Node || node is cps_ir.Node || node is Element);
_callers ??= <Element, Setlet>{};
_callers.putIfAbsent(caller, () => new Setlet()).add(node);
}
void removeCall(Element caller, node) {
if (_callers == null) return;
Setlet calls = _callers[caller];
if (calls == null) return;
calls.remove(node);
if (calls.isEmpty) {
_callers.remove(caller);
}
}
Iterable<Element> get callers {
// TODO(sra): This is called only from an unused API and a test. If it
// becomes used, [cleanup] will need to copy `_caller.keys`.
// `simple_inferrer_callers_test.dart` ensures that cleanup has not
// happened.
return _callers.keys;
}
bool isCalledOnce() {
// If this assert fires it means that this MemberTypeInformation for the
// element was not part of type inference. This happens for
// ConstructorBodyElements, so guard the call with a test for
// ConstructorBodyElement. For other elements, investigate why the element
// was not present for type inference.
assert(_isCalledOnce != null);
return _isCalledOnce ?? false;
}
bool _computeIsCalledOnce() {
if (_callers == null) return false;
int count = 0;
for (var set in _callers.values) {
count += set.length;
if (count > 1) return false;
}
return count == 1;
}
bool get isClosurized => closurizedCount > 0;
// Closurized methods never become stable to ensure that the information in
// [users] is accurate. The inference stops tracking users for stable types.
// Note that we only override the getter, the setter will still modify the
// state of the [isStable] field inhertied from [TypeInformation].
bool get isStable => super.isStable && !isClosurized;
TypeMask handleSpecialCases(TypeGraphInferrerEngine inferrer) {
if (element.isField &&
(!inferrer.backend.canBeUsedForGlobalOptimizations(element) ||
inferrer.annotations.assumeDynamic(element))) {
// Do not infer types for fields that have a corresponding annotation or
// are assigned by synthesized calls
giveUp(inferrer);
return safeType(inferrer);
}
if (inferrer.isNativeElement(element)) {
// Use the type annotation as the type for native elements. We
// also give up on inferring to make sure this element never
// goes in the work queue.
giveUp(inferrer);
if (element.isField) {
return inferrer
.typeOfNativeBehavior(
inferrer.backend.getNativeFieldLoadBehavior(element))
.type;
} else {
assert(element.isFunction ||
element.isGetter ||
element.isSetter ||
element.isConstructor);
TypedElement typedElement = element;
var elementType = typedElement.type;
if (elementType.kind != TypeKind.FUNCTION) {
return safeType(inferrer);
} else {
return inferrer
.typeOfNativeBehavior(
inferrer.backend.getNativeMethodBehavior(element))
.type;
}
}
}
Compiler compiler = inferrer.compiler;
if (element.isConstructor) {
ConstructorElement constructor = element;
if (constructor.isIntFromEnvironmentConstructor) {
giveUp(inferrer);
return compiler.typesTask.intType.nullable();
} else if (constructor.isBoolFromEnvironmentConstructor) {
giveUp(inferrer);
return compiler.typesTask.boolType.nullable();
} else if (constructor.isStringFromEnvironmentConstructor) {
giveUp(inferrer);
return compiler.typesTask.stringType.nullable();
}
}
return null;
}
TypeMask potentiallyNarrowType(
TypeMask mask, TypeGraphInferrerEngine inferrer) {
Compiler compiler = inferrer.compiler;
if (!compiler.options.trustTypeAnnotations &&
!compiler.options.enableTypeAssertions &&
!inferrer.annotations.trustTypeAnnotations(element)) {
return mask;
}
if (element.isGenerativeConstructor || element.isSetter) {
return mask;
}
if (element.isField) {
return _narrowType(compiler, mask, element.type);
}
assert(
element.isFunction || element.isGetter || element.isFactoryConstructor);
FunctionType type = element.type;
return _narrowType(compiler, mask, type.returnType);
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
TypeMask special = handleSpecialCases(inferrer);
if (special != null) return potentiallyNarrowType(special, inferrer);
return potentiallyNarrowType(
inferrer.types.computeTypeMask(assignments), inferrer);
}
TypeMask safeType(TypeGraphInferrerEngine inferrer) {
return potentiallyNarrowType(super.safeType(inferrer), inferrer);
}
String toString() => 'MemberElement $element $type';
accept(TypeInformationVisitor visitor) {
return visitor.visitMemberTypeInformation(this);
}
bool hasStableType(TypeGraphInferrerEngine inferrer) {
// The number of assignments of non-final fields is
// not stable. Therefore such a field cannot be stable.
if (element.isField && !(element.isConst || element.isFinal)) {
return false;
}
if (element.isFunction) return false;
return super.hasStableType(inferrer);
}
void cleanup() {
// This node is on multiple lists so cleanup() can be called twice.
if (_isCalledOnce != null) return;
_isCalledOnce = _computeIsCalledOnce();
_callers = null;
super.cleanup();
}
}
/**
* A node representing parameters:
*
* - Parameters
* - Initializing formals
*
* These should never be created directly but instead are constructed by
* the [ElementTypeInformation] factory.
*/
class ParameterTypeInformation extends ElementTypeInformation {
ParameterElement get element => super.element;
FunctionElement get declaration => element.functionDeclaration;
ParameterTypeInformation._internal(
ParameterElement element, TypeInformationSystem types)
: super._internal(
types.getInferredTypeOf(element.functionDeclaration), element) {
assert(!element.functionDeclaration.isInstanceMember);
}
ParameterTypeInformation._instanceMember(
ParameterElement element, TypeInformationSystem types)
: super._withAssignments(
types.getInferredTypeOf(element.functionDeclaration),
element,
new ParameterAssignments()) {
assert(element.functionDeclaration.isInstanceMember);
}
bool isTearOffClosureParameter = false;
void tagAsTearOffClosureParameter(TypeGraphInferrerEngine inferrer) {
assert(element.isRegularParameter);
isTearOffClosureParameter = true;
// We have to add a flow-edge for the default value (if it exists), as we
// might not see all call-sites and thus miss the use of it.
TypeInformation defaultType = inferrer.getDefaultTypeOfParameter(element);
if (defaultType != null) defaultType.addUser(this);
}
// TODO(herhut): Cleanup into one conditional.
TypeMask handleSpecialCases(TypeGraphInferrerEngine inferrer) {
if (!inferrer.backend.canBeUsedForGlobalOptimizations(element) ||
inferrer.annotations.assumeDynamic(declaration)) {
// Do not infer types for parameters that have a correspondign annotation
// or that are assigned by synthesized calls.
giveUp(inferrer);
return safeType(inferrer);
}
// The below do not apply to parameters of constructors, so skip
// initializing formals.
if (element.isInitializingFormal) return null;
if ((isTearOffClosureParameter || declaration.isLocal) &&
disableInferenceForClosures) {
// Do not infer types for parameters of closures. We do not
// clear the assignments in case the closure is successfully
// traced.
giveUp(inferrer, clearAssignments: false);
return safeType(inferrer);
}
if (declaration.isInstanceMember &&
(declaration.name == Identifiers.noSuchMethod_ ||
(declaration.name == Identifiers.call &&
disableInferenceForClosures))) {
// Do not infer types for parameters of [noSuchMethod] and
// [call] instance methods.
giveUp(inferrer);
return safeType(inferrer);
}
if (inferrer.compiler.world.getMightBePassedToApply(declaration)) {
giveUp(inferrer);
return safeType(inferrer);
}
if (declaration == inferrer.mainElement) {
// The implicit call to main is not seen by the inferrer,
// therefore we explicitly set the type of its parameters as
// dynamic.
// TODO(14566): synthesize a call instead to get the exact
// types.
giveUp(inferrer);
return safeType(inferrer);
}
return null;
}
TypeMask potentiallyNarrowType(
TypeMask mask, TypeGraphInferrerEngine inferrer) {
Compiler compiler = inferrer.compiler;
if (!compiler.options.trustTypeAnnotations &&
!inferrer.annotations.trustTypeAnnotations(declaration)) {
return mask;
}
// When type assertions are enabled (aka checked mode), we have to always
// ignore type annotations to ensure that the checks are actually inserted
// into the function body and retained until runtime.
assert(!compiler.options.enableTypeAssertions);
return _narrowType(compiler, mask, element.type);
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
TypeMask special = handleSpecialCases(inferrer);
if (special != null) return special;
return potentiallyNarrowType(
inferrer.types.computeTypeMask(assignments), inferrer);
}
TypeMask safeType(TypeGraphInferrerEngine inferrer) {
return potentiallyNarrowType(super.safeType(inferrer), inferrer);
}
bool hasStableType(TypeGraphInferrerEngine inferrer) {
// The number of assignments of parameters of instance methods is
// not stable. Therefore such a parameter cannot be stable.
if (element.functionDeclaration.isInstanceMember) {
return false;
}
return super.hasStableType(inferrer);
}
accept(TypeInformationVisitor visitor) {
return visitor.visitParameterTypeInformation(this);
}
String toString() => 'ParameterElement $element $type';
}
/**
* A [CallSiteTypeInformation] is a call found in the AST, or a
* synthesized call for implicit calls in Dart (such as forwarding
* factories). The [call] field is a [ast.Node] for the former, and an
* [Element] for the latter.
*
* In the inferrer graph, [CallSiteTypeInformation] nodes do not have
* any assignment. They rely on the [caller] field for static calls,
* and [selector] and [receiver] fields for dynamic calls.
*/
abstract class CallSiteTypeInformation extends TypeInformation
with ApplyableTypeInformation {
final Spannable call;
final Element caller;
final Selector selector;
final TypeMask mask;
final ArgumentsTypes arguments;
final bool inLoop;
CallSiteTypeInformation(MemberTypeInformation context, this.call, this.caller,
this.selector, this.mask, this.arguments, this.inLoop)
: super.noAssignments(context);
String toString() => 'Call site $call $type';
/// Add [this] to the graph being computed by [engine].
void addToGraph(TypeGraphInferrerEngine engine);
/// Return an iterable over the targets of this call.
Iterable<Element> get callees;
}
class StaticCallSiteTypeInformation extends CallSiteTypeInformation {
final Element calledElement;
StaticCallSiteTypeInformation(
MemberTypeInformation context,
Spannable call,
Element enclosing,
this.calledElement,
Selector selector,
TypeMask mask,
ArgumentsTypes arguments,
bool inLoop)
: super(context, call, enclosing, selector, mask, arguments, inLoop);
void addToGraph(TypeGraphInferrerEngine inferrer) {
MemberTypeInformation callee =
inferrer.types.getInferredTypeOf(calledElement);
callee.addCall(caller, call);
callee.addUser(this);
if (arguments != null) {
arguments.forEach((info) => info.addUser(this));
}
inferrer.updateParameterAssignments(
this, calledElement, arguments, selector, mask,
remove: false, addToQueue: false);
}
bool get isSynthesized {
// Some calls do not have a corresponding selector, for example
// fowarding factory constructors, or synthesized super
// constructor calls. We synthesize these calls but do
// not create a selector for them.
return selector == null;
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
if (isSynthesized) {
assert(arguments != null);
return inferrer.types.getInferredTypeOf(calledElement).type;
} else {
return inferrer.typeOfElementWithSelector(calledElement, selector).type;
}
}
Iterable<Element> get callees => [calledElement.implementation];
accept(TypeInformationVisitor visitor) {
return visitor.visitStaticCallSiteTypeInformation(this);
}
bool hasStableType(TypeGraphInferrerEngine inferrer) {
return inferrer.types.getInferredTypeOf(calledElement).isStable &&
(arguments == null || arguments.every((info) => info.isStable)) &&
super.hasStableType(inferrer);
}
void removeAndClearReferences(TypeGraphInferrerEngine inferrer) {
ElementTypeInformation callee =
inferrer.types.getInferredTypeOf(calledElement);
callee.removeUser(this);
if (arguments != null) {
arguments.forEach((info) => info.removeUser(this));
}
super.removeAndClearReferences(inferrer);
}
}
class DynamicCallSiteTypeInformation extends CallSiteTypeInformation {
final TypeInformation receiver;
/// Cached targets of this call.
Iterable<Element> targets;
DynamicCallSiteTypeInformation(
MemberTypeInformation context,
Spannable call,
Element enclosing,
Selector selector,
TypeMask mask,
this.receiver,
ArgumentsTypes arguments,
bool inLoop)
: super(context, call, enclosing, selector, mask, arguments, inLoop);
void addToGraph(TypeGraphInferrerEngine inferrer) {
assert(receiver != null);
TypeMask typeMask = computeTypedSelector(inferrer);
targets = inferrer.compiler.world.allFunctions.filter(selector, typeMask);
receiver.addUser(this);
if (arguments != null) {
arguments.forEach((info) => info.addUser(this));
}
for (Element element in targets) {
MemberTypeInformation callee = inferrer.types.getInferredTypeOf(element);
callee.addCall(caller, call);
callee.addUser(this);
inferrer.updateParameterAssignments(
this, element, arguments, selector, typeMask,
remove: false, addToQueue: false);
}
}
Iterable<Element> get callees => targets.map((e) => e.implementation);
TypeMask computeTypedSelector(TypeGraphInferrerEngine inferrer) {
TypeMask receiverType = receiver.type;
if (mask != receiverType) {
return receiverType == inferrer.compiler.typesTask.dynamicType
? null
: receiverType;
} else {
return mask;
}
}
bool targetsIncludeComplexNoSuchMethod(TypeGraphInferrerEngine inferrer) {
return targets.any((Element e) {
return e is FunctionElement &&
e.isInstanceMember &&
e.name == Identifiers.noSuchMethod_ &&
inferrer.backend.isComplexNoSuchMethod(e);
});
}
/**
* We optimize certain operations on the [int] class because we know more
* about their return type than the actual Dart code. For example, we know int
* + int returns an int. The Dart library code for [int.operator+] only says
* it returns a [num].
*
* Returns the more precise TypeInformation, or `null` to defer to the library
* code.
*/
TypeInformation handleIntrisifiedSelector(
Selector selector, TypeMask mask, TypeGraphInferrerEngine inferrer) {
ClassWorld classWorld = inferrer.classWorld;
if (!classWorld.backend.intImplementation.isResolved) return null;
if (mask == null) return null;
if (!mask.containsOnlyInt(classWorld)) {
return null;
}
if (!selector.isCall && !selector.isOperator) return null;
if (!arguments.named.isEmpty) return null;
if (arguments.positional.length > 1) return null;
ClassElement uint31Implementation = classWorld.backend.uint31Implementation;
bool isInt(info) => info.type.containsOnlyInt(classWorld);
bool isEmpty(info) => info.type.isEmpty;
bool isUInt31(info) {
return info.type.satisfies(uint31Implementation, classWorld);
}
bool isPositiveInt(info) {
return info.type
.satisfies(classWorld.backend.positiveIntImplementation, classWorld);
}
TypeInformation tryLater() => inferrer.types.nonNullEmptyType;
TypeInformation argument =
arguments.isEmpty ? null : arguments.positional.first;
String name = selector.name;
// These are type inference rules only for useful cases that are not
// expressed in the library code, for example:
//
// int + int -> int
// uint31 | uint31 -> uint31
//
switch (name) {
case '*':
case '+':
case '%':
case 'remainder':
case '~/':
if (isEmpty(argument)) return tryLater();
if (isPositiveInt(receiver) && isPositiveInt(argument)) {
// uint31 + uint31 -> uint32
if (name == '+' && isUInt31(receiver) && isUInt31(argument)) {
return inferrer.types.uint32Type;
}
return inferrer.types.positiveIntType;
}
if (isInt(argument)) {
return inferrer.types.intType;
}
return null;
case '|':
case '^':
if (isEmpty(argument)) return tryLater();
if (isUInt31(receiver) && isUInt31(argument)) {
return inferrer.types.uint31Type;
}
return null;
case '>>':
if (isEmpty(argument)) return tryLater();
if (isUInt31(receiver)) {
return inferrer.types.uint31Type;
}
return null;
case '&':
if (isEmpty(argument)) return tryLater();
if (isUInt31(receiver) || isUInt31(argument)) {
return inferrer.types.uint31Type;
}
return null;
case '-':
if (isEmpty(argument)) return tryLater();
if (isInt(argument)) {
return inferrer.types.intType;
}
return null;
case 'unary-':
// The receiver being an int, the return value will also be an int.
return inferrer.types.intType;
case 'abs':
return arguments.hasNoArguments()
? inferrer.types.positiveIntType
: null;
default:
return null;
}
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
Iterable<Element> oldTargets = targets;
TypeMask typeMask = computeTypedSelector(inferrer);
inferrer.updateSelectorInTree(caller, call, selector, typeMask);
Compiler compiler = inferrer.compiler;
TypeMask maskToUse =
compiler.world.extendMaskIfReachesAll(selector, typeMask);
bool canReachAll = compiler.enabledInvokeOn && (maskToUse != typeMask);
// If this call could potentially reach all methods that satisfy
// the untyped selector (through noSuchMethod's `Invocation`
// and a call to `delegate`), we iterate over all these methods to
// update their parameter types.
targets = compiler.world.allFunctions.filter(selector, maskToUse);
Iterable<Element> typedTargets = canReachAll
? compiler.world.allFunctions.filter(selector, typeMask)
: targets;
// Update the call graph if the targets could have changed.
if (!identical(targets, oldTargets)) {
// Add calls to new targets to the graph.
targets
.where((target) => !oldTargets.contains(target))
.forEach((element) {
MemberTypeInformation callee =
inferrer.types.getInferredTypeOf(element);
callee.addCall(caller, call);
callee.addUser(this);
inferrer.updateParameterAssignments(
this, element, arguments, selector, typeMask,
remove: false, addToQueue: true);
});
// Walk over the old targets, and remove calls that cannot happen anymore.
oldTargets
.where((target) => !targets.contains(target))
.forEach((element) {
MemberTypeInformation callee =
inferrer.types.getInferredTypeOf(element);
callee.removeCall(caller, call);
callee.removeUser(this);
inferrer.updateParameterAssignments(
this, element, arguments, selector, typeMask,
remove: true, addToQueue: true);
});
}
// Walk over the found targets, and compute the joined union type mask
// for all these targets.
TypeMask result = inferrer.types.joinTypeMasks(targets.map((element) {
// If [canReachAll] is true, then we are iterating over all
// targets that satisfy the untyped selector. We skip the return
// type of the targets that can only be reached through
// `Invocation.delegate`. Note that the `noSuchMethod` targets
// are included in [typedTargets].
if (canReachAll && !typedTargets.contains(element)) {
return const TypeMask.nonNullEmpty();
}
if (inferrer.returnsListElementType(selector, typeMask)) {
ContainerTypeMask containerTypeMask = receiver.type;
return containerTypeMask.elementType;
} else if (inferrer.returnsMapValueType(selector, typeMask)) {
if (typeMask.isDictionary &&
arguments.positional[0].type.isValue &&
arguments.positional[0].type.value.isString) {
DictionaryTypeMask dictionaryTypeMask = typeMask;
ValueTypeMask arg = arguments.positional[0].type;
String key = arg.value.primitiveValue.slowToString();
if (dictionaryTypeMask.typeMap.containsKey(key)) {
if (debug.VERBOSE) {
print("Dictionary lookup for $key yields "
"${dictionaryTypeMask.typeMap[key]}.");
}
return dictionaryTypeMask.typeMap[key];
} else {
// The typeMap is precise, so if we do not find the key, the lookup
// will be [null] at runtime.
if (debug.VERBOSE) {
print("Dictionary lookup for $key yields [null].");
}
return inferrer.types.nullType.type;
}
}
MapTypeMask mapTypeMask = typeMask;
if (debug.VERBOSE) {
print("Map lookup for $selector yields ${mapTypeMask.valueType}.");
}
return mapTypeMask.valueType;
} else {
TypeInformation info =
handleIntrisifiedSelector(selector, typeMask, inferrer);
if (info != null) return info.type;
return inferrer.typeOfElementWithSelector(element, selector).type;
}
}));
if (call is ast.Send) {
ast.Send send = call;
if (send.isConditional && receiver.type.isNullable) {
// Conditional sends (e.g. `a?.b`) may be null if the receiver is null.
result = result.nullable();
}
}
return result;
}
void giveUp(TypeGraphInferrerEngine inferrer, {bool clearAssignments: true}) {
if (!abandonInferencing) {
inferrer.updateSelectorInTree(caller, call, selector, mask);
Iterable<Element> oldTargets = targets;
targets = inferrer.compiler.world.allFunctions.filter(selector, mask);
for (Element element in targets) {
if (!oldTargets.contains(element)) {
MemberTypeInformation callee =
inferrer.types.getInferredTypeOf(element);
callee.addCall(caller, call);
inferrer.updateParameterAssignments(
this, element, arguments, selector, mask,
remove: false, addToQueue: true);
}
}
}
super.giveUp(inferrer, clearAssignments: clearAssignments);
}
void removeAndClearReferences(TypeGraphInferrerEngine inferrer) {
for (Element element in targets) {
ElementTypeInformation callee = inferrer.types.getInferredTypeOf(element);
callee.removeUser(this);
}
if (arguments != null) {
arguments.forEach((info) => info.removeUser(this));
}
super.removeAndClearReferences(inferrer);
}
String toString() => 'Call site $call on ${receiver.type} $type';
accept(TypeInformationVisitor visitor) {
return visitor.visitDynamicCallSiteTypeInformation(this);
}
bool hasStableType(TypeGraphInferrerEngine inferrer) {
return receiver.isStable &&
targets.every(
(element) => inferrer.types.getInferredTypeOf(element).isStable) &&
(arguments == null || arguments.every((info) => info.isStable)) &&
super.hasStableType(inferrer);
}
}
class ClosureCallSiteTypeInformation extends CallSiteTypeInformation {
final TypeInformation closure;
ClosureCallSiteTypeInformation(
MemberTypeInformation context,
Spannable call,
Element enclosing,
Selector selector,
TypeMask mask,
this.closure,
ArgumentsTypes arguments,
bool inLoop)
: super(context, call, enclosing, selector, mask, arguments, inLoop);
void addToGraph(TypeGraphInferrerEngine inferrer) {
arguments.forEach((info) => info.addUser(this));
closure.addUser(this);
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) => safeType(inferrer);
Iterable<Element> get callees {
throw new UnsupportedError("Cannot compute callees of a closure call.");
}
String toString() => 'Closure call $call on $closure';
accept(TypeInformationVisitor visitor) {
return visitor.visitClosureCallSiteTypeInformation(this);
}
void removeAndClearReferences(TypeGraphInferrerEngine inferrer) {
// This method is a placeholder for the following comment:
// We should maintain the information that the closure is a user
// of its arguments because we do not check that the arguments
// have a stable type for a closure call to be stable; our tracing
// analysis want to know whether an (non-stable) argument is
// passed to a closure.
return super.removeAndClearReferences(inferrer);
}
}
/**
* A [ConcreteTypeInformation] represents a type that needed
* to be materialized during the creation of the graph. For example,
* literals, [:this:] or [:super:] need a [ConcreteTypeInformation].
*
* [ConcreteTypeInformation] nodes have no assignment. Also, to save
* on memory, we do not add users to [ConcreteTypeInformation] nodes,
* because we know such node will never be refined to a different
* type.
*/
class ConcreteTypeInformation extends TypeInformation {
ConcreteTypeInformation(TypeMask type) : super.untracked() {
this.type = type;
this.isStable = true;
}
bool get isConcrete => true;
void addUser(TypeInformation user) {
// Nothing to do, a concrete type does not get updated so never
// needs to notify its users.
}
void addUsersOf(TypeInformation other) {
// Nothing to do, a concrete type does not get updated so never
// needs to notify its users.
}
void removeUser(TypeInformation user) {}
void addAssignment(TypeInformation assignment) {
throw "Not supported";
}
void removeAssignment(TypeInformation assignment) {
throw "Not supported";
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) => type;
bool reset(TypeGraphInferrerEngine inferrer) {
throw "Not supported";
}
String toString() => 'Type $type';
accept(TypeInformationVisitor visitor) {
return visitor.visitConcreteTypeInformation(this);
}
bool hasStableType(TypeGraphInferrerEngine inferrer) => true;
}
class StringLiteralTypeInformation extends ConcreteTypeInformation {
final ast.DartString value;
StringLiteralTypeInformation(value, TypeMask mask)
: super(new ValueTypeMask(mask, new StringConstantValue(value))),
this.value = value;
String asString() => value.slowToString();
String toString() => 'Type $type value ${value.slowToString()}';
accept(TypeInformationVisitor visitor) {
return visitor.visitStringLiteralTypeInformation(this);
}
}
class BoolLiteralTypeInformation extends ConcreteTypeInformation {
final ast.LiteralBool value;
BoolLiteralTypeInformation(value, TypeMask mask)
: super(new ValueTypeMask(mask,
value.value ? new TrueConstantValue() : new FalseConstantValue())),
this.value = value;
String toString() => 'Type $type value ${value.value}';
accept(TypeInformationVisitor visitor) {
return visitor.visitBoolLiteralTypeInformation(this);
}
}
/**
* A [NarrowTypeInformation] narrows a [TypeInformation] to a type,
* represented in [typeAnnotation].
*
* A [NarrowTypeInformation] node has only one assignment: the
* [TypeInformation] it narrows.
*
* [NarrowTypeInformation] nodes are created for:
*
* - Code after `is` and `as` checks, where we have more information
* on the type of the right hand side of the expression.
*
* - Code after a dynamic call, where we have more information on the
* type of the receiver: it can only be of a class that holds a
* potential target of this dynamic call.
*
* - In checked mode, after a type annotation, we have more
* information on the type of a local.
*/
class NarrowTypeInformation extends TypeInformation {
final TypeMask typeAnnotation;
NarrowTypeInformation(TypeInformation narrowedType, this.typeAnnotation)
: super(narrowedType.context) {
addAssignment(narrowedType);
}
addAssignment(TypeInformation info) {
super.addAssignment(info);
assert(assignments.length == 1);
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
TypeMask input = assignments.first.type;
TypeMask intersection =
input.intersection(typeAnnotation, inferrer.classWorld);
if (debug.ANOMALY_WARN) {
if (!input.containsMask(intersection, inferrer.classWorld) ||
!typeAnnotation.containsMask(intersection, inferrer.classWorld)) {
print("ANOMALY WARNING: narrowed $input to $intersection via "
"$typeAnnotation");
}
}
return intersection;
}
String toString() {
return 'Narrow to $typeAnnotation $type';
}
accept(TypeInformationVisitor visitor) {
return visitor.visitNarrowTypeInformation(this);
}
}
/**
* An [InferredTypeInformation] is a [TypeInformation] that
* defaults to the dynamic type until it is marked as beeing
* inferred, at which point it computes its type based on
* its assignments.
*/
abstract class InferredTypeInformation extends TypeInformation {
/** Whether the element type in that container has been inferred. */
bool inferred = false;
InferredTypeInformation(
MemberTypeInformation context, TypeInformation parentType)
: super(context) {
if (parentType != null) addAssignment(parentType);
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
if (!inferred) return safeType(inferrer);
return inferrer.types.computeTypeMask(assignments);
}
bool hasStableType(TypeGraphInferrerEngine inferrer) {
return inferred && super.hasStableType(inferrer);
}
}
/**
* A [ListTypeInformation] is a [TypeInformation] created
* for each `List` instantiations.
*/
class ListTypeInformation extends TypeInformation with TracedTypeInformation {
final ElementInContainerTypeInformation elementType;
/** The container type before it is inferred. */
final ContainerTypeMask originalType;
/** The length at the allocation site. */
final int originalLength;
/** The length after the container has been traced. */
int inferredLength;
/**
* Whether this list goes through a growable check.
* We conservatively assume it does.
*/
bool checksGrowable = true;
ListTypeInformation(MemberTypeInformation context, this.originalType,
this.elementType, this.originalLength)
: super(context) {
type = originalType;
inferredLength = originalType.length;
elementType.addUser(this);
}
String toString() => 'List type $type';
accept(TypeInformationVisitor visitor) {
return visitor.visitListTypeInformation(this);
}
bool hasStableType(TypeGraphInferrerEngine inferrer) {
return elementType.isStable && super.hasStableType(inferrer);
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
var mask = type;
if (!mask.isContainer ||
mask.elementType != elementType.type ||
mask.length != inferredLength) {
return new ContainerTypeMask(
originalType.forwardTo,
originalType.allocationNode,
originalType.allocationElement,
elementType.type,
inferredLength);
}
return mask;
}
TypeMask safeType(TypeGraphInferrerEngine inferrer) => originalType;
void cleanup() {
super.cleanup();
elementType.cleanup();
_flowsInto = null;
}
}
/**
* An [ElementInContainerTypeInformation] holds the common type of the
* elements in a [ListTypeInformation].
*/
class ElementInContainerTypeInformation extends InferredTypeInformation {
ElementInContainerTypeInformation(MemberTypeInformation context, elementType)
: super(context, elementType);
String toString() => 'Element in container $type';
accept(TypeInformationVisitor visitor) {
return visitor.visitElementInContainerTypeInformation(this);
}
}
/**
* A [MapTypeInformation] is a [TypeInformation] created
* for maps.
*/
class MapTypeInformation extends TypeInformation with TracedTypeInformation {
// When in Dictionary mode, this map tracks the type of the values that
// have been assigned to a specific [String] key.
final Map<String, ValueInMapTypeInformation> typeInfoMap = {};
// These fields track the overall type of the keys/values in the map.
final KeyInMapTypeInformation keyType;
final ValueInMapTypeInformation valueType;
final MapTypeMask originalType;
// Set to false if a statically unknown key flows into this map.
bool _allKeysAreStrings = true;
bool get inDictionaryMode => !bailedOut && _allKeysAreStrings;
MapTypeInformation(MemberTypeInformation context, this.originalType,
this.keyType, this.valueType)
: super(context) {
keyType.addUser(this);
valueType.addUser(this);
type = originalType;
}
TypeInformation addEntryAssignment(TypeInformation key, TypeInformation value,
[bool nonNull = false]) {
TypeInformation newInfo = null;
if (_allKeysAreStrings && key is StringLiteralTypeInformation) {
String keyString = key.asString();
typeInfoMap.putIfAbsent(keyString, () {
newInfo = new ValueInMapTypeInformation(context, null, nonNull);
return newInfo;
});
typeInfoMap[keyString].addAssignment(value);
} else {
_allKeysAreStrings = false;
typeInfoMap.clear();
}
keyType.addAssignment(key);
valueType.addAssignment(value);
if (newInfo != null) newInfo.addUser(this);
return newInfo;
}
List<TypeInformation> addMapAssignment(MapTypeInformation other) {
List<TypeInformation> newInfos = <TypeInformation>[];
if (_allKeysAreStrings && other.inDictionaryMode) {
other.typeInfoMap.forEach((keyString, value) {
typeInfoMap.putIfAbsent(keyString, () {
TypeInformation newInfo =
new ValueInMapTypeInformation(context, null, false);
newInfos.add(newInfo);
return newInfo;
});
typeInfoMap[keyString].addAssignment(value);
});
} else {
_allKeysAreStrings = false;
typeInfoMap.clear();
}
keyType.addAssignment(other.keyType);
valueType.addAssignment(other.valueType);
return newInfos;
}
markAsInferred() {
keyType.inferred = valueType.inferred = true;
typeInfoMap.values.forEach((v) => v.inferred = true);
}
addAssignment(TypeInformation other) {
throw "not supported";
}
accept(TypeInformationVisitor visitor) {
return visitor.visitMapTypeInformation(this);
}
TypeMask toTypeMask(TypeGraphInferrerEngine inferrer) {
if (inDictionaryMode) {
Map<String, TypeMask> mappings = new Map<String, TypeMask>();
for (var key in typeInfoMap.keys) {
mappings[key] = typeInfoMap[key].type;
}
return new DictionaryTypeMask(
originalType.forwardTo,
originalType.allocationNode,
originalType.allocationElement,
keyType.type,
valueType.type,
mappings);
} else {
return new MapTypeMask(
originalType.forwardTo,
originalType.allocationNode,
originalType.allocationElement,
keyType.type,
valueType.type);
}
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
if (type.isDictionary != inDictionaryMode) {
return toTypeMask(inferrer);
} else if (type.isDictionary) {
assert(inDictionaryMode);
DictionaryTypeMask mask = type;
for (var key in typeInfoMap.keys) {
TypeInformation value = typeInfoMap[key];
if (!mask.typeMap.containsKey(key) &&
!value.type.containsAll(inferrer.classWorld) &&
!value.type.isNullable) {
return toTypeMask(inferrer);
}
if (mask.typeMap[key] != typeInfoMap[key].type) {
return toTypeMask(inferrer);
}
}
} else if (type.isMap) {
MapTypeMask mask = type;
if (mask.keyType != keyType.type || mask.valueType != valueType.type) {
return toTypeMask(inferrer);
}
} else {
return toTypeMask(inferrer);
}
return type;
}
TypeMask safeType(TypeGraphInferrerEngine inferrer) => originalType;
bool hasStableType(TypeGraphInferrerEngine inferrer) {
return keyType.isStable &&
valueType.isStable &&
super.hasStableType(inferrer);
}
void cleanup() {
super.cleanup();
keyType.cleanup();
valueType.cleanup();
for (TypeInformation info in typeInfoMap.values) {
info.cleanup();
}
_flowsInto = null;
}
String toString() {
return 'Map $type (K:$keyType, V:$valueType) contents $typeInfoMap';
}
}
/**
* A [KeyInMapTypeInformation] holds the common type
* for the keys in a [MapTypeInformation]
*/
class KeyInMapTypeInformation extends InferredTypeInformation {
KeyInMapTypeInformation(
MemberTypeInformation context, TypeInformation keyType)
: super(context, keyType);
accept(TypeInformationVisitor visitor) {
return visitor.visitKeyInMapTypeInformation(this);
}
String toString() => 'Key in Map $type';
}
/**
* A [ValueInMapTypeInformation] holds the common type
* for the values in a [MapTypeInformation]
*/
class ValueInMapTypeInformation extends InferredTypeInformation {
// [nonNull] is set to true if this value is known to be part of the map.
// Note that only values assigned to a specific key value in dictionary
// mode can ever be marked as [nonNull].
final bool nonNull;
ValueInMapTypeInformation(
MemberTypeInformation context, TypeInformation valueType,
[this.nonNull = false])
: super(context, valueType);
accept(TypeInformationVisitor visitor) {
return visitor.visitValueInMapTypeInformation(this);
}
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
return nonNull
? super.computeType(inferrer)
: super.computeType(inferrer).nullable();
}
String toString() => 'Value in Map $type';
}
/**
* A [PhiElementTypeInformation] is an union of
* [ElementTypeInformation], that is local to a method.
*/
class PhiElementTypeInformation extends TypeInformation {
final ast.Node branchNode;
final bool isLoopPhi;
final Local variable;
PhiElementTypeInformation(MemberTypeInformation context, this.branchNode,
this.isLoopPhi, this.variable)
: super(context);
TypeMask computeType(TypeGraphInferrerEngine inferrer) {
return inferrer.types.computeTypeMask(assignments);
}
String toString() => 'Phi $variable $type';
accept(TypeInformationVisitor visitor) {
return visitor.visitPhiElementTypeInformation(this);
}
}
class ClosureTypeInformation extends TypeInformation
with ApplyableTypeInformation {
final ast.Node node;
final Element element;
ClosureTypeInformation(MemberTypeInformation context, this.node, this.element)
: super(context);
TypeMask computeType(TypeGraphInferrerEngine inferrer) => safeType(inferrer);
TypeMask safeType(TypeGraphInferrerEngine inferrer) {
return inferrer.types.functionType.type;
}
String toString() => 'Closure $element';
accept(TypeInformationVisitor visitor) {
return visitor.visitClosureTypeInformation(this);
}
bool hasStableType(TypeGraphInferrerEngine inferrer) {
return false;
}
}
/**
* Mixin for [TypeInformation] nodes that can bail out during tracing.
*/
abstract class TracedTypeInformation implements TypeInformation {
/// Set to false once analysis has succeeded.
bool bailedOut = true;
/// Set to true once analysis is completed.
bool analyzed = false;
Set<TypeInformation> _flowsInto;
/**
* The set of [TypeInformation] nodes where values from the traced node could
* flow in.
*/
Set<TypeInformation> get flowsInto {
return (_flowsInto == null)
? const ImmutableEmptySet<TypeInformation>()
: _flowsInto;
}
/**
* Adds [nodes] to the sets of values this [TracedTypeInformation] flows into.
*/
void addFlowsIntoTargets(Iterable<TypeInformation> nodes) {
if (_flowsInto == null) {
_flowsInto = nodes.toSet();
} else {
_flowsInto.addAll(nodes);
}
}
}
class AwaitTypeInformation extends TypeInformation {
final ast.Node node;
AwaitTypeInformation(MemberTypeInformation context, this.node)
: super(context);
// TODO(22894): Compute a better type here.
TypeMask computeType(TypeGraphInferrerEngine inferrer) => safeType(inferrer);
String toString() => 'Await';
accept(TypeInformationVisitor visitor) {
return visitor.visitAwaitTypeInformation(this);
}
}
abstract class TypeInformationVisitor<T> {
T visitNarrowTypeInformation(NarrowTypeInformation info);
T visitPhiElementTypeInformation(PhiElementTypeInformation info);
T visitElementInContainerTypeInformation(
ElementInContainerTypeInformation info);
T visitKeyInMapTypeInformation(KeyInMapTypeInformation info);
T visitValueInMapTypeInformation(ValueInMapTypeInformation info);
T visitListTypeInformation(ListTypeInformation info);
T visitMapTypeInformation(MapTypeInformation info);
T visitConcreteTypeInformation(ConcreteTypeInformation info);
T visitStringLiteralTypeInformation(StringLiteralTypeInformation info);
T visitBoolLiteralTypeInformation(BoolLiteralTypeInformation info);
T visitClosureCallSiteTypeInformation(ClosureCallSiteTypeInformation info);
T visitStaticCallSiteTypeInformation(StaticCallSiteTypeInformation info);
T visitDynamicCallSiteTypeInformation(DynamicCallSiteTypeInformation info);
T visitMemberTypeInformation(MemberTypeInformation info);
T visitParameterTypeInformation(ParameterTypeInformation info);
T visitClosureTypeInformation(ClosureTypeInformation info);
T visitAwaitTypeInformation(AwaitTypeInformation info);
}
TypeMask _narrowType(Compiler compiler, TypeMask type, DartType annotation,
{bool isNullable: true}) {
if (annotation.treatAsDynamic) return type;
if (annotation.isObject) return type;
TypeMask otherType;
if (annotation.isTypedef || annotation.isFunctionType) {
otherType = compiler.typesTask.functionType;
} else if (annotation.isTypeVariable) {
// TODO(ngeoffray): Narrow to bound.
return type;
} else if (annotation.isVoid) {
otherType = compiler.typesTask.nullType;
} else {
assert(annotation.isInterfaceType);
otherType = new TypeMask.nonNullSubtype(annotation.element, compiler.world);
}
if (isNullable) otherType = otherType.nullable();
if (type == null) return otherType;
return type.intersection(otherType, compiler.world);
}