| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| // Declares a Simulator for MIPS instructions if we are not generating a native |
| // MIPS binary. This Simulator allows us to run and debug MIPS code generation |
| // on regular desktop machines. |
| // Dart calls into generated code by "calling" the InvokeDartCode stub, |
| // which will start execution in the Simulator or forwards to the real entry |
| // on a MIPS HW platform. |
| |
| #ifndef RUNTIME_VM_SIMULATOR_MIPS_H_ |
| #define RUNTIME_VM_SIMULATOR_MIPS_H_ |
| |
| #ifndef RUNTIME_VM_SIMULATOR_H_ |
| #error Do not include simulator_mips.h directly; use simulator.h. |
| #endif |
| |
| #include "vm/constants_mips.h" |
| |
| namespace dart { |
| |
| class Isolate; |
| class Mutex; |
| class RawObject; |
| class SimulatorSetjmpBuffer; |
| class Thread; |
| |
| class Simulator { |
| public: |
| static const uword kSimulatorStackUnderflowSize = 64; |
| |
| Simulator(); |
| ~Simulator(); |
| |
| // The currently executing Simulator instance, which is associated to the |
| // current isolate |
| static Simulator* Current(); |
| |
| // Accessors for register state. |
| void set_register(Register reg, int32_t value); |
| int32_t get_register(Register reg) const; |
| |
| // Accessors for floating point register state. |
| void set_fregister(FRegister freg, int32_t value); |
| void set_fregister_float(FRegister freg, float value); |
| void set_fregister_double(FRegister freg, double value); |
| void set_fregister_long(FRegister freg, int64_t value); |
| |
| int32_t get_fregister(FRegister freg) const; |
| float get_fregister_float(FRegister freg) const; |
| double get_fregister_double(FRegister freg) const; |
| int64_t get_fregister_long(FRegister freg) const; |
| |
| void set_dregister_bits(DRegister freg, int64_t value); |
| void set_dregister(DRegister freg, double value); |
| |
| int64_t get_dregister_bits(DRegister freg) const; |
| double get_dregister(DRegister freg) const; |
| |
| int32_t get_sp() const { return get_register(SPREG); } |
| |
| // Accessor for the pc. |
| void set_pc(int32_t value) { pc_ = value; } |
| int32_t get_pc() const { return pc_; } |
| |
| // Accessors for hi, lo registers. |
| void set_hi_register(int32_t value) { hi_reg_ = value; } |
| void set_lo_register(int32_t value) { lo_reg_ = value; } |
| int32_t get_hi_register() const { return hi_reg_; } |
| int32_t get_lo_register() const { return lo_reg_; } |
| |
| int32_t get_fcsr_condition_bit(int32_t cc) const { |
| if (cc == 0) { |
| return 23; |
| } else { |
| return 24 + cc; |
| } |
| } |
| |
| void set_fcsr_bit(uint32_t cc, bool value) { |
| if (value) { |
| fcsr_ |= (1 << cc); |
| } else { |
| fcsr_ &= ~(1 << cc); |
| } |
| } |
| |
| bool test_fcsr_bit(uint32_t cc) { return fcsr_ & (1 << cc); } |
| |
| // Accessors to the internal simulator stack base and top. |
| uword StackBase() const { return reinterpret_cast<uword>(stack_); } |
| uword StackTop() const; |
| |
| // Accessor to the instruction counter. |
| uint64_t get_icount() const { return icount_; } |
| |
| // The thread's top_exit_frame_info refers to a Dart frame in the simulator |
| // stack. The simulator's top_exit_frame_info refers to a C++ frame in the |
| // native stack. |
| uword top_exit_frame_info() const { return top_exit_frame_info_; } |
| void set_top_exit_frame_info(uword value) { top_exit_frame_info_ = value; } |
| |
| // Call on program start. |
| static void InitOnce(); |
| |
| // Dart generally calls into generated code with 4 parameters. This is a |
| // convenience function, which sets up the simulator state and grabs the |
| // result on return. When fp_return is true the return value is the D0 |
| // floating point register. Otherwise, the return value is V1:V0. |
| int64_t Call(int32_t entry, |
| int32_t parameter0, |
| int32_t parameter1, |
| int32_t parameter2, |
| int32_t parameter3, |
| bool fp_return = false, |
| bool fp_args = false); |
| |
| // Implementation of atomic compare and exchange in the same synchronization |
| // domain as other synchronization primitive instructions (e.g. ldrex, strex). |
| static uword CompareExchange(uword* address, |
| uword compare_value, |
| uword new_value); |
| static uint32_t CompareExchangeUint32(uint32_t* address, |
| uint32_t compare_value, |
| uint32_t new_value); |
| |
| // Runtime and native call support. |
| enum CallKind { |
| kRuntimeCall, |
| kLeafRuntimeCall, |
| kLeafFloatRuntimeCall, |
| kBootstrapNativeCall, |
| kNativeCall |
| }; |
| static uword RedirectExternalReference(uword function, |
| CallKind call_kind, |
| int argument_count); |
| |
| static uword FunctionForRedirect(uword redirect); |
| |
| void JumpToFrame(uword pc, uword sp, uword fp, Thread* thread); |
| |
| private: |
| // A pc value used to signal the simulator to stop execution. Generally |
| // the ra is set to this value on transition from native C code to |
| // simulated execution, so that the simulator can "return" to the native |
| // C code. |
| static const uword kEndSimulatingPC = -1; |
| |
| // Special registers for the results of div, divu. |
| int32_t hi_reg_; |
| int32_t lo_reg_; |
| |
| int32_t registers_[kNumberOfCpuRegisters]; |
| int32_t fregisters_[kNumberOfFRegisters]; |
| int32_t fcsr_; |
| uword pc_; |
| |
| // Simulator support. |
| char* stack_; |
| uint64_t icount_; |
| bool delay_slot_; |
| SimulatorSetjmpBuffer* last_setjmp_buffer_; |
| uword top_exit_frame_info_; |
| |
| // Registered breakpoints. |
| Instr* break_pc_; |
| int32_t break_instr_; |
| |
| // Illegal memory access support. |
| static bool IsIllegalAddress(uword addr) { return addr < 64 * 1024; } |
| void HandleIllegalAccess(uword addr, Instr* instr); |
| |
| // Read and write memory. |
| void UnalignedAccess(const char* msg, uword addr, Instr* instr); |
| |
| // Handles a legal instruction that the simulator does not implement. |
| void UnimplementedInstruction(Instr* instr); |
| |
| void set_pc(uword value) { pc_ = value; } |
| |
| void Format(Instr* instr, const char* format); |
| |
| inline int8_t ReadB(uword addr); |
| inline uint8_t ReadBU(uword addr); |
| inline int16_t ReadH(uword addr, Instr* instr); |
| inline uint16_t ReadHU(uword addr, Instr* instr); |
| inline intptr_t ReadW(uword addr, Instr* instr); |
| |
| inline void WriteB(uword addr, uint8_t value); |
| inline void WriteH(uword addr, uint16_t value, Instr* isntr); |
| inline void WriteW(uword addr, intptr_t value, Instr* instr); |
| |
| inline double ReadD(uword addr, Instr* instr); |
| inline void WriteD(uword addr, double value, Instr* instr); |
| |
| // We keep track of 16 exclusive access address tags across all threads. |
| // Since we cannot simulate a native context switch, which clears |
| // the exclusive access state of the local monitor, we associate the thread |
| // requesting exclusive access to the address tag. |
| // Multiple threads requesting exclusive access (using the LL instruction) |
| // to the same address will result in multiple address tags being created for |
| // the same address, one per thread. |
| // At any given time, each thread is associated to at most one address tag. |
| static Mutex* exclusive_access_lock_; |
| static const int kNumAddressTags = 16; |
| static struct AddressTag { |
| Thread* thread; |
| uword addr; |
| } exclusive_access_state_[kNumAddressTags]; |
| static int next_address_tag_; |
| |
| // Synchronization primitives support. |
| void ClearExclusive(); |
| intptr_t ReadExclusiveW(uword addr, Instr* instr); |
| intptr_t WriteExclusiveW(uword addr, intptr_t value, Instr* instr); |
| |
| // Set access to given address to 'exclusive state' for current thread. |
| static void SetExclusiveAccess(uword addr); |
| |
| // Returns true if the current thread has exclusive access to given address, |
| // returns false otherwise. In either case, set access to given address to |
| // 'open state' for all threads. |
| // If given addr is NULL, set access to 'open state' for current |
| // thread (CLREX). |
| static bool HasExclusiveAccessAndOpen(uword addr); |
| |
| void DoBranch(Instr* instr, bool taken, bool likely); |
| void DoBreak(Instr* instr); |
| |
| void DecodeSpecial(Instr* instr); |
| void DecodeSpecial2(Instr* instr); |
| void DecodeRegImm(Instr* instr); |
| void DecodeCop1(Instr* instr); |
| void InstructionDecode(Instr* instr); |
| |
| void Execute(); |
| void ExecuteDelaySlot(); |
| |
| // Returns true if tracing of executed instructions is enabled. |
| bool IsTracingExecution() const; |
| |
| // Longjmp support for exceptions. |
| SimulatorSetjmpBuffer* last_setjmp_buffer() { return last_setjmp_buffer_; } |
| void set_last_setjmp_buffer(SimulatorSetjmpBuffer* buffer) { |
| last_setjmp_buffer_ = buffer; |
| } |
| |
| friend class SimulatorDebugger; |
| friend class SimulatorSetjmpBuffer; |
| DISALLOW_COPY_AND_ASSIGN(Simulator); |
| }; |
| |
| } // namespace dart |
| |
| #endif // RUNTIME_VM_SIMULATOR_MIPS_H_ |