| // Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #ifndef RUNTIME_VM_UNIT_TEST_H_ |
| #define RUNTIME_VM_UNIT_TEST_H_ |
| |
| #include <functional> |
| |
| #include "include/dart_native_api.h" |
| |
| #include "platform/globals.h" |
| |
| #include "vm/dart.h" |
| #include "vm/dart_api_state.h" |
| #include "vm/dart_entry.h" |
| #include "vm/globals.h" |
| #include "vm/heap/heap.h" |
| #include "vm/isolate.h" |
| #include "vm/longjump.h" |
| #include "vm/object.h" |
| #include "vm/object_store.h" |
| #include "vm/simulator.h" |
| #include "vm/zone.h" |
| |
| // The VM_UNIT_TEST_CASE macro is used for tests that do not need any |
| // default isolate or zone functionality. |
| #define VM_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) \ |
| void Dart_Test##name(); \ |
| static const dart::TestCase kRegister##name(Dart_Test##name, #name, \ |
| expectation); \ |
| void Dart_Test##name() |
| |
| #define VM_UNIT_TEST_CASE(name) VM_UNIT_TEST_CASE_WITH_EXPECTATION(name, "Pass") |
| |
| // The UNIT_TEST_CASE macro is used for tests that do not require any |
| // functionality provided by the VM. Tests declared using this macro will be run |
| // after the VM is cleaned up. |
| #define UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) \ |
| void Dart_Test##name(); \ |
| static const dart::RawTestCase kRegister##name(Dart_Test##name, #name, \ |
| expectation); \ |
| void Dart_Test##name() |
| |
| #define UNIT_TEST_CASE(name) UNIT_TEST_CASE_WITH_EXPECTATION(name, "Pass") |
| |
| // The ISOLATE_UNIT_TEST_CASE macro is used for tests that need an isolate and |
| // zone in order to test its functionality. This macro is used for tests that |
| // are implemented using the VM code directly and do not use the Dart API |
| // for calling into the VM. The safepoint execution state of threads using |
| // this macro is transitioned from kThreadInNative to kThreadInVM. |
| #define ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) \ |
| static void Dart_TestHelper##name(Thread* thread); \ |
| VM_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) { \ |
| TestIsolateScope __test_isolate__; \ |
| Thread* __thread__ = Thread::Current(); \ |
| ASSERT(__thread__->isolate() == __test_isolate__.isolate()); \ |
| TransitionNativeToVM transition(__thread__); \ |
| StackZone __zone__(__thread__); \ |
| HandleScope __hs__(__thread__); \ |
| Dart_TestHelper##name(__thread__); \ |
| } \ |
| static void Dart_TestHelper##name(Thread* thread) |
| |
| #define ISOLATE_UNIT_TEST_CASE(name) \ |
| ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(name, "Pass") |
| |
| // The TEST_CASE macro is used for tests that need an isolate and zone |
| // in order to test its functionality. This macro is used for tests that |
| // are implemented using the Dart API for calling into the VM. The safepoint |
| // execution state of threads using this macro remains kThreadNative. |
| #define TEST_CASE_WITH_EXPECTATION(name, expectation) \ |
| static void Dart_TestHelper##name(Thread* thread); \ |
| VM_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) { \ |
| TestIsolateScope __test_isolate__; \ |
| Thread* __thread__ = Thread::Current(); \ |
| ASSERT(__thread__->isolate() == __test_isolate__.isolate()); \ |
| TransitionNativeToVM transition1(__thread__); \ |
| StackZone __zone__(__thread__); \ |
| HandleScope __hs__(__thread__); \ |
| TransitionVMToNative transition2(__thread__); \ |
| Dart_TestHelper##name(__thread__); \ |
| } \ |
| static void Dart_TestHelper##name(Thread* thread) |
| |
| #define TEST_CASE(name) TEST_CASE_WITH_EXPECTATION(name, "Pass") |
| |
| // The ASSEMBLER_TEST_GENERATE macro is used to generate a unit test |
| // for the assembler. |
| #define ASSEMBLER_TEST_GENERATE(name, assembler) \ |
| void AssemblerTestGenerate##name(compiler::Assembler* assembler) |
| |
| // The ASSEMBLER_TEST_EXTERN macro is used to declare a unit test |
| // for the assembler. |
| #define ASSEMBLER_TEST_EXTERN(name) \ |
| extern void AssemblerTestGenerate##name(compiler::Assembler* assembler); |
| |
| // The ASSEMBLER_TEST_RUN macro is used to execute the assembler unit |
| // test generated using the ASSEMBLER_TEST_GENERATE macro. |
| // C++ callee-saved registers are not preserved. Arguments may be passed in. |
| #define ASSEMBLER_TEST_RUN_WITH_EXPECTATION(name, test, expectation) \ |
| static void AssemblerTestRun##name(AssemblerTest* test); \ |
| ISOLATE_UNIT_TEST_CASE_WITH_EXPECTATION(name, expectation) { \ |
| { \ |
| bool use_far_branches = false; \ |
| LongJumpScope jump; \ |
| if (setjmp(*jump.Set()) == 0) { \ |
| compiler::ObjectPoolBuilder object_pool_builder; \ |
| compiler::Assembler assembler(&object_pool_builder, use_far_branches); \ |
| AssemblerTest test("" #name, &assembler); \ |
| AssemblerTestGenerate##name(test.assembler()); \ |
| test.Assemble(); \ |
| AssemblerTestRun##name(&test); \ |
| return; \ |
| } \ |
| } \ |
| \ |
| const Error& error = Error::Handle(Thread::Current()->sticky_error()); \ |
| if (error.ptr() == Object::branch_offset_error().ptr()) { \ |
| bool use_far_branches = true; \ |
| compiler::ObjectPoolBuilder object_pool_builder; \ |
| compiler::Assembler assembler(&object_pool_builder, use_far_branches); \ |
| AssemblerTest test("" #name, &assembler); \ |
| AssemblerTestGenerate##name(test.assembler()); \ |
| test.Assemble(); \ |
| AssemblerTestRun##name(&test); \ |
| } else { \ |
| FATAL1("Unexpected error: %s\n", error.ToErrorCString()); \ |
| } \ |
| } \ |
| static void AssemblerTestRun##name(AssemblerTest* test) |
| |
| #define ASSEMBLER_TEST_RUN(name, test) \ |
| ASSEMBLER_TEST_RUN_WITH_EXPECTATION(name, test, "Pass") |
| |
| #if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64) |
| #if defined(HOST_ARCH_ARM) || defined(HOST_ARCH_ARM64) |
| // Running on actual ARM hardware, execute code natively. |
| #define EXECUTE_TEST_CODE_INT32(name, entry) reinterpret_cast<name>(entry)() |
| #define EXECUTE_TEST_CODE_INT64(name, entry) reinterpret_cast<name>(entry)() |
| #define EXECUTE_TEST_CODE_INT64_LL(name, entry, long_arg0, long_arg1) \ |
| reinterpret_cast<name>(entry)(long_arg0, long_arg1) |
| #define EXECUTE_TEST_CODE_FLOAT(name, entry) reinterpret_cast<name>(entry)() |
| #define EXECUTE_TEST_CODE_DOUBLE(name, entry) reinterpret_cast<name>(entry)() |
| #define EXECUTE_TEST_CODE_INT32_F(name, entry, float_arg) \ |
| reinterpret_cast<name>(entry)(float_arg) |
| #define EXECUTE_TEST_CODE_INT32_D(name, entry, double_arg) \ |
| reinterpret_cast<name>(entry)(double_arg) |
| #define EXECUTE_TEST_CODE_INTPTR_INTPTR(name, entry, pointer_arg) \ |
| reinterpret_cast<name>(entry)(pointer_arg) |
| #define EXECUTE_TEST_CODE_INT32_INTPTR(name, entry, pointer_arg) \ |
| reinterpret_cast<name>(entry)(pointer_arg) |
| #else |
| // Not running on ARM hardware, call simulator to execute code. |
| #if defined(ARCH_IS_64_BIT) |
| #define EXECUTE_TEST_CODE_INT64(name, entry) \ |
| static_cast<int64_t>( \ |
| Simulator::Current()->Call(bit_cast<int64_t, uword>(entry), 0, 0, 0, 0)) |
| #define EXECUTE_TEST_CODE_DOUBLE(name, entry) \ |
| bit_cast<double, int64_t>(Simulator::Current()->Call( \ |
| bit_cast<int64_t, uword>(entry), 0, 0, 0, 0, true)) |
| #define EXECUTE_TEST_CODE_INTPTR_INTPTR(name, entry, pointer_arg) \ |
| static_cast<intptr_t>(Simulator::Current()->Call( \ |
| bit_cast<int64_t, uword>(entry), \ |
| bit_cast<int64_t, intptr_t>(pointer_arg), 0, 0, 0)) |
| #define EXECUTE_TEST_CODE_INT32_INTPTR(name, entry, pointer_arg) \ |
| static_cast<int32_t>(Simulator::Current()->Call( \ |
| bit_cast<int64_t, uword>(entry), \ |
| bit_cast<int64_t, intptr_t>(pointer_arg), 0, 0, 0)) |
| #else |
| #define EXECUTE_TEST_CODE_INT32(name, entry) \ |
| static_cast<int32_t>( \ |
| Simulator::Current()->Call(bit_cast<int32_t, uword>(entry), 0, 0, 0, 0)) |
| #define EXECUTE_TEST_CODE_DOUBLE(name, entry) \ |
| bit_cast<double, int64_t>(Simulator::Current()->Call( \ |
| bit_cast<int32_t, uword>(entry), 0, 0, 0, 0, true)) |
| #define EXECUTE_TEST_CODE_INTPTR_INTPTR(name, entry, pointer_arg) \ |
| static_cast<intptr_t>(Simulator::Current()->Call( \ |
| bit_cast<int32_t, uword>(entry), \ |
| bit_cast<int32_t, intptr_t>(pointer_arg), 0, 0, 0)) |
| #define EXECUTE_TEST_CODE_INT32_INTPTR(name, entry, pointer_arg) \ |
| static_cast<int32_t>(Simulator::Current()->Call( \ |
| bit_cast<int32_t, uword>(entry), \ |
| bit_cast<int32_t, intptr_t>(pointer_arg), 0, 0, 0)) |
| #endif // defined(ARCH_IS_64_BIT) |
| #define EXECUTE_TEST_CODE_INT64_LL(name, entry, long_arg0, long_arg1) \ |
| static_cast<int64_t>(Simulator::Current()->Call( \ |
| bit_cast<int32_t, uword>(entry), Utils::Low32Bits(long_arg0), \ |
| Utils::High32Bits(long_arg0), Utils::Low32Bits(long_arg1), \ |
| Utils::High32Bits(long_arg1))) |
| #define EXECUTE_TEST_CODE_FLOAT(name, entry) \ |
| bit_cast<float, int32_t>(Simulator::Current()->Call( \ |
| bit_cast<int32_t, uword>(entry), 0, 0, 0, 0, true)) |
| #define EXECUTE_TEST_CODE_INT32_F(name, entry, float_arg) \ |
| static_cast<int32_t>(Simulator::Current()->Call( \ |
| bit_cast<int32_t, uword>(entry), bit_cast<int32_t, float>(float_arg), 0, \ |
| 0, 0, false, true)) |
| #define EXECUTE_TEST_CODE_INT32_D(name, entry, double_arg) \ |
| static_cast<int32_t>(Simulator::Current()->Call( \ |
| bit_cast<int32_t, uword>(entry), \ |
| Utils::Low32Bits(bit_cast<int64_t, double>(double_arg)), \ |
| Utils::High32Bits(bit_cast<int64_t, double>(double_arg)), 0, 0, false, \ |
| true)) |
| #endif // defined(HOST_ARCH_ARM) |
| #endif // defined(TARGET_ARCH_{ARM, ARM64}) |
| |
| #define ZONE_STR(FMT, ...) \ |
| OS::SCreate(Thread::Current()->zone(), FMT, __VA_ARGS__) |
| |
| inline Dart_Handle NewString(const char* str) { |
| return Dart_NewStringFromCString(str); |
| } |
| |
| namespace dart { |
| |
| // Forward declarations. |
| namespace compiler { |
| class Assembler; |
| } |
| class CodeGenerator; |
| class VirtualMemory; |
| |
| namespace bin { |
| // Snapshot pieces if we link in a snapshot, otherwise initialized to NULL. |
| extern const uint8_t* vm_snapshot_data; |
| extern const uint8_t* vm_snapshot_instructions; |
| extern const uint8_t* core_isolate_snapshot_data; |
| extern const uint8_t* core_isolate_snapshot_instructions; |
| } // namespace bin |
| |
| extern const uint8_t* platform_strong_dill; |
| extern const intptr_t platform_strong_dill_size; |
| |
| class TesterState : public AllStatic { |
| public: |
| static const uint8_t* vm_snapshot_data; |
| static Dart_IsolateGroupCreateCallback create_callback; |
| static Dart_IsolateShutdownCallback shutdown_callback; |
| static Dart_IsolateGroupCleanupCallback group_cleanup_callback; |
| static const char** argv; |
| static int argc; |
| }; |
| |
| class KernelBufferList { |
| public: |
| explicit KernelBufferList(const uint8_t* kernel_buffer) |
| : kernel_buffer_(kernel_buffer), next_(NULL) {} |
| |
| KernelBufferList(const uint8_t* kernel_buffer, KernelBufferList* next) |
| : kernel_buffer_(kernel_buffer), next_(next) {} |
| |
| ~KernelBufferList() { |
| free(const_cast<uint8_t*>(kernel_buffer_)); |
| if (next_ != NULL) { |
| delete next_; |
| } |
| } |
| |
| void AddBufferToList(const uint8_t* kernel_buffer); |
| |
| private: |
| const uint8_t* kernel_buffer_; |
| KernelBufferList* next_; |
| }; |
| |
| class TestCaseBase { |
| public: |
| explicit TestCaseBase(const char* name, const char* expectation); |
| virtual ~TestCaseBase() {} |
| |
| const char* name() const { return name_; } |
| const char* expectation() const { return expectation_; } |
| |
| virtual void Run() = 0; |
| void RunTest(); |
| |
| static void RunAll(); |
| static void RunAllRaw(); |
| static void CleanupState(); |
| static void AddToKernelBuffers(const uint8_t* kernel_buffer); |
| |
| protected: |
| static KernelBufferList* current_kernel_buffers_; |
| bool raw_test_; |
| |
| private: |
| static TestCaseBase* first_; |
| static TestCaseBase* tail_; |
| |
| TestCaseBase* next_; |
| const char* name_; |
| const char* expectation_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TestCaseBase); |
| }; |
| |
| #define USER_TEST_URI "test-lib" |
| #define RESOLVED_USER_TEST_URI "file:///test-lib" |
| #define CORELIB_TEST_URI "dart:test-lib" |
| |
| class TestCase : TestCaseBase { |
| public: |
| typedef void(RunEntry)(); |
| |
| TestCase(RunEntry* run, const char* name, const char* expectation) |
| : TestCaseBase(name, expectation), run_(run) {} |
| |
| static char* CompileTestScriptWithDFE(const char* url, |
| const char* source, |
| const uint8_t** kernel_buffer, |
| intptr_t* kernel_buffer_size, |
| bool incrementally = true, |
| bool allow_compile_errors = false, |
| const char* multiroot_filepaths = NULL, |
| const char* multiroot_scheme = NULL); |
| static char* CompileTestScriptWithDFE(const char* url, |
| int sourcefiles_count, |
| Dart_SourceFile sourcefiles[], |
| const uint8_t** kernel_buffer, |
| intptr_t* kernel_buffer_size, |
| bool incrementally = true, |
| bool allow_compile_errors = false, |
| const char* multiroot_filepaths = NULL, |
| const char* multiroot_scheme = NULL); |
| static Dart_Handle LoadTestScript( |
| const char* script, |
| Dart_NativeEntryResolver resolver, |
| const char* lib_uri = RESOLVED_USER_TEST_URI, |
| bool finalize = true, |
| bool allow_compile_errors = false); |
| static Dart_Handle LoadTestScriptWithErrors( |
| const char* script, |
| Dart_NativeEntryResolver resolver = NULL, |
| const char* lib_uri = RESOLVED_USER_TEST_URI, |
| bool finalize = true); |
| static Dart_Handle LoadTestLibrary(const char* lib_uri, |
| const char* script, |
| Dart_NativeEntryResolver resolver = NULL); |
| static Dart_Handle LoadTestScriptWithDFE( |
| int sourcefiles_count, |
| Dart_SourceFile sourcefiles[], |
| Dart_NativeEntryResolver resolver = NULL, |
| bool finalize = true, |
| bool incrementally = true, |
| bool allow_compile_errors = false, |
| const char* entry_script_uri = NULL, |
| const char* multiroot_filepaths = NULL, |
| const char* multiroot_scheme = NULL); |
| static Dart_Handle LoadCoreTestScript(const char* script, |
| Dart_NativeEntryResolver resolver); |
| |
| static Dart_Handle EvaluateExpression(const Library& lib, |
| const String& expr, |
| const Array& param_names, |
| const Array& param_values); |
| |
| static Dart_Handle lib(); |
| static const char* url(); |
| static Dart_Isolate CreateTestIsolateFromSnapshot(uint8_t* buffer, |
| const char* name = NULL) { |
| return CreateIsolate(buffer, 0, NULL, name); |
| } |
| static Dart_Isolate CreateTestIsolate(const char* name = nullptr, |
| void* isolate_group_data = nullptr, |
| void* isolate_data = nullptr); |
| static Dart_Isolate CreateTestIsolateInGroup(const char* name, |
| Dart_Isolate parent, |
| void* group_data = nullptr, |
| void* isolate_data = nullptr); |
| |
| static Dart_Handle library_handler(Dart_LibraryTag tag, |
| Dart_Handle library, |
| Dart_Handle url); |
| |
| virtual void Run(); |
| |
| // Sets |script| to be the source used at next reload. |
| static Dart_Handle SetReloadTestScript(const char* script); |
| |
| // Initiates the reload. |
| static Dart_Handle TriggerReload(const uint8_t* kernel_buffer, |
| intptr_t kernel_buffer_size); |
| static Dart_Handle TriggerReload(const char* root_script_url); |
| |
| // Helper function which reloads the current isolate using |script|. |
| static Dart_Handle ReloadTestScript(const char* script); |
| |
| // Helper function which reloads the current isolate using |script|. |
| static Dart_Handle ReloadTestKernel(const uint8_t* kernel_buffer, |
| intptr_t kernel_buffer_size); |
| |
| static void AddTestLib(const char* url, const char* source); |
| static const char* GetTestLib(const char* url); |
| |
| // Return true if non-nullable experiment is enabled. |
| static bool IsNNBD(); |
| |
| static const char* NullableTag() { return IsNNBD() ? "?" : ""; } |
| static const char* NullAssertTag() { return IsNNBD() ? "!" : ""; } |
| static const char* LateTag() { return IsNNBD() ? "late" : ""; } |
| |
| private: |
| static Dart_Handle TriggerReload( |
| std::function<bool(IsolateGroup*, JSONStream*)> do_reload); |
| |
| // |data_buffer| can either be snapshot data, or kernel binary data. |
| // If |data_buffer| is snapshot data, then |len| should be zero as snapshot |
| // size is encoded within them. If |len| is non-zero, then |data_buffer| |
| // will be treated as a kernel binary (but CreateIsolate will not |
| // take ownership of the buffer) and |instr_buffer| will be ignored. |
| static Dart_Isolate CreateIsolate(const uint8_t* data_buffer, |
| intptr_t len, |
| const uint8_t* instr_buffer, |
| const char* name, |
| void* group_data = nullptr, |
| void* isolate_data = nullptr); |
| |
| static char* ValidateCompilationResult(Zone* zone, |
| Dart_KernelCompilationResult result, |
| const uint8_t** kernel_buffer, |
| intptr_t* kernel_buffer_size, |
| bool allow_compile_errors); |
| |
| RunEntry* const run_; |
| }; |
| |
| class RawTestCase : TestCaseBase { |
| public: |
| typedef void(RunEntry)(); |
| |
| RawTestCase(RunEntry* run, const char* name, const char* expectation) |
| : TestCaseBase(name, expectation), run_(run) { |
| raw_test_ = true; |
| } |
| virtual void Run(); |
| |
| private: |
| RunEntry* const run_; |
| }; |
| |
| class TestIsolateScope { |
| public: |
| TestIsolateScope() { |
| isolate_ = reinterpret_cast<Isolate*>(TestCase::CreateTestIsolate()); |
| Dart_EnterScope(); // Create a Dart API scope for unit tests. |
| } |
| ~TestIsolateScope() { |
| Dart_ExitScope(); // Exit the Dart API scope created for unit tests. |
| ASSERT(isolate_ == Isolate::Current()); |
| Dart_ShutdownIsolate(); |
| isolate_ = NULL; |
| } |
| Isolate* isolate() const { return isolate_; } |
| |
| private: |
| Isolate* isolate_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TestIsolateScope); |
| }; |
| |
| // Ensures core libraries are initialized, thereby allowing vm/cc tests to |
| // e.g. run functions using microtasks. |
| void SetupCoreLibrariesForUnitTest(); |
| |
| template <typename T> |
| struct is_void { |
| static const bool value = false; |
| }; |
| |
| template <> |
| struct is_void<void> { |
| static const bool value = true; |
| }; |
| |
| template <typename T> |
| struct is_double { |
| static const bool value = false; |
| }; |
| |
| template <> |
| struct is_double<double> { |
| static const bool value = true; |
| }; |
| |
| class AssemblerTest { |
| public: |
| AssemblerTest(const char* name, compiler::Assembler* assembler) |
| : name_(name), |
| assembler_(assembler), |
| code_(Code::ZoneHandle()), |
| disassembly_(Thread::Current()->zone()->Alloc<char>(DISASSEMBLY_SIZE)) { |
| ASSERT(name != NULL); |
| ASSERT(assembler != NULL); |
| } |
| ~AssemblerTest() {} |
| |
| compiler::Assembler* assembler() const { return assembler_; } |
| |
| const Code& code() const { return code_; } |
| |
| uword payload_start() const { return code_.PayloadStart(); } |
| uword payload_size() const { return assembler_->CodeSize(); } |
| uword entry() const { return code_.EntryPoint(); } |
| |
| // Invoke/InvokeWithCodeAndThread is used to call assembler test functions |
| // using the ABI calling convention. |
| // ResultType is the return type of the assembler test function. |
| // ArgNType is the type of the Nth argument. |
| #if defined(USING_SIMULATOR) |
| |
| #if defined(ARCH_IS_64_BIT) |
| // TODO(fschneider): Make InvokeWithCodeAndThread<> more general and work on |
| // 32-bit. |
| // Since Simulator::Call always return a int64_t, bit_cast does not work |
| // on 32-bit platforms when returning an int32_t. Since template functions |
| // don't support partial specialization, we'd need to introduce a helper |
| // class to support 32-bit return types. |
| template <typename ResultType> |
| ResultType InvokeWithCodeAndThread() { |
| const bool fp_return = is_double<ResultType>::value; |
| const bool fp_args = false; |
| Thread* thread = Thread::Current(); |
| ASSERT(thread != NULL); |
| return bit_cast<ResultType, int64_t>(Simulator::Current()->Call( |
| bit_cast<intptr_t, uword>(entry()), reinterpret_cast<intptr_t>(&code_), |
| reinterpret_cast<intptr_t>(thread), 0, 0, fp_return, fp_args)); |
| } |
| template <typename ResultType, typename Arg1Type> |
| ResultType InvokeWithCodeAndThread(Arg1Type arg1) { |
| const bool fp_return = is_double<ResultType>::value; |
| const bool fp_args = is_double<Arg1Type>::value; |
| // TODO(fschneider): Support double arguments for simulator calls. |
| COMPILE_ASSERT(!fp_args); |
| Thread* thread = Thread::Current(); |
| ASSERT(thread != NULL); |
| return bit_cast<ResultType, int64_t>(Simulator::Current()->Call( |
| bit_cast<intptr_t, uword>(entry()), reinterpret_cast<intptr_t>(&code_), |
| reinterpret_cast<intptr_t>(thread), reinterpret_cast<intptr_t>(arg1), 0, |
| fp_return, fp_args)); |
| } |
| #endif // ARCH_IS_64_BIT |
| |
| template <typename ResultType, |
| typename Arg1Type, |
| typename Arg2Type, |
| typename Arg3Type> |
| ResultType Invoke(Arg1Type arg1, Arg2Type arg2, Arg3Type arg3) { |
| // TODO(fschneider): Support double arguments for simulator calls. |
| COMPILE_ASSERT(is_void<ResultType>::value); |
| COMPILE_ASSERT(!is_double<Arg1Type>::value); |
| COMPILE_ASSERT(!is_double<Arg2Type>::value); |
| COMPILE_ASSERT(!is_double<Arg3Type>::value); |
| const bool fp_args = false; |
| const bool fp_return = false; |
| Simulator::Current()->Call( |
| bit_cast<intptr_t, uword>(entry()), static_cast<intptr_t>(arg1), |
| static_cast<intptr_t>(arg2), reinterpret_cast<intptr_t>(arg3), 0, |
| fp_return, fp_args); |
| } |
| #else |
| template <typename ResultType> |
| ResultType InvokeWithCodeAndThread() { |
| Thread* thread = Thread::Current(); |
| ASSERT(thread != NULL); |
| typedef ResultType (*FunctionType)(const Code&, Thread*); |
| return reinterpret_cast<FunctionType>(entry())(code_, thread); |
| } |
| |
| template <typename ResultType, typename Arg1Type> |
| ResultType InvokeWithCodeAndThread(Arg1Type arg1) { |
| Thread* thread = Thread::Current(); |
| ASSERT(thread != NULL); |
| typedef ResultType (*FunctionType)(const Code&, Thread*, Arg1Type); |
| return reinterpret_cast<FunctionType>(entry())(code_, thread, arg1); |
| } |
| |
| template <typename ResultType, |
| typename Arg1Type, |
| typename Arg2Type, |
| typename Arg3Type> |
| ResultType Invoke(Arg1Type arg1, Arg2Type arg2, Arg3Type arg3) { |
| typedef ResultType (*FunctionType)(Arg1Type, Arg2Type, Arg3Type); |
| return reinterpret_cast<FunctionType>(entry())(arg1, arg2, arg3); |
| } |
| #endif // defined(USING_SIMULATOR) |
| |
| // Assemble test and set code_. |
| void Assemble(); |
| |
| // Disassembly of the code with large constants blanked out. |
| char* BlankedDisassembly() { return disassembly_; } |
| |
| private: |
| const char* name_; |
| compiler::Assembler* assembler_; |
| Code& code_; |
| static const intptr_t DISASSEMBLY_SIZE = 10240; |
| char* disassembly_; |
| |
| DISALLOW_COPY_AND_ASSIGN(AssemblerTest); |
| }; |
| |
| class CompilerTest : public AllStatic { |
| public: |
| // Test the Compiler::CompileFunction functionality by checking the return |
| // value to see if no parse errors were reported. |
| static bool TestCompileFunction(const Function& function); |
| }; |
| |
| #define EXPECT_VALID(handle) \ |
| do { \ |
| Dart_Handle tmp_handle = (handle); \ |
| if (!Api::IsValid(tmp_handle)) { \ |
| dart::Expect(__FILE__, __LINE__) \ |
| .Fail( \ |
| "expected '%s' to be a valid handle but '%s' has already been " \ |
| "freed\n", \ |
| #handle, #handle); \ |
| } \ |
| if (Dart_IsError(tmp_handle)) { \ |
| dart::Expect(__FILE__, __LINE__) \ |
| .Fail( \ |
| "expected '%s' to be a valid handle but found an error " \ |
| "handle:\n" \ |
| " '%s'\n", \ |
| #handle, Dart_GetError(tmp_handle)); \ |
| } \ |
| } while (0) |
| |
| #define EXPECT_ERROR(handle, substring) \ |
| do { \ |
| Dart_Handle tmp_handle = (handle); \ |
| if (Dart_IsError(tmp_handle)) { \ |
| dart::Expect(__FILE__, __LINE__) \ |
| .IsSubstring((substring), Dart_GetError(tmp_handle)); \ |
| } else { \ |
| dart::Expect(__FILE__, __LINE__) \ |
| .Fail( \ |
| "expected '%s' to be an error handle but found a valid " \ |
| "handle.\n", \ |
| #handle); \ |
| } \ |
| } while (0) |
| |
| #define EXPECT_TRUE(handle) \ |
| do { \ |
| Dart_Handle tmp_handle = (handle); \ |
| if (Dart_IsBoolean(tmp_handle)) { \ |
| bool value; \ |
| Dart_BooleanValue(tmp_handle, &value); \ |
| if (!value) { \ |
| dart::Expect(__FILE__, __LINE__) \ |
| .Fail("expected True, but was '%s'\n", #handle); \ |
| } \ |
| } else { \ |
| dart::Expect(__FILE__, __LINE__) \ |
| .Fail("expected True, but was '%s'\n", #handle); \ |
| } \ |
| } while (0) |
| |
| #define EXPECT_NULL(handle) \ |
| do { \ |
| Dart_Handle tmp_handle = (handle); \ |
| if (!Dart_IsNull(tmp_handle)) { \ |
| dart::Expect(__FILE__, __LINE__) \ |
| .Fail("expected '%s' to be a null handle.\n", #handle); \ |
| } \ |
| } while (0) |
| |
| #define EXPECT_NON_NULL(handle) \ |
| do { \ |
| Dart_Handle tmp_handle = (handle); \ |
| if (Dart_IsNull(tmp_handle)) { \ |
| dart::Expect(__FILE__, __LINE__) \ |
| .Fail("expected '%s' to be a non-null handle.\n", #handle); \ |
| } \ |
| } while (0) |
| |
| // Elide a substring which starts with some prefix and ends with a ". |
| // |
| // This is used to remove non-deterministic or fragile substrings from |
| // JSON output. |
| // |
| // For example: |
| // |
| // prefix = "classes" |
| // in = "\"id\":\"classes/46\"" |
| // |
| // Yields: |
| // |
| // out = "\"id\":\"\"" |
| // |
| // WARNING: This function is not safe to use if `in` is bigger than `out`! |
| void ElideJSONSubstring(const char* prefix, const char* in, char* out); |
| |
| template <typename T> |
| class SetFlagScope : public ValueObject { |
| public: |
| SetFlagScope(T* flag, T value) : flag_(flag), original_value_(*flag) { |
| *flag_ = value; |
| } |
| |
| ~SetFlagScope() { *flag_ = original_value_; } |
| |
| private: |
| T* flag_; |
| T original_value_; |
| }; |
| |
| } // namespace dart |
| |
| #endif // RUNTIME_VM_UNIT_TEST_H_ |