blob: efbe4a54cfcec076fdadea8654e86a59d9a9fdca [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_X64.
#if defined(TARGET_ARCH_X64)
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/compiler/api/type_check_mode.h"
#include "vm/compiler/backend/il_printer.h"
#include "vm/compiler/backend/locations.h"
#include "vm/compiler/ffi/native_location.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_entry.h"
#include "vm/deopt_instructions.h"
#include "vm/dispatch_table.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(bool, trap_on_deoptimization, false, "Trap on deoptimization.");
DEFINE_FLAG(bool, unbox_mints, true, "Optimize 64-bit integer arithmetic.");
DECLARE_FLAG(bool, enable_simd_inline);
void FlowGraphCompiler::ArchSpecificInitialization() {
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
auto object_store = isolate_group()->object_store();
const auto& stub =
Code::ZoneHandle(object_store->write_barrier_wrappers_stub());
if (CanPcRelativeCall(stub)) {
assembler_->generate_invoke_write_barrier_wrapper_ = [&](Register reg) {
const intptr_t offset_into_target =
Thread::WriteBarrierWrappersOffsetForRegister(reg);
assembler_->GenerateUnRelocatedPcRelativeCall(offset_into_target);
AddPcRelativeCallStubTarget(stub);
};
}
const auto& array_stub =
Code::ZoneHandle(object_store->array_write_barrier_stub());
if (CanPcRelativeCall(stub)) {
assembler_->generate_invoke_array_write_barrier_ = [&]() {
assembler_->GenerateUnRelocatedPcRelativeCall();
AddPcRelativeCallStubTarget(array_stub);
};
}
}
}
FlowGraphCompiler::~FlowGraphCompiler() {
// BlockInfos are zone-allocated, so their destructors are not called.
// Verify the labels explicitly here.
for (int i = 0; i < block_info_.length(); ++i) {
ASSERT(!block_info_[i]->jump_label()->IsLinked());
ASSERT(!block_info_[i]->jump_label()->HasNear());
}
}
bool FlowGraphCompiler::SupportsUnboxedDoubles() {
return true;
}
bool FlowGraphCompiler::SupportsUnboxedInt64() {
return FLAG_unbox_mints;
}
bool FlowGraphCompiler::SupportsUnboxedSimd128() {
return FLAG_enable_simd_inline;
}
bool FlowGraphCompiler::SupportsHardwareDivision() {
return true;
}
bool FlowGraphCompiler::CanConvertInt64ToDouble() {
return true;
}
void FlowGraphCompiler::EnterIntrinsicMode() {
ASSERT(!intrinsic_mode());
intrinsic_mode_ = true;
ASSERT(!assembler()->constant_pool_allowed());
}
void FlowGraphCompiler::ExitIntrinsicMode() {
ASSERT(intrinsic_mode());
intrinsic_mode_ = false;
}
TypedDataPtr CompilerDeoptInfo::CreateDeoptInfo(FlowGraphCompiler* compiler,
DeoptInfoBuilder* builder,
const Array& deopt_table) {
if (deopt_env_ == NULL) {
++builder->current_info_number_;
return TypedData::null();
}
intptr_t stack_height = compiler->StackSize();
AllocateIncomingParametersRecursive(deopt_env_, &stack_height);
intptr_t slot_ix = 0;
Environment* current = deopt_env_;
// Emit all kMaterializeObject instructions describing objects to be
// materialized on the deoptimization as a prefix to the deoptimization info.
EmitMaterializations(deopt_env_, builder);
// The real frame starts here.
builder->MarkFrameStart();
Zone* zone = compiler->zone();
builder->AddPp(current->function(), slot_ix++);
builder->AddPcMarker(Function::ZoneHandle(zone), slot_ix++);
builder->AddCallerFp(slot_ix++);
builder->AddReturnAddress(current->function(), deopt_id(), slot_ix++);
// Emit all values that are needed for materialization as a part of the
// expression stack for the bottom-most frame. This guarantees that GC
// will be able to find them during materialization.
slot_ix = builder->EmitMaterializationArguments(slot_ix);
// For the innermost environment, set outgoing arguments and the locals.
for (intptr_t i = current->Length() - 1;
i >= current->fixed_parameter_count(); i--) {
builder->AddCopy(current->ValueAt(i), current->LocationAt(i), slot_ix++);
}
Environment* previous = current;
current = current->outer();
while (current != NULL) {
builder->AddPp(current->function(), slot_ix++);
builder->AddPcMarker(previous->function(), slot_ix++);
builder->AddCallerFp(slot_ix++);
// For any outer environment the deopt id is that of the call instruction
// which is recorded in the outer environment.
builder->AddReturnAddress(current->function(),
DeoptId::ToDeoptAfter(current->deopt_id()),
slot_ix++);
// The values of outgoing arguments can be changed from the inlined call so
// we must read them from the previous environment.
for (intptr_t i = previous->fixed_parameter_count() - 1; i >= 0; i--) {
builder->AddCopy(previous->ValueAt(i), previous->LocationAt(i),
slot_ix++);
}
// Set the locals, note that outgoing arguments are not in the environment.
for (intptr_t i = current->Length() - 1;
i >= current->fixed_parameter_count(); i--) {
builder->AddCopy(current->ValueAt(i), current->LocationAt(i), slot_ix++);
}
// Iterate on the outer environment.
previous = current;
current = current->outer();
}
// The previous pointer is now the outermost environment.
ASSERT(previous != NULL);
// Set slots for the outermost environment.
builder->AddCallerPp(slot_ix++);
builder->AddPcMarker(previous->function(), slot_ix++);
builder->AddCallerFp(slot_ix++);
builder->AddCallerPc(slot_ix++);
// For the outermost environment, set the incoming arguments.
for (intptr_t i = previous->fixed_parameter_count() - 1; i >= 0; i--) {
builder->AddCopy(previous->ValueAt(i), previous->LocationAt(i), slot_ix++);
}
return builder->CreateDeoptInfo(deopt_table);
}
void CompilerDeoptInfoWithStub::GenerateCode(FlowGraphCompiler* compiler,
intptr_t stub_ix) {
// Calls do not need stubs, they share a deoptimization trampoline.
ASSERT(reason() != ICData::kDeoptAtCall);
compiler::Assembler* assembler = compiler->assembler();
#define __ assembler->
__ Comment("%s", Name());
__ Bind(entry_label());
if (FLAG_trap_on_deoptimization) {
__ int3();
}
ASSERT(deopt_env() != NULL);
__ call(compiler::Address(THR, Thread::deoptimize_entry_offset()));
set_pc_offset(assembler->CodeSize());
__ int3();
#undef __
}
#define __ assembler->
// Static methods of FlowGraphCompiler that take an assembler.
void FlowGraphCompiler::GenerateIndirectTTSCall(compiler::Assembler* assembler,
Register reg_to_call,
intptr_t sub_type_cache_index) {
__ LoadWordFromPoolIndex(TypeTestABI::kSubtypeTestCacheReg,
sub_type_cache_index);
__ Call(compiler::FieldAddress(
reg_to_call,
compiler::target::AbstractType::type_test_stub_entry_point_offset()));
}
#undef __
#define __ assembler()->
// Instance methods of FlowGraphCompiler.
// Fall through if bool_register contains null.
void FlowGraphCompiler::GenerateBoolToJump(Register bool_register,
compiler::Label* is_true,
compiler::Label* is_false) {
compiler::Label fall_through;
__ CompareObject(bool_register, Object::null_object());
__ j(EQUAL, &fall_through, compiler::Assembler::kNearJump);
BranchLabels labels = {is_true, is_false, &fall_through};
Condition true_condition =
EmitBoolTest(bool_register, labels, /*invert=*/false);
ASSERT(true_condition != kInvalidCondition);
__ j(true_condition, is_true);
__ jmp(is_false);
__ Bind(&fall_through);
}
void FlowGraphCompiler::EmitInstructionEpilogue(Instruction* instr) {
if (is_optimizing()) {
return;
}
Definition* defn = instr->AsDefinition();
if ((defn != NULL) && defn->HasTemp()) {
Location value = defn->locs()->out(0);
if (value.IsRegister()) {
__ pushq(value.reg());
} else if (value.IsConstant()) {
__ PushObject(value.constant());
} else {
ASSERT(value.IsStackSlot());
__ pushq(LocationToStackSlotAddress(value));
}
}
}
void FlowGraphCompiler::GenerateMethodExtractorIntrinsic(
const Function& extracted_method,
intptr_t type_arguments_field_offset) {
// No frame has been setup here.
ASSERT(!__ constant_pool_allowed());
ASSERT(extracted_method.IsZoneHandle());
const Code& build_method_extractor = Code::ZoneHandle(
isolate_group()->object_store()->build_method_extractor_code());
ASSERT(!build_method_extractor.IsNull());
const intptr_t stub_index = __ object_pool_builder().AddObject(
build_method_extractor, compiler::ObjectPoolBuilderEntry::kNotPatchable);
const intptr_t function_index = __ object_pool_builder().AddObject(
extracted_method, compiler::ObjectPoolBuilderEntry::kNotPatchable);
// We use a custom pool register to preserve caller PP.
Register kPoolReg = RAX;
// RBX = extracted function
// RDX = offset of type argument vector (or 0 if class is not generic)
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
kPoolReg = PP;
} else {
__ movq(kPoolReg,
compiler::FieldAddress(CODE_REG, Code::object_pool_offset()));
}
__ movq(RDX, compiler::Immediate(type_arguments_field_offset));
__ movq(RBX, compiler::FieldAddress(
kPoolReg, ObjectPool::element_offset(function_index)));
__ movq(CODE_REG, compiler::FieldAddress(
kPoolReg, ObjectPool::element_offset(stub_index)));
__ jmp(compiler::FieldAddress(
CODE_REG, Code::entry_point_offset(Code::EntryKind::kUnchecked)));
}
// NOTE: If the entry code shape changes, ReturnAddressLocator in profiler.cc
// needs to be updated to match.
void FlowGraphCompiler::EmitFrameEntry() {
if (!flow_graph().graph_entry()->NeedsFrame()) {
if (FLAG_use_bare_instructions) {
assembler()->set_constant_pool_allowed(true);
}
return;
}
if (flow_graph().IsCompiledForOsr()) {
const intptr_t extra_slots = ExtraStackSlotsOnOsrEntry();
ASSERT(extra_slots >= 0);
__ EnterOsrFrame(extra_slots * kWordSize);
} else {
const Function& function = parsed_function().function();
if (CanOptimizeFunction() && function.IsOptimizable() &&
(!is_optimizing() || may_reoptimize())) {
__ Comment("Invocation Count Check");
const Register function_reg = RDI;
__ movq(function_reg,
compiler::FieldAddress(CODE_REG, Code::owner_offset()));
// Reoptimization of an optimized function is triggered by counting in
// IC stubs, but not at the entry of the function.
if (!is_optimizing()) {
__ incl(compiler::FieldAddress(function_reg,
Function::usage_counter_offset()));
}
__ cmpl(compiler::FieldAddress(function_reg,
Function::usage_counter_offset()),
compiler::Immediate(GetOptimizationThreshold()));
ASSERT(function_reg == RDI);
compiler::Label dont_optimize;
__ j(LESS, &dont_optimize, compiler::Assembler::kNearJump);
__ jmp(compiler::Address(THR, Thread::optimize_entry_offset()));
__ Bind(&dont_optimize);
}
ASSERT(StackSize() >= 0);
__ Comment("Enter frame");
__ EnterDartFrame(StackSize() * kWordSize);
}
}
const InstructionSource& PrologueSource() {
static InstructionSource prologue_source(TokenPosition::kDartCodePrologue,
/*inlining_id=*/0);
return prologue_source;
}
void FlowGraphCompiler::EmitPrologue() {
BeginCodeSourceRange(PrologueSource());
EmitFrameEntry();
ASSERT(assembler()->constant_pool_allowed());
// In unoptimized code, initialize (non-argument) stack allocated slots.
if (!is_optimizing()) {
const int num_locals = parsed_function().num_stack_locals();
intptr_t args_desc_slot = -1;
if (parsed_function().has_arg_desc_var()) {
args_desc_slot = compiler::target::frame_layout.FrameSlotForVariable(
parsed_function().arg_desc_var());
}
__ Comment("Initialize spill slots");
if (num_locals > 1 || (num_locals == 1 && args_desc_slot == -1)) {
__ LoadObject(RAX, Object::null_object());
}
for (intptr_t i = 0; i < num_locals; ++i) {
const intptr_t slot_index =
compiler::target::frame_layout.FrameSlotForVariableIndex(-i);
Register value_reg = slot_index == args_desc_slot ? ARGS_DESC_REG : RAX;
__ movq(compiler::Address(RBP, slot_index * kWordSize), value_reg);
}
}
EndCodeSourceRange(PrologueSource());
}
void FlowGraphCompiler::CompileGraph() {
InitCompiler();
// We have multiple entrypoints functionality which moved the frame
// setup into the [FunctionEntryInstr] (which will set the constant pool
// allowed bit to true). Despite this we still have to set the
// constant pool allowed bit to true here as well, because we can generate
// code for [CatchEntryInstr]s, which need the pool.
__ set_constant_pool_allowed(true);
ASSERT(!block_order().is_empty());
VisitBlocks();
#if defined(DEBUG)
__ int3();
#endif
if (!skip_body_compilation()) {
ASSERT(assembler()->constant_pool_allowed());
GenerateDeferredCode();
}
for (intptr_t i = 0; i < indirect_gotos_.length(); ++i) {
indirect_gotos_[i]->ComputeOffsetTable(this);
}
}
void FlowGraphCompiler::EmitCallToStub(const Code& stub) {
ASSERT(!stub.IsNull());
if (CanPcRelativeCall(stub)) {
__ GenerateUnRelocatedPcRelativeCall();
AddPcRelativeCallStubTarget(stub);
} else {
__ Call(stub);
AddStubCallTarget(stub);
}
}
void FlowGraphCompiler::EmitTailCallToStub(const Code& stub) {
ASSERT(!stub.IsNull());
if (CanPcRelativeCall(stub)) {
__ LeaveDartFrame();
__ GenerateUnRelocatedPcRelativeTailCall();
AddPcRelativeTailCallStubTarget(stub);
#if defined(DEBUG)
__ Breakpoint();
#endif
} else {
__ LoadObject(CODE_REG, stub);
__ LeaveDartFrame();
__ jmp(compiler::FieldAddress(
CODE_REG, compiler::target::Code::entry_point_offset()));
AddStubCallTarget(stub);
}
}
void FlowGraphCompiler::GeneratePatchableCall(const InstructionSource& source,
const Code& stub,
UntaggedPcDescriptors::Kind kind,
LocationSummary* locs) {
__ CallPatchable(stub);
EmitCallsiteMetadata(source, DeoptId::kNone, kind, locs);
}
void FlowGraphCompiler::GenerateDartCall(intptr_t deopt_id,
const InstructionSource& source,
const Code& stub,
UntaggedPcDescriptors::Kind kind,
LocationSummary* locs,
Code::EntryKind entry_kind) {
ASSERT(CanCallDart());
__ CallPatchable(stub, entry_kind);
EmitCallsiteMetadata(source, deopt_id, kind, locs);
}
void FlowGraphCompiler::GenerateStaticDartCall(intptr_t deopt_id,
const InstructionSource& source,
UntaggedPcDescriptors::Kind kind,
LocationSummary* locs,
const Function& target,
Code::EntryKind entry_kind) {
ASSERT(CanCallDart());
ASSERT(is_optimizing());
if (CanPcRelativeCall(target)) {
__ GenerateUnRelocatedPcRelativeCall();
AddPcRelativeCallTarget(target, entry_kind);
EmitCallsiteMetadata(source, deopt_id, kind, locs);
} else {
// Call sites to the same target can share object pool entries. These
// call sites are never patched for breakpoints: the function is deoptimized
// and the unoptimized code with IC calls for static calls is patched
// instead.
const auto& stub_entry = StubCode::CallStaticFunction();
__ CallWithEquivalence(stub_entry, target, entry_kind);
EmitCallsiteMetadata(source, deopt_id, kind, locs);
AddStaticCallTarget(target, entry_kind);
}
}
void FlowGraphCompiler::GenerateRuntimeCall(const InstructionSource& source,
intptr_t deopt_id,
const RuntimeEntry& entry,
intptr_t argument_count,
LocationSummary* locs) {
__ CallRuntime(entry, argument_count);
EmitCallsiteMetadata(source, deopt_id, UntaggedPcDescriptors::kOther, locs);
}
void FlowGraphCompiler::EmitUnoptimizedStaticCall(
intptr_t size_with_type_args,
intptr_t deopt_id,
const InstructionSource& source,
LocationSummary* locs,
const ICData& ic_data,
Code::EntryKind entry_kind) {
ASSERT(CanCallDart());
const Code& stub =
StubCode::UnoptimizedStaticCallEntry(ic_data.NumArgsTested());
__ LoadObject(RBX, ic_data);
GenerateDartCall(deopt_id, source, stub,
UntaggedPcDescriptors::kUnoptStaticCall, locs, entry_kind);
__ Drop(size_with_type_args, RCX);
}
void FlowGraphCompiler::EmitEdgeCounter(intptr_t edge_id) {
// We do not check for overflow when incrementing the edge counter. The
// function should normally be optimized long before the counter can
// overflow; and though we do not reset the counters when we optimize or
// deoptimize, there is a bound on the number of
// optimization/deoptimization cycles we will attempt.
ASSERT(!edge_counters_array_.IsNull());
ASSERT(assembler_->constant_pool_allowed());
__ Comment("Edge counter");
__ LoadObject(RAX, edge_counters_array_);
__ IncrementSmiField(
compiler::FieldAddress(RAX, Array::element_offset(edge_id)), 1);
}
void FlowGraphCompiler::EmitOptimizedInstanceCall(
const Code& stub,
const ICData& ic_data,
intptr_t deopt_id,
const InstructionSource& source,
LocationSummary* locs,
Code::EntryKind entry_kind) {
ASSERT(CanCallDart());
ASSERT(Array::Handle(zone(), ic_data.arguments_descriptor()).Length() > 0);
// Each ICData propagated from unoptimized to optimized code contains the
// function that corresponds to the Dart function of that IC call. Due
// to inlining in optimized code, that function may not correspond to the
// top-level function (parsed_function().function()) which could be
// reoptimized and which counter needs to be incremented.
// Pass the function explicitly, it is used in IC stub.
__ LoadObject(RDI, parsed_function().function());
// Load receiver into RDX.
__ movq(RDX, compiler::Address(
RSP, (ic_data.SizeWithoutTypeArgs() - 1) * kWordSize));
__ LoadUniqueObject(RBX, ic_data);
GenerateDartCall(deopt_id, source, stub, UntaggedPcDescriptors::kIcCall, locs,
entry_kind);
__ Drop(ic_data.SizeWithTypeArgs(), RCX);
}
void FlowGraphCompiler::EmitInstanceCallJIT(const Code& stub,
const ICData& ic_data,
intptr_t deopt_id,
const InstructionSource& source,
LocationSummary* locs,
Code::EntryKind entry_kind) {
ASSERT(CanCallDart());
ASSERT(entry_kind == Code::EntryKind::kNormal ||
entry_kind == Code::EntryKind::kUnchecked);
ASSERT(Array::Handle(zone(), ic_data.arguments_descriptor()).Length() > 0);
// Load receiver into RDX.
__ movq(RDX, compiler::Address(
RSP, (ic_data.SizeWithoutTypeArgs() - 1) * kWordSize));
__ LoadUniqueObject(RBX, ic_data);
__ LoadUniqueObject(CODE_REG, stub);
const intptr_t entry_point_offset =
entry_kind == Code::EntryKind::kNormal
? Code::entry_point_offset(Code::EntryKind::kMonomorphic)
: Code::entry_point_offset(Code::EntryKind::kMonomorphicUnchecked);
__ call(compiler::FieldAddress(CODE_REG, entry_point_offset));
EmitCallsiteMetadata(source, deopt_id, UntaggedPcDescriptors::kIcCall, locs);
__ Drop(ic_data.SizeWithTypeArgs(), RCX);
}
void FlowGraphCompiler::EmitMegamorphicInstanceCall(
const String& name,
const Array& arguments_descriptor,
intptr_t deopt_id,
const InstructionSource& source,
LocationSummary* locs,
intptr_t try_index,
intptr_t slow_path_argument_count) {
ASSERT(CanCallDart());
ASSERT(!arguments_descriptor.IsNull() && (arguments_descriptor.Length() > 0));
const ArgumentsDescriptor args_desc(arguments_descriptor);
const MegamorphicCache& cache = MegamorphicCache::ZoneHandle(
zone(),
MegamorphicCacheTable::Lookup(thread(), name, arguments_descriptor));
__ Comment("MegamorphicCall");
// Load receiver into RDX.
__ movq(RDX, compiler::Address(RSP, (args_desc.Count() - 1) * kWordSize));
// Use same code pattern as instance call so it can be parsed by code patcher.
if (FLAG_precompiled_mode) {
if (FLAG_use_bare_instructions) {
// The AOT runtime will replace the slot in the object pool with the
// entrypoint address - see clustered_snapshot.cc.
__ LoadUniqueObject(RCX, StubCode::MegamorphicCall());
} else {
__ LoadUniqueObject(CODE_REG, StubCode::MegamorphicCall());
__ movq(RCX, compiler::FieldAddress(CODE_REG,
Code::entry_point_offset(
Code::EntryKind::kMonomorphic)));
}
__ LoadUniqueObject(RBX, cache);
__ call(RCX);
} else {
__ LoadUniqueObject(RBX, cache);
__ LoadUniqueObject(CODE_REG, StubCode::MegamorphicCall());
__ call(compiler::FieldAddress(
CODE_REG, Code::entry_point_offset(Code::EntryKind::kMonomorphic)));
}
RecordSafepoint(locs, slow_path_argument_count);
const intptr_t deopt_id_after = DeoptId::ToDeoptAfter(deopt_id);
if (FLAG_precompiled_mode) {
// Megamorphic calls may occur in slow path stubs.
// If valid use try_index argument.
if (try_index == kInvalidTryIndex) {
try_index = CurrentTryIndex();
}
AddDescriptor(UntaggedPcDescriptors::kOther, assembler()->CodeSize(),
DeoptId::kNone, source, try_index);
} else if (is_optimizing()) {
AddCurrentDescriptor(UntaggedPcDescriptors::kOther, DeoptId::kNone, source);
AddDeoptIndexAtCall(deopt_id_after);
} else {
AddCurrentDescriptor(UntaggedPcDescriptors::kOther, DeoptId::kNone, source);
// Add deoptimization continuation point after the call and before the
// arguments are removed.
AddCurrentDescriptor(UntaggedPcDescriptors::kDeopt, deopt_id_after, source);
}
RecordCatchEntryMoves(pending_deoptimization_env_, try_index);
__ Drop(args_desc.SizeWithTypeArgs(), RCX);
}
void FlowGraphCompiler::EmitInstanceCallAOT(const ICData& ic_data,
intptr_t deopt_id,
const InstructionSource& source,
LocationSummary* locs,
Code::EntryKind entry_kind,
bool receiver_can_be_smi) {
ASSERT(CanCallDart());
ASSERT(entry_kind == Code::EntryKind::kNormal ||
entry_kind == Code::EntryKind::kUnchecked);
ASSERT(ic_data.NumArgsTested() == 1);
const Code& initial_stub = StubCode::SwitchableCallMiss();
const char* switchable_call_mode = "smiable";
if (!receiver_can_be_smi) {
switchable_call_mode = "non-smi";
ic_data.set_receiver_cannot_be_smi(true);
}
const UnlinkedCall& data =
UnlinkedCall::ZoneHandle(zone(), ic_data.AsUnlinkedCall());
__ Comment("InstanceCallAOT (%s)", switchable_call_mode);
__ movq(RDX, compiler::Address(
RSP, (ic_data.SizeWithoutTypeArgs() - 1) * kWordSize));
if (FLAG_precompiled_mode && FLAG_use_bare_instructions) {
// The AOT runtime will replace the slot in the object pool with the
// entrypoint address - see clustered_snapshot.cc.
__ LoadUniqueObject(RCX, initial_stub);
} else {
const intptr_t entry_point_offset =
entry_kind == Code::EntryKind::kNormal
? Code::entry_point_offset(Code::EntryKind::kMonomorphic)
: Code::entry_point_offset(Code::EntryKind::kMonomorphicUnchecked);
__ LoadUniqueObject(CODE_REG, initial_stub);
__ movq(RCX, compiler::FieldAddress(CODE_REG, entry_point_offset));
}
__ LoadUniqueObject(RBX, data);
__ call(RCX);
EmitCallsiteMetadata(source, deopt_id, UntaggedPcDescriptors::kOther, locs);
__ Drop(ic_data.SizeWithTypeArgs(), RCX);
}
void FlowGraphCompiler::EmitOptimizedStaticCall(
const Function& function,
const Array& arguments_descriptor,
intptr_t size_with_type_args,
intptr_t deopt_id,
const InstructionSource& source,
LocationSummary* locs,
Code::EntryKind entry_kind) {
ASSERT(CanCallDart());
ASSERT(!function.IsClosureFunction());
if (function.HasOptionalParameters() || function.IsGeneric()) {
__ LoadObject(R10, arguments_descriptor);
} else {
if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) {
__ xorl(R10, R10); // GC safe smi zero because of stub.
}
}
// Do not use the code from the function, but let the code be patched so that
// we can record the outgoing edges to other code.
GenerateStaticDartCall(deopt_id, source, UntaggedPcDescriptors::kOther, locs,
function, entry_kind);
__ Drop(size_with_type_args, RCX);
}
void FlowGraphCompiler::EmitDispatchTableCall(
int32_t selector_offset,
const Array& arguments_descriptor) {
const auto cid_reg = DispatchTableNullErrorABI::kClassIdReg;
ASSERT(CanCallDart());
const Register table_reg = RAX;
ASSERT(cid_reg != table_reg);
ASSERT(cid_reg != ARGS_DESC_REG);
if (!arguments_descriptor.IsNull()) {
__ LoadObject(ARGS_DESC_REG, arguments_descriptor);
}
const intptr_t offset = (selector_offset - DispatchTable::OriginElement()) *
compiler::target::kWordSize;
__ LoadDispatchTable(table_reg);
__ call(compiler::Address(table_reg, cid_reg, TIMES_8, offset));
}
Condition FlowGraphCompiler::EmitEqualityRegConstCompare(
Register reg,
const Object& obj,
bool needs_number_check,
const InstructionSource& source,
intptr_t deopt_id) {
ASSERT(!needs_number_check || (!obj.IsMint() && !obj.IsDouble()));
if (obj.IsSmi() && (Smi::Cast(obj).Value() == 0)) {
ASSERT(!needs_number_check);
__ OBJ(test)(reg, reg);
return EQUAL;
}
if (needs_number_check) {
__ pushq(reg);
__ PushObject(obj);
if (is_optimizing()) {
__ CallPatchable(StubCode::OptimizedIdenticalWithNumberCheck());
} else {
__ CallPatchable(StubCode::UnoptimizedIdenticalWithNumberCheck());
}
AddCurrentDescriptor(UntaggedPcDescriptors::kRuntimeCall, deopt_id, source);
// Stub returns result in flags (result of a cmpq, we need ZF computed).
__ popq(reg); // Discard constant.
__ popq(reg); // Restore 'reg'.
} else {
__ CompareObject(reg, obj);
}
return EQUAL;
}
Condition FlowGraphCompiler::EmitEqualityRegRegCompare(
Register left,
Register right,
bool needs_number_check,
const InstructionSource& source,
intptr_t deopt_id) {
if (needs_number_check) {
__ pushq(left);
__ pushq(right);
if (is_optimizing()) {
__ CallPatchable(StubCode::OptimizedIdenticalWithNumberCheck());
} else {
__ CallPatchable(StubCode::UnoptimizedIdenticalWithNumberCheck());
}
AddCurrentDescriptor(UntaggedPcDescriptors::kRuntimeCall, deopt_id, source);
// Stub returns result in flags (result of a cmpq, we need ZF computed).
__ popq(right);
__ popq(left);
} else {
__ CompareRegisters(left, right);
}
return EQUAL;
}
Condition FlowGraphCompiler::EmitBoolTest(Register value,
BranchLabels labels,
bool invert) {
__ Comment("BoolTest");
__ testq(value, compiler::Immediate(
compiler::target::ObjectAlignment::kBoolValueMask));
return invert ? NOT_EQUAL : EQUAL;
}
// This function must be in sync with FlowGraphCompiler::RecordSafepoint and
// FlowGraphCompiler::SlowPathEnvironmentFor.
void FlowGraphCompiler::SaveLiveRegisters(LocationSummary* locs) {
#if defined(DEBUG)
locs->CheckWritableInputs();
ClobberDeadTempRegisters(locs);
#endif
// TODO(vegorov): avoid saving non-volatile registers.
__ PushRegisters(*locs->live_registers());
}
void FlowGraphCompiler::RestoreLiveRegisters(LocationSummary* locs) {
__ PopRegisters(*locs->live_registers());
}
#if defined(DEBUG)
void FlowGraphCompiler::ClobberDeadTempRegisters(LocationSummary* locs) {
// Clobber temporaries that have not been manually preserved.
for (intptr_t i = 0; i < locs->temp_count(); ++i) {
Location tmp = locs->temp(i);
// TODO(zerny): clobber non-live temporary FPU registers.
if (tmp.IsRegister() &&
!locs->live_registers()->ContainsRegister(tmp.reg())) {
__ movq(tmp.reg(), compiler::Immediate(0xf7));
}
}
}
#endif
Register FlowGraphCompiler::EmitTestCidRegister() {
return RDI;
}
void FlowGraphCompiler::EmitTestAndCallLoadReceiver(
intptr_t count_without_type_args,
const Array& arguments_descriptor) {
__ Comment("EmitTestAndCall");
// Load receiver into RAX.
__ movq(RAX,
compiler::Address(RSP, (count_without_type_args - 1) * kWordSize));
__ LoadObject(R10, arguments_descriptor);
}
void FlowGraphCompiler::EmitTestAndCallSmiBranch(compiler::Label* label,
bool if_smi) {
__ testq(RAX, compiler::Immediate(kSmiTagMask));
// Jump if receiver is (not) Smi.
__ j(if_smi ? ZERO : NOT_ZERO, label);
}
void FlowGraphCompiler::EmitTestAndCallLoadCid(Register class_id_reg) {
ASSERT(class_id_reg != RAX);
__ LoadClassId(class_id_reg, RAX);
}
#undef __
#define __ assembler->
int FlowGraphCompiler::EmitTestAndCallCheckCid(compiler::Assembler* assembler,
compiler::Label* label,
Register class_id_reg,
const CidRangeValue& range,
int bias,
bool jump_on_miss) {
// Note of WARNING: Due to smaller instruction encoding we use the 32-bit
// instructions on x64, which means the compare instruction has to be
// 32-bit (since the subtraction instruction is as well).
intptr_t cid_start = range.cid_start;
if (range.IsSingleCid()) {
__ cmpl(class_id_reg, compiler::Immediate(cid_start - bias));
__ BranchIf(jump_on_miss ? NOT_EQUAL : EQUAL, label);
} else {
__ addl(class_id_reg, compiler::Immediate(bias - cid_start));
bias = cid_start;
__ cmpl(class_id_reg, compiler::Immediate(range.Extent()));
__ BranchIf(jump_on_miss ? UNSIGNED_GREATER : UNSIGNED_LESS_EQUAL, label);
}
return bias;
}
#undef __
#define __ assembler()->
void FlowGraphCompiler::EmitMove(Location destination,
Location source,
TemporaryRegisterAllocator* tmp) {
if (destination.Equals(source)) return;
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ movq(destination.reg(), source.reg());
} else {
ASSERT(destination.IsStackSlot());
__ movq(LocationToStackSlotAddress(destination), source.reg());
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
__ movq(destination.reg(), LocationToStackSlotAddress(source));
} else if (destination.IsFpuRegister()) {
// 32-bit float
__ movq(TMP, LocationToStackSlotAddress(source));
__ movq(destination.fpu_reg(), TMP);
} else {
ASSERT(destination.IsStackSlot());
__ MoveMemoryToMemory(LocationToStackSlotAddress(destination),
LocationToStackSlotAddress(source));
}
} else if (source.IsFpuRegister()) {
if (destination.IsFpuRegister()) {
// Optimization manual recommends using MOVAPS for register
// to register moves.
__ movaps(destination.fpu_reg(), source.fpu_reg());
} else {
if (destination.IsDoubleStackSlot()) {
__ movsd(LocationToStackSlotAddress(destination), source.fpu_reg());
} else {
ASSERT(destination.IsQuadStackSlot());
__ movups(LocationToStackSlotAddress(destination), source.fpu_reg());
}
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsFpuRegister()) {
__ movsd(destination.fpu_reg(), LocationToStackSlotAddress(source));
} else {
ASSERT(destination.IsDoubleStackSlot() ||
destination.IsStackSlot() /*32-bit float*/);
__ movsd(FpuTMP, LocationToStackSlotAddress(source));
__ movsd(LocationToStackSlotAddress(destination), FpuTMP);
}
} else if (source.IsQuadStackSlot()) {
if (destination.IsFpuRegister()) {
__ movups(destination.fpu_reg(), LocationToStackSlotAddress(source));
} else {
ASSERT(destination.IsQuadStackSlot());
__ movups(FpuTMP, LocationToStackSlotAddress(source));
__ movups(LocationToStackSlotAddress(destination), FpuTMP);
}
} else {
ASSERT(!source.IsInvalid());
ASSERT(source.IsConstant());
if (destination.IsFpuRegister() || destination.IsDoubleStackSlot()) {
Register scratch = tmp->AllocateTemporary();
source.constant_instruction()->EmitMoveToLocation(this, destination,
scratch);
tmp->ReleaseTemporary();
} else {
source.constant_instruction()->EmitMoveToLocation(this, destination);
}
}
}
void FlowGraphCompiler::EmitNativeMoveArchitecture(
const compiler::ffi::NativeLocation& destination,
const compiler::ffi::NativeLocation& source) {
const auto& src_type = source.payload_type();
const auto& dst_type = destination.payload_type();
ASSERT(src_type.IsFloat() == dst_type.IsFloat());
ASSERT(src_type.IsInt() == dst_type.IsInt());
ASSERT(src_type.IsSigned() == dst_type.IsSigned());
ASSERT(src_type.IsPrimitive());
ASSERT(dst_type.IsPrimitive());
const intptr_t src_size = src_type.SizeInBytes();
const intptr_t dst_size = dst_type.SizeInBytes();
const bool sign_or_zero_extend = dst_size > src_size;
if (source.IsRegisters()) {
const auto& src = source.AsRegisters();
ASSERT(src.num_regs() == 1);
const auto src_reg = src.reg_at(0);
if (destination.IsRegisters()) {
const auto& dst = destination.AsRegisters();
ASSERT(dst.num_regs() == 1);
const auto dst_reg = dst.reg_at(0);
if (!sign_or_zero_extend) {
switch (dst_size) {
case 8:
__ movq(dst_reg, src_reg);
return;
case 4:
__ movl(dst_reg, src_reg);
return;
default:
UNIMPLEMENTED();
}
} else {
switch (src_type.AsPrimitive().representation()) {
case compiler::ffi::kInt8: // Sign extend operand.
__ movsxb(dst_reg, src_reg);
return;
case compiler::ffi::kInt16:
__ movsxw(dst_reg, src_reg);
return;
case compiler::ffi::kUint8: // Zero extend operand.
__ movzxb(dst_reg, src_reg);
return;
case compiler::ffi::kUint16:
__ movzxw(dst_reg, src_reg);
return;
default:
// 32 to 64 bit is covered in IL by Representation conversions.
UNIMPLEMENTED();
}
}
} else if (destination.IsFpuRegisters()) {
// Fpu Registers should only contain doubles and registers only ints.
UNIMPLEMENTED();
} else {
ASSERT(destination.IsStack());
const auto& dst = destination.AsStack();
const auto dst_addr = NativeLocationToStackSlotAddress(dst);
ASSERT(!sign_or_zero_extend);
switch (dst_size) {
case 8:
__ movq(dst_addr, src_reg);
return;
case 4:
__ movl(dst_addr, src_reg);
return;
case 2:
__ movw(dst_addr, src_reg);
return;
case 1:
__ movb(dst_addr, src_reg);
return;
default:
UNREACHABLE();
}
}
} else if (source.IsFpuRegisters()) {
const auto& src = source.AsFpuRegisters();
// We have not implemented conversions here, use IL convert instructions.
ASSERT(src_type.Equals(dst_type));
if (destination.IsRegisters()) {
// Fpu Registers should only contain doubles and registers only ints.
UNIMPLEMENTED();
} else if (destination.IsFpuRegisters()) {
const auto& dst = destination.AsFpuRegisters();
// Optimization manual recommends using MOVAPS for register
// to register moves.
__ movaps(dst.fpu_reg(), src.fpu_reg());
} else {
ASSERT(destination.IsStack());
ASSERT(src_type.IsFloat());
const auto& dst = destination.AsStack();
const auto dst_addr = NativeLocationToStackSlotAddress(dst);
switch (dst_size) {
case 8:
__ movsd(dst_addr, src.fpu_reg());
return;
case 4:
__ movss(dst_addr, src.fpu_reg());
return;
default:
UNREACHABLE();
}
}
} else {
ASSERT(source.IsStack());
const auto& src = source.AsStack();
const auto src_addr = NativeLocationToStackSlotAddress(src);
if (destination.IsRegisters()) {
const auto& dst = destination.AsRegisters();
ASSERT(dst.num_regs() == 1);
const auto dst_reg = dst.reg_at(0);
if (!sign_or_zero_extend) {
switch (dst_size) {
case 8:
__ movq(dst_reg, src_addr);
return;
case 4:
__ movl(dst_reg, src_addr);
return;
default:
UNIMPLEMENTED();
}
} else {
switch (src_type.AsPrimitive().representation()) {
case compiler::ffi::kInt8: // Sign extend operand.
__ movsxb(dst_reg, src_addr);
return;
case compiler::ffi::kInt16:
__ movsxw(dst_reg, src_addr);
return;
case compiler::ffi::kUint8: // Zero extend operand.
__ movzxb(dst_reg, src_addr);
return;
case compiler::ffi::kUint16:
__ movzxw(dst_reg, src_addr);
return;
default:
// 32 to 64 bit is covered in IL by Representation conversions.
UNIMPLEMENTED();
}
}
} else if (destination.IsFpuRegisters()) {
ASSERT(src_type.Equals(dst_type));
ASSERT(src_type.IsFloat());
const auto& dst = destination.AsFpuRegisters();
switch (dst_size) {
case 8:
__ movsd(dst.fpu_reg(), src_addr);
return;
case 4:
__ movss(dst.fpu_reg(), src_addr);
return;
default:
UNREACHABLE();
}
} else {
ASSERT(destination.IsStack());
UNREACHABLE();
}
}
}
void FlowGraphCompiler::LoadBSSEntry(BSS::Relocation relocation,
Register dst,
Register tmp) {
compiler::Label skip_reloc;
__ jmp(&skip_reloc);
InsertBSSRelocation(relocation);
const intptr_t reloc_end = __ CodeSize();
__ Bind(&skip_reloc);
const intptr_t kLeaqLength = 7;
__ leaq(dst, compiler::Address::AddressRIPRelative(
-kLeaqLength - compiler::target::kWordSize));
ASSERT((__ CodeSize() - reloc_end) == kLeaqLength);
// dst holds the address of the relocation.
__ movq(tmp, compiler::Address(dst, 0));
// tmp holds the relocation itself: dst - bss_start.
// dst = dst + (bss_start - dst) = bss_start
__ addq(dst, tmp);
// dst holds the start of the BSS section.
// Load the routine.
__ movq(dst, compiler::Address(dst, 0));
}
#undef __
#define __ compiler_->assembler()->
void ParallelMoveResolver::EmitSwap(int index) {
MoveOperands* move = moves_[index];
const Location source = move->src();
const Location destination = move->dest();
if (source.IsRegister() && destination.IsRegister()) {
__ xchgq(destination.reg(), source.reg());
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange(source.reg(), LocationToStackSlotAddress(destination));
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange(destination.reg(), LocationToStackSlotAddress(source));
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange(LocationToStackSlotAddress(destination),
LocationToStackSlotAddress(source));
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
__ movaps(FpuTMP, source.fpu_reg());
__ movaps(source.fpu_reg(), destination.fpu_reg());
__ movaps(destination.fpu_reg(), FpuTMP);
} else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
ASSERT(destination.IsDoubleStackSlot() || destination.IsQuadStackSlot() ||
source.IsDoubleStackSlot() || source.IsQuadStackSlot());
bool double_width =
destination.IsDoubleStackSlot() || source.IsDoubleStackSlot();
XmmRegister reg =
source.IsFpuRegister() ? source.fpu_reg() : destination.fpu_reg();
compiler::Address slot_address =
source.IsFpuRegister() ? LocationToStackSlotAddress(destination)
: LocationToStackSlotAddress(source);
if (double_width) {
__ movsd(FpuTMP, slot_address);
__ movsd(slot_address, reg);
} else {
__ movups(FpuTMP, slot_address);
__ movups(slot_address, reg);
}
__ movaps(reg, FpuTMP);
} else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
const compiler::Address& source_slot_address =
LocationToStackSlotAddress(source);
const compiler::Address& destination_slot_address =
LocationToStackSlotAddress(destination);
ScratchFpuRegisterScope ensure_scratch(this, FpuTMP);
__ movsd(FpuTMP, source_slot_address);
__ movsd(ensure_scratch.reg(), destination_slot_address);
__ movsd(destination_slot_address, FpuTMP);
__ movsd(source_slot_address, ensure_scratch.reg());
} else if (source.IsQuadStackSlot() && destination.IsQuadStackSlot()) {
const compiler::Address& source_slot_address =
LocationToStackSlotAddress(source);
const compiler::Address& destination_slot_address =
LocationToStackSlotAddress(destination);
ScratchFpuRegisterScope ensure_scratch(this, FpuTMP);
__ movups(FpuTMP, source_slot_address);
__ movups(ensure_scratch.reg(), destination_slot_address);
__ movups(destination_slot_address, FpuTMP);
__ movups(source_slot_address, ensure_scratch.reg());
} else {
UNREACHABLE();
}
// The swap of source and destination has executed a move from source to
// destination.
move->Eliminate();
// Any unperformed (including pending) move with a source of either
// this move's source or destination needs to have their source
// changed to reflect the state of affairs after the swap.
for (int i = 0; i < moves_.length(); ++i) {
const MoveOperands& other_move = *moves_[i];
if (other_move.Blocks(source)) {
moves_[i]->set_src(destination);
} else if (other_move.Blocks(destination)) {
moves_[i]->set_src(source);
}
}
}
void ParallelMoveResolver::MoveMemoryToMemory(const compiler::Address& dst,
const compiler::Address& src) {
__ MoveMemoryToMemory(dst, src);
}
void ParallelMoveResolver::Exchange(Register reg,
const compiler::Address& mem) {
__ Exchange(reg, mem);
}
void ParallelMoveResolver::Exchange(const compiler::Address& mem1,
const compiler::Address& mem2) {
__ Exchange(mem1, mem2);
}
void ParallelMoveResolver::Exchange(Register reg,
Register base_reg,
intptr_t stack_offset) {
UNREACHABLE();
}
void ParallelMoveResolver::Exchange(Register base_reg1,
intptr_t stack_offset1,
Register base_reg2,
intptr_t stack_offset2) {
UNREACHABLE();
}
void ParallelMoveResolver::SpillScratch(Register reg) {
__ pushq(reg);
}
void ParallelMoveResolver::RestoreScratch(Register reg) {
__ popq(reg);
}
void ParallelMoveResolver::SpillFpuScratch(FpuRegister reg) {
__ AddImmediate(RSP, compiler::Immediate(-kFpuRegisterSize));
__ movups(compiler::Address(RSP, 0), reg);
}
void ParallelMoveResolver::RestoreFpuScratch(FpuRegister reg) {
__ movups(reg, compiler::Address(RSP, 0));
__ AddImmediate(RSP, compiler::Immediate(kFpuRegisterSize));
}
#undef __
} // namespace dart
#endif // defined(TARGET_ARCH_X64)