| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_MIPS) |
| |
| #include "vm/assembler.h" |
| #include "vm/code_generator.h" |
| #include "vm/compiler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/heap.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| #include "vm/tags.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| |
| DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects."); |
| DEFINE_FLAG(bool, |
| use_slow_path, |
| false, |
| "Set to true for debugging & verifying the slow paths."); |
| DECLARE_FLAG(bool, trace_optimized_ic_calls); |
| |
| // Input parameters: |
| // RA : return address. |
| // SP : address of last argument in argument array. |
| // SP + 4*S4 - 4 : address of first argument in argument array. |
| // SP + 4*S4 : address of return value. |
| // S5 : address of the runtime function to call. |
| // S4 : number of arguments to the call. |
| void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) { |
| const intptr_t thread_offset = NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ SetPrologueOffset(); |
| __ Comment("CallToRuntimeStub"); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ sw(FP, Address(THR, Thread::top_exit_frame_info_offset())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ lw(T0, Assembler::VMTagAddress()); |
| __ BranchEqual(T0, Immediate(VMTag::kDartTagId), &ok); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing VM code. |
| __ sw(S5, Assembler::VMTagAddress()); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| // NativeArguments are passed in registers. |
| ASSERT(sizeof(NativeArguments) == 4 * kWordSize); |
| __ ReserveAlignedFrameSpace(4 * kWordSize); // Reserve space for arguments. |
| |
| // Pass NativeArguments structure by value and call runtime. |
| // Registers A0, A1, A2, and A3 are used. |
| |
| ASSERT(thread_offset == 0 * kWordSize); |
| // Set thread in NativeArgs. |
| __ mov(A0, THR); |
| |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * kWordSize); |
| __ mov(A1, S4); // Set argc in NativeArguments. |
| |
| ASSERT(argv_offset == 2 * kWordSize); |
| __ sll(A2, S4, 2); |
| __ addu(A2, FP, A2); // Compute argv. |
| // Set argv in NativeArguments. |
| __ addiu(A2, A2, Immediate(kParamEndSlotFromFp * kWordSize)); |
| |
| |
| // Call runtime or redirection via simulator. |
| // We defensively always jalr through T9 because it is sometimes required by |
| // the MIPS ABI. |
| __ mov(T9, S5); |
| __ jalr(T9); |
| |
| ASSERT(retval_offset == 3 * kWordSize); |
| // Retval is next to 1st argument. |
| __ delay_slot()->addiu(A3, A2, Immediate(kWordSize)); |
| __ Comment("CallToRuntimeStub return"); |
| |
| // Mark that the thread is executing Dart code. |
| __ LoadImmediate(A2, VMTag::kDartTagId); |
| __ sw(A2, Assembler::VMTagAddress()); |
| |
| // Reset exit frame information in Isolate structure. |
| __ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset())); |
| |
| __ LeaveStubFrameAndReturn(); |
| } |
| |
| |
| // Print the stop message. |
| DEFINE_LEAF_RUNTIME_ENTRY(void, PrintStopMessage, 1, const char* message) { |
| OS::Print("Stop message: %s\n", message); |
| } |
| END_LEAF_RUNTIME_ENTRY |
| |
| |
| // Input parameters: |
| // A0 : stop message (const char*). |
| // Must preserve all registers. |
| void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) { |
| __ EnterCallRuntimeFrame(0); |
| // Call the runtime leaf function. A0 already contains the parameter. |
| __ CallRuntime(kPrintStopMessageRuntimeEntry, 1); |
| __ LeaveCallRuntimeFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Input parameters: |
| // RA : return address. |
| // SP : address of return value. |
| // T5 : address of the native function to call. |
| // A2 : address of first argument in argument array. |
| // A1 : argc_tag including number of arguments and function kind. |
| void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) { |
| const intptr_t thread_offset = NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ SetPrologueOffset(); |
| __ Comment("CallNativeCFunctionStub"); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ sw(FP, Address(THR, Thread::top_exit_frame_info_offset())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ lw(T0, Assembler::VMTagAddress()); |
| __ BranchEqual(T0, Immediate(VMTag::kDartTagId), &ok); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ sw(T5, Assembler::VMTagAddress()); |
| |
| // Initialize NativeArguments structure and call native function. |
| // Registers A0, A1, A2, and A3 are used. |
| |
| ASSERT(thread_offset == 0 * kWordSize); |
| // Set thread in NativeArgs. |
| __ mov(A0, THR); |
| |
| // There are no native calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * kWordSize); |
| // Set argc in NativeArguments: A1 already contains argc. |
| |
| ASSERT(argv_offset == 2 * kWordSize); |
| // Set argv in NativeArguments: A2 already contains argv. |
| |
| ASSERT(retval_offset == 3 * kWordSize); |
| // Set retval in NativeArgs. |
| __ addiu(A3, FP, Immediate(kCallerSpSlotFromFp * kWordSize)); |
| |
| // Passing the structure by value as in runtime calls would require changing |
| // Dart API for native functions. |
| // For now, space is reserved on the stack and we pass a pointer to it. |
| __ addiu(SP, SP, Immediate(-4 * kWordSize)); |
| __ sw(A3, Address(SP, 3 * kWordSize)); |
| __ sw(A2, Address(SP, 2 * kWordSize)); |
| __ sw(A1, Address(SP, 1 * kWordSize)); |
| __ sw(A0, Address(SP, 0 * kWordSize)); |
| __ mov(A0, SP); // Pass the pointer to the NativeArguments. |
| |
| |
| __ mov(A1, T5); // Pass the function entrypoint. |
| __ ReserveAlignedFrameSpace(2 * kWordSize); // Just passing A0, A1. |
| |
| // Call native wrapper function or redirection via simulator. |
| __ lw(T9, Address(THR, Thread::native_call_wrapper_entry_point_offset())); |
| __ jalr(T9); |
| __ Comment("CallNativeCFunctionStub return"); |
| |
| // Mark that the thread is executing Dart code. |
| __ LoadImmediate(A2, VMTag::kDartTagId); |
| __ sw(A2, Assembler::VMTagAddress()); |
| |
| // Reset exit frame information in Isolate structure. |
| __ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset())); |
| |
| __ LeaveStubFrameAndReturn(); |
| } |
| |
| |
| // Input parameters: |
| // RA : return address. |
| // SP : address of return value. |
| // T5 : address of the native function to call. |
| // A2 : address of first argument in argument array. |
| // A1 : argc_tag including number of arguments and function kind. |
| void StubCode::GenerateCallBootstrapCFunctionStub(Assembler* assembler) { |
| const intptr_t thread_offset = NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ SetPrologueOffset(); |
| __ Comment("CallNativeCFunctionStub"); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ sw(FP, Address(THR, Thread::top_exit_frame_info_offset())); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ lw(T0, Assembler::VMTagAddress()); |
| __ BranchEqual(T0, Immediate(VMTag::kDartTagId), &ok); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ sw(T5, Assembler::VMTagAddress()); |
| |
| // Initialize NativeArguments structure and call native function. |
| // Registers A0, A1, A2, and A3 are used. |
| |
| ASSERT(thread_offset == 0 * kWordSize); |
| // Set thread in NativeArgs. |
| __ mov(A0, THR); |
| |
| // There are no native calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * kWordSize); |
| // Set argc in NativeArguments: A1 already contains argc. |
| |
| ASSERT(argv_offset == 2 * kWordSize); |
| // Set argv in NativeArguments: A2 already contains argv. |
| |
| ASSERT(retval_offset == 3 * kWordSize); |
| // Set retval in NativeArgs. |
| __ addiu(A3, FP, Immediate(kCallerSpSlotFromFp * kWordSize)); |
| |
| // Passing the structure by value as in runtime calls would require changing |
| // Dart API for native functions. |
| // For now, space is reserved on the stack and we pass a pointer to it. |
| __ addiu(SP, SP, Immediate(-4 * kWordSize)); |
| __ sw(A3, Address(SP, 3 * kWordSize)); |
| __ sw(A2, Address(SP, 2 * kWordSize)); |
| __ sw(A1, Address(SP, 1 * kWordSize)); |
| __ sw(A0, Address(SP, 0 * kWordSize)); |
| __ mov(A0, SP); // Pass the pointer to the NativeArguments. |
| |
| __ ReserveAlignedFrameSpace(kWordSize); // Just passing A0. |
| |
| // Call native function or redirection via simulator. |
| |
| // We defensively always jalr through T9 because it is sometimes required by |
| // the MIPS ABI. |
| __ mov(T9, T5); |
| __ jalr(T9); |
| __ Comment("CallNativeCFunctionStub return"); |
| |
| // Mark that the thread is executing Dart code. |
| __ LoadImmediate(A2, VMTag::kDartTagId); |
| __ sw(A2, Assembler::VMTagAddress()); |
| |
| // Reset exit frame information in Isolate structure. |
| __ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset())); |
| |
| __ LeaveStubFrameAndReturn(); |
| } |
| |
| |
| // Input parameters: |
| // S4: arguments descriptor array. |
| void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| __ Comment("CallStaticFunctionStub"); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S4, Address(SP, 1 * kWordSize)); |
| __ sw(ZR, Address(SP, 0 * kWordSize)); |
| |
| __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
| __ Comment("CallStaticFunctionStub return"); |
| |
| // Get Code object result and restore arguments descriptor array. |
| __ lw(CODE_REG, Address(SP, 0 * kWordSize)); |
| __ lw(S4, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| |
| __ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| |
| // Remove the stub frame as we are about to jump to the dart function. |
| __ LeaveStubFrameAndReturn(T0); |
| } |
| |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // S4: arguments descriptor array. |
| void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ lw(CODE_REG, Address(THR, Thread::fix_callers_target_code_offset())); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S4, Address(SP, 1 * kWordSize)); |
| __ sw(ZR, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
| // Get Code object result and restore arguments descriptor array. |
| __ lw(CODE_REG, Address(SP, 0 * kWordSize)); |
| __ lw(S4, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| |
| // Jump to the dart function. |
| __ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| |
| // Remove the stub frame. |
| __ LeaveStubFrameAndReturn(T0); |
| } |
| |
| |
| // Called from object allocate instruction when the allocation stub has been |
| // disabled. |
| void StubCode::GenerateFixAllocationStubTargetStub(Assembler* assembler) { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ lw(CODE_REG, Address(THR, Thread::fix_allocation_stub_code_offset())); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ addiu(SP, SP, Immediate(-1 * kWordSize)); |
| __ sw(ZR, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| // Get Code object result. |
| __ lw(CODE_REG, Address(SP, 0 * kWordSize)); |
| __ addiu(SP, SP, Immediate(1 * kWordSize)); |
| |
| // Jump to the dart function. |
| __ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| |
| // Remove the stub frame. |
| __ LeaveStubFrameAndReturn(T0); |
| } |
| |
| |
| // Input parameters: |
| // A1: Smi-tagged argument count, may be zero. |
| // FP[kParamEndSlotFromFp + 1]: Last argument. |
| static void PushArgumentsArray(Assembler* assembler) { |
| __ Comment("PushArgumentsArray"); |
| // Allocate array to store arguments of caller. |
| __ LoadObject(A0, Object::null_object()); |
| // A0: Null element type for raw Array. |
| // A1: Smi-tagged argument count, may be zero. |
| __ BranchLink(*StubCode::AllocateArray_entry()); |
| __ Comment("PushArgumentsArray return"); |
| // V0: newly allocated array. |
| // A1: Smi-tagged argument count, may be zero (was preserved by the stub). |
| __ Push(V0); // Array is in V0 and on top of stack. |
| __ sll(T1, A1, 1); |
| __ addu(T1, FP, T1); |
| __ AddImmediate(T1, kParamEndSlotFromFp * kWordSize); |
| // T1: address of first argument on stack. |
| // T2: address of first argument in array. |
| |
| Label loop, loop_exit; |
| __ blez(A1, &loop_exit); |
| __ delay_slot()->addiu(T2, V0, |
| Immediate(Array::data_offset() - kHeapObjectTag)); |
| __ Bind(&loop); |
| __ lw(T3, Address(T1)); |
| __ addiu(A1, A1, Immediate(-Smi::RawValue(1))); |
| __ addiu(T1, T1, Immediate(-kWordSize)); |
| __ addiu(T2, T2, Immediate(kWordSize)); |
| __ bgez(A1, &loop); |
| __ delay_slot()->sw(T3, Address(T2, -kWordSize)); |
| __ Bind(&loop_exit); |
| } |
| |
| |
| // Used by eager and lazy deoptimization. Preserve result in V0 if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterFrame(...) below: |
| // +------------------+ |
| // | Saved PP | <- TOS |
| // +------------------+ |
| // | Saved CODE_REG | |
| // +------------------+ |
| // | Saved FP | <- FP of stub |
| // +------------------+ |
| // | Saved LR | (deoptimization point) |
| // +------------------+ |
| // | Saved CODE_REG | |
| // +------------------+ |
| // | ... | <- SP of optimized frame |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| DeoptStubKind kind) { |
| const intptr_t kPushedRegistersSize = |
| kNumberOfCpuRegisters * kWordSize + kNumberOfFRegisters * kWordSize; |
| |
| __ SetPrologueOffset(); |
| __ Comment("GenerateDeoptimizationSequence"); |
| // DeoptimizeCopyFrame expects a Dart frame. |
| __ EnterStubFrame(kPushedRegistersSize); |
| |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_result_slot_from_fp = |
| kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - V0); |
| const intptr_t saved_exception_slot_from_fp = |
| kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - V0); |
| const intptr_t saved_stacktrace_slot_from_fp = |
| kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - V1); |
| // Result in V0 is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| for (int i = 0; i < kNumberOfCpuRegisters; i++) { |
| const int slot = kNumberOfCpuRegisters - i; |
| Register reg = static_cast<Register>(i); |
| if (reg == CODE_REG) { |
| // Save the original value of CODE_REG pushed before invoking this stub |
| // instead of the value used to call this stub. |
| COMPILE_ASSERT(TMP < CODE_REG); // Assert TMP is pushed first. |
| __ lw(TMP, Address(FP, kCallerSpSlotFromFp * kWordSize)); |
| __ sw(TMP, Address(SP, kPushedRegistersSize - slot * kWordSize)); |
| } else { |
| __ sw(reg, Address(SP, kPushedRegistersSize - slot * kWordSize)); |
| } |
| } |
| for (int i = 0; i < kNumberOfFRegisters; i++) { |
| // These go below the CPU registers. |
| const int slot = kNumberOfCpuRegisters + kNumberOfFRegisters - i; |
| FRegister reg = static_cast<FRegister>(i); |
| __ swc1(reg, Address(SP, kPushedRegistersSize - slot * kWordSize)); |
| } |
| |
| __ mov(A0, SP); // Pass address of saved registers block. |
| bool is_lazy = |
| (kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow); |
| __ LoadImmediate(A1, is_lazy ? 1 : 0); |
| __ ReserveAlignedFrameSpace(1 * kWordSize); |
| __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2); |
| // Result (V0) is stack-size (FP - SP) in bytes, incl. the return address. |
| |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into T1 temporarily. |
| __ lw(T1, Address(FP, saved_result_slot_from_fp * kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into T1 temporarily. |
| __ lw(T1, Address(FP, saved_exception_slot_from_fp * kWordSize)); |
| __ lw(T2, Address(FP, saved_stacktrace_slot_from_fp * kWordSize)); |
| } |
| |
| __ RestoreCodePointer(); |
| __ LeaveDartFrame(); |
| __ subu(SP, FP, V0); |
| |
| // DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| __ mov(A0, FP); // Get last FP address. |
| if (kind == kLazyDeoptFromReturn) { |
| __ Push(T1); // Preserve result as first local. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ Push(T1); // Preserve exception as first local. |
| __ Push(T2); // Preserve stacktrace as second local. |
| } |
| __ ReserveAlignedFrameSpace(1 * kWordSize); |
| __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); // Pass last FP in A0. |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into T1. |
| __ lw(T1, Address(FP, kFirstLocalSlotFromFp * kWordSize)); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into T1. |
| __ lw(T1, Address(FP, kFirstLocalSlotFromFp * kWordSize)); |
| __ lw(T2, Address(FP, (kFirstLocalSlotFromFp - 1) * kWordSize)); |
| } |
| // Code above cannot cause GC. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| // Enter stub frame with loading PP. The caller's PP is not materialized yet. |
| __ EnterStubFrame(); |
| if (kind == kLazyDeoptFromReturn) { |
| __ Push(T1); // Preserve result, it will be GC-d here. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ Push(T1); // Preserve exception, it will be GC-d here. |
| __ Push(T2); // Preserve stacktrace, it will be GC-d here. |
| } |
| __ PushObject(Smi::ZoneHandle()); // Space for the result. |
| __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
| // Result tells stub how many bytes to remove from the expression stack |
| // of the bottom-most frame. They were used as materialization arguments. |
| __ Pop(T1); |
| if (kind == kLazyDeoptFromReturn) { |
| __ Pop(V0); // Restore result. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ Pop(V1); // Restore stacktrace. |
| __ Pop(V0); // Restore exception. |
| } |
| __ LeaveStubFrame(); |
| // Remove materialization arguments. |
| __ SmiUntag(T1); |
| __ addu(SP, SP, T1); |
| // The caller is responsible for emitting the return instruction. |
| } |
| |
| // V0: result, must be preserved |
| void StubCode::GenerateDeoptimizeLazyFromReturnStub(Assembler* assembler) { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ LoadImmediate(TMP, kZapCodeReg); |
| __ Push(TMP); |
| // Return address for "call" to deopt stub. |
| __ LoadImmediate(RA, kZapReturnAddress); |
| __ lw(CODE_REG, Address(THR, Thread::lazy_deopt_from_return_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn); |
| __ Ret(); |
| } |
| |
| |
| // V0: exception, must be preserved |
| // V1: stacktrace, must be preserved |
| void StubCode::GenerateDeoptimizeLazyFromThrowStub(Assembler* assembler) { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ LoadImmediate(TMP, kZapCodeReg); |
| __ Push(TMP); |
| // Return address for "call" to deopt stub. |
| __ LoadImmediate(RA, kZapReturnAddress); |
| __ lw(CODE_REG, Address(THR, Thread::lazy_deopt_from_throw_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow); |
| __ Ret(); |
| } |
| |
| |
| void StubCode::GenerateDeoptimizeStub(Assembler* assembler) { |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| __ Ret(); |
| } |
| |
| |
| static void GenerateDispatcherCode(Assembler* assembler, |
| Label* call_target_function) { |
| __ Comment("NoSuchMethodDispatch"); |
| // When lazily generated invocation dispatchers are disabled, the |
| // miss-handler may return null. |
| __ BranchNotEqual(T0, Object::null_object(), call_target_function); |
| __ EnterStubFrame(); |
| // Load the receiver. |
| __ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ sll(TMP, A1, 1); // A1 is a Smi. |
| __ addu(TMP, FP, TMP); |
| __ lw(T6, Address(TMP, kParamEndSlotFromFp * kWordSize)); |
| |
| // Push space for the return value. |
| // Push the receiver. |
| // Push ICData/MegamorphicCache object. |
| // Push arguments descriptor array. |
| // Push original arguments array. |
| __ addiu(SP, SP, Immediate(-4 * kWordSize)); |
| __ sw(ZR, Address(SP, 3 * kWordSize)); |
| __ sw(T6, Address(SP, 2 * kWordSize)); |
| __ sw(S5, Address(SP, 1 * kWordSize)); |
| __ sw(S4, Address(SP, 0 * kWordSize)); |
| // A1: Smi-tagged arguments array length. |
| PushArgumentsArray(assembler); |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kInvokeNoSuchMethodDispatcherRuntimeEntry, kNumArgs); |
| __ lw(V0, Address(SP, 4 * kWordSize)); // Return value. |
| __ addiu(SP, SP, Immediate(5 * kWordSize)); |
| __ LeaveStubFrame(); |
| __ Ret(); |
| } |
| |
| |
| void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ lw(T2, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ sll(T2, T2, 1); // T2 is a Smi. |
| __ addu(TMP, FP, T2); |
| __ lw(T6, Address(TMP, kParamEndSlotFromFp * kWordSize)); |
| |
| // Preserve IC data and arguments descriptor. |
| __ addiu(SP, SP, Immediate(-6 * kWordSize)); |
| __ sw(S5, Address(SP, 5 * kWordSize)); |
| __ sw(S4, Address(SP, 4 * kWordSize)); |
| |
| // Push space for the return value. |
| // Push the receiver. |
| // Push IC data object. |
| // Push arguments descriptor array. |
| __ sw(ZR, Address(SP, 3 * kWordSize)); |
| __ sw(T6, Address(SP, 2 * kWordSize)); |
| __ sw(S5, Address(SP, 1 * kWordSize)); |
| __ sw(S4, Address(SP, 0 * kWordSize)); |
| |
| __ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry, 3); |
| |
| __ lw(T0, Address(SP, 3 * kWordSize)); // Get result function. |
| __ lw(S4, Address(SP, 4 * kWordSize)); // Restore argument descriptor. |
| __ lw(S5, Address(SP, 5 * kWordSize)); // Restore IC data. |
| __ addiu(SP, SP, Immediate(6 * kWordSize)); |
| |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| if (!FLAG_lazy_dispatchers) { |
| Label call_target_function; |
| GenerateDispatcherCode(assembler, &call_target_function); |
| __ Bind(&call_target_function); |
| } |
| |
| __ lw(CODE_REG, FieldAddress(T0, Function::code_offset())); |
| __ lw(T2, FieldAddress(T0, Function::entry_point_offset())); |
| __ jr(T2); |
| } |
| |
| |
| // Called for inline allocation of arrays. |
| // Input parameters: |
| // RA: return address. |
| // A1: Array length as Smi (must be preserved). |
| // A0: array element type (either NULL or an instantiated type). |
| // NOTE: A1 cannot be clobbered here as the caller relies on it being saved. |
| // The newly allocated object is returned in V0. |
| void StubCode::GenerateAllocateArrayStub(Assembler* assembler) { |
| __ Comment("AllocateArrayStub"); |
| Label slow_case; |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)). |
| __ mov(T3, A1); // Array length. |
| |
| // Check that length is a positive Smi. |
| __ andi(CMPRES1, T3, Immediate(kSmiTagMask)); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ bne(CMPRES1, ZR, &slow_case); |
| } |
| __ bltz(T3, &slow_case); |
| |
| // Check for maximum allowed length. |
| const intptr_t max_len = |
| reinterpret_cast<int32_t>(Smi::New(Array::kMaxElements)); |
| __ BranchUnsignedGreater(T3, Immediate(max_len), &slow_case); |
| |
| const intptr_t cid = kArrayCid; |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kArrayCid, T4, &slow_case)); |
| |
| const intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1; |
| __ LoadImmediate(T2, fixed_size); |
| __ sll(T3, T3, 1); // T3 is a Smi. |
| __ addu(T2, T2, T3); |
| ASSERT(kSmiTagShift == 1); |
| __ LoadImmediate(T3, ~(kObjectAlignment - 1)); |
| __ and_(T2, T2, T3); |
| |
| // T2: Allocation size. |
| |
| Heap::Space space = Heap::kNew; |
| __ lw(T3, Address(THR, Thread::heap_offset())); |
| // Potential new object start. |
| __ lw(T0, Address(T3, Heap::TopOffset(space))); |
| |
| __ addu(T1, T0, T2); // Potential next object start. |
| __ BranchUnsignedLess(T1, T0, &slow_case); // Branch on unsigned overflow. |
| |
| // Check if the allocation fits into the remaining space. |
| // T0: potential new object start. |
| // T1: potential next object start. |
| // T2: allocation size. |
| // T3: heap. |
| __ lw(T4, Address(T3, Heap::EndOffset(space))); |
| __ BranchUnsignedGreaterEqual(T1, T4, &slow_case); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| // T3: heap. |
| __ sw(T1, Address(T3, Heap::TopOffset(space))); |
| __ addiu(T0, T0, Immediate(kHeapObjectTag)); |
| NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T4, space)); |
| |
| // Initialize the tags. |
| // T0: new object start as a tagged pointer. |
| // T1: new object end address. |
| // T2: allocation size. |
| { |
| Label overflow, done; |
| const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2; |
| |
| __ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag), |
| &overflow); |
| __ b(&done); |
| __ delay_slot()->sll(T2, T2, shift); |
| __ Bind(&overflow); |
| __ mov(T2, ZR); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| // T2: size and bit tags. |
| __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); |
| __ or_(T2, T2, TMP); |
| __ sw(T2, FieldAddress(T0, Array::tags_offset())); // Store tags. |
| } |
| |
| // T0: new object start as a tagged pointer. |
| // T1: new object end address. |
| // Store the type argument field. |
| __ StoreIntoObjectNoBarrier( |
| T0, FieldAddress(T0, Array::type_arguments_offset()), A0); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier(T0, FieldAddress(T0, Array::length_offset()), A1); |
| |
| __ LoadObject(T7, Object::null_object()); |
| // Initialize all array elements to raw_null. |
| // T0: new object start as a tagged pointer. |
| // T1: new object end address. |
| // T2: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| // T7: null. |
| __ AddImmediate(T2, T0, sizeof(RawArray) - kHeapObjectTag); |
| |
| Label done; |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ BranchUnsignedGreaterEqual(T2, T1, &done); |
| __ sw(T7, Address(T2, 0)); |
| __ b(&init_loop); |
| __ delay_slot()->addiu(T2, T2, Immediate(kWordSize)); |
| __ Bind(&done); |
| |
| __ Ret(); // Returns the newly allocated object in V0. |
| __ delay_slot()->mov(V0, T0); |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| // Push array length as Smi and element type. |
| __ addiu(SP, SP, Immediate(-3 * kWordSize)); |
| __ sw(ZR, Address(SP, 2 * kWordSize)); |
| __ sw(A1, Address(SP, 1 * kWordSize)); |
| __ sw(A0, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
| __ Comment("AllocateArrayStub return"); |
| // Pop arguments; result is popped in IP. |
| __ lw(V0, Address(SP, 2 * kWordSize)); |
| __ lw(A1, Address(SP, 1 * kWordSize)); |
| __ lw(A0, Address(SP, 0 * kWordSize)); |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); |
| |
| __ LeaveStubFrameAndReturn(); |
| } |
| |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // RA : points to return address. |
| // A0 : code object of the Dart function to call. |
| // A1 : arguments descriptor array. |
| // A2 : arguments array. |
| // A3 : current thread. |
| void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| // Save frame pointer coming in. |
| __ Comment("InvokeDartCodeStub"); |
| __ EnterFrame(); |
| |
| // Push code object to PC marker slot. |
| __ lw(TMP, Address(A3, Thread::invoke_dart_code_stub_offset())); |
| __ Push(TMP); |
| |
| // Save new context and C++ ABI callee-saved registers. |
| |
| // The saved vm tag, top resource, and top exit frame info. |
| const intptr_t kPreservedSlots = 3; |
| const intptr_t kPreservedRegSpace = |
| kWordSize * |
| (kAbiPreservedCpuRegCount + kAbiPreservedFpuRegCount + kPreservedSlots); |
| |
| __ addiu(SP, SP, Immediate(-kPreservedRegSpace)); |
| for (int i = S0; i <= S7; i++) { |
| Register r = static_cast<Register>(i); |
| const intptr_t slot = i - S0 + kPreservedSlots; |
| __ sw(r, Address(SP, slot * kWordSize)); |
| } |
| |
| for (intptr_t i = kAbiFirstPreservedFpuReg; i <= kAbiLastPreservedFpuReg; |
| i++) { |
| FRegister r = static_cast<FRegister>(i); |
| const intptr_t slot = kAbiPreservedCpuRegCount + kPreservedSlots + i - |
| kAbiFirstPreservedFpuReg; |
| __ swc1(r, Address(SP, slot * kWordSize)); |
| } |
| |
| // We now load the pool pointer(PP) with a GC safe value as we are about |
| // to invoke dart code. |
| __ LoadImmediate(PP, 0); |
| |
| // Set up THR, which caches the current thread in Dart code. |
| if (THR != A3) { |
| __ mov(THR, A3); |
| } |
| |
| // Save the current VMTag on the stack. |
| __ lw(T1, Assembler::VMTagAddress()); |
| __ sw(T1, Address(SP, 2 * kWordSize)); |
| |
| // Mark that the thread is executing Dart code. |
| __ LoadImmediate(T0, VMTag::kDartTagId); |
| __ sw(T0, Assembler::VMTagAddress()); |
| |
| // Save top resource and top exit frame info. Use T0 as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ lw(T0, Address(THR, Thread::top_resource_offset())); |
| __ sw(ZR, Address(THR, Thread::top_resource_offset())); |
| __ sw(T0, Address(SP, 1 * kWordSize)); |
| __ lw(T0, Address(THR, Thread::top_exit_frame_info_offset())); |
| __ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset())); |
| // kExitLinkSlotFromEntryFp must be kept in sync with the code below. |
| ASSERT(kExitLinkSlotFromEntryFp == -24); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| |
| // After the call, The stack pointer is restored to this location. |
| // Pushed S0-7, F20-31, T0, T0, T1 = 23. |
| |
| // Load arguments descriptor array into S4, which is passed to Dart code. |
| __ lw(S4, Address(A1, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load number of arguments into S5. |
| __ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ SmiUntag(T1); |
| |
| // Compute address of 'arguments array' data area into A2. |
| __ lw(A2, Address(A2, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ beq(T1, ZR, &done_push_arguments); // check if there are arguments. |
| __ delay_slot()->addiu(A2, A2, |
| Immediate(Array::data_offset() - kHeapObjectTag)); |
| __ mov(A1, ZR); |
| __ Bind(&push_arguments); |
| __ lw(A3, Address(A2)); |
| __ Push(A3); |
| __ addiu(A1, A1, Immediate(1)); |
| __ BranchSignedLess(A1, T1, &push_arguments); |
| __ delay_slot()->addiu(A2, A2, Immediate(kWordSize)); |
| |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| // We are calling into Dart code, here, so there is no need to call through |
| // T9 to match the ABI. |
| __ lw(CODE_REG, Address(A0, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ lw(A0, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jalr(A0); // S4 is the arguments descriptor array. |
| __ Comment("InvokeDartCodeStub return"); |
| |
| // Get rid of arguments pushed on the stack. |
| __ AddImmediate(SP, FP, kExitLinkSlotFromEntryFp * kWordSize); |
| |
| |
| // Restore the current VMTag from the stack. |
| __ lw(T1, Address(SP, 2 * kWordSize)); |
| __ sw(T1, Assembler::VMTagAddress()); |
| |
| // Restore the saved top resource and top exit frame info back into the |
| // Isolate structure. Uses T0 as a temporary register for this. |
| __ lw(T0, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(THR, Thread::top_resource_offset())); |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ sw(T0, Address(THR, Thread::top_exit_frame_info_offset())); |
| |
| // Restore C++ ABI callee-saved registers. |
| for (int i = S0; i <= S7; i++) { |
| Register r = static_cast<Register>(i); |
| const intptr_t slot = i - S0 + kPreservedSlots; |
| __ lw(r, Address(SP, slot * kWordSize)); |
| } |
| |
| for (intptr_t i = kAbiFirstPreservedFpuReg; i <= kAbiLastPreservedFpuReg; |
| i++) { |
| FRegister r = static_cast<FRegister>(i); |
| const intptr_t slot = kAbiPreservedCpuRegCount + kPreservedSlots + i - |
| kAbiFirstPreservedFpuReg; |
| __ lwc1(r, Address(SP, slot * kWordSize)); |
| } |
| |
| __ addiu(SP, SP, Immediate(kPreservedRegSpace)); |
| |
| // Restore the frame pointer and return. |
| __ LeaveFrameAndReturn(); |
| } |
| |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // T1: number of context variables. |
| // Output: |
| // V0: new allocated RawContext object. |
| void StubCode::GenerateAllocateContextStub(Assembler* assembler) { |
| __ Comment("AllocateContext"); |
| if (FLAG_inline_alloc) { |
| Label slow_case; |
| // First compute the rounded instance size. |
| // T1: number of context variables. |
| intptr_t fixed_size = sizeof(RawContext) + kObjectAlignment - 1; |
| __ LoadImmediate(T2, fixed_size); |
| __ sll(T0, T1, 2); |
| __ addu(T2, T2, T0); |
| ASSERT(kSmiTagShift == 1); |
| __ LoadImmediate(T0, ~((kObjectAlignment)-1)); |
| __ and_(T2, T2, T0); |
| |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kContextCid, T4, &slow_case)); |
| // Now allocate the object. |
| // T1: number of context variables. |
| // T2: object size. |
| const intptr_t cid = kContextCid; |
| Heap::Space space = Heap::kNew; |
| __ lw(T5, Address(THR, Thread::heap_offset())); |
| __ lw(V0, Address(T5, Heap::TopOffset(space))); |
| __ addu(T3, T2, V0); |
| |
| // Check if the allocation fits into the remaining space. |
| // V0: potential new object. |
| // T1: number of context variables. |
| // T2: object size. |
| // T3: potential next object start. |
| // T5: heap. |
| __ lw(CMPRES1, Address(T5, Heap::EndOffset(space))); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ BranchUnsignedGreaterEqual(T3, CMPRES1, &slow_case); |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // V0: new object. |
| // T1: number of context variables. |
| // T2: object size. |
| // T3: next object start. |
| // T5: heap. |
| __ sw(T3, Address(T5, Heap::TopOffset(space))); |
| __ addiu(V0, V0, Immediate(kHeapObjectTag)); |
| NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T5, space)); |
| |
| // Calculate the size tag. |
| // V0: new object. |
| // T1: number of context variables. |
| // T2: object size. |
| const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2; |
| __ LoadImmediate(TMP, RawObject::SizeTag::kMaxSizeTag); |
| __ sltu(CMPRES1, TMP, T2); // CMPRES1 = T2 > TMP ? 1 : 0. |
| __ movn(T2, ZR, CMPRES1); // T2 = CMPRES1 != 0 ? 0 : T2. |
| __ sll(TMP, T2, shift); // TMP = T2 << shift. |
| __ movz(T2, TMP, CMPRES1); // T2 = CMPRES1 == 0 ? TMP : T2. |
| |
| // Get the class index and insert it into the tags. |
| // T2: size and bit tags. |
| __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); |
| __ or_(T2, T2, TMP); |
| __ sw(T2, FieldAddress(V0, Context::tags_offset())); |
| |
| // Setup up number of context variables field. |
| // V0: new object. |
| // T1: number of context variables as integer value (not object). |
| __ sw(T1, FieldAddress(V0, Context::num_variables_offset())); |
| |
| __ LoadObject(T7, Object::null_object()); |
| |
| // Initialize the context variables. |
| // V0: new object. |
| // T1: number of context variables. |
| Label loop, loop_exit; |
| __ blez(T1, &loop_exit); |
| // Setup the parent field. |
| __ delay_slot()->sw(T7, FieldAddress(V0, Context::parent_offset())); |
| __ AddImmediate(T3, V0, Context::variable_offset(0) - kHeapObjectTag); |
| __ sll(T1, T1, 2); |
| __ Bind(&loop); |
| __ addiu(T1, T1, Immediate(-kWordSize)); |
| __ addu(T4, T3, T1); |
| __ bgtz(T1, &loop); |
| __ delay_slot()->sw(T7, Address(T4)); |
| __ Bind(&loop_exit); |
| |
| // Done allocating and initializing the context. |
| // V0: new object. |
| __ Ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ SmiTag(T1); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ LoadObject(TMP, Object::null_object()); |
| __ sw(TMP, Address(SP, 1 * kWordSize)); // Store null. |
| __ sw(T1, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
| __ lw(V0, Address(SP, 1 * kWordSize)); // Get the new context. |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); // Pop argument and return. |
| |
| // V0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrameAndReturn(); |
| } |
| |
| |
| // Helper stub to implement Assembler::StoreIntoObject. |
| // Input parameters: |
| // T0: Address (i.e. object) being stored into. |
| void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) { |
| // Save values being destroyed. |
| __ Comment("UpdateStoreBufferStub"); |
| __ addiu(SP, SP, Immediate(-3 * kWordSize)); |
| __ sw(T3, Address(SP, 2 * kWordSize)); |
| __ sw(T2, Address(SP, 1 * kWordSize)); |
| __ sw(T1, Address(SP, 0 * kWordSize)); |
| |
| Label add_to_buffer; |
| // Check whether this object has already been remembered. Skip adding to the |
| // store buffer if the object is in the store buffer already. |
| // Spilled: T1, T2, T3. |
| // T0: Address being stored. |
| __ lw(T2, FieldAddress(T0, Object::tags_offset())); |
| __ andi(CMPRES1, T2, Immediate(1 << RawObject::kRememberedBit)); |
| __ beq(CMPRES1, ZR, &add_to_buffer); |
| __ lw(T1, Address(SP, 0 * kWordSize)); |
| __ lw(T2, Address(SP, 1 * kWordSize)); |
| __ lw(T3, Address(SP, 2 * kWordSize)); |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); |
| __ Ret(); |
| |
| __ Bind(&add_to_buffer); |
| // Atomically set the remembered bit of the object header. |
| Label retry; |
| __ Bind(&retry); |
| __ ll(T2, FieldAddress(T0, Object::tags_offset())); |
| __ ori(T2, T2, Immediate(1 << RawObject::kRememberedBit)); |
| __ sc(T2, FieldAddress(T0, Object::tags_offset())); |
| // T2 = 1 on success, 0 on failure. |
| __ beq(T2, ZR, &retry); |
| |
| // Load the StoreBuffer block out of the thread. Then load top_ out of the |
| // StoreBufferBlock and add the address to the pointers_. |
| __ lw(T1, Address(THR, Thread::store_buffer_block_offset())); |
| __ lw(T2, Address(T1, StoreBufferBlock::top_offset())); |
| __ sll(T3, T2, 2); |
| __ addu(T3, T1, T3); |
| __ sw(T0, Address(T3, StoreBufferBlock::pointers_offset())); |
| |
| // Increment top_ and check for overflow. |
| // T2: top_ |
| // T1: StoreBufferBlock |
| Label L; |
| __ addiu(T2, T2, Immediate(1)); |
| __ sw(T2, Address(T1, StoreBufferBlock::top_offset())); |
| __ addiu(CMPRES1, T2, Immediate(-StoreBufferBlock::kSize)); |
| // Restore values. |
| __ lw(T1, Address(SP, 0 * kWordSize)); |
| __ lw(T2, Address(SP, 1 * kWordSize)); |
| __ lw(T3, Address(SP, 2 * kWordSize)); |
| __ beq(CMPRES1, ZR, &L); |
| __ delay_slot()->addiu(SP, SP, Immediate(3 * kWordSize)); |
| __ Ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&L); |
| // Setup frame, push callee-saved registers. |
| |
| __ EnterCallRuntimeFrame(1 * kWordSize); |
| __ mov(A0, THR); |
| __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1); |
| __ Comment("UpdateStoreBufferStub return"); |
| // Restore callee-saved registers, tear down frame. |
| __ LeaveCallRuntimeFrame(); |
| __ Ret(); |
| } |
| |
| |
| // Called for inline allocation of objects. |
| // Input parameters: |
| // RA : return address. |
| // SP + 0 : type arguments object (only if class is parameterized). |
| void StubCode::GenerateAllocationStubForClass(Assembler* assembler, |
| const Class& cls) { |
| __ Comment("AllocationStubForClass"); |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = cls.NumTypeArguments() > 0; |
| ASSERT(!is_cls_parameterized || |
| (cls.type_arguments_field_offset() != Class::kNoTypeArguments)); |
| // kInlineInstanceSize is a constant used as a threshold for determining |
| // when the object initialization should be done as a loop or as |
| // straight line code. |
| const int kInlineInstanceSize = 12; |
| const intptr_t instance_size = cls.instance_size(); |
| ASSERT(instance_size > 0); |
| if (is_cls_parameterized) { |
| __ lw(T1, Address(SP, 0 * kWordSize)); |
| // T1: type arguments. |
| } |
| Isolate* isolate = Isolate::Current(); |
| if (FLAG_inline_alloc && Heap::IsAllocatableInNewSpace(instance_size) && |
| !cls.TraceAllocation(isolate)) { |
| Label slow_case; |
| // Allocate the object and update top to point to |
| // next object start and initialize the allocated object. |
| // T1: instantiated type arguments (if is_cls_parameterized). |
| Heap::Space space = Heap::kNew; |
| __ lw(T5, Address(THR, Thread::heap_offset())); |
| __ lw(T2, Address(T5, Heap::TopOffset(space))); |
| __ LoadImmediate(T4, instance_size); |
| __ addu(T3, T2, T4); |
| // Check if the allocation fits into the remaining space. |
| // T2: potential new object start. |
| // T3: potential next object start. |
| // T5: heap. |
| __ lw(CMPRES1, Address(T5, Heap::EndOffset(space))); |
| if (FLAG_use_slow_path) { |
| __ b(&slow_case); |
| } else { |
| __ BranchUnsignedGreaterEqual(T3, CMPRES1, &slow_case); |
| } |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ sw(T3, Address(T5, Heap::TopOffset(space))); |
| NOT_IN_PRODUCT(__ UpdateAllocationStats(cls.id(), T5, space)); |
| |
| // T2: new object start. |
| // T3: next object start. |
| // T1: new object type arguments (if is_cls_parameterized). |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(instance_size, tags); |
| ASSERT(cls.id() != kIllegalCid); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ LoadImmediate(T0, tags); |
| __ sw(T0, Address(T2, Instance::tags_offset())); |
| |
| __ LoadObject(T7, Object::null_object()); |
| |
| // Initialize the remaining words of the object. |
| // T2: new object start. |
| // T3: next object start. |
| // T1: new object type arguments (if is_cls_parameterized). |
| // First try inlining the initialization without a loop. |
| if (instance_size < (kInlineInstanceSize * kWordSize)) { |
| // Check if the object contains any non-header fields. |
| // Small objects are initialized using a consecutive set of writes. |
| for (intptr_t current_offset = Instance::NextFieldOffset(); |
| current_offset < instance_size; current_offset += kWordSize) { |
| __ sw(T7, Address(T2, current_offset)); |
| } |
| } else { |
| __ addiu(T4, T2, Immediate(Instance::NextFieldOffset())); |
| // Loop until the whole object is initialized. |
| // T2: new object. |
| // T3: next object start. |
| // T4: next word to be initialized. |
| // T1: new object type arguments (if is_cls_parameterized). |
| Label loop, loop_exit; |
| __ BranchUnsignedGreaterEqual(T4, T3, &loop_exit); |
| __ Bind(&loop); |
| __ addiu(T4, T4, Immediate(kWordSize)); |
| __ bne(T4, T3, &loop); |
| __ delay_slot()->sw(T7, Address(T4, -kWordSize)); |
| __ Bind(&loop_exit); |
| } |
| if (is_cls_parameterized) { |
| // T1: new object type arguments. |
| // Set the type arguments in the new object. |
| __ sw(T1, Address(T2, cls.type_arguments_field_offset())); |
| } |
| // Done allocating and initializing the instance. |
| // T2: new object still missing its heap tag. |
| __ Ret(); |
| __ delay_slot()->addiu(V0, T2, Immediate(kHeapObjectTag)); |
| |
| __ Bind(&slow_case); |
| } |
| // If is_cls_parameterized: |
| // T1: new object type arguments (instantiated or not). |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); // Uses pool pointer to pass cls to runtime. |
| __ LoadObject(TMP, cls); |
| |
| __ addiu(SP, SP, Immediate(-3 * kWordSize)); |
| // Space on stack for return value. |
| __ LoadObject(T7, Object::null_object()); |
| __ sw(T7, Address(SP, 2 * kWordSize)); |
| __ sw(TMP, Address(SP, 1 * kWordSize)); // Class of object to be allocated. |
| |
| if (is_cls_parameterized) { |
| // Push type arguments of object to be allocated and of instantiator. |
| __ sw(T1, Address(SP, 0 * kWordSize)); |
| } else { |
| // Push null type arguments. |
| __ sw(T7, Address(SP, 0 * kWordSize)); |
| } |
| __ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object. |
| __ Comment("AllocationStubForClass return"); |
| // Pop result (newly allocated object). |
| __ lw(V0, Address(SP, 2 * kWordSize)); |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); // Pop arguments. |
| // V0: new object |
| // Restore the frame pointer and return. |
| __ LeaveStubFrameAndReturn(RA); |
| } |
| |
| |
| // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
| // from the entry code of a dart function after an error in passed argument |
| // name or number is detected. |
| // Input parameters: |
| // RA : return address. |
| // SP : address of last argument. |
| // S4: arguments descriptor array. |
| void StubCode::GenerateCallClosureNoSuchMethodStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ lw(A1, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ sll(TMP, A1, 1); // A1 is a Smi. |
| __ addu(TMP, FP, TMP); |
| __ lw(T6, Address(TMP, kParamEndSlotFromFp * kWordSize)); |
| |
| // Push space for the return value. |
| // Push the receiver. |
| // Push arguments descriptor array. |
| const intptr_t kNumArgs = 3; |
| __ addiu(SP, SP, Immediate(-kNumArgs * kWordSize)); |
| __ sw(ZR, Address(SP, 2 * kWordSize)); |
| __ sw(T6, Address(SP, 1 * kWordSize)); |
| __ sw(S4, Address(SP, 0 * kWordSize)); |
| |
| // A1: Smi-tagged arguments array length. |
| PushArgumentsArray(assembler); |
| |
| __ CallRuntime(kInvokeClosureNoSuchMethodRuntimeEntry, kNumArgs); |
| // noSuchMethod on closures always throws an error, so it will never return. |
| __ break_(0); |
| } |
| |
| |
| // T0: function object. |
| // S5: inline cache data object. |
| // Cannot use function object from ICData as it may be the inlined |
| // function and not the top-scope function. |
| void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) { |
| __ Comment("OptimizedUsageCounterIncrement"); |
| Register ic_reg = S5; |
| Register func_reg = T0; |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-4 * kWordSize)); |
| __ sw(T0, Address(SP, 3 * kWordSize)); |
| __ sw(S5, Address(SP, 2 * kWordSize)); |
| __ sw(ic_reg, Address(SP, 1 * kWordSize)); // Argument. |
| __ sw(func_reg, Address(SP, 0 * kWordSize)); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry, 2); |
| __ lw(S5, Address(SP, 2 * kWordSize)); |
| __ lw(T0, Address(SP, 3 * kWordSize)); |
| __ addiu(SP, SP, Immediate(4 * kWordSize)); // Discard argument; |
| __ LeaveStubFrame(); |
| } |
| __ lw(T7, FieldAddress(func_reg, Function::usage_counter_offset())); |
| __ addiu(T7, T7, Immediate(1)); |
| __ sw(T7, FieldAddress(func_reg, Function::usage_counter_offset())); |
| } |
| |
| |
| // Loads function into 'temp_reg'. |
| void StubCode::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register temp_reg) { |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("UsageCounterIncrement"); |
| Register ic_reg = S5; |
| Register func_reg = temp_reg; |
| ASSERT(temp_reg == T0); |
| __ Comment("Increment function counter"); |
| __ lw(func_reg, FieldAddress(ic_reg, ICData::owner_offset())); |
| __ lw(T1, FieldAddress(func_reg, Function::usage_counter_offset())); |
| __ addiu(T1, T1, Immediate(1)); |
| __ sw(T1, FieldAddress(func_reg, Function::usage_counter_offset())); |
| } |
| } |
| |
| |
| // Note: S5 must be preserved. |
| // Attempt a quick Smi operation for known operations ('kind'). The ICData |
| // must have been primed with a Smi/Smi check that will be used for counting |
| // the invocations. |
| static void EmitFastSmiOp(Assembler* assembler, |
| Token::Kind kind, |
| intptr_t num_args, |
| Label* not_smi_or_overflow) { |
| __ Comment("Fast Smi op"); |
| ASSERT(num_args == 2); |
| __ lw(T0, Address(SP, 0 * kWordSize)); // Left. |
| __ lw(T1, Address(SP, 1 * kWordSize)); // Right. |
| __ or_(CMPRES1, T0, T1); |
| __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, not_smi_or_overflow); |
| switch (kind) { |
| case Token::kADD: { |
| __ AdduDetectOverflow(V0, T1, T0, CMPRES1); // Add. |
| __ bltz(CMPRES1, not_smi_or_overflow); // Fall through on overflow. |
| break; |
| } |
| case Token::kSUB: { |
| __ SubuDetectOverflow(V0, T1, T0, CMPRES1); // Subtract. |
| __ bltz(CMPRES1, not_smi_or_overflow); // Fall through on overflow. |
| break; |
| } |
| case Token::kEQ: { |
| Label true_label, done; |
| __ beq(T1, T0, &true_label); |
| __ LoadObject(V0, Bool::False()); |
| __ b(&done); |
| __ Bind(&true_label); |
| __ LoadObject(V0, Bool::True()); |
| __ Bind(&done); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| // S5: IC data object (preserved). |
| __ lw(T0, FieldAddress(S5, ICData::ic_data_offset())); |
| // T0: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(T0, Array::data_offset() - kHeapObjectTag); |
| // T0: points directly to the first ic data array element. |
| #if defined(DEBUG) |
| // Check that first entry is for Smi/Smi. |
| Label error, ok; |
| const int32_t imm_smi_cid = reinterpret_cast<int32_t>(Smi::New(kSmiCid)); |
| __ lw(T4, Address(T0)); |
| __ BranchNotEqual(T4, Immediate(imm_smi_cid), &error); |
| __ lw(T4, Address(T0, kWordSize)); |
| __ BranchEqual(T4, Immediate(imm_smi_cid), &ok); |
| __ Bind(&error); |
| __ Stop("Incorrect IC data"); |
| __ Bind(&ok); |
| #endif |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Update counter, ignore overflow. |
| const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize; |
| __ lw(T4, Address(T0, count_offset)); |
| __ AddImmediate(T4, T4, Smi::RawValue(1)); |
| __ sw(T4, Address(T0, count_offset)); |
| } |
| |
| __ Ret(); |
| } |
| |
| |
| // Generate inline cache check for 'num_args'. |
| // RA: return address |
| // S5: Inline cache data object. |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCode::GenerateNArgsCheckInlineCacheStub( |
| Assembler* assembler, |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| bool optimized) { |
| __ Comment("NArgsCheckInlineCacheStub"); |
| ASSERT(num_args == 1 || num_args == 2); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ lw(T0, FieldAddress(S5, ICData::state_bits_offset())); |
| ASSERT(ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andi(T0, T0, Immediate(ICData::NumArgsTestedMask())); |
| __ BranchEqual(T0, Immediate(num_args), &ok); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| |
| Label stepping, done_stepping; |
| if (FLAG_support_debugger && !optimized) { |
| __ Comment("Check single stepping"); |
| __ LoadIsolate(T0); |
| __ lbu(T0, Address(T0, Isolate::single_step_offset())); |
| __ BranchNotEqual(T0, Immediate(0), &stepping); |
| __ Bind(&done_stepping); |
| } |
| |
| Label not_smi_or_overflow; |
| if (kind != Token::kILLEGAL) { |
| EmitFastSmiOp(assembler, kind, num_args, ¬_smi_or_overflow); |
| } |
| __ Bind(¬_smi_or_overflow); |
| |
| __ Comment("Extract ICData initial values and receiver cid"); |
| // Load argument descriptor into S4. |
| __ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset())); |
| // Preserve return address, since RA is needed for subroutine call. |
| __ mov(T2, RA); |
| // Loop that checks if there is an IC data match. |
| Label loop, found, miss; |
| // S5: IC data object (preserved). |
| __ lw(T0, FieldAddress(S5, ICData::ic_data_offset())); |
| // T0: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(T0, Array::data_offset() - kHeapObjectTag); |
| // T0: points directly to the first ic data array element. |
| |
| // Get the receiver's class ID (first read number of arguments from |
| // arguments descriptor array and then access the receiver from the stack). |
| __ lw(T1, FieldAddress(S4, ArgumentsDescriptor::count_offset())); |
| __ sll(T5, T1, 1); // T1 (argument_count - 1) is smi. |
| __ addu(T5, T5, SP); |
| __ lw(T3, Address(T5, -kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(T3, T3); |
| |
| if (num_args == 2) { |
| __ lw(T5, Address(T5, -2 * kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(T5, T5); |
| } |
| |
| const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize; |
| // T1: argument_count (smi). |
| // T3: receiver's class ID (smi). |
| // T5: first argument's class ID (smi). |
| |
| // We unroll the generic one that is generated once more than the others. |
| const bool optimize = kind == Token::kILLEGAL; |
| |
| __ Comment("ICData loop"); |
| __ Bind(&loop); |
| for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) { |
| __ lw(T4, Address(T0, 0)); |
| if (num_args == 1) { |
| __ beq(T3, T4, &found); // IC hit. |
| } else { |
| ASSERT(num_args == 2); |
| Label update; |
| __ bne(T3, T4, &update); // Continue. |
| __ lw(T4, Address(T0, kWordSize)); |
| __ beq(T5, T4, &found); // IC hit. |
| __ Bind(&update); |
| } |
| |
| __ AddImmediate(T0, entry_size); // Next entry. |
| if (unroll == 0) { |
| __ BranchNotEqual(T4, Immediate(Smi::RawValue(kIllegalCid)), |
| &loop); // Done? |
| } else { |
| __ BranchEqual(T4, Immediate(Smi::RawValue(kIllegalCid)), |
| &miss); // Done? |
| } |
| } |
| |
| __ Bind(&miss); |
| __ Comment("IC miss"); |
| // Restore return address. |
| __ mov(RA, T2); |
| |
| // Compute address of arguments (first read number of arguments from |
| // arguments descriptor array and then compute address on the stack). |
| // T1: argument_count (smi). |
| __ addiu(T1, T1, Immediate(Smi::RawValue(-1))); |
| __ sll(T1, T1, 1); // T1 is Smi. |
| __ addu(T1, SP, T1); |
| // T1: address of receiver. |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Preserve IC data object and arguments descriptor array and |
| // setup space on stack for result (target code object). |
| int num_slots = num_args + 4; |
| __ addiu(SP, SP, Immediate(-num_slots * kWordSize)); |
| __ sw(S5, Address(SP, (num_slots - 1) * kWordSize)); |
| __ sw(S4, Address(SP, (num_slots - 2) * kWordSize)); |
| __ sw(ZR, Address(SP, (num_slots - 3) * kWordSize)); |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ lw(TMP, Address(T1, -i * kWordSize)); |
| __ sw(TMP, Address(SP, (num_slots - i - 4) * kWordSize)); |
| } |
| // Pass IC data object. |
| __ sw(S5, Address(SP, (num_slots - num_args - 4) * kWordSize)); |
| __ CallRuntime(handle_ic_miss, num_args + 1); |
| __ Comment("NArgsCheckInlineCacheStub return"); |
| // Pop returned function object into T3. |
| // Restore arguments descriptor array and IC data array. |
| __ lw(T3, Address(SP, (num_slots - 3) * kWordSize)); |
| __ lw(S4, Address(SP, (num_slots - 2) * kWordSize)); |
| __ lw(S5, Address(SP, (num_slots - 1) * kWordSize)); |
| // Remove the call arguments pushed earlier, including the IC data object |
| // and the arguments descriptor array. |
| __ addiu(SP, SP, Immediate(num_slots * kWordSize)); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| Label call_target_function; |
| if (!FLAG_lazy_dispatchers) { |
| __ mov(T0, T3); |
| GenerateDispatcherCode(assembler, &call_target_function); |
| } else { |
| __ b(&call_target_function); |
| } |
| |
| __ Bind(&found); |
| __ mov(RA, T2); // Restore return address if found. |
| __ Comment("Update caller's counter"); |
| // T0: Pointer to an IC data check group. |
| const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize; |
| const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize; |
| __ lw(T3, Address(T0, target_offset)); |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Update counter, ignore overflow. |
| __ lw(T4, Address(T0, count_offset)); |
| __ AddImmediate(T4, T4, Smi::RawValue(1)); |
| __ sw(T4, Address(T0, count_offset)); |
| } |
| |
| __ Comment("Call target"); |
| __ Bind(&call_target_function); |
| // T0 <- T3: Target function. |
| __ mov(T0, T3); |
| Label is_compiled; |
| __ lw(T4, FieldAddress(T0, Function::entry_point_offset())); |
| __ lw(CODE_REG, FieldAddress(T0, Function::code_offset())); |
| __ jr(T4); |
| |
| // Call single step callback in debugger. |
| if (FLAG_support_debugger && !optimized) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S5, Address(SP, 1 * kWordSize)); // Preserve IC data. |
| __ sw(RA, Address(SP, 0 * kWordSize)); // Return address. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ lw(RA, Address(SP, 0 * kWordSize)); |
| __ lw(S5, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ b(&done_stepping); |
| } |
| } |
| |
| |
| // Use inline cache data array to invoke the target or continue in inline |
| // cache miss handler. Stub for 1-argument check (receiver class). |
| // RA: Return address. |
| // S5: Inline cache data object. |
| // Inline cache data object structure: |
| // 0: function-name |
| // 1: N, number of arguments checked. |
| // 2 .. (length - 1): group of checks, each check containing: |
| // - N classes. |
| // - 1 target function. |
| void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2, |
| kInlineCacheMissHandlerTwoArgsRuntimeEntry, |
| Token::kILLEGAL); |
| } |
| |
| |
| void StubCode::GenerateSmiAddInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD); |
| } |
| |
| |
| void StubCode::GenerateSmiSubInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kSUB); |
| } |
| |
| |
| void StubCode::GenerateSmiEqualInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ); |
| } |
| |
| |
| void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1, |
| kInlineCacheMissHandlerOneArgRuntimeEntry, |
| Token::kILLEGAL, true /* optimized */); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2, |
| kInlineCacheMissHandlerTwoArgsRuntimeEntry, |
| Token::kILLEGAL, true /* optimized */); |
| } |
| |
| |
| // Intermediary stub between a static call and its target. ICData contains |
| // the target function and the call count. |
| // S5: ICData |
| void StubCode::GenerateZeroArgsUnoptimizedStaticCallStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| __ Comment("UnoptimizedStaticCallStub"); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == 0. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ lw(T0, FieldAddress(S5, ICData::state_bits_offset())); |
| ASSERT(ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andi(T0, T0, Immediate(ICData::NumArgsTestedMask())); |
| __ beq(T0, ZR, &ok); |
| __ Stop("Incorrect IC data for unoptimized static call"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| // Check single stepping. |
| Label stepping, done_stepping; |
| if (FLAG_support_debugger) { |
| __ LoadIsolate(T0); |
| __ lbu(T0, Address(T0, Isolate::single_step_offset())); |
| __ BranchNotEqual(T0, Immediate(0), &stepping); |
| __ Bind(&done_stepping); |
| } |
| |
| // S5: IC data object (preserved). |
| __ lw(T0, FieldAddress(S5, ICData::ic_data_offset())); |
| // T0: ic_data_array with entries: target functions and count. |
| __ AddImmediate(T0, Array::data_offset() - kHeapObjectTag); |
| // T0: points directly to the first ic data array element. |
| const intptr_t target_offset = ICData::TargetIndexFor(0) * kWordSize; |
| const intptr_t count_offset = ICData::CountIndexFor(0) * kWordSize; |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Increment count for this call, ignore overflow. |
| __ lw(T4, Address(T0, count_offset)); |
| __ AddImmediate(T4, T4, Smi::RawValue(1)); |
| __ sw(T4, Address(T0, count_offset)); |
| } |
| |
| // Load arguments descriptor into S4. |
| __ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset())); |
| |
| // Get function and call it, if possible. |
| __ lw(T0, Address(T0, target_offset)); |
| __ lw(CODE_REG, FieldAddress(T0, Function::code_offset())); |
| __ lw(T4, FieldAddress(T0, Function::entry_point_offset())); |
| __ jr(T4); |
| |
| // Call single step callback in debugger. |
| if (FLAG_support_debugger) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S5, Address(SP, 1 * kWordSize)); // Preserve IC data. |
| __ sw(RA, Address(SP, 0 * kWordSize)); // Return address. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ lw(RA, Address(SP, 0 * kWordSize)); |
| __ lw(S5, Address(SP, 1 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ b(&done_stepping); |
| } |
| } |
| |
| |
| void StubCode::GenerateOneArgUnoptimizedStaticCallStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kStaticCallMissHandlerOneArgRuntimeEntry, Token::kILLEGAL); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsUnoptimizedStaticCallStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, T0); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL); |
| } |
| |
| |
| // Stub for compiling a function and jumping to the compiled code. |
| // S5: IC-Data (for methods). |
| // S4: Arguments descriptor. |
| // T0: Function. |
| void StubCode::GenerateLazyCompileStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-3 * kWordSize)); |
| __ sw(S5, Address(SP, 2 * kWordSize)); // Preserve IC data object. |
| __ sw(S4, Address(SP, 1 * kWordSize)); // Preserve args descriptor array. |
| __ sw(T0, Address(SP, 0 * kWordSize)); // Pass function. |
| __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
| __ lw(T0, Address(SP, 0 * kWordSize)); // Restore function. |
| __ lw(S4, Address(SP, 1 * kWordSize)); // Restore args descriptor array. |
| __ lw(S5, Address(SP, 2 * kWordSize)); // Restore IC data array. |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); |
| __ LeaveStubFrame(); |
| |
| __ lw(CODE_REG, FieldAddress(T0, Function::code_offset())); |
| __ lw(T2, FieldAddress(T0, Function::entry_point_offset())); |
| __ jr(T2); |
| } |
| |
| |
| // S5: Contains an ICData. |
| void StubCode::GenerateICCallBreakpointStub(Assembler* assembler) { |
| __ Comment("ICCallBreakpoint stub"); |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-2 * kWordSize)); |
| __ sw(S5, Address(SP, 1 * kWordSize)); |
| __ sw(ZR, Address(SP, 0 * kWordSize)); |
| |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| |
| __ lw(S5, Address(SP, 1 * kWordSize)); |
| __ lw(CODE_REG, Address(SP, 0 * kWordSize)); |
| __ addiu(SP, SP, Immediate(2 * kWordSize)); |
| __ LeaveStubFrame(); |
| __ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jr(T0); |
| } |
| |
| |
| void StubCode::GenerateRuntimeCallBreakpointStub(Assembler* assembler) { |
| __ Comment("RuntimeCallBreakpoint stub"); |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-1 * kWordSize)); |
| __ sw(ZR, Address(SP, 0 * kWordSize)); |
| |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| |
| __ lw(CODE_REG, Address(SP, 0 * kWordSize)); |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); |
| __ LeaveStubFrame(); |
| __ lw(T0, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jr(T0); |
| } |
| |
| |
| // Called only from unoptimized code. All relevant registers have been saved. |
| // RA: return address. |
| void StubCode::GenerateDebugStepCheckStub(Assembler* assembler) { |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(T0); |
| __ lbu(T0, Address(T0, Isolate::single_step_offset())); |
| __ BranchNotEqual(T0, Immediate(0), &stepping); |
| __ Bind(&done_stepping); |
| |
| __ Ret(); |
| |
| // Call single step callback in debugger. |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-1 * kWordSize)); |
| __ sw(RA, Address(SP, 0 * kWordSize)); // Return address. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ lw(RA, Address(SP, 0 * kWordSize)); |
| __ addiu(SP, SP, Immediate(1 * kWordSize)); |
| __ LeaveStubFrame(); |
| __ b(&done_stepping); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // RA: return address. |
| // A0: instance (must be preserved). |
| // A1: instantiator type arguments or NULL. |
| // A2: cache array. |
| // Result in V0: null -> not found, otherwise result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| __ Comment("SubtypeNTestCacheStub"); |
| ASSERT((1 <= n) && (n <= 3)); |
| if (n > 1) { |
| // Get instance type arguments. |
| __ LoadClass(T0, A0); |
| // Compute instance type arguments into T1. |
| Label has_no_type_arguments; |
| __ LoadObject(T1, Object::null_object()); |
| __ lw(T2, FieldAddress( |
| T0, Class::type_arguments_field_offset_in_words_offset())); |
| __ BranchEqual(T2, Immediate(Class::kNoTypeArguments), |
| &has_no_type_arguments); |
| __ sll(T2, T2, 2); |
| __ addu(T2, A0, T2); // T2 <- A0 + T2 * 4 |
| __ lw(T1, FieldAddress(T2, 0)); |
| __ Bind(&has_no_type_arguments); |
| } |
| __ LoadClassId(T0, A0); |
| // A0: instance. |
| // A1: instantiator type arguments or NULL. |
| // A2: SubtypeTestCache. |
| // T0: instance class id. |
| // T1: instance type arguments (null if none), used only if n > 1. |
| __ lw(T2, FieldAddress(A2, SubtypeTestCache::cache_offset())); |
| __ AddImmediate(T2, Array::data_offset() - kHeapObjectTag); |
| |
| __ LoadObject(T7, Object::null_object()); |
| |
| Label loop, found, not_found, next_iteration; |
| // T0: instance class id. |
| // T1: instance type arguments (still null if closure). |
| // T2: Entry start. |
| // T7: null. |
| __ SmiTag(T0); |
| __ BranchNotEqual(T0, Immediate(Smi::RawValue(kClosureCid)), &loop); |
| __ lw(T1, FieldAddress(A0, Closure::instantiator_offset())); |
| __ lw(T0, FieldAddress(A0, Closure::function_offset())); |
| // T0: instance class id as Smi or function. |
| __ Bind(&loop); |
| __ lw(T3, |
| Address(T2, kWordSize * SubtypeTestCache::kInstanceClassIdOrFunction)); |
| __ beq(T3, T7, ¬_found); |
| |
| if (n == 1) { |
| __ beq(T3, T0, &found); |
| } else { |
| __ bne(T3, T0, &next_iteration); |
| __ lw(T3, |
| Address(T2, kWordSize * SubtypeTestCache::kInstanceTypeArguments)); |
| if (n == 2) { |
| __ beq(T3, T1, &found); |
| } else { |
| __ bne(T3, T1, &next_iteration); |
| __ lw(T3, Address(T2, kWordSize * |
| SubtypeTestCache::kInstantiatorTypeArguments)); |
| __ beq(T3, A1, &found); |
| } |
| } |
| __ Bind(&next_iteration); |
| __ b(&loop); |
| __ delay_slot()->addiu( |
| T2, T2, Immediate(kWordSize * SubtypeTestCache::kTestEntryLength)); |
| // Fall through to not found. |
| __ Bind(¬_found); |
| __ Ret(); |
| __ delay_slot()->mov(V0, T7); |
| |
| __ Bind(&found); |
| __ Ret(); |
| __ delay_slot()->lw(V0, |
| Address(T2, kWordSize * SubtypeTestCache::kTestResult)); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // RA: return address. |
| // A0: instance (must be preserved). |
| // A1: instantiator type arguments or NULL. |
| // A2: cache array. |
| // Result in V0: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // RA: return address. |
| // A0: instance (must be preserved). |
| // A1: instantiator type arguments or NULL. |
| // A2: cache array. |
| // Result in V0: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 2); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // RA: return address. |
| // A0: instance (must be preserved). |
| // A1: instantiator type arguments or NULL. |
| // A2: cache array. |
| // Result in V0: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 3); |
| } |
| |
| |
| // Return the current stack pointer address, used to stack alignment |
| // checks. |
| void StubCode::GenerateGetStackPointerStub(Assembler* assembler) { |
| __ Ret(); |
| __ delay_slot()->mov(V0, SP); |
| } |
| |
| |
| // Jump to the exception or error handler. |
| // RA: return address. |
| // A0: program_counter. |
| // A1: stack_pointer. |
| // A2: frame_pointer. |
| // A3: thread. |
| // Does not return. |
| void StubCode::GenerateJumpToFrameStub(Assembler* assembler) { |
| ASSERT(kExceptionObjectReg == V0); |
| ASSERT(kStackTraceObjectReg == V1); |
| __ mov(FP, A2); // Frame_pointer. |
| __ mov(THR, A3); // Thread. |
| // Set tag. |
| __ LoadImmediate(A2, VMTag::kDartTagId); |
| __ sw(A2, Assembler::VMTagAddress()); |
| // Clear top exit frame. |
| __ sw(ZR, Address(THR, Thread::top_exit_frame_info_offset())); |
| // Restore pool pointer. |
| __ RestoreCodePointer(); |
| __ LoadPoolPointer(); |
| __ jr(A0); // Jump to the program counter. |
| __ delay_slot()->mov(SP, A1); // Stack pointer. |
| } |
| |
| |
| // Run an exception handler. Execution comes from JumpToFrame |
| // stub or from the simulator. |
| // |
| // The arguments are stored in the Thread object. |
| // Does not return. |
| void StubCode::GenerateRunExceptionHandlerStub(Assembler* assembler) { |
| __ lw(A0, Address(THR, Thread::resume_pc_offset())); |
| __ LoadImmediate(A2, 0); |
| |
| // Load the exception from the current thread. |
| Address exception_addr(THR, Thread::active_exception_offset()); |
| __ lw(V0, exception_addr); |
| __ sw(A2, exception_addr); |
| |
| // Load the stacktrace from the current thread. |
| Address stacktrace_addr(THR, Thread::active_stacktrace_offset()); |
| __ lw(V1, stacktrace_addr); |
| |
| __ jr(A0); // Jump to continuation point. |
| __ delay_slot()->sw(A2, stacktrace_addr); |
| } |
| |
| |
| // Deoptimize a frame on the call stack before rewinding. |
| // The arguments are stored in the Thread object. |
| // No result. |
| void StubCode::GenerateDeoptForRewindStub(Assembler* assembler) { |
| // Push zap value instead of CODE_REG. |
| __ LoadImmediate(TMP, kZapCodeReg); |
| __ Push(TMP); |
| |
| // Load the deopt pc into RA. |
| __ lw(RA, Address(THR, Thread::resume_pc_offset())); |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| |
| // After we have deoptimized, jump to the correct frame. |
| __ EnterStubFrame(); |
| __ CallRuntime(kRewindPostDeoptRuntimeEntry, 0); |
| __ LeaveStubFrame(); |
| __ break_(0); |
| } |
| |
| |
| // Calls to the runtime to optimize the given function. |
| // T0: function to be reoptimized. |
| // S4: argument descriptor (preserved). |
| void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) { |
| __ Comment("OptimizeFunctionStub"); |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-3 * kWordSize)); |
| __ sw(S4, Address(SP, 2 * kWordSize)); |
| // Setup space on stack for return value. |
| __ sw(ZR, Address(SP, 1 * kWordSize)); |
| __ sw(T0, Address(SP, 0 * kWordSize)); |
| __ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry, 1); |
| __ Comment("OptimizeFunctionStub return"); |
| __ lw(T0, Address(SP, 1 * kWordSize)); // Get Function object |
| __ lw(S4, Address(SP, 2 * kWordSize)); // Restore argument descriptor. |
| __ addiu(SP, SP, Immediate(3 * kWordSize)); // Discard argument. |
| |
| __ lw(CODE_REG, FieldAddress(T0, Function::code_offset())); |
| __ lw(T1, FieldAddress(T0, Function::entry_point_offset())); |
| __ LeaveStubFrameAndReturn(T1); |
| __ break_(0); |
| } |
| |
| |
| // Does identical check (object references are equal or not equal) with special |
| // checks for boxed numbers. |
| // Returns: CMPRES1 is zero if equal, non-zero otherwise. |
| // Note: A Mint cannot contain a value that would fit in Smi, a Bigint |
| // cannot contain a value that fits in Mint or Smi. |
| static void GenerateIdenticalWithNumberCheckStub(Assembler* assembler, |
| const Register left, |
| const Register right, |
| const Register temp1, |
| const Register temp2) { |
| __ Comment("IdenticalWithNumberCheckStub"); |
| Label reference_compare, done, check_mint, check_bigint; |
| // If any of the arguments is Smi do reference compare. |
| __ andi(temp1, left, Immediate(kSmiTagMask)); |
| __ beq(temp1, ZR, &reference_compare); |
| __ andi(temp1, right, Immediate(kSmiTagMask)); |
| __ beq(temp1, ZR, &reference_compare); |
| |
| // Value compare for two doubles. |
| __ LoadImmediate(temp1, kDoubleCid); |
| __ LoadClassId(temp2, left); |
| __ bne(temp1, temp2, &check_mint); |
| __ LoadClassId(temp2, right); |
| __ subu(CMPRES1, temp1, temp2); |
| __ bne(CMPRES1, ZR, &done); |
| |
| // Double values bitwise compare. |
| __ lw(temp1, FieldAddress(left, Double::value_offset() + 0 * kWordSize)); |
| __ lw(temp2, FieldAddress(right, Double::value_offset() + 0 * kWordSize)); |
| __ subu(CMPRES1, temp1, temp2); |
| __ bne(CMPRES1, ZR, &done); |
| __ lw(temp1, FieldAddress(left, Double::value_offset() + 1 * kWordSize)); |
| __ lw(temp2, FieldAddress(right, Double::value_offset() + 1 * kWordSize)); |
| __ b(&done); |
| __ delay_slot()->subu(CMPRES1, temp1, temp2); |
| |
| __ Bind(&check_mint); |
| __ LoadImmediate(temp1, kMintCid); |
| __ LoadClassId(temp2, left); |
| __ bne(temp1, temp2, &check_bigint); |
| __ LoadClassId(temp2, right); |
| __ subu(CMPRES1, temp1, temp2); |
| __ bne(CMPRES1, ZR, &done); |
| |
| __ lw(temp1, FieldAddress(left, Mint::value_offset() + 0 * kWordSize)); |
| __ lw(temp2, FieldAddress(right, Mint::value_offset() + 0 * kWordSize)); |
| __ subu(CMPRES1, temp1, temp2); |
| __ bne(CMPRES1, ZR, &done); |
| __ lw(temp1, FieldAddress(left, Mint::value_offset() + 1 * kWordSize)); |
| __ lw(temp2, FieldAddress(right, Mint::value_offset() + 1 * kWordSize)); |
| __ b(&done); |
| __ delay_slot()->subu(CMPRES1, temp1, temp2); |
| |
| __ Bind(&check_bigint); |
| __ LoadImmediate(temp1, kBigintCid); |
| __ LoadClassId(temp2, left); |
| __ bne(temp1, temp2, &reference_compare); |
| __ LoadClassId(temp2, right); |
| __ subu(CMPRES1, temp1, temp2); |
| __ bne(CMPRES1, ZR, &done); |
| |
| __ EnterStubFrame(); |
| __ ReserveAlignedFrameSpace(2 * kWordSize); |
| __ sw(left, Address(SP, 1 * kWordSize)); |
| __ sw(right, Address(SP, 0 * kWordSize)); |
| __ mov(A0, left); |
| __ mov(A1, right); |
| __ CallRuntime(kBigintCompareRuntimeEntry, 2); |
| __ Comment("IdenticalWithNumberCheckStub return"); |
| // Result in V0, 0 means equal. |
| __ LeaveStubFrame(); |
| __ b(&done); |
| __ delay_slot()->mov(CMPRES1, V0); |
| |
| __ Bind(&reference_compare); |
| __ subu(CMPRES1, left, right); |
| __ Bind(&done); |
| // A branch or test after this comparison will check CMPRES1 == ZR. |
| } |
| |
| |
| // Called only from unoptimized code. All relevant registers have been saved. |
| // RA: return address. |
| // SP + 4: left operand. |
| // SP + 0: right operand. |
| // Returns: CMPRES1 is zero if equal, non-zero otherwise. |
| void StubCode::GenerateUnoptimizedIdenticalWithNumberCheckStub( |
| Assembler* assembler) { |
| // Check single stepping. |
| Label stepping, done_stepping; |
| if (FLAG_support_debugger) { |
| __ LoadIsolate(T0); |
| __ lbu(T0, Address(T0, Isolate::single_step_offset())); |
| __ BranchNotEqual(T0, Immediate(0), &stepping); |
| __ Bind(&done_stepping); |
| } |
| |
| const Register temp1 = T2; |
| const Register temp2 = T3; |
| const Register left = T1; |
| const Register right = T0; |
| __ lw(left, Address(SP, 1 * kWordSize)); |
| __ lw(right, Address(SP, 0 * kWordSize)); |
| GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp1, temp2); |
| __ Ret(); |
| |
| // Call single step callback in debugger. |
| if (FLAG_support_debugger) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ addiu(SP, SP, Immediate(-1 * kWordSize)); |
| __ sw(RA, Address(SP, 0 * kWordSize)); // Return address. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ lw(RA, Address(SP, 0 * kWordSize)); |
| __ addiu(SP, SP, Immediate(1 * kWordSize)); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ b(&done_stepping); |
| } |
| } |
| |
| |
| // Called from optimized code only. |
| // SP + 4: left operand. |
| // SP + 0: right operand. |
| // Returns: CMPRES1 is zero if equal, non-zero otherwise. |
| void StubCode::GenerateOptimizedIdenticalWithNumberCheckStub( |
| Assembler* assembler) { |
| const Register temp1 = T2; |
| const Register temp2 = T3; |
| const Register left = T1; |
| const Register right = T0; |
| __ lw(left, Address(SP, 1 * kWordSize)); |
| __ lw(right, Address(SP, 0 * kWordSize)); |
| GenerateIdenticalWithNumberCheckStub(assembler, left, right, temp1, temp2); |
| __ Ret(); |
| } |
| |
| |
| // Called from megamorphic calls. |
| // T0: receiver |
| // S5: MegamorphicCache (preserved) |
| // Passed to target: |
| // CODE_REG: target Code object |
| // S4: arguments descriptor |
| void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) { |
| __ LoadTaggedClassIdMayBeSmi(T0, T0); |
| // T0: class ID of the receiver (smi). |
| __ lw(S4, FieldAddress(S5, MegamorphicCache::arguments_descriptor_offset())); |
| __ lw(T2, FieldAddress(S5, MegamorphicCache::buckets_offset())); |
| __ lw(T1, FieldAddress(S5, MegamorphicCache::mask_offset())); |
| // T2: cache buckets array. |
| // T1: mask. |
| __ LoadImmediate(TMP, MegamorphicCache::kSpreadFactor); |
| __ mult(TMP, T0); |
| __ mflo(T3); |
| // T3: probe. |
| |
| Label loop, update, call_target_function; |
| __ b(&loop); |
| |
| __ Bind(&update); |
| __ addiu(T3, T3, Immediate(Smi::RawValue(1))); |
| __ Bind(&loop); |
| __ and_(T3, T3, T1); |
| const intptr_t base = Array::data_offset(); |
| // T3 is smi tagged, but table entries are two words, so LSL 2. |
| __ sll(TMP, T3, 2); |
| __ addu(TMP, T2, TMP); |
| __ lw(T4, FieldAddress(TMP, base)); |
| |
| ASSERT(kIllegalCid == 0); |
| __ beq(T4, ZR, &call_target_function); |
| __ bne(T4, T0, &update); |
| |
| __ Bind(&call_target_function); |
| // Call the target found in the cache. For a class id match, this is a |
| // proper target for the given name and arguments descriptor. If the |
| // illegal class id was found, the target is a cache miss handler that can |
| // be invoked as a normal Dart function. |
| __ sll(T1, T3, 2); |
| __ addu(T1, T2, T1); |
| __ lw(T0, FieldAddress(T1, base + kWordSize)); |
| |
| __ lw(T1, FieldAddress(T0, Function::entry_point_offset())); |
| __ lw(CODE_REG, FieldAddress(T0, Function::code_offset())); |
| __ jr(T1); |
| } |
| |
| |
| // Called from switchable IC calls. |
| // T0: receiver |
| // S5: ICData (preserved) |
| // Passed to target: |
| // CODE_REG: target Code object |
| // S4: arguments descriptor |
| void StubCode::GenerateICCallThroughFunctionStub(Assembler* assembler) { |
| Label loop, found, miss; |
| __ lw(T6, FieldAddress(S5, ICData::ic_data_offset())); |
| __ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset())); |
| __ AddImmediate(T6, T6, Array::data_offset() - kHeapObjectTag); |
| // T6: first IC entry. |
| __ LoadTaggedClassIdMayBeSmi(T1, T0); |
| // T1: receiver cid as Smi |
| |
| __ Bind(&loop); |
| __ lw(T2, Address(T6, 0)); |
| __ beq(T1, T2, &found); |
| ASSERT(Smi::RawValue(kIllegalCid) == 0); |
| __ beq(T2, ZR, &miss); |
| |
| const intptr_t entry_length = ICData::TestEntryLengthFor(1) * kWordSize; |
| __ AddImmediate(T6, entry_length); // Next entry. |
| __ b(&loop); |
| |
| __ Bind(&found); |
| const intptr_t target_offset = ICData::TargetIndexFor(1) * kWordSize; |
| __ lw(T0, Address(T6, target_offset)); |
| __ lw(T1, FieldAddress(T0, Function::entry_point_offset())); |
| __ lw(CODE_REG, FieldAddress(T0, Function::code_offset())); |
| __ jr(T1); |
| |
| __ Bind(&miss); |
| __ LoadIsolate(T2); |
| __ lw(CODE_REG, Address(T2, Isolate::ic_miss_code_offset())); |
| __ lw(T1, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jr(T1); |
| } |
| |
| |
| void StubCode::GenerateICCallThroughCodeStub(Assembler* assembler) { |
| Label loop, found, miss; |
| __ lw(T6, FieldAddress(S5, ICData::ic_data_offset())); |
| __ lw(S4, FieldAddress(S5, ICData::arguments_descriptor_offset())); |
| __ AddImmediate(T6, T6, Array::data_offset() - kHeapObjectTag); |
| // T6: first IC entry. |
| __ LoadTaggedClassIdMayBeSmi(T1, T0); |
| // T1: receiver cid as Smi |
| |
| __ Bind(&loop); |
| __ lw(T2, Address(T6, 0)); |
| __ beq(T1, T2, &found); |
| ASSERT(Smi::RawValue(kIllegalCid) == 0); |
| __ beq(T2, ZR, &miss); |
| |
| const intptr_t entry_length = ICData::TestEntryLengthFor(1) * kWordSize; |
| __ AddImmediate(T6, entry_length); // Next entry. |
| __ b(&loop); |
| |
| __ Bind(&found); |
| const intptr_t code_offset = ICData::CodeIndexFor(1) * kWordSize; |
| const intptr_t entry_offset = ICData::EntryPointIndexFor(1) * kWordSize; |
| __ lw(T1, Address(T6, entry_offset)); |
| __ lw(CODE_REG, Address(T6, code_offset)); |
| __ jr(T1); |
| |
| __ Bind(&miss); |
| __ LoadIsolate(T2); |
| __ lw(CODE_REG, Address(T2, Isolate::ic_miss_code_offset())); |
| __ lw(T1, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jr(T1); |
| } |
| |
| |
| // Called from switchable IC calls. |
| // T0: receiver |
| // S5: SingleTargetCache |
| void StubCode::GenerateUnlinkedCallStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ Push(T0); // Preserve receiver. |
| |
| __ Push(ZR); // Result slot. |
| __ Push(T0); // Arg0: Receiver |
| __ Push(S5); // Arg1: UnlinkedCall |
| __ CallRuntime(kUnlinkedCallRuntimeEntry, 2); |
| __ Drop(2); |
| __ Pop(S5); // result = IC |
| |
| __ Pop(T0); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ lw(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset())); |
| __ lw(T1, FieldAddress(CODE_REG, Code::checked_entry_point_offset())); |
| __ jr(T1); |
| } |
| |
| |
| // Called from switchable IC calls. |
| // T0: receiver |
| // S5: SingleTargetCache |
| // Passed to target: |
| // CODE_REG: target Code object |
| void StubCode::GenerateSingleTargetCallStub(Assembler* assembler) { |
| Label miss; |
| __ LoadClassIdMayBeSmi(T1, T0); |
| __ lhu(T2, FieldAddress(S5, SingleTargetCache::lower_limit_offset())); |
| __ lhu(T3, FieldAddress(S5, SingleTargetCache::upper_limit_offset())); |
| |
| __ BranchUnsignedLess(T1, T2, &miss); |
| __ BranchUnsignedGreater(T1, T3, &miss); |
| |
| __ lw(T1, FieldAddress(S5, SingleTargetCache::entry_point_offset())); |
| __ lw(CODE_REG, FieldAddress(S5, SingleTargetCache::target_offset())); |
| __ jr(T1); |
| |
| __ Bind(&miss); |
| __ EnterStubFrame(); |
| __ Push(T0); // Preserve receiver. |
| |
| __ Push(ZR); // Result slot. |
| __ Push(T0); // Arg0: Receiver |
| __ CallRuntime(kSingleTargetMissRuntimeEntry, 1); |
| __ Drop(1); |
| __ Pop(S5); // result = IC |
| |
| __ Pop(T0); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ lw(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset())); |
| __ lw(T1, FieldAddress(CODE_REG, Code::checked_entry_point_offset())); |
| __ jr(T1); |
| } |
| |
| |
| // Called from the monomorphic checked entry. |
| // T0: receiver |
| void StubCode::GenerateMonomorphicMissStub(Assembler* assembler) { |
| __ lw(CODE_REG, Address(THR, Thread::monomorphic_miss_stub_offset())); |
| __ EnterStubFrame(); |
| __ Push(T0); // Preserve receiver. |
| |
| __ Push(ZR); // Result slot. |
| __ Push(T0); // Arg0: Receiver |
| __ CallRuntime(kMonomorphicMissRuntimeEntry, 1); |
| __ Drop(1); |
| __ Pop(S5); // result = IC |
| |
| __ Pop(T0); // Restore receiver. |
| __ LeaveStubFrame(); |
| |
| __ lw(CODE_REG, Address(THR, Thread::ic_lookup_through_code_stub_offset())); |
| __ lw(T1, FieldAddress(CODE_REG, Code::checked_entry_point_offset())); |
| __ jr(T1); |
| } |
| |
| |
| void StubCode::GenerateFrameAwaitingMaterializationStub(Assembler* assembler) { |
| __ break_(0); |
| } |
| |
| |
| void StubCode::GenerateAsynchronousGapMarkerStub(Assembler* assembler) { |
| __ break_(0); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_MIPS |