blob: f3c325f9e1a2a8aee6a0ba94b8f507bdd7163e2a [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include <setjmp.h> // NOLINT
#include <stdlib.h>
#include "vm/globals.h"
#if defined(TARGET_ARCH_MIPS)
// Only build the simulator if not compiling for real MIPS hardware.
#if defined(USING_SIMULATOR)
#include "vm/simulator.h"
#include "vm/assembler.h"
#include "vm/constants_mips.h"
#include "vm/disassembler.h"
#include "vm/lockers.h"
#include "vm/native_arguments.h"
#include "vm/stack_frame.h"
#include "vm/os_thread.h"
namespace dart {
DEFINE_FLAG(uint64_t,
trace_sim_after,
ULLONG_MAX,
"Trace simulator execution after instruction count reached.");
DEFINE_FLAG(uint64_t,
stop_sim_at,
ULLONG_MAX,
"Instruction address or instruction count to stop simulator at.");
// This macro provides a platform independent use of sscanf. The reason for
// SScanF not being implemented in a platform independent way through
// OS in the same way as SNPrint is that the Windows C Run-Time
// Library does not provide vsscanf.
#define SScanF sscanf // NOLINT
// SimulatorSetjmpBuffer are linked together, and the last created one
// is referenced by the Simulator. When an exception is thrown, the exception
// runtime looks at where to jump and finds the corresponding
// SimulatorSetjmpBuffer based on the stack pointer of the exception handler.
// The runtime then does a Longjmp on that buffer to return to the simulator.
class SimulatorSetjmpBuffer {
public:
void Longjmp() {
// "This" is now the last setjmp buffer.
simulator_->set_last_setjmp_buffer(this);
longjmp(buffer_, 1);
}
explicit SimulatorSetjmpBuffer(Simulator* sim) {
simulator_ = sim;
link_ = sim->last_setjmp_buffer();
sim->set_last_setjmp_buffer(this);
sp_ = static_cast<uword>(sim->get_register(SP));
}
~SimulatorSetjmpBuffer() {
ASSERT(simulator_->last_setjmp_buffer() == this);
simulator_->set_last_setjmp_buffer(link_);
}
SimulatorSetjmpBuffer* link() { return link_; }
uword sp() { return sp_; }
private:
uword sp_;
Simulator* simulator_;
SimulatorSetjmpBuffer* link_;
jmp_buf buffer_;
friend class Simulator;
};
// The SimulatorDebugger class is used by the simulator while debugging
// simulated MIPS code.
class SimulatorDebugger {
public:
explicit SimulatorDebugger(Simulator* sim);
~SimulatorDebugger();
void Stop(Instr* instr, const char* message);
void Debug();
char* ReadLine(const char* prompt);
private:
Simulator* sim_;
bool GetValue(char* desc, uint32_t* value);
bool GetFValue(char* desc, double* value);
bool GetDValue(char* desc, double* value);
static TokenPosition GetApproximateTokenIndex(const Code& code, uword pc);
static void PrintDartFrame(uword pc,
uword fp,
uword sp,
const Function& function,
TokenPosition token_pos,
bool is_optimized,
bool is_inlined);
void PrintBacktrace();
// Set or delete a breakpoint. Returns true if successful.
bool SetBreakpoint(Instr* breakpc);
bool DeleteBreakpoint(Instr* breakpc);
// Undo and redo all breakpoints. This is needed to bracket disassembly and
// execution to skip past breakpoints when run from the debugger.
void UndoBreakpoints();
void RedoBreakpoints();
};
SimulatorDebugger::SimulatorDebugger(Simulator* sim) {
sim_ = sim;
}
SimulatorDebugger::~SimulatorDebugger() {}
void SimulatorDebugger::Stop(Instr* instr, const char* message) {
OS::Print("Simulator hit %s\n", message);
Debug();
}
static Register LookupCpuRegisterByName(const char* name) {
static const char* kNames[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"zr", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"};
static const Register kRegisters[] = {
R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,
R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21,
R22, R23, R24, R25, R26, R27, R28, R29, R30, R31,
ZR, AT, V0, V1, A0, A1, A2, A3, T0, T1, T2,
T3, T4, T5, T6, T7, S0, S1, S2, S3, S4, S5,
S6, S7, T8, T9, K0, K1, GP, SP, FP, RA};
ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters));
for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) {
if (strcmp(kNames[i], name) == 0) {
return kRegisters[i];
}
}
return kNoRegister;
}
static FRegister LookupFRegisterByName(const char* name) {
int reg_nr = -1;
bool ok = SScanF(name, "f%d", &reg_nr);
if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfFRegisters)) {
return static_cast<FRegister>(reg_nr);
}
return kNoFRegister;
}
bool SimulatorDebugger::GetValue(char* desc, uint32_t* value) {
Register reg = LookupCpuRegisterByName(desc);
if (reg != kNoRegister) {
*value = sim_->get_register(reg);
return true;
}
if (desc[0] == '*') {
uint32_t addr;
if (GetValue(desc + 1, &addr)) {
if (Simulator::IsIllegalAddress(addr)) {
return false;
}
*value = *(reinterpret_cast<uint32_t*>(addr));
return true;
}
}
if (strcmp("pc", desc) == 0) {
*value = sim_->get_pc();
return true;
}
bool retval = SScanF(desc, "0x%x", value) == 1;
if (!retval) {
retval = SScanF(desc, "%x", value) == 1;
}
return retval;
}
bool SimulatorDebugger::GetFValue(char* desc, double* value) {
FRegister freg = LookupFRegisterByName(desc);
if (freg != kNoFRegister) {
*value = sim_->get_fregister(freg);
return true;
}
if (desc[0] == '*') {
uint32_t addr;
if (GetValue(desc + 1, &addr)) {
if (Simulator::IsIllegalAddress(addr)) {
return false;
}
*value = *(reinterpret_cast<float*>(addr));
return true;
}
}
return false;
}
bool SimulatorDebugger::GetDValue(char* desc, double* value) {
FRegister freg = LookupFRegisterByName(desc);
if (freg != kNoFRegister) {
*value = sim_->get_fregister_double(freg);
return true;
}
if (desc[0] == '*') {
uint32_t addr;
if (GetValue(desc + 1, &addr)) {
if (Simulator::IsIllegalAddress(addr)) {
return false;
}
*value = *(reinterpret_cast<double*>(addr));
return true;
}
}
return false;
}
TokenPosition SimulatorDebugger::GetApproximateTokenIndex(const Code& code,
uword pc) {
TokenPosition token_pos = TokenPosition::kNoSource;
uword pc_offset = pc - code.PayloadStart();
const PcDescriptors& descriptors =
PcDescriptors::Handle(code.pc_descriptors());
PcDescriptors::Iterator iter(descriptors, RawPcDescriptors::kAnyKind);
while (iter.MoveNext()) {
if (iter.PcOffset() == pc_offset) {
return iter.TokenPos();
} else if (!token_pos.IsReal() && (iter.PcOffset() > pc_offset)) {
token_pos = iter.TokenPos();
}
}
return token_pos;
}
void SimulatorDebugger::PrintDartFrame(uword pc,
uword fp,
uword sp,
const Function& function,
TokenPosition token_pos,
bool is_optimized,
bool is_inlined) {
const Script& script = Script::Handle(function.script());
const String& func_name = String::Handle(function.QualifiedScrubbedName());
const String& url = String::Handle(script.url());
intptr_t line = -1;
intptr_t column = -1;
if (token_pos.IsReal()) {
script.GetTokenLocation(token_pos, &line, &column);
}
OS::Print(
"pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s:%" Pd ":%" Pd ")\n", pc,
fp, sp, is_optimized ? (is_inlined ? "inlined " : "optimized ") : "",
func_name.ToCString(), url.ToCString(), line, column);
}
void SimulatorDebugger::PrintBacktrace() {
StackFrameIterator frames(sim_->get_register(FP), sim_->get_register(SP),
sim_->get_pc(),
StackFrameIterator::kDontValidateFrames);
StackFrame* frame = frames.NextFrame();
ASSERT(frame != NULL);
Function& function = Function::Handle();
Function& inlined_function = Function::Handle();
Code& code = Code::Handle();
Code& unoptimized_code = Code::Handle();
while (frame != NULL) {
if (frame->IsDartFrame()) {
code = frame->LookupDartCode();
function = code.function();
if (code.is_optimized()) {
// For optimized frames, extract all the inlined functions if any
// into the stack trace.
InlinedFunctionsIterator it(code, frame->pc());
while (!it.Done()) {
// Print each inlined frame with its pc in the corresponding
// unoptimized frame.
inlined_function = it.function();
unoptimized_code = it.code();
uword unoptimized_pc = it.pc();
it.Advance();
if (!it.Done()) {
PrintDartFrame(
unoptimized_pc, frame->fp(), frame->sp(), inlined_function,
GetApproximateTokenIndex(unoptimized_code, unoptimized_pc),
true, true);
}
}
// Print the optimized inlining frame below.
}
PrintDartFrame(frame->pc(), frame->fp(), frame->sp(), function,
GetApproximateTokenIndex(code, frame->pc()),
code.is_optimized(), false);
} else {
OS::Print("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s frame\n",
frame->pc(), frame->fp(), frame->sp(),
frame->IsEntryFrame()
? "entry"
: frame->IsExitFrame()
? "exit"
: frame->IsStubFrame() ? "stub" : "invalid");
}
frame = frames.NextFrame();
}
}
bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) {
// Check if a breakpoint can be set. If not return without any side-effects.
if (sim_->break_pc_ != NULL) {
return false;
}
// Set the breakpoint.
sim_->break_pc_ = breakpc;
sim_->break_instr_ = breakpc->InstructionBits();
// Not setting the breakpoint instruction in the code itself. It will be set
// when the debugger shell continues.
return true;
}
bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
sim_->break_pc_ = NULL;
sim_->break_instr_ = 0;
return true;
}
void SimulatorDebugger::UndoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
}
}
void SimulatorDebugger::RedoBreakpoints() {
if (sim_->break_pc_ != NULL) {
sim_->break_pc_->SetInstructionBits(Instr::kSimulatorBreakpointInstruction);
}
}
void SimulatorDebugger::Debug() {
intptr_t last_pc = -1;
bool done = false;
#define COMMAND_SIZE 63
#define ARG_SIZE 255
#define STR(a) #a
#define XSTR(a) STR(a)
char cmd[COMMAND_SIZE + 1];
char arg1[ARG_SIZE + 1];
char arg2[ARG_SIZE + 1];
// make sure to have a proper terminating character if reaching the limit
cmd[COMMAND_SIZE] = 0;
arg1[ARG_SIZE] = 0;
arg2[ARG_SIZE] = 0;
// Undo all set breakpoints while running in the debugger shell. This will
// make them invisible to all commands.
UndoBreakpoints();
while (!done) {
if (last_pc != sim_->get_pc()) {
last_pc = sim_->get_pc();
if (Simulator::IsIllegalAddress(last_pc)) {
OS::Print("pc is out of bounds: 0x%" Px "\n", last_pc);
} else {
if (FLAG_support_disassembler) {
Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize);
} else {
OS::Print("Disassembler not supported in this mode.\n");
}
}
}
char* line = ReadLine("sim> ");
if (line == NULL) {
FATAL("ReadLine failed");
} else {
// Use sscanf to parse the individual parts of the command line. At the
// moment no command expects more than two parameters.
int args = SScanF(line,
"%" XSTR(COMMAND_SIZE) "s "
"%" XSTR(ARG_SIZE) "s "
"%" XSTR(ARG_SIZE) "s",
cmd, arg1, arg2);
if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
OS::Print(
"c/cont -- continue execution\n"
"disasm -- disassemble instrs at current pc location\n"
" other variants are:\n"
" disasm <address>\n"
" disasm <address> <number_of_instructions>\n"
" by default 10 instrs are disassembled\n"
"del -- delete breakpoints\n"
"gdb -- transfer control to gdb\n"
"h/help -- print this help string\n"
"break <address> -- set break point at specified address\n"
"p/print <reg or icount or value or *addr> -- print integer\n"
"pf/printfloat <freg or *addr> -- print float value\n"
"po/printobject <*reg or *addr> -- print object\n"
"si/stepi -- single step an instruction\n"
"trace -- toggle execution tracing mode\n"
"bt -- print backtrace\n"
"unstop -- if current pc is a stop instr make it a nop\n"
"q/quit -- Quit the debugger and exit the program\n");
} else if ((strcmp(cmd, "quit") == 0) || (strcmp(cmd, "q") == 0)) {
OS::Print("Quitting\n");
OS::Exit(0);
} else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
// Execute the one instruction we broke at with breakpoints disabled.
sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
// Leave the debugger shell.
done = true;
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
if (args == 2) {
uint32_t value;
if (strcmp(arg1, "icount") == 0) {
const uint64_t icount = sim_->get_icount();
OS::Print("icount: %" Pu64 " 0x%" Px64 "\n", icount, icount);
} else if (GetValue(arg1, &value)) {
OS::Print("%s: %u 0x%x\n", arg1, value, value);
} else {
OS::Print("%s unrecognized\n", arg1);
}
} else {
OS::Print("print <reg or icount or value or *addr>\n");
}
} else if ((strcmp(cmd, "pf") == 0) || (strcmp(cmd, "printfloat") == 0)) {
if (args == 2) {
double dvalue;
if (GetFValue(arg1, &dvalue)) {
uint64_t long_value = bit_cast<uint64_t, double>(dvalue);
OS::Print("%s: %llu 0x%llx %.8g\n", arg1, long_value, long_value,
dvalue);
} else {
OS::Print("%s unrecognized\n", arg1);
}
} else {
OS::Print("printfloat <dreg or *addr>\n");
}
} else if ((strcmp(cmd, "pd") == 0) ||
(strcmp(cmd, "printdouble") == 0)) {
if (args == 2) {
double dvalue;
if (GetDValue(arg1, &dvalue)) {
uint64_t long_value = bit_cast<uint64_t, double>(dvalue);
OS::Print("%s: %llu 0x%llx %.8g\n", arg1, long_value, long_value,
dvalue);
} else {
OS::Print("%s unrecognized\n", arg1);
}
} else {
OS::Print("printfloat <dreg or *addr>\n");
}
} else if ((strcmp(cmd, "po") == 0) ||
(strcmp(cmd, "printobject") == 0)) {
if (args == 2) {
uint32_t value;
// Make the dereferencing '*' optional.
if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) ||
GetValue(arg1, &value)) {
if (Isolate::Current()->heap()->Contains(value)) {
OS::Print("%s: \n", arg1);
#if defined(DEBUG)
const Object& obj =
Object::Handle(reinterpret_cast<RawObject*>(value));
obj.Print();
#endif // defined(DEBUG)
} else {
OS::Print("0x%x is not an object reference\n", value);
}
} else {
OS::Print("%s unrecognized\n", arg1);
}
} else {
OS::Print("printobject <*reg or *addr>\n");
}
} else if (strcmp(cmd, "disasm") == 0) {
uint32_t start = 0;
uint32_t end = 0;
if (args == 1) {
start = sim_->get_pc();
end = start + (10 * Instr::kInstrSize);
} else if (args == 2) {
if (GetValue(arg1, &start)) {
// No length parameter passed, assume 10 instructions.
if (Simulator::IsIllegalAddress(start)) {
// If start isn't a valid address, warn and use PC instead.
OS::Print("First argument yields invalid address: 0x%x\n", start);
OS::Print("Using PC instead\n");
start = sim_->get_pc();
}
end = start + (10 * Instr::kInstrSize);
}
} else {
uint32_t length;
if (GetValue(arg1, &start) && GetValue(arg2, &length)) {
if (Simulator::IsIllegalAddress(start)) {
// If start isn't a valid address, warn and use PC instead.
OS::Print("First argument yields invalid address: 0x%x\n", start);
OS::Print("Using PC instead\n");
start = sim_->get_pc();
}
end = start + (length * Instr::kInstrSize);
}
}
if ((start > 0) && (end > start)) {
if (FLAG_support_disassembler) {
Disassembler::Disassemble(start, end);
} else {
OS::Print("Disassembler not supported in this mode.\n");
}
} else {
OS::Print("disasm [<address> [<number_of_instructions>]]\n");
}
} else if (strcmp(cmd, "gdb") == 0) {
OS::Print("relinquishing control to gdb\n");
OS::DebugBreak();
OS::Print("regaining control from gdb\n");
} else if (strcmp(cmd, "break") == 0) {
if (args == 2) {
uint32_t addr;
if (GetValue(arg1, &addr)) {
if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) {
OS::Print("setting breakpoint failed\n");
}
} else {
OS::Print("%s unrecognized\n", arg1);
}
} else {
OS::Print("break <addr>\n");
}
} else if (strcmp(cmd, "del") == 0) {
if (!DeleteBreakpoint(NULL)) {
OS::Print("deleting breakpoint failed\n");
}
} else if (strcmp(cmd, "unstop") == 0) {
intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize;
Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc);
if (stop_instr->IsBreakPoint()) {
stop_instr->SetInstructionBits(Instr::kNopInstruction);
} else {
OS::Print("Not at debugger stop.\n");
}
} else if (strcmp(cmd, "trace") == 0) {
if (FLAG_trace_sim_after == ULLONG_MAX) {
FLAG_trace_sim_after = sim_->get_icount();
OS::Print("execution tracing on\n");
} else {
FLAG_trace_sim_after = ULLONG_MAX;
OS::Print("execution tracing off\n");
}
} else if (strcmp(cmd, "bt") == 0) {
PrintBacktrace();
} else {
OS::Print("Unknown command: %s\n", cmd);
}
}
delete[] line;
}
// Add all the breakpoints back to stop execution and enter the debugger
// shell when hit.
RedoBreakpoints();
#undef COMMAND_SIZE
#undef ARG_SIZE
#undef STR
#undef XSTR
}
char* SimulatorDebugger::ReadLine(const char* prompt) {
char* result = NULL;
char line_buf[256];
intptr_t offset = 0;
bool keep_going = true;
OS::Print("%s", prompt);
while (keep_going) {
if (fgets(line_buf, sizeof(line_buf), stdin) == NULL) {
// fgets got an error. Just give up.
if (result != NULL) {
delete[] result;
}
return NULL;
}
intptr_t len = strlen(line_buf);
if (len > 1 && line_buf[len - 2] == '\\' && line_buf[len - 1] == '\n') {
// When we read a line that ends with a "\" we remove the escape and
// append the remainder.
line_buf[len - 2] = '\n';
line_buf[len - 1] = 0;
len -= 1;
} else if ((len > 0) && (line_buf[len - 1] == '\n')) {
// Since we read a new line we are done reading the line. This
// will exit the loop after copying this buffer into the result.
keep_going = false;
}
if (result == NULL) {
// Allocate the initial result and make room for the terminating '\0'
result = new char[len + 1];
if (result == NULL) {
// OOM, so cannot readline anymore.
return NULL;
}
} else {
// Allocate a new result with enough room for the new addition.
intptr_t new_len = offset + len + 1;
char* new_result = new char[new_len];
if (new_result == NULL) {
// OOM, free the buffer allocated so far and return NULL.
delete[] result;
return NULL;
} else {
// Copy the existing input into the new array and set the new
// array as the result.
memmove(new_result, result, offset);
delete[] result;
result = new_result;
}
}
// Copy the newly read line into the result.
memmove(result + offset, line_buf, len);
offset += len;
}
ASSERT(result != NULL);
result[offset] = '\0';
return result;
}
// Synchronization primitives support.
Mutex* Simulator::exclusive_access_lock_ = NULL;
Simulator::AddressTag Simulator::exclusive_access_state_[kNumAddressTags] = {
{NULL, 0}};
int Simulator::next_address_tag_ = 0;
void Simulator::InitOnce() {
// Setup exclusive access state lock.
exclusive_access_lock_ = new Mutex();
}
Simulator::Simulator() {
// Setup simulator support first. Some of this information is needed to
// setup the architecture state.
// We allocate the stack here, the size is computed as the sum of
// the size specified by the user and the buffer space needed for
// handling stack overflow exceptions. To be safe in potential
// stack underflows we also add some underflow buffer space.
stack_ =
new char[(OSThread::GetSpecifiedStackSize() + OSThread::kStackSizeBuffer +
kSimulatorStackUnderflowSize)];
icount_ = 0;
delay_slot_ = false;
break_pc_ = NULL;
break_instr_ = 0;
last_setjmp_buffer_ = NULL;
top_exit_frame_info_ = 0;
// Setup architecture state.
// All registers are initialized to zero to start with.
for (int i = 0; i < kNumberOfCpuRegisters; i++) {
registers_[i] = 0;
}
pc_ = 0;
// The sp is initialized to point to the bottom (high address) of the
// allocated stack area.
registers_[SP] = StackTop();
// All double-precision registers are initialized to zero.
for (int i = 0; i < kNumberOfFRegisters; i++) {
fregisters_[i] = 0.0;
}
fcsr_ = 0;
}
Simulator::~Simulator() {
delete[] stack_;
Isolate* isolate = Isolate::Current();
if (isolate != NULL) {
isolate->set_simulator(NULL);
}
}
// When the generated code calls an external reference we need to catch that in
// the simulator. The external reference will be a function compiled for the
// host architecture. We need to call that function instead of trying to
// execute it with the simulator. We do that by redirecting the external
// reference to a break instruction with code 2 that is handled by
// the simulator. We write the original destination of the jump just at a known
// offset from the break instruction so the simulator knows what to call.
class Redirection {
public:
uword address_of_break_instruction() {
return reinterpret_cast<uword>(&break_instruction_);
}
uword external_function() const { return external_function_; }
Simulator::CallKind call_kind() const { return call_kind_; }
int argument_count() const { return argument_count_; }
static Redirection* Get(uword external_function,
Simulator::CallKind call_kind,
int argument_count) {
Redirection* current;
for (current = list_; current != NULL; current = current->next_) {
if (current->external_function_ == external_function) return current;
}
return new Redirection(external_function, call_kind, argument_count);
}
static Redirection* FromBreakInstruction(Instr* break_instruction) {
char* addr_of_break = reinterpret_cast<char*>(break_instruction);
char* addr_of_redirection =
addr_of_break - OFFSET_OF(Redirection, break_instruction_);
return reinterpret_cast<Redirection*>(addr_of_redirection);
}
static uword FunctionForRedirect(uword address_of_break) {
Redirection* current;
for (current = list_; current != NULL; current = current->next_) {
if (current->address_of_break_instruction() == address_of_break) {
return current->external_function_;
}
}
return 0;
}
private:
Redirection(uword external_function,
Simulator::CallKind call_kind,
int argument_count)
: external_function_(external_function),
call_kind_(call_kind),
argument_count_(argument_count),
break_instruction_(Instr::kSimulatorRedirectInstruction),
next_(list_) {
// Atomically prepend this element to the front of the global list.
// Note: Since elements are never removed, there is no ABA issue.
Redirection* list_head = list_;
do {
next_ = list_head;
list_head =
reinterpret_cast<Redirection*>(AtomicOperations::CompareAndSwapWord(
reinterpret_cast<uword*>(&list_), reinterpret_cast<uword>(next_),
reinterpret_cast<uword>(this)));
} while (list_head != next_);
}
uword external_function_;
Simulator::CallKind call_kind_;
int argument_count_;
uint32_t break_instruction_;
Redirection* next_;
static Redirection* list_;
};
Redirection* Redirection::list_ = NULL;
uword Simulator::RedirectExternalReference(uword function,
CallKind call_kind,
int argument_count) {
Redirection* redirection =
Redirection::Get(function, call_kind, argument_count);
return redirection->address_of_break_instruction();
}
uword Simulator::FunctionForRedirect(uword redirect) {
return Redirection::FunctionForRedirect(redirect);
}
// Get the active Simulator for the current isolate.
Simulator* Simulator::Current() {
Simulator* simulator = Isolate::Current()->simulator();
if (simulator == NULL) {
simulator = new Simulator();
Isolate::Current()->set_simulator(simulator);
}
return simulator;
}
// Sets the register in the architecture state.
void Simulator::set_register(Register reg, int32_t value) {
if (reg != R0) {
registers_[reg] = value;
}
}
void Simulator::set_fregister(FRegister reg, int32_t value) {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfFRegisters);
fregisters_[reg] = value;
}
void Simulator::set_fregister_float(FRegister reg, float value) {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfFRegisters);
fregisters_[reg] = bit_cast<int32_t, float>(value);
}
void Simulator::set_fregister_long(FRegister reg, int64_t value) {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfFRegisters);
ASSERT((reg & 1) == 0);
fregisters_[reg] = Utils::Low32Bits(value);
fregisters_[reg + 1] = Utils::High32Bits(value);
}
void Simulator::set_fregister_double(FRegister reg, double value) {
const int64_t ival = bit_cast<int64_t, double>(value);
set_fregister_long(reg, ival);
}
void Simulator::set_dregister_bits(DRegister reg, int64_t value) {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfDRegisters);
FRegister lo = static_cast<FRegister>(reg * 2);
FRegister hi = static_cast<FRegister>((reg * 2) + 1);
set_fregister(lo, Utils::Low32Bits(value));
set_fregister(hi, Utils::High32Bits(value));
}
void Simulator::set_dregister(DRegister reg, double value) {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfDRegisters);
set_dregister_bits(reg, bit_cast<int64_t, double>(value));
}
// Get the register from the architecture state.
int32_t Simulator::get_register(Register reg) const {
if (reg == R0) {
return 0;
}
return registers_[reg];
}
int32_t Simulator::get_fregister(FRegister reg) const {
ASSERT((reg >= 0) && (reg < kNumberOfFRegisters));
return fregisters_[reg];
}
float Simulator::get_fregister_float(FRegister reg) const {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfFRegisters);
return bit_cast<float, int32_t>(fregisters_[reg]);
}
int64_t Simulator::get_fregister_long(FRegister reg) const {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfFRegisters);
ASSERT((reg & 1) == 0);
const int32_t low = fregisters_[reg];
const int32_t high = fregisters_[reg + 1];
const int64_t value = Utils::LowHighTo64Bits(low, high);
return value;
}
double Simulator::get_fregister_double(FRegister reg) const {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfFRegisters);
ASSERT((reg & 1) == 0);
const int64_t value = get_fregister_long(reg);
return bit_cast<double, int64_t>(value);
}
int64_t Simulator::get_dregister_bits(DRegister reg) const {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfDRegisters);
FRegister lo = static_cast<FRegister>(reg * 2);
FRegister hi = static_cast<FRegister>((reg * 2) + 1);
return Utils::LowHighTo64Bits(get_fregister(lo), get_fregister(hi));
}
double Simulator::get_dregister(DRegister reg) const {
ASSERT(reg >= 0);
ASSERT(reg < kNumberOfDRegisters);
const int64_t value = get_dregister_bits(reg);
return bit_cast<double, int64_t>(value);
}
void Simulator::UnimplementedInstruction(Instr* instr) {
char buffer[64];
snprintf(buffer, sizeof(buffer), "Unimplemented instruction: pc=%p\n", instr);
SimulatorDebugger dbg(this);
dbg.Stop(instr, buffer);
FATAL("Cannot continue execution after unimplemented instruction.");
}
void Simulator::HandleIllegalAccess(uword addr, Instr* instr) {
uword fault_pc = get_pc();
// The debugger will not be able to single step past this instruction, but
// it will be possible to disassemble the code and inspect registers.
char buffer[128];
snprintf(buffer, sizeof(buffer),
"illegal memory access at 0x%" Px ", pc=0x%" Px "\n", addr,
fault_pc);
SimulatorDebugger dbg(this);
dbg.Stop(instr, buffer);
// The debugger will return control in non-interactive mode.
FATAL("Cannot continue execution after illegal memory access.");
}
void Simulator::UnalignedAccess(const char* msg, uword addr, Instr* instr) {
// The debugger will not be able to single step past this instruction, but
// it will be possible to disassemble the code and inspect registers.
char buffer[128];
snprintf(buffer, sizeof(buffer), "pc=%p, unaligned %s at 0x%" Px "\n", instr,
msg, addr);
SimulatorDebugger dbg(this);
dbg.Stop(instr, buffer);
// The debugger will return control in non-interactive mode.
FATAL("Cannot continue execution after unaligned access.");
}
// Returns the top of the stack area to enable checking for stack pointer
// validity.
uword Simulator::StackTop() const {
// To be safe in potential stack underflows we leave some buffer above and
// set the stack top.
return StackBase() +
(OSThread::GetSpecifiedStackSize() + OSThread::kStackSizeBuffer);
}
bool Simulator::IsTracingExecution() const {
return icount_ > FLAG_trace_sim_after;
}
void Simulator::Format(Instr* instr, const char* format) {
OS::PrintErr("Simulator - unknown instruction: %s\n", format);
UNIMPLEMENTED();
}
int8_t Simulator::ReadB(uword addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
return *ptr;
}
uint8_t Simulator::ReadBU(uword addr) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
return *ptr;
}
int16_t Simulator::ReadH(uword addr, Instr* instr) {
if ((addr & 1) == 0) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
return *ptr;
}
UnalignedAccess("signed halfword read", addr, instr);
return 0;
}
uint16_t Simulator::ReadHU(uword addr, Instr* instr) {
if ((addr & 1) == 0) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
return *ptr;
}
UnalignedAccess("unsigned halfword read", addr, instr);
return 0;
}
intptr_t Simulator::ReadW(uword addr, Instr* instr) {
if ((addr & 3) == 0) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
return *ptr;
}
UnalignedAccess("read", addr, instr);
return 0;
}
void Simulator::WriteB(uword addr, uint8_t value) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
*ptr = value;
}
void Simulator::WriteH(uword addr, uint16_t value, Instr* instr) {
if ((addr & 1) == 0) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
*ptr = value;
return;
}
UnalignedAccess("halfword write", addr, instr);
}
void Simulator::WriteW(uword addr, intptr_t value, Instr* instr) {
if ((addr & 3) == 0) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
*ptr = value;
return;
}
UnalignedAccess("write", addr, instr);
}
double Simulator::ReadD(uword addr, Instr* instr) {
if ((addr & 7) == 0) {
double* ptr = reinterpret_cast<double*>(addr);
return *ptr;
}
UnalignedAccess("double-precision floating point read", addr, instr);
return 0.0;
}
void Simulator::WriteD(uword addr, double value, Instr* instr) {
if ((addr & 7) == 0) {
double* ptr = reinterpret_cast<double*>(addr);
*ptr = value;
return;
}
UnalignedAccess("double-precision floating point write", addr, instr);
}
// Synchronization primitives support.
void Simulator::SetExclusiveAccess(uword addr) {
Thread* thread = Thread::Current();
ASSERT(thread != NULL);
DEBUG_ASSERT(exclusive_access_lock_->IsOwnedByCurrentThread());
int i = 0;
// Find an entry for this thread in the exclusive access state.
while ((i < kNumAddressTags) &&
(exclusive_access_state_[i].thread != thread)) {
i++;
}
// Round-robin replacement of previously used entries.
if (i == kNumAddressTags) {
i = next_address_tag_;
if (++next_address_tag_ == kNumAddressTags) {
next_address_tag_ = 0;
}
exclusive_access_state_[i].thread = thread;
}
// Remember the address being reserved.
exclusive_access_state_[i].addr = addr;
}
bool Simulator::HasExclusiveAccessAndOpen(uword addr) {
Thread* thread = Thread::Current();
ASSERT(thread != NULL);
ASSERT(addr != 0);
DEBUG_ASSERT(exclusive_access_lock_->IsOwnedByCurrentThread());
bool result = false;
for (int i = 0; i < kNumAddressTags; i++) {
if (exclusive_access_state_[i].thread == thread) {
// Check whether the current thread's address reservation matches.
if (exclusive_access_state_[i].addr == addr) {
result = true;
}
exclusive_access_state_[i].addr = 0;
} else if (exclusive_access_state_[i].addr == addr) {
// Other threads with matching address lose their reservations.
exclusive_access_state_[i].addr = 0;
}
}
return result;
}
void Simulator::ClearExclusive() {
MutexLocker ml(exclusive_access_lock_);
// Remove the reservation for this thread.
SetExclusiveAccess(0);
}
intptr_t Simulator::ReadExclusiveW(uword addr, Instr* instr) {
MutexLocker ml(exclusive_access_lock_);
SetExclusiveAccess(addr);
return ReadW(addr, instr);
}
intptr_t Simulator::WriteExclusiveW(uword addr, intptr_t value, Instr* instr) {
MutexLocker ml(exclusive_access_lock_);
bool write_allowed = HasExclusiveAccessAndOpen(addr);
if (write_allowed) {
WriteW(addr, value, instr);
return 1; // Success.
}
return 0; // Failure.
}
uword Simulator::CompareExchange(uword* address,
uword compare_value,
uword new_value) {
MutexLocker ml(exclusive_access_lock_);
// We do not get a reservation as it would be guaranteed to be found when
// writing below. No other thread is able to make a reservation while we
// hold the lock.
uword value = *address;
if (value == compare_value) {
*address = new_value;
// Same effect on exclusive access state as a successful SC.
HasExclusiveAccessAndOpen(reinterpret_cast<uword>(address));
} else {
// Same effect on exclusive access state as an LL.
SetExclusiveAccess(reinterpret_cast<uword>(address));
}
return value;
}
uint32_t Simulator::CompareExchangeUint32(uint32_t* address,
uint32_t compare_value,
uint32_t new_value) {
COMPILE_ASSERT(sizeof(uword) == sizeof(uint32_t));
return CompareExchange(reinterpret_cast<uword*>(address),
static_cast<uword>(compare_value),
static_cast<uword>(new_value));
}
// Calls into the Dart runtime are based on this interface.
typedef void (*SimulatorRuntimeCall)(NativeArguments arguments);
// Calls to leaf Dart runtime functions are based on this interface.
typedef int32_t (*SimulatorLeafRuntimeCall)(int32_t r0,
int32_t r1,
int32_t r2,
int32_t r3);
// Calls to leaf float Dart runtime functions are based on this interface.
typedef double (*SimulatorLeafFloatRuntimeCall)(double d0, double d1);
// Calls to native Dart functions are based on this interface.
typedef void (*SimulatorBootstrapNativeCall)(NativeArguments* arguments);
typedef void (*SimulatorNativeCall)(NativeArguments* arguments, uword target);
void Simulator::DoBreak(Instr* instr) {
ASSERT(instr->OpcodeField() == SPECIAL);
ASSERT(instr->FunctionField() == BREAK);
if (instr->BreakCodeField() == Instr::kStopMessageCode) {
SimulatorDebugger dbg(this);
const char* message = *reinterpret_cast<const char**>(
reinterpret_cast<intptr_t>(instr) - Instr::kInstrSize);
set_pc(get_pc() + Instr::kInstrSize);
dbg.Stop(instr, message);
// Adjust for extra pc increment.
set_pc(get_pc() - Instr::kInstrSize);
} else if (instr->BreakCodeField() == Instr::kSimulatorRedirectCode) {
SimulatorSetjmpBuffer buffer(this);
if (!setjmp(buffer.buffer_)) {
int32_t saved_ra = get_register(RA);
Redirection* redirection = Redirection::FromBreakInstruction(instr);
uword external = redirection->external_function();
if (IsTracingExecution()) {
THR_Print("Call to host function at 0x%" Pd "\n", external);
}
if ((redirection->call_kind() == kRuntimeCall) ||
(redirection->call_kind() == kBootstrapNativeCall) ||
(redirection->call_kind() == kNativeCall)) {
// Set the top_exit_frame_info of this simulator to the native stack.
set_top_exit_frame_info(Thread::GetCurrentStackPointer());
}
if (redirection->call_kind() == kRuntimeCall) {
NativeArguments arguments;
ASSERT(sizeof(NativeArguments) == 4 * kWordSize);
arguments.thread_ = reinterpret_cast<Thread*>(get_register(A0));
arguments.argc_tag_ = get_register(A1);
arguments.argv_ = reinterpret_cast<RawObject**>(get_register(A2));
arguments.retval_ = reinterpret_cast<RawObject**>(get_register(A3));
SimulatorRuntimeCall target =
reinterpret_cast<SimulatorRuntimeCall>(external);
target(arguments);
set_register(V0, icount_); // Zap result registers from void function.
set_register(V1, icount_);
} else if (redirection->call_kind() == kLeafRuntimeCall) {
int32_t a0 = get_register(A0);
int32_t a1 = get_register(A1);
int32_t a2 = get_register(A2);
int32_t a3 = get_register(A3);
SimulatorLeafRuntimeCall target =
reinterpret_cast<SimulatorLeafRuntimeCall>(external);
a0 = target(a0, a1, a2, a3);
set_register(V0, a0); // Set returned result from function.
set_register(V1, icount_); // Zap second result register.
} else if (redirection->call_kind() == kLeafFloatRuntimeCall) {
ASSERT((0 <= redirection->argument_count()) &&
(redirection->argument_count() <= 2));
// double values are passed and returned in floating point registers.
SimulatorLeafFloatRuntimeCall target =
reinterpret_cast<SimulatorLeafFloatRuntimeCall>(external);
double d0 = 0.0;
double d6 = get_fregister_double(F12);
double d7 = get_fregister_double(F14);
d0 = target(d6, d7);
set_fregister_double(F0, d0);
} else if (redirection->call_kind() == kBootstrapNativeCall) {
ASSERT(redirection->argument_count() == 1);
NativeArguments* arguments;
arguments = reinterpret_cast<NativeArguments*>(get_register(A0));
SimulatorBootstrapNativeCall target =
reinterpret_cast<SimulatorBootstrapNativeCall>(external);
target(arguments);
set_register(V0, icount_); // Zap result register from void function.
set_register(V1, icount_);
} else {
ASSERT(redirection->call_kind() == kNativeCall);
NativeArguments* arguments;
arguments = reinterpret_cast<NativeArguments*>(get_register(A0));
uword target_func = get_register(A1);
SimulatorNativeCall target =
reinterpret_cast<SimulatorNativeCall>(external);
target(arguments, target_func);
set_register(V0, icount_); // Zap result register from void function.
set_register(V1, icount_);
}
set_top_exit_frame_info(0);
// Zap caller-saved registers, since the actual runtime call could have
// used them.
set_register(T0, icount_);
set_register(T1, icount_);
set_register(T2, icount_);
set_register(T3, icount_);
set_register(T4, icount_);
set_register(T5, icount_);
set_register(T6, icount_);
set_register(T7, icount_);
set_register(T8, icount_);
set_register(T9, icount_);
set_register(A0, icount_);
set_register(A1, icount_);
set_register(A2, icount_);
set_register(A3, icount_);
set_register(TMP, icount_);
set_register(RA, icount_);
// Zap floating point registers.
int32_t zap_dvalue = icount_;
for (int i = F4; i <= F18; i++) {
set_fregister(static_cast<FRegister>(i), zap_dvalue);
}
// Return. Subtract to account for pc_ increment after return.
set_pc(saved_ra - Instr::kInstrSize);
} else {
// Coming via long jump from a throw. Continue to exception handler.
set_top_exit_frame_info(0);
// Adjust for extra pc increment.
set_pc(get_pc() - Instr::kInstrSize);
}
} else if (instr->BreakCodeField() == Instr::kSimulatorBreakCode) {
SimulatorDebugger dbg(this);
dbg.Stop(instr, "breakpoint");
// Adjust for extra pc increment.
set_pc(get_pc() - Instr::kInstrSize);
} else {
SimulatorDebugger dbg(this);
set_pc(get_pc() + Instr::kInstrSize);
char buffer[32];
snprintf(buffer, sizeof(buffer), "break #0x%x", instr->BreakCodeField());
dbg.Stop(instr, buffer);
// Adjust for extra pc increment.
set_pc(get_pc() - Instr::kInstrSize);
}
}
void Simulator::DecodeSpecial(Instr* instr) {
ASSERT(instr->OpcodeField() == SPECIAL);
switch (instr->FunctionField()) {
case ADDU: {
ASSERT(instr->SaField() == 0);
// Format(instr, "addu 'rd, 'rs, 'rt");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
set_register(instr->RdField(), rs_val + rt_val);
break;
}
case AND: {
ASSERT(instr->SaField() == 0);
// Format(instr, "and 'rd, 'rs, 'rt");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
set_register(instr->RdField(), rs_val & rt_val);
break;
}
case BREAK: {
DoBreak(instr);
break;
}
case DIV: {
ASSERT(instr->RdField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "div 'rs, 'rt");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
if (rt_val == 0) {
// Results are unpredictable, but there is no arithmetic exception.
set_hi_register(icount_);
set_lo_register(icount_);
break;
}
if ((rs_val == static_cast<int32_t>(0x80000000)) &&
(rt_val == static_cast<int32_t>(0xffffffff))) {
set_lo_register(0x80000000);
set_hi_register(0);
} else {
set_lo_register(rs_val / rt_val);
set_hi_register(rs_val % rt_val);
}
break;
}
case DIVU: {
ASSERT(instr->RdField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "divu 'rs, 'rt");
uint32_t rs_val = get_register(instr->RsField());
uint32_t rt_val = get_register(instr->RtField());
if (rt_val == 0) {
// Results are unpredictable, but there is no arithmetic exception.
set_hi_register(icount_);
set_lo_register(icount_);
break;
}
set_lo_register(rs_val / rt_val);
set_hi_register(rs_val % rt_val);
break;
}
case JALR: {
ASSERT(instr->RtField() == R0);
ASSERT(instr->RsField() != instr->RdField());
ASSERT(!delay_slot_);
// Format(instr, "jalr'hint 'rd, rs");
set_register(instr->RdField(), pc_ + 2 * Instr::kInstrSize);
uword next_pc = get_register(instr->RsField());
ExecuteDelaySlot();
// Set return address to be the instruction after the delay slot.
pc_ = next_pc - Instr::kInstrSize; // Account for regular PC increment.
break;
}
case JR: {
ASSERT(instr->RtField() == R0);
ASSERT(instr->RdField() == R0);
ASSERT(!delay_slot_);
// Format(instr, "jr'hint 'rs");
uword next_pc = get_register(instr->RsField());
ExecuteDelaySlot();
pc_ = next_pc - Instr::kInstrSize; // Account for regular PC increment.
break;
}
case MFHI: {
ASSERT(instr->RsField() == 0);
ASSERT(instr->RtField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "mfhi 'rd");
set_register(instr->RdField(), get_hi_register());
break;
}
case MFLO: {
ASSERT(instr->RsField() == 0);
ASSERT(instr->RtField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "mflo 'rd");
set_register(instr->RdField(), get_lo_register());
break;
}
case MOVCI: {
ASSERT(instr->SaField() == 0);
ASSERT(instr->Bit(17) == 0);
int32_t rs_val = get_register(instr->RsField());
uint32_t cc, fcsr_cc, test, status;
cc = instr->Bits(18, 3);
fcsr_cc = get_fcsr_condition_bit(cc);
test = instr->Bit(16);
status = test_fcsr_bit(fcsr_cc);
if (test == status) {
set_register(instr->RdField(), rs_val);
}
break;
}
case MOVN: {
ASSERT(instr->SaField() == 0);
// Format(instr, "movn 'rd, 'rs, 'rt");
int32_t rt_val = get_register(instr->RtField());
int32_t rs_val = get_register(instr->RsField());
if (rt_val != 0) {
set_register(instr->RdField(), rs_val);
}
break;
}
case MOVZ: {
ASSERT(instr->SaField() == 0);
// Format(instr, "movz 'rd, 'rs, 'rt");
int32_t rt_val = get_register(instr->RtField());
int32_t rs_val = get_register(instr->RsField());
if (rt_val == 0) {
set_register(instr->RdField(), rs_val);
}
break;
}
case MTHI: {
ASSERT(instr->RtField() == 0);
ASSERT(instr->RdField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "mthi 'rd");
set_hi_register(get_register(instr->RsField()));
break;
}
case MTLO: {
ASSERT(instr->RtField() == 0);
ASSERT(instr->RdField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "mflo 'rd");
set_lo_register(get_register(instr->RsField()));
break;
}
case MULT: {
ASSERT(instr->RdField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "mult 'rs, 'rt");
int64_t rs = get_register(instr->RsField());
int64_t rt = get_register(instr->RtField());
int64_t res = rs * rt;
set_hi_register(Utils::High32Bits(res));
set_lo_register(Utils::Low32Bits(res));
break;
}
case MULTU: {
ASSERT(instr->RdField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "multu 'rs, 'rt");
uint64_t rs = static_cast<uint32_t>(get_register(instr->RsField()));
uint64_t rt = static_cast<uint32_t>(get_register(instr->RtField()));
uint64_t res = rs * rt;
set_hi_register(Utils::High32Bits(res));
set_lo_register(Utils::Low32Bits(res));
break;
}
case NOR: {
ASSERT(instr->SaField() == 0);
// Format(instr, "nor 'rd, 'rs, 'rt");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
set_register(instr->RdField(), ~(rs_val | rt_val));
break;
}
case OR: {
ASSERT(instr->SaField() == 0);
// Format(instr, "or 'rd, 'rs, 'rt");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
set_register(instr->RdField(), rs_val | rt_val);
break;
}
case SLL: {
ASSERT(instr->RsField() == 0);
if ((instr->RdField() == R0) && (instr->RtField() == R0) &&
(instr->SaField() == 0)) {
// Format(instr, "nop");
// Nothing to be done for NOP.
} else {
int32_t rt_val = get_register(instr->RtField());
int sa = instr->SaField();
set_register(instr->RdField(), rt_val << sa);
}
break;
}
case SLLV: {
ASSERT(instr->SaField() == 0);
// Format(instr, "sllv 'rd, 'rt, 'rs");
int32_t rt_val = get_register(instr->RtField());
int32_t rs_val = get_register(instr->RsField());
set_register(instr->RdField(), rt_val << (rs_val & 0x1f));
break;
}
case SLT: {
ASSERT(instr->SaField() == 0);
// Format(instr, "slt 'rd, 'rs, 'rt");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
set_register(instr->RdField(), rs_val < rt_val ? 1 : 0);
break;
}
case SLTU: {
ASSERT(instr->SaField() == 0);
// Format(instr, "sltu 'rd, 'rs, 'rt");
uint32_t rs_val = static_cast<uint32_t>(get_register(instr->RsField()));
uint32_t rt_val = static_cast<uint32_t>(get_register(instr->RtField()));
set_register(instr->RdField(), rs_val < rt_val ? 1 : 0);
break;
}
case SRA: {
ASSERT(instr->RsField() == 0);
// Format(instr, "sra 'rd, 'rt, 'sa");
int32_t rt_val = get_register(instr->RtField());
int32_t sa = instr->SaField();
set_register(instr->RdField(), rt_val >> sa);
break;
}
case SRAV: {
ASSERT(instr->SaField() == 0);
// Format(instr, "srav 'rd, 'rt, 'rs");
int32_t rt_val = get_register(instr->RtField());
int32_t rs_val = get_register(instr->RsField());
set_register(instr->RdField(), rt_val >> (rs_val & 0x1f));
break;
}
case SRL: {
ASSERT(instr->RsField() == 0);
// Format(instr, "srl 'rd, 'rt, 'sa");
uint32_t rt_val = get_register(instr->RtField());
uint32_t sa = instr->SaField();
set_register(instr->RdField(), rt_val >> sa);
break;
}
case SRLV: {
ASSERT(instr->SaField() == 0);
// Format(instr, "srlv 'rd, 'rt, 'rs");
uint32_t rt_val = get_register(instr->RtField());
uint32_t rs_val = get_register(instr->RsField());
set_register(instr->RdField(), rt_val >> (rs_val & 0x1f));
break;
}
case SUBU: {
ASSERT(instr->SaField() == 0);
// Format(instr, "subu 'rd, 'rs, 'rt");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
set_register(instr->RdField(), rs_val - rt_val);
break;
}
case XOR: {
ASSERT(instr->SaField() == 0);
// Format(instr, "xor 'rd, 'rs, 'rt");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
set_register(instr->RdField(), rs_val ^ rt_val);
break;
}
default: {
OS::PrintErr("DecodeSpecial: 0x%x\n", instr->InstructionBits());
UnimplementedInstruction(instr);
break;
}
}
}
void Simulator::DecodeSpecial2(Instr* instr) {
ASSERT(instr->OpcodeField() == SPECIAL2);
switch (instr->FunctionField()) {
case MADD: {
ASSERT(instr->RdField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "madd 'rs, 'rt");
uint32_t lo = get_lo_register();
int32_t hi = get_hi_register();
int64_t accum = Utils::LowHighTo64Bits(lo, hi);
int64_t rs = get_register(instr->RsField());
int64_t rt = get_register(instr->RtField());
int64_t res = accum + rs * rt;
set_hi_register(Utils::High32Bits(res));
set_lo_register(Utils::Low32Bits(res));
break;
}
case MADDU: {
ASSERT(instr->RdField() == 0);
ASSERT(instr->SaField() == 0);
// Format(instr, "maddu 'rs, 'rt");
uint32_t lo = get_lo_register();
uint32_t hi = get_hi_register();
uint64_t accum = Utils::LowHighTo64Bits(lo, hi);
uint64_t rs = static_cast<uint32_t>(get_register(instr->RsField()));
uint64_t rt = static_cast<uint32_t>(get_register(instr->RtField()));
uint64_t res = accum + rs * rt;
set_hi_register(Utils::High32Bits(res));
set_lo_register(Utils::Low32Bits(res));
break;
}
case CLO: {
ASSERT(instr->SaField() == 0);
ASSERT(instr->RtField() == instr->RdField());
// Format(instr, "clo 'rd, 'rs");
int32_t rs_val = get_register(instr->RsField());
int32_t bitcount = 0;
while (rs_val < 0) {
bitcount++;
rs_val <<= 1;
}
set_register(instr->RdField(), bitcount);
break;
}
case CLZ: {
ASSERT(instr->SaField() == 0);
ASSERT(instr->RtField() == instr->RdField());
// Format(instr, "clz 'rd, 'rs");
int32_t rs_val = get_register(instr->RsField());
int32_t bitcount = 0;
if (rs_val != 0) {
while (rs_val > 0) {
bitcount++;
rs_val <<= 1;
}
} else {
bitcount = 32;
}
set_register(instr->RdField(), bitcount);
break;
}
default: {
OS::PrintErr("DecodeSpecial2: 0x%x\n", instr->InstructionBits());
UnimplementedInstruction(instr);
break;
}
}
}
void Simulator::DoBranch(Instr* instr, bool taken, bool likely) {
ASSERT(!delay_slot_);
int32_t imm_val = instr->SImmField() << 2;
uword next_pc;
if (taken) {
// imm_val is added to the address of the instruction following the branch.
next_pc = pc_ + imm_val + Instr::kInstrSize;
if (likely) {
ExecuteDelaySlot();
}
} else {
next_pc = pc_ + (2 * Instr::kInstrSize); // Next after delay slot.
}
if (!likely) {
ExecuteDelaySlot();
}
pc_ = next_pc - Instr::kInstrSize;
return;
}
void Simulator::DecodeRegImm(Instr* instr) {
ASSERT(instr->OpcodeField() == REGIMM);
switch (instr->RegImmFnField()) {
case BGEZ: {
// Format(instr, "bgez 'rs, 'dest");
int32_t rs_val = get_register(instr->RsField());
DoBranch(instr, rs_val >= 0, false);
break;
}
case BGEZAL: {
int32_t rs_val = get_register(instr->RsField());
// Return address is one after the delay slot.
set_register(RA, pc_ + (2 * Instr::kInstrSize));
DoBranch(instr, rs_val >= 0, false);
break;
}
case BLTZAL: {
int32_t rs_val = get_register(instr->RsField());
// Return address is one after the delay slot.
set_register(RA, pc_ + (2 * Instr::kInstrSize));
DoBranch(instr, rs_val < 0, false);
break;
}
case BGEZL: {
// Format(instr, "bgezl 'rs, 'dest");
int32_t rs_val = get_register(instr->RsField());
DoBranch(instr, rs_val >= 0, true);
break;
}
case BLTZ: {
// Format(instr, "bltz 'rs, 'dest");
int32_t rs_val = get_register(instr->RsField());
DoBranch(instr, rs_val < 0, false);
break;
}
case BLTZL: {
// Format(instr, "bltzl 'rs, 'dest");
int32_t rs_val = get_register(instr->RsField());
DoBranch(instr, rs_val < 0, true);
break;
}
default: {
OS::PrintErr("DecodeRegImm: 0x%x\n", instr->InstructionBits());
UnimplementedInstruction(instr);
break;
}
}
}
void Simulator::DecodeCop1(Instr* instr) {
ASSERT(instr->OpcodeField() == COP1);
if (instr->HasFormat()) {
// If the rs field is a valid format, then the function field identifies the
// instruction.
double fs_val = get_fregister_double(instr->FsField());
double ft_val = get_fregister_double(instr->FtField());
uint32_t cc, fcsr_cc;
cc = instr->FpuCCField();
fcsr_cc = get_fcsr_condition_bit(cc);
switch (instr->Cop1FunctionField()) {
case COP1_ADD: {
// Format(instr, "add.'fmt 'fd, 'fs, 'ft");
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
set_fregister_double(instr->FdField(), fs_val + ft_val);
break;
}
case COP1_SUB: {
// Format(instr, "sub.'fmt 'fd, 'fs, 'ft");
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
set_fregister_double(instr->FdField(), fs_val - ft_val);
break;
}
case COP1_MUL: {
// Format(instr, "mul.'fmt 'fd, 'fs, 'ft");
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
set_fregister_double(instr->FdField(), fs_val * ft_val);
break;
}
case COP1_DIV: {
// Format(instr, "div.'fmt 'fd, 'fs, 'ft");
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
set_fregister_double(instr->FdField(), fs_val / ft_val);
break;
}
case COP1_SQRT: {
// Format(instr, "sqrt.'fmt 'fd, 'fs");
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
set_fregister_double(instr->FdField(), sqrt(fs_val));
break;
}
case COP1_MOV: {
// Format(instr, "mov.'fmt 'fd, 'fs");
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
set_fregister_double(instr->FdField(), fs_val);
break;
}
case COP1_NEG: {
// Format(instr, "neg.'fmt 'fd, 'fs");
ASSERT(instr->FormatField() == FMT_D);
set_fregister_double(instr->FdField(), -fs_val);
break;
}
case COP1_C_F: {
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
ASSERT(instr->FdField() == F0);
set_fcsr_bit(fcsr_cc, false);
break;
}
case COP1_C_UN: {
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
ASSERT(instr->FdField() == F0);
set_fcsr_bit(fcsr_cc, isnan(fs_val) || isnan(ft_val));
break;
}
case COP1_C_EQ: {
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
ASSERT(instr->FdField() == F0);
set_fcsr_bit(fcsr_cc, (fs_val == ft_val));
break;
}
case COP1_C_UEQ: {
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
ASSERT(instr->FdField() == F0);
set_fcsr_bit(fcsr_cc,
(fs_val == ft_val) || isnan(fs_val) || isnan(ft_val));
break;
}
case COP1_C_OLT: {
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
ASSERT(instr->FdField() == F0);
set_fcsr_bit(fcsr_cc, (fs_val < ft_val));
break;
}
case COP1_C_ULT: {
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
ASSERT(instr->FdField() == F0);
set_fcsr_bit(fcsr_cc,
(fs_val < ft_val) || isnan(fs_val) || isnan(ft_val));
break;
}
case COP1_C_OLE: {
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
ASSERT(instr->FdField() == F0);
set_fcsr_bit(fcsr_cc, (fs_val <= ft_val));
break;
}
case COP1_C_ULE: {
ASSERT(instr->FormatField() == FMT_D); // Only D supported.
ASSERT(instr->FdField() == F0);
set_fcsr_bit(fcsr_cc,
(fs_val <= ft_val) || isnan(fs_val) || isnan(ft_val));
break;
}
case COP1_TRUNC_W: {
switch (instr->FormatField()) {
case FMT_D: {
double fs_dbl = get_fregister_double(instr->FsField());
int32_t fs_int;
if (isnan(fs_dbl) || isinf(fs_dbl) || (fs_dbl > kMaxInt32) ||
(fs_dbl < kMinInt32)) {
fs_int = kMaxInt32;
} else {
fs_int = static_cast<int32_t>(fs_dbl);
}
set_fregister(instr->FdField(), fs_int);
break;
}
default: {
OS::PrintErr("DecodeCop1: 0x%x\n", instr->InstructionBits());
UnimplementedInstruction(instr);
break;
}
}
break;
}
case COP1_CVT_D: {
switch (instr->FormatField()) {
case FMT_W: {
int32_t fs_int = get_fregister(instr->FsField());
double fs_dbl = static_cast<double>(fs_int);
set_fregister_double(instr->FdField(), fs_dbl);
break;
}
case FMT_S: {
float fs_flt = get_fregister_float(instr->FsField());
double fs_dbl = static_cast<double>(fs_flt);
set_fregister_double(instr->FdField(), fs_dbl);
break;
}
default: {
OS::PrintErr("DecodeCop1: 0x%x\n", instr->InstructionBits());
UnimplementedInstruction(instr);
break;
}
}
break;
}
case COP1_CVT_S: {
switch (instr->FormatField()) {
case FMT_D: {
double fs_dbl = get_fregister_double(instr->FsField());
float fs_flt = static_cast<float>(fs_dbl);
set_fregister_float(instr->FdField(), fs_flt);
break;
}
default: {
OS::PrintErr("DecodeCop1: 0x%x\n", instr->InstructionBits());
UnimplementedInstruction(instr);
break;
}
}
break;
}
default: {
OS::PrintErr("DecodeCop1: 0x%x\n", instr->InstructionBits());
UnimplementedInstruction(instr);
break;
}
}
} else {
// If the rs field isn't a valid format, then it must be a sub-op.
switch (instr->Cop1SubField()) {
case COP1_MF: {
// Format(instr, "mfc1 'rt, 'fs");
ASSERT(instr->Bits(0, 11) == 0);
int32_t fs_val = get_fregister(instr->FsField());
set_register(instr->RtField(), fs_val);
break;
}
case COP1_MT: {
// Format(instr, "mtc1 'rt, 'fs");
ASSERT(instr->Bits(0, 11) == 0);
int32_t rt_val = get_register(instr->RtField());
set_fregister(instr->FsField(), rt_val);
break;
}
case COP1_BC: {
ASSERT(instr->Bit(17) == 0);
uint32_t cc, fcsr_cc;
cc = instr->Bits(18, 3);
fcsr_cc = get_fcsr_condition_bit(cc);
if (instr->Bit(16) == 1) { // Branch on true.
DoBranch(instr, test_fcsr_bit(fcsr_cc), false);
} else { // Branch on false.
DoBranch(instr, !test_fcsr_bit(fcsr_cc), false);
}
break;
}
default: {
OS::PrintErr("DecodeCop1: 0x%x\n", instr->InstructionBits());
UnimplementedInstruction(instr);
break;
}
}
}
}
void Simulator::InstructionDecode(Instr* instr) {
if (IsTracingExecution()) {
THR_Print("%" Pu64 " ", icount_);
const uword start = reinterpret_cast<uword>(instr);
const uword end = start + Instr::kInstrSize;
if (FLAG_support_disassembler) {
Disassembler::Disassemble(start, end);
} else {
THR_Print("Disassembler not supported in this mode.\n");
}
}
switch (instr->OpcodeField()) {
case SPECIAL: {
DecodeSpecial(instr);
break;
}
case SPECIAL2: {
DecodeSpecial2(instr);
break;
}
case REGIMM: {
DecodeRegImm(instr);
break;
}
case COP1: {
DecodeCop1(instr);
break;
}
case ADDIU: {
// Format(instr, "addiu 'rt, 'rs, 'imms");
int32_t rs_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
int32_t res = rs_val + imm_val;
// Rt is set even on overflow.
set_register(instr->RtField(), res);
break;
}
case ANDI: {
// Format(instr, "andi 'rt, 'rs, 'immu");
int32_t rs_val = get_register(instr->RsField());
set_register(instr->RtField(), rs_val & instr->UImmField());
break;
}
case BEQ: {
// Format(instr, "beq 'rs, 'rt, 'dest");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
DoBranch(instr, rs_val == rt_val, false);
break;
}
case BEQL: {
// Format(instr, "beql 'rs, 'rt, 'dest");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
DoBranch(instr, rs_val == rt_val, true);
break;
}
case BGTZ: {
ASSERT(instr->RtField() == R0);
// Format(instr, "bgtz 'rs, 'dest");
int32_t rs_val = get_register(instr->RsField());
DoBranch(instr, rs_val > 0, false);
break;
}
case BGTZL: {
ASSERT(instr->RtField() == R0);
// Format(instr, "bgtzl 'rs, 'dest");
int32_t rs_val = get_register(instr->RsField());
DoBranch(instr, rs_val > 0, true);
break;
}
case BLEZ: {
ASSERT(instr->RtField() == R0);
// Format(instr, "blez 'rs, 'dest");
int32_t rs_val = get_register(instr->RsField());
DoBranch(instr, rs_val <= 0, false);
break;
}
case BLEZL: {
ASSERT(instr->RtField() == R0);
// Format(instr, "blezl 'rs, 'dest");
int32_t rs_val = get_register(instr->RsField());
DoBranch(instr, rs_val <= 0, true);
break;
}
case BNE: {
// Format(instr, "bne 'rs, 'rt, 'dest");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
DoBranch(instr, rs_val != rt_val, false);
break;
}
case BNEL: {
// Format(instr, "bnel 'rs, 'rt, 'dest");
int32_t rs_val = get_register(instr->RsField());
int32_t rt_val = get_register(instr->RtField());
DoBranch(instr, rs_val != rt_val, true);
break;
}
case LB: {
// Format(instr, "lb 'rt, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
int32_t res = ReadB(addr);
set_register(instr->RtField(), res);
}
break;
}
case LBU: {
// Format(instr, "lbu 'rt, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
uint32_t res = ReadBU(addr);
set_register(instr->RtField(), res);
}
break;
}
case LDC1: {
// Format(instr, "ldc1 'ft, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
double value = ReadD(addr, instr);
set_fregister_double(instr->FtField(), value);
}
break;
}
case LH: {
// Format(instr, "lh 'rt, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
int32_t res = ReadH(addr, instr);
set_register(instr->RtField(), res);
}
break;
}
case LHU: {
// Format(instr, "lhu 'rt, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
int32_t res = ReadHU(addr, instr);
set_register(instr->RtField(), res);
}
break;
}
case LUI: {
ASSERT(instr->RsField() == 0);
set_register(instr->RtField(), instr->UImmField() << 16);
break;
}
case LL: {
// Format(instr, "ll 'rt, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
int32_t res = ReadExclusiveW(addr, instr);
set_register(instr->RtField(), res);
}
break;
}
case LW: {
// Format(instr, "lw 'rt, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
int32_t res = ReadW(addr, instr);
set_register(instr->RtField(), res);
}
break;
}
case LWC1: {
// Format(instr, "lwc1 'ft, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
int32_t value = ReadW(addr, instr);
set_fregister(instr->FtField(), value);
}
break;
}
case ORI: {
// Format(instr, "ori 'rt, 'rs, 'immu");
int32_t rs_val = get_register(instr->RsField());
set_register(instr->RtField(), rs_val | instr->UImmField());
break;
}
case SB: {
// Format(instr, "sb 'rt, 'imms('rs)");
int32_t rt_val = get_register(instr->RtField());
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
WriteB(addr, rt_val & 0xff);
}
break;
}
case SC: {
// Format(instr, "sc 'rt, 'imms('rs)");
int32_t rt_val = get_register(instr->RtField());
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
intptr_t status = WriteExclusiveW(addr, rt_val, instr);
set_register(instr->RtField(), status);
}
break;
}
case SLTI: {
// Format(instr, "slti 'rt, 'rs, 'imms");
int32_t rs_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
set_register(instr->RtField(), rs_val < imm_val ? 1 : 0);
break;
}
case SLTIU: {
// Format(instr, "sltiu 'rt, 'rs, 'imms");
uint32_t rs_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField(); // Sign extend to 32-bit.
uint32_t immu_val = static_cast<uint32_t>(imm_val); // Treat as unsigned.
set_register(instr->RtField(), rs_val < immu_val ? 1 : 0);
break;
}
case SDC1: {
// Format(instr, "sdc1 'ft, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
double value = get_fregister_double(instr->FtField());
WriteD(addr, value, instr);
}
break;
}
case SH: {
// Format(instr, "sh 'rt, 'imms('rs)");
int32_t rt_val = get_register(instr->RtField());
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
WriteH(addr, rt_val & 0xffff, instr);
}
break;
}
case SW: {
// Format(instr, "sw 'rt, 'imms('rs)");
int32_t rt_val = get_register(instr->RtField());
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
WriteW(addr, rt_val, instr);
}
break;
}
case SWC1: {
// Format(instr, "swc1 'ft, 'imms('rs)");
int32_t base_val = get_register(instr->RsField());
int32_t imm_val = instr->SImmField();
uword addr = base_val + imm_val;
if (Simulator::IsIllegalAddress(addr)) {
HandleIllegalAccess(addr, instr);
} else {
int32_t value = get_fregister(instr->FtField());
WriteW(addr, value, instr);
}
break;
}
case XORI: {
// Format(instr, "xori 'rt, 'rs, 'immu");
int32_t rs_val = get_register(instr->RsField());
set_register(instr->RtField(), rs_val ^ instr->UImmField());
break;
break;
}
default: {
OS::PrintErr("Undecoded instruction: 0x%x at %p\n",
instr->InstructionBits(), instr);
UnimplementedInstruction(instr);
break;
}
}
pc_ += Instr::kInstrSize;
}
void Simulator::ExecuteDelaySlot() {
ASSERT(pc_ != kEndSimulatingPC);
delay_slot_ = true;
icount_++;
Instr* instr = Instr::At(pc_ + Instr::kInstrSize);
if (FLAG_stop_sim_at != ULLONG_MAX) {
if (icount_ == FLAG_stop_sim_at) {
SimulatorDebugger dbg(this);
dbg.Stop(instr, "Instruction count reached");
} else if (reinterpret_cast<uint64_t>(instr) == FLAG_stop_sim_at) {
SimulatorDebugger dbg(this);
dbg.Stop(instr, "Instruction address reached");
}
}
InstructionDecode(instr);
delay_slot_ = false;
}
void Simulator::Execute() {
if (FLAG_stop_sim_at == ULLONG_MAX) {
// Fast version of the dispatch loop without checking whether the simulator
// should be stopping at a particular executed instruction.
while (pc_ != kEndSimulatingPC) {
icount_++;
Instr* instr = Instr::At(pc_);
if (IsIllegalAddress(pc_)) {
HandleIllegalAccess(pc_, instr);
} else {
InstructionDecode(instr);
}
}
} else {
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
// we reach the particular instruction count or address.
while (pc_ != kEndSimulatingPC) {
Instr* instr = Instr::At(pc_);
icount_++;
if (icount_ == FLAG_stop_sim_at) {
SimulatorDebugger dbg(this);
dbg.Stop(instr, "Instruction count reached");
} else if (reinterpret_cast<uint64_t>(instr) == FLAG_stop_sim_at) {
SimulatorDebugger dbg(this);
dbg.Stop(instr, "Instruction address reached");
} else if (IsIllegalAddress(pc_)) {
HandleIllegalAccess(pc_, instr);
} else {
InstructionDecode(instr);
}
}
}
}
int64_t Simulator::Call(int32_t entry,
int32_t parameter0,
int32_t parameter1,
int32_t parameter2,
int32_t parameter3,
bool fp_return,
bool fp_args) {
// Save the SP register before the call so we can restore it.
int32_t sp_before_call = get_register(SP);
// Setup parameters.
if (fp_args) {
set_fregister(F0, parameter0);
set_fregister(F1, parameter1);
set_fregister(F2, parameter2);
set_fregister(F3, parameter3);
} else {
set_register(A0, parameter0);
set_register(A1, parameter1);
set_register(A2, parameter2);
set_register(A3, parameter3);
}
// Make sure the activation frames are properly aligned.
int32_t stack_pointer = sp_before_call;
if (OS::ActivationFrameAlignment() > 1) {
stack_pointer =
Utils::RoundDown(stack_pointer, OS::ActivationFrameAlignment());
}
set_register(SP, stack_pointer);
// Prepare to execute the code at entry.
set_pc(entry);
// Put down marker for end of simulation. The simulator will stop simulation
// when the PC reaches this value. By saving the "end simulation" value into
// RA the simulation stops when returning to this call point.
set_register(RA, kEndSimulatingPC);
// Remember the values of callee-saved registers.
// The code below assumes that r9 is not used as sb (static base) in
// simulator code and therefore is regarded as a callee-saved register.
int32_t r16_val = get_register(R16);
int32_t r17_val = get_register(R17);
int32_t r18_val = get_register(R18);
int32_t r19_val = get_register(R19);
int32_t r20_val = get_register(R20);
int32_t r21_val = get_register(R21);
int32_t r22_val = get_register(R22);
int32_t r23_val = get_register(R23);
double d10_val = get_dregister(D10);
double d11_val = get_dregister(D11);
double d12_val = get_dregister(D12);
double d13_val = get_dregister(D13);
double d14_val = get_dregister(D14);
double d15_val = get_dregister(D15);
// Setup the callee-saved registers with a known value. To be able to check
// that they are preserved properly across dart execution.
int32_t callee_saved_value = icount_;
set_register(R16, callee_saved_value);
set_register(R17, callee_saved_value);
set_register(R18, callee_saved_value);
set_register(R19, callee_saved_value);
set_register(R20, callee_saved_value);
set_register(R21, callee_saved_value);
set_register(R22, callee_saved_value);
set_register(R23, callee_saved_value);
set_dregister_bits(D10, callee_saved_value);
set_dregister_bits(D11, callee_saved_value);
set_dregister_bits(D12, callee_saved_value);
set_dregister_bits(D13, callee_saved_value);
set_dregister_bits(D14, callee_saved_value);
set_dregister_bits(D15, callee_saved_value);
// Start the simulation
Execute();
// Check that the callee-saved registers have been preserved.
ASSERT(callee_saved_value == get_register(R16));
ASSERT(callee_saved_value == get_register(R17));
ASSERT(callee_saved_value == get_register(R18));
ASSERT(callee_saved_value == get_register(R19));
ASSERT(callee_saved_value == get_register(R20));
ASSERT(callee_saved_value == get_register(R21));
ASSERT(callee_saved_value == get_register(R22));
ASSERT(callee_saved_value == get_register(R23));
ASSERT(callee_saved_value == get_dregister_bits(D10));
ASSERT(callee_saved_value == get_dregister_bits(D11));
ASSERT(callee_saved_value == get_dregister_bits(D12));
ASSERT(callee_saved_value == get_dregister_bits(D13));
ASSERT(callee_saved_value == get_dregister_bits(D14));
ASSERT(callee_saved_value == get_dregister_bits(D15));
// Restore callee-saved registers with the original value.
set_register(R16, r16_val);
set_register(R17, r17_val);
set_register(R18, r18_val);
set_register(R19, r19_val);
set_register(R20, r20_val);
set_register(R21, r21_val);
set_register(R22, r22_val);
set_register(R23, r23_val);
set_dregister(D10, d10_val);
set_dregister(D11, d11_val);
set_dregister(D12, d12_val);
set_dregister(D13, d13_val);
set_dregister(D14, d14_val);
set_dregister(D15, d15_val);
// Restore the SP register and return V1:V0.
set_register(SP, sp_before_call);
int64_t return_value;
if (fp_return) {
return_value = Utils::LowHighTo64Bits(get_fregister(F0), get_fregister(F1));
} else {
return_value = Utils::LowHighTo64Bits(get_register(V0), get_register(V1));
}
return return_value;
}
void Simulator::JumpToFrame(uword pc, uword sp, uword fp, Thread* thread) {
// Walk over all setjmp buffers (simulated --> C++ transitions)
// and try to find the setjmp associated with the simulated stack pointer.
SimulatorSetjmpBuffer* buf = last_setjmp_buffer();
while (buf->link() != NULL && buf->link()->sp() <= sp) {
buf = buf->link();
}
ASSERT(buf != NULL);
// The C++ caller has not cleaned up the stack memory of C++ frames.
// Prepare for unwinding frames by destroying all the stack resources
// in the previous C++ frames.
StackResource::Unwind(thread);
// Unwind the C++ stack and continue simulation in the target frame.
set_pc(static_cast<int32_t>(pc));
set_register(SP, static_cast<int32_t>(sp));
set_register(FP, static_cast<int32_t>(fp));
set_register(THR, reinterpret_cast<int32_t>(thread));
// Set the tag.
thread->set_vm_tag(VMTag::kDartTagId);
// Clear top exit frame.
thread->set_top_exit_frame_info(0);
// Restore pool pointer.
int32_t code =
*reinterpret_cast<int32_t*>(fp + kPcMarkerSlotFromFp * kWordSize);
int32_t pp = *reinterpret_cast<int32_t*>(code + Code::object_pool_offset() -
kHeapObjectTag);
set_register(CODE_REG, code);
set_register(PP, pp);
buf->Longjmp();
}
} // namespace dart
#endif // defined(USING_SIMULATOR)
#endif // defined TARGET_ARCH_MIPS