blob: ef3aa92ce0bb7c41027e7c09cad37b979974723b [file] [log] [blame]
// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include <setjmp.h> // NOLINT
#include <stdlib.h>
#include "vm/globals.h"
#if defined(TARGET_ARCH_DBC)
#if !defined(USING_SIMULATOR)
#error "DBC is a simulated architecture"
#endif
#include "vm/simulator.h"
#include "vm/assembler.h"
#include "vm/compiler.h"
#include "vm/constants_dbc.h"
#include "vm/cpu.h"
#include "vm/dart_entry.h"
#include "vm/debugger.h"
#include "vm/disassembler.h"
#include "vm/lockers.h"
#include "vm/native_arguments.h"
#include "vm/native_entry.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/os_thread.h"
#include "vm/stack_frame.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(uint64_t,
trace_sim_after,
ULLONG_MAX,
"Trace simulator execution after instruction count reached.");
DEFINE_FLAG(uint64_t,
stop_sim_at,
ULLONG_MAX,
"Instruction address or instruction count to stop simulator at.");
#define LIKELY(cond) __builtin_expect((cond), 1)
#define UNLIKELY(cond) __builtin_expect((cond), 0)
// SimulatorSetjmpBuffer are linked together, and the last created one
// is referenced by the Simulator. When an exception is thrown, the exception
// runtime looks at where to jump and finds the corresponding
// SimulatorSetjmpBuffer based on the stack pointer of the exception handler.
// The runtime then does a Longjmp on that buffer to return to the simulator.
class SimulatorSetjmpBuffer {
public:
void Longjmp() {
// "This" is now the last setjmp buffer.
simulator_->set_last_setjmp_buffer(this);
longjmp(buffer_, 1);
}
explicit SimulatorSetjmpBuffer(Simulator* sim) {
simulator_ = sim;
link_ = sim->last_setjmp_buffer();
sim->set_last_setjmp_buffer(this);
fp_ = sim->fp_;
}
~SimulatorSetjmpBuffer() {
ASSERT(simulator_->last_setjmp_buffer() == this);
simulator_->set_last_setjmp_buffer(link_);
}
SimulatorSetjmpBuffer* link() const { return link_; }
uword fp() const { return reinterpret_cast<uword>(fp_); }
jmp_buf buffer_;
private:
RawObject** fp_;
Simulator* simulator_;
SimulatorSetjmpBuffer* link_;
friend class Simulator;
DISALLOW_ALLOCATION();
DISALLOW_COPY_AND_ASSIGN(SimulatorSetjmpBuffer);
};
DART_FORCE_INLINE static RawObject** SavedCallerFP(RawObject** FP) {
return reinterpret_cast<RawObject**>(FP[kSavedCallerFpSlotFromFp]);
}
DART_FORCE_INLINE static RawObject** FrameArguments(RawObject** FP,
intptr_t argc) {
return FP - (kDartFrameFixedSize + argc);
}
#define RAW_CAST(Type, val) (SimulatorHelpers::CastTo##Type(val))
class SimulatorHelpers {
public:
#define DEFINE_CASTS(Type) \
DART_FORCE_INLINE static Raw##Type* CastTo##Type(RawObject* obj) { \
ASSERT((k##Type##Cid == kSmiCid) ? !obj->IsHeapObject() \
: obj->Is##Type()); \
return reinterpret_cast<Raw##Type*>(obj); \
}
CLASS_LIST(DEFINE_CASTS)
#undef DEFINE_CASTS
DART_FORCE_INLINE static RawSmi* GetClassIdAsSmi(RawObject* obj) {
return Smi::New(obj->IsHeapObject() ? obj->GetClassId()
: static_cast<intptr_t>(kSmiCid));
}
DART_FORCE_INLINE static intptr_t GetClassId(RawObject* obj) {
return obj->IsHeapObject() ? obj->GetClassId()
: static_cast<intptr_t>(kSmiCid);
}
DART_FORCE_INLINE static void IncrementUsageCounter(RawFunction* f) {
f->ptr()->usage_counter_++;
}
DART_FORCE_INLINE static void IncrementICUsageCount(RawObject** entries,
intptr_t offset,
intptr_t args_tested) {
const intptr_t count_offset = ICData::CountIndexFor(args_tested);
const intptr_t raw_smi_old =
reinterpret_cast<intptr_t>(entries[offset + count_offset]);
const intptr_t raw_smi_new = raw_smi_old + Smi::RawValue(1);
*reinterpret_cast<intptr_t*>(&entries[offset + count_offset]) = raw_smi_new;
}
DART_FORCE_INLINE static bool IsStrictEqualWithNumberCheck(RawObject* lhs,
RawObject* rhs) {
if (lhs == rhs) {
return true;
}
if (lhs->IsHeapObject() && rhs->IsHeapObject()) {
const intptr_t lhs_cid = lhs->GetClassId();
const intptr_t rhs_cid = rhs->GetClassId();
if (lhs_cid == rhs_cid) {
switch (lhs_cid) {
case kDoubleCid:
return (bit_cast<uint64_t, double>(
static_cast<RawDouble*>(lhs)->ptr()->value_) ==
bit_cast<uint64_t, double>(
static_cast<RawDouble*>(rhs)->ptr()->value_));
case kMintCid:
return (static_cast<RawMint*>(lhs)->ptr()->value_ ==
static_cast<RawMint*>(rhs)->ptr()->value_);
case kBigintCid:
return (DLRT_BigintCompare(static_cast<RawBigint*>(lhs),
static_cast<RawBigint*>(rhs)) == 0);
}
}
}
return false;
}
template <typename T>
DART_FORCE_INLINE static T* Untag(T* tagged) {
return tagged->ptr();
}
DART_FORCE_INLINE static bool CheckIndex(RawSmi* index, RawSmi* length) {
return !index->IsHeapObject() && (reinterpret_cast<intptr_t>(index) >= 0) &&
(reinterpret_cast<intptr_t>(index) <
reinterpret_cast<intptr_t>(length));
}
static bool ObjectArraySetIndexed(Thread* thread,
RawObject** FP,
RawObject** result) {
if (thread->isolate()->type_checks()) {
return false;
}
RawObject** args = FrameArguments(FP, 3);
RawSmi* index = static_cast<RawSmi*>(args[1]);
RawArray* array = static_cast<RawArray*>(args[0]);
if (CheckIndex(index, array->ptr()->length_)) {
array->StorePointer(array->ptr()->data() + Smi::Value(index), args[2]);
return true;
}
return false;
}
static bool ObjectArrayGetIndexed(Thread* thread,
RawObject** FP,
RawObject** result) {
RawObject** args = FrameArguments(FP, 2);
RawSmi* index = static_cast<RawSmi*>(args[1]);
RawArray* array = static_cast<RawArray*>(args[0]);
if (CheckIndex(index, array->ptr()->length_)) {
*result = array->ptr()->data()[Smi::Value(index)];
return true;
}
return false;
}
static bool GrowableArraySetIndexed(Thread* thread,
RawObject** FP,
RawObject** result) {
if (thread->isolate()->type_checks()) {
return false;
}
RawObject** args = FrameArguments(FP, 3);
RawSmi* index = static_cast<RawSmi*>(args[1]);
RawGrowableObjectArray* array =
static_cast<RawGrowableObjectArray*>(args[0]);
if (CheckIndex(index, array->ptr()->length_)) {
RawArray* data = array->ptr()->data_;
data->StorePointer(data->ptr()->data() + Smi::Value(index), args[2]);
return true;
}
return false;
}
static bool GrowableArrayGetIndexed(Thread* thread,
RawObject** FP,
RawObject** result) {
RawObject** args = FrameArguments(FP, 2);
RawSmi* index = static_cast<RawSmi*>(args[1]);
RawGrowableObjectArray* array =
static_cast<RawGrowableObjectArray*>(args[0]);
if (CheckIndex(index, array->ptr()->length_)) {
*result = array->ptr()->data_->ptr()->data()[Smi::Value(index)];
return true;
}
return false;
}
static bool Double_getIsNan(Thread* thread,
RawObject** FP,
RawObject** result) {
RawObject** args = FrameArguments(FP, 1);
RawDouble* d = static_cast<RawDouble*>(args[0]);
*result =
isnan(d->ptr()->value_) ? Bool::True().raw() : Bool::False().raw();
return true;
}
static bool Double_getIsInfinite(Thread* thread,
RawObject** FP,
RawObject** result) {
RawObject** args = FrameArguments(FP, 1);
RawDouble* d = static_cast<RawDouble*>(args[0]);
*result =
isinf(d->ptr()->value_) ? Bool::True().raw() : Bool::False().raw();
return true;
}
static bool ObjectEquals(Thread* thread, RawObject** FP, RawObject** result) {
RawObject** args = FrameArguments(FP, 2);
*result = args[0] == args[1] ? Bool::True().raw() : Bool::False().raw();
return true;
}
static bool ObjectRuntimeType(Thread* thread,
RawObject** FP,
RawObject** result) {
RawObject** args = FrameArguments(FP, 1);
const intptr_t cid = GetClassId(args[0]);
if (cid == kClosureCid) {
return false;
}
if (cid < kNumPredefinedCids) {
if (cid == kDoubleCid) {
*result = thread->isolate()->object_store()->double_type();
return true;
} else if (RawObject::IsStringClassId(cid)) {
*result = thread->isolate()->object_store()->string_type();
return true;
} else if (RawObject::IsIntegerClassId(cid)) {
*result = thread->isolate()->object_store()->int_type();
return true;
}
}
RawClass* cls = thread->isolate()->class_table()->At(cid);
if (cls->ptr()->num_type_arguments_ != 0) {
return false;
}
RawType* typ = cls->ptr()->canonical_type_;
if (typ == Object::null()) {
return false;
}
*result = static_cast<RawObject*>(typ);
return true;
}
static bool GetDoubleOperands(RawObject** args, double* d1, double* d2) {
RawObject* obj2 = args[1];
if (!obj2->IsHeapObject()) {
*d2 =
static_cast<double>(reinterpret_cast<intptr_t>(obj2) >> kSmiTagSize);
} else if (obj2->GetClassId() == kDoubleCid) {
RawDouble* obj2d = static_cast<RawDouble*>(obj2);
*d2 = obj2d->ptr()->value_;
} else {
return false;
}
RawDouble* obj1 = static_cast<RawDouble*>(args[0]);
*d1 = obj1->ptr()->value_;
return true;
}
static RawObject* AllocateDouble(Thread* thread, double value) {
const intptr_t instance_size = Double::InstanceSize();
const uword start = thread->heap()->new_space()->TryAllocate(instance_size);
if (LIKELY(start != 0)) {
uword tags = 0;
tags = RawObject::ClassIdTag::update(kDoubleCid, tags);
tags = RawObject::SizeTag::update(instance_size, tags);
*reinterpret_cast<uword*>(start + Double::tags_offset()) = tags;
*reinterpret_cast<double*>(start + Double::value_offset()) = value;
return reinterpret_cast<RawObject*>(start + kHeapObjectTag);
}
return NULL;
}
static bool Double_add(Thread* thread, RawObject** FP, RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
RawObject* new_double = AllocateDouble(thread, d1 + d2);
if (new_double != NULL) {
*result = new_double;
return true;
}
return false;
}
static bool Double_mul(Thread* thread, RawObject** FP, RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
RawObject* new_double = AllocateDouble(thread, d1 * d2);
if (new_double != NULL) {
*result = new_double;
return true;
}
return false;
}
static bool Double_sub(Thread* thread, RawObject** FP, RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
RawObject* new_double = AllocateDouble(thread, d1 - d2);
if (new_double != NULL) {
*result = new_double;
return true;
}
return false;
}
static bool Double_div(Thread* thread, RawObject** FP, RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
RawObject* new_double = AllocateDouble(thread, d1 / d2);
if (new_double != NULL) {
*result = new_double;
return true;
}
return false;
}
static bool Double_greaterThan(Thread* thread,
RawObject** FP,
RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
*result = d1 > d2 ? Bool::True().raw() : Bool::False().raw();
return true;
}
static bool Double_greaterEqualThan(Thread* thread,
RawObject** FP,
RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
*result = d1 >= d2 ? Bool::True().raw() : Bool::False().raw();
return true;
}
static bool Double_lessThan(Thread* thread,
RawObject** FP,
RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
*result = d1 < d2 ? Bool::True().raw() : Bool::False().raw();
return true;
}
static bool Double_equal(Thread* thread, RawObject** FP, RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
*result = d1 == d2 ? Bool::True().raw() : Bool::False().raw();
return true;
}
static bool Double_lessEqualThan(Thread* thread,
RawObject** FP,
RawObject** result) {
double d1, d2;
if (!GetDoubleOperands(FrameArguments(FP, 2), &d1, &d2)) {
return false;
}
*result = d1 <= d2 ? Bool::True().raw() : Bool::False().raw();
return true;
}
static bool ClearAsyncThreadStack(Thread* thread,
RawObject** FP,
RawObject** result) {
thread->clear_async_stack_trace();
*result = Object::null();
return true;
}
static bool SetAsyncThreadStackTrace(Thread* thread,
RawObject** FP,
RawObject** result) {
RawObject** args = FrameArguments(FP, 1);
thread->set_raw_async_stack_trace(
reinterpret_cast<RawStackTrace*>(args[0]));
*result = Object::null();
return true;
}
DART_FORCE_INLINE static RawCode* FrameCode(RawObject** FP) {
ASSERT(GetClassId(FP[kPcMarkerSlotFromFp]) == kCodeCid);
return static_cast<RawCode*>(FP[kPcMarkerSlotFromFp]);
}
DART_FORCE_INLINE static void SetFrameCode(RawObject** FP, RawCode* code) {
ASSERT(GetClassId(code) == kCodeCid);
FP[kPcMarkerSlotFromFp] = code;
}
DART_FORCE_INLINE static uint8_t* GetTypedData(RawObject* obj,
RawObject* index) {
ASSERT(RawObject::IsTypedDataClassId(obj->GetClassId()));
RawTypedData* array = reinterpret_cast<RawTypedData*>(obj);
const intptr_t byte_offset = Smi::Value(RAW_CAST(Smi, index));
ASSERT(byte_offset >= 0);
return array->ptr()->data() + byte_offset;
}
};
DART_FORCE_INLINE static uint32_t* SavedCallerPC(RawObject** FP) {
return reinterpret_cast<uint32_t*>(FP[kSavedCallerPcSlotFromFp]);
}
DART_FORCE_INLINE static RawFunction* FrameFunction(RawObject** FP) {
RawFunction* function = static_cast<RawFunction*>(FP[kFunctionSlotFromFp]);
ASSERT(SimulatorHelpers::GetClassId(function) == kFunctionCid);
return function;
}
IntrinsicHandler Simulator::intrinsics_[Simulator::kIntrinsicCount];
// Synchronization primitives support.
void Simulator::InitOnce() {
for (intptr_t i = 0; i < kIntrinsicCount; i++) {
intrinsics_[i] = 0;
}
intrinsics_[kObjectArraySetIndexedIntrinsic] =
SimulatorHelpers::ObjectArraySetIndexed;
intrinsics_[kObjectArrayGetIndexedIntrinsic] =
SimulatorHelpers::ObjectArrayGetIndexed;
intrinsics_[kGrowableArraySetIndexedIntrinsic] =
SimulatorHelpers::GrowableArraySetIndexed;
intrinsics_[kGrowableArrayGetIndexedIntrinsic] =
SimulatorHelpers::GrowableArrayGetIndexed;
intrinsics_[kObjectEqualsIntrinsic] = SimulatorHelpers::ObjectEquals;
intrinsics_[kObjectRuntimeTypeIntrinsic] =
SimulatorHelpers::ObjectRuntimeType;
intrinsics_[kDouble_getIsNaNIntrinsic] = SimulatorHelpers::Double_getIsNan;
intrinsics_[kDouble_getIsInfiniteIntrinsic] =
SimulatorHelpers::Double_getIsInfinite;
intrinsics_[kDouble_addIntrinsic] = SimulatorHelpers::Double_add;
intrinsics_[kDouble_mulIntrinsic] = SimulatorHelpers::Double_mul;
intrinsics_[kDouble_subIntrinsic] = SimulatorHelpers::Double_sub;
intrinsics_[kDouble_divIntrinsic] = SimulatorHelpers::Double_div;
intrinsics_[kDouble_greaterThanIntrinsic] =
SimulatorHelpers::Double_greaterThan;
intrinsics_[kDouble_greaterEqualThanIntrinsic] =
SimulatorHelpers::Double_greaterEqualThan;
intrinsics_[kDouble_lessThanIntrinsic] = SimulatorHelpers::Double_lessThan;
intrinsics_[kDouble_equalIntrinsic] = SimulatorHelpers::Double_equal;
intrinsics_[kDouble_lessEqualThanIntrinsic] =
SimulatorHelpers::Double_lessEqualThan;
intrinsics_[kClearAsyncThreadStackTraceIntrinsic] =
SimulatorHelpers::ClearAsyncThreadStack;
intrinsics_[kSetAsyncThreadStackTraceIntrinsic] =
SimulatorHelpers::SetAsyncThreadStackTrace;
}
Simulator::Simulator() : stack_(NULL), fp_(NULL) {
// Setup simulator support first. Some of this information is needed to
// setup the architecture state.
// We allocate the stack here, the size is computed as the sum of
// the size specified by the user and the buffer space needed for
// handling stack overflow exceptions. To be safe in potential
// stack underflows we also add some underflow buffer space.
stack_ = new uintptr_t[(OSThread::GetSpecifiedStackSize() +
OSThread::kStackSizeBuffer +
kSimulatorStackUnderflowSize) /
sizeof(uintptr_t)];
last_setjmp_buffer_ = NULL;
top_exit_frame_info_ = 0;
}
Simulator::~Simulator() {
delete[] stack_;
Isolate* isolate = Isolate::Current();
if (isolate != NULL) {
isolate->set_simulator(NULL);
}
}
// Get the active Simulator for the current isolate.
Simulator* Simulator::Current() {
Simulator* simulator = Isolate::Current()->simulator();
if (simulator == NULL) {
simulator = new Simulator();
Isolate::Current()->set_simulator(simulator);
}
return simulator;
}
// Returns the top of the stack area to enable checking for stack pointer
// validity.
uword Simulator::StackTop() const {
// To be safe in potential stack underflows we leave some buffer above and
// set the stack top.
return StackBase() +
(OSThread::GetSpecifiedStackSize() + OSThread::kStackSizeBuffer);
}
// Calls into the Dart runtime are based on this interface.
typedef void (*SimulatorRuntimeCall)(NativeArguments arguments);
// Calls to leaf Dart runtime functions are based on this interface.
typedef intptr_t (*SimulatorLeafRuntimeCall)(intptr_t r0,
intptr_t r1,
intptr_t r2,
intptr_t r3);
// Calls to leaf float Dart runtime functions are based on this interface.
typedef double (*SimulatorLeafFloatRuntimeCall)(double d0, double d1);
// Calls to native Dart functions are based on this interface.
typedef void (*SimulatorBootstrapNativeCall)(NativeArguments* arguments);
typedef void (*SimulatorNativeCall)(NativeArguments* arguments, uword target);
void Simulator::Exit(Thread* thread,
RawObject** base,
RawObject** frame,
uint32_t* pc) {
frame[0] = Function::null();
frame[1] = Code::null();
frame[2] = reinterpret_cast<RawObject*>(pc);
frame[3] = reinterpret_cast<RawObject*>(base);
fp_ = frame + kDartFrameFixedSize;
thread->set_top_exit_frame_info(reinterpret_cast<uword>(fp_));
}
// TODO(vegorov): Investigate advantages of using
// __builtin_s{add,sub,mul}_overflow() intrinsics here and below.
// Note that they may clobber the output location even when there is overflow:
// https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
DART_FORCE_INLINE static bool SignedAddWithOverflow(intptr_t lhs,
intptr_t rhs,
intptr_t* out) {
intptr_t res = 1;
#if defined(HOST_ARCH_IA32) || defined(HOST_ARCH_X64)
asm volatile(
"add %2, %1\n"
"jo 1f;\n"
"xor %0, %0\n"
"mov %1, 0(%3)\n"
"1: "
: "+r"(res), "+r"(lhs)
: "r"(rhs), "r"(out)
: "cc");
#elif defined(HOST_ARCH_ARM) || defined(HOST_ARCH_ARM64)
asm volatile(
"adds %1, %1, %2;\n"
"bvs 1f;\n"
"mov %0, #0;\n"
"str %1, [%3, #0]\n"
"1:"
: "+r"(res), "+r"(lhs)
: "r"(rhs), "r"(out)
: "cc");
#else
#error "Unsupported platform"
#endif
return (res != 0);
}
DART_FORCE_INLINE static bool SignedSubWithOverflow(intptr_t lhs,
intptr_t rhs,
intptr_t* out) {
intptr_t res = 1;
#if defined(HOST_ARCH_IA32) || defined(HOST_ARCH_X64)
asm volatile(
"sub %2, %1\n"
"jo 1f;\n"
"xor %0, %0\n"
"mov %1, 0(%3)\n"
"1: "
: "+r"(res), "+r"(lhs)
: "r"(rhs), "r"(out)
: "cc");
#elif defined(HOST_ARCH_ARM) || defined(HOST_ARCH_ARM64)
asm volatile(
"subs %1, %1, %2;\n"
"bvs 1f;\n"
"mov %0, #0;\n"
"str %1, [%3, #0]\n"
"1:"
: "+r"(res), "+r"(lhs)
: "r"(rhs), "r"(out)
: "cc");
#else
#error "Unsupported platform"
#endif
return (res != 0);
}
DART_FORCE_INLINE static bool SignedMulWithOverflow(intptr_t lhs,
intptr_t rhs,
intptr_t* out) {
intptr_t res = 1;
#if defined(HOST_ARCH_IA32) || defined(HOST_ARCH_X64)
asm volatile(
"imul %2, %1\n"
"jo 1f;\n"
"xor %0, %0\n"
"mov %1, 0(%3)\n"
"1: "
: "+r"(res), "+r"(lhs)
: "r"(rhs), "r"(out)
: "cc");
#elif defined(HOST_ARCH_ARM)
asm volatile(
"smull %1, ip, %1, %2;\n"
"cmp ip, %1, ASR #31;\n"
"bne 1f;\n"
"mov %0, $0;\n"
"str %1, [%3, #0]\n"
"1:"
: "+r"(res), "+r"(lhs)
: "r"(rhs), "r"(out)
: "cc", "r12");
#elif defined(HOST_ARCH_ARM64)
int64_t prod_lo = 0;
asm volatile(
"mul %1, %2, %3\n"
"smulh %2, %2, %3\n"
"cmp %2, %1, ASR #63;\n"
"bne 1f;\n"
"mov %0, #0;\n"
"str %1, [%4, #0]\n"
"1:"
: "=r"(res), "+r"(prod_lo), "+r"(lhs)
: "r"(rhs), "r"(out)
: "cc");
#else
#error "Unsupported platform"
#endif
return (res != 0);
}
DART_FORCE_INLINE static bool AreBothSmis(intptr_t a, intptr_t b) {
return ((a | b) & kHeapObjectTag) == 0;
}
#define SMI_MUL(lhs, rhs, pres) SignedMulWithOverflow((lhs), (rhs) >> 1, pres)
#define SMI_COND(cond, lhs, rhs, pres) \
((*(pres) = ((lhs cond rhs) ? true_value : false_value)), false)
#define SMI_EQ(lhs, rhs, pres) SMI_COND(==, lhs, rhs, pres)
#define SMI_LT(lhs, rhs, pres) SMI_COND(<, lhs, rhs, pres)
#define SMI_GT(lhs, rhs, pres) SMI_COND(>, lhs, rhs, pres)
#define SMI_BITOR(lhs, rhs, pres) ((*(pres) = (lhs | rhs)), false)
#define SMI_BITAND(lhs, rhs, pres) ((*(pres) = ((lhs) & (rhs))), false)
#define SMI_BITXOR(lhs, rhs, pres) ((*(pres) = ((lhs) ^ (rhs))), false)
void Simulator::CallRuntime(Thread* thread,
RawObject** base,
RawObject** exit_frame,
uint32_t* pc,
intptr_t argc_tag,
RawObject** args,
RawObject** result,
uword target) {
Exit(thread, base, exit_frame, pc);
NativeArguments native_args(thread, argc_tag, args, result);
reinterpret_cast<RuntimeFunction>(target)(native_args);
}
DART_FORCE_INLINE static void EnterSyntheticFrame(RawObject*** FP,
RawObject*** SP,
uint32_t* pc) {
RawObject** fp = *SP + kDartFrameFixedSize;
fp[kPcMarkerSlotFromFp] = 0;
fp[kSavedCallerPcSlotFromFp] = reinterpret_cast<RawObject*>(pc);
fp[kSavedCallerFpSlotFromFp] = reinterpret_cast<RawObject*>(*FP);
*FP = fp;
*SP = fp - 1;
}
DART_FORCE_INLINE static void LeaveSyntheticFrame(RawObject*** FP,
RawObject*** SP) {
RawObject** fp = *FP;
*FP = reinterpret_cast<RawObject**>(fp[kSavedCallerFpSlotFromFp]);
*SP = fp - kDartFrameFixedSize;
}
DART_FORCE_INLINE void Simulator::Invoke(Thread* thread,
RawObject** call_base,
RawObject** call_top,
RawObjectPool** pp,
uint32_t** pc,
RawObject*** FP,
RawObject*** SP) {
RawObject** callee_fp = call_top + kDartFrameFixedSize;
RawFunction* function = FrameFunction(callee_fp);
RawCode* code = function->ptr()->code_;
callee_fp[kPcMarkerSlotFromFp] = code;
callee_fp[kSavedCallerPcSlotFromFp] = reinterpret_cast<RawObject*>(*pc);
callee_fp[kSavedCallerFpSlotFromFp] = reinterpret_cast<RawObject*>(*FP);
*pp = code->ptr()->object_pool_->ptr();
*pc = reinterpret_cast<uint32_t*>(code->ptr()->entry_point_);
pc_ = reinterpret_cast<uword>(*pc); // For the profiler.
*FP = callee_fp;
*SP = *FP - 1;
}
void Simulator::InlineCacheMiss(int checked_args,
Thread* thread,
RawICData* icdata,
RawObject** args,
RawObject** top,
uint32_t* pc,
RawObject** FP,
RawObject** SP) {
RawObject** result = top;
RawObject** miss_handler_args = top + 1;
for (intptr_t i = 0; i < checked_args; i++) {
miss_handler_args[i] = args[i];
}
miss_handler_args[checked_args] = icdata;
RuntimeFunction handler = NULL;
switch (checked_args) {
case 1:
handler = DRT_InlineCacheMissHandlerOneArg;
break;
case 2:
handler = DRT_InlineCacheMissHandlerTwoArgs;
break;
default:
UNREACHABLE();
break;
}
// Handler arguments: arguments to check and an ICData object.
const intptr_t miss_handler_argc = checked_args + 1;
RawObject** exit_frame = miss_handler_args + miss_handler_argc;
CallRuntime(thread, FP, exit_frame, pc, miss_handler_argc, miss_handler_args,
result, reinterpret_cast<uword>(handler));
}
DART_FORCE_INLINE void Simulator::InstanceCall1(Thread* thread,
RawICData* icdata,
RawObject** call_base,
RawObject** top,
RawArray** argdesc,
RawObjectPool** pp,
uint32_t** pc,
RawObject*** FP,
RawObject*** SP,
bool optimized) {
ASSERT(icdata->GetClassId() == kICDataCid);
const intptr_t kCheckedArgs = 1;
RawObject** args = call_base;
RawArray* cache = icdata->ptr()->ic_data_->ptr();
RawSmi* receiver_cid = SimulatorHelpers::GetClassIdAsSmi(args[0]);
bool found = false;
const intptr_t length = Smi::Value(cache->length_);
intptr_t i;
for (i = 0; i < (length - (kCheckedArgs + 2)); i += (kCheckedArgs + 2)) {
if (cache->data()[i + 0] == receiver_cid) {
top[0] = cache->data()[i + kCheckedArgs];
found = true;
break;
}
}
if (found) {
if (!optimized) {
SimulatorHelpers::IncrementICUsageCount(cache->data(), i, kCheckedArgs);
}
} else {
InlineCacheMiss(kCheckedArgs, thread, icdata, call_base, top, *pc, *FP,
*SP);
}
*argdesc = icdata->ptr()->args_descriptor_;
Invoke(thread, call_base, top, pp, pc, FP, SP);
}
DART_FORCE_INLINE void Simulator::InstanceCall2(Thread* thread,
RawICData* icdata,
RawObject** call_base,
RawObject** top,
RawArray** argdesc,
RawObjectPool** pp,
uint32_t** pc,
RawObject*** FP,
RawObject*** SP,
bool optimized) {
ASSERT(icdata->GetClassId() == kICDataCid);
const intptr_t kCheckedArgs = 2;
RawObject** args = call_base;
RawArray* cache = icdata->ptr()->ic_data_->ptr();
RawSmi* receiver_cid = SimulatorHelpers::GetClassIdAsSmi(args[0]);
RawSmi* arg0_cid = SimulatorHelpers::GetClassIdAsSmi(args[1]);
bool found = false;
const intptr_t length = Smi::Value(cache->length_);
intptr_t i;
for (i = 0; i < (length - (kCheckedArgs + 2)); i += (kCheckedArgs + 2)) {
if ((cache->data()[i + 0] == receiver_cid) &&
(cache->data()[i + 1] == arg0_cid)) {
top[0] = cache->data()[i + kCheckedArgs];
found = true;
break;
}
}
if (found) {
if (!optimized) {
SimulatorHelpers::IncrementICUsageCount(cache->data(), i, kCheckedArgs);
}
} else {
InlineCacheMiss(kCheckedArgs, thread, icdata, call_base, top, *pc, *FP,
*SP);
}
*argdesc = icdata->ptr()->args_descriptor_;
Invoke(thread, call_base, top, pp, pc, FP, SP);
}
// Note: functions below are marked DART_NOINLINE to recover performance on
// ARM where inlining these functions into the interpreter loop seemed to cause
// some code quality issues.
static DART_NOINLINE bool InvokeRuntime(Thread* thread,
Simulator* sim,
RuntimeFunction drt,
const NativeArguments& args) {
SimulatorSetjmpBuffer buffer(sim);
if (!setjmp(buffer.buffer_)) {
thread->set_vm_tag(reinterpret_cast<uword>(drt));
drt(args);
thread->set_vm_tag(VMTag::kDartTagId);
thread->set_top_exit_frame_info(0);
return true;
} else {
return false;
}
}
static DART_NOINLINE bool InvokeNative(Thread* thread,
Simulator* sim,
SimulatorBootstrapNativeCall f,
NativeArguments* args) {
SimulatorSetjmpBuffer buffer(sim);
if (!setjmp(buffer.buffer_)) {
thread->set_vm_tag(reinterpret_cast<uword>(f));
f(args);
thread->set_vm_tag(VMTag::kDartTagId);
thread->set_top_exit_frame_info(0);
return true;
} else {
return false;
}
}
static DART_NOINLINE bool InvokeNativeWrapper(Thread* thread,
Simulator* sim,
Dart_NativeFunction f,
NativeArguments* args) {
SimulatorSetjmpBuffer buffer(sim);
if (!setjmp(buffer.buffer_)) {
thread->set_vm_tag(reinterpret_cast<uword>(f));
NativeEntry::NativeCallWrapper(reinterpret_cast<Dart_NativeArguments>(args),
f);
thread->set_vm_tag(VMTag::kDartTagId);
thread->set_top_exit_frame_info(0);
return true;
} else {
return false;
}
}
// Note: all macro helpers are intended to be used only inside Simulator::Call.
// Decode opcode and A part of the given value and dispatch to the
// corresponding bytecode handler.
#define DISPATCH_OP(val) \
do { \
op = (val); \
rA = ((op >> 8) & 0xFF); \
goto* dispatch[op & 0xFF]; \
} while (0)
// Fetch next operation from PC, increment program counter and dispatch.
#define DISPATCH() DISPATCH_OP(*pc++)
// Define entry point that handles bytecode Name with the given operand format.
#define BYTECODE(Name, Operands) \
BYTECODE_HEADER(Name, DECLARE_##Operands, DECODE_##Operands)
#define BYTECODE_HEADER(Name, Declare, Decode) \
Declare; \
bc##Name : Decode
// Helpers to decode common instruction formats. Used in conjunction with
// BYTECODE() macro.
#define DECLARE_A_B_C \
uint16_t rB, rC; \
USE(rB); \
USE(rC)
#define DECODE_A_B_C \
rB = ((op >> Bytecode::kBShift) & Bytecode::kBMask); \
rC = ((op >> Bytecode::kCShift) & Bytecode::kCMask);
#define DECLARE_0
#define DECODE_0
#define DECLARE_A
#define DECODE_A
#define DECLARE___D \
uint32_t rD; \
USE(rD)
#define DECODE___D rD = (op >> Bytecode::kDShift);
#define DECLARE_A_D DECLARE___D
#define DECODE_A_D DECODE___D
#define DECLARE_A_X \
int32_t rD; \
USE(rD)
#define DECODE_A_X rD = (static_cast<int32_t>(op) >> Bytecode::kDShift);
#define SMI_FASTPATH_ICDATA_INC \
do { \
ASSERT(Bytecode::IsCallOpcode(*pc)); \
const uint16_t kidx = Bytecode::DecodeD(*pc); \
const RawICData* icdata = RAW_CAST(ICData, LOAD_CONSTANT(kidx)); \
RawObject** entries = icdata->ptr()->ic_data_->ptr()->data(); \
SimulatorHelpers::IncrementICUsageCount(entries, 0, 2); \
} while (0);
// Declare bytecode handler for a smi operation (e.g. AddTOS) with the
// given result type and the given behavior specified as a function
// that takes left and right operands and result slot and returns
// true if fast-path succeeds.
#define SMI_FASTPATH_TOS(ResultT, Func) \
{ \
const intptr_t lhs = reinterpret_cast<intptr_t>(SP[-1]); \
const intptr_t rhs = reinterpret_cast<intptr_t>(SP[-0]); \
ResultT* slot = reinterpret_cast<ResultT*>(SP - 1); \
if (LIKELY(!thread->isolate()->single_step()) && \
LIKELY(AreBothSmis(lhs, rhs) && !Func(lhs, rhs, slot))) { \
SMI_FASTPATH_ICDATA_INC; \
/* Fast path succeeded. Skip the generic call that follows. */ \
pc++; \
/* We dropped 2 arguments and push result */ \
SP--; \
} \
}
// Skip the next instruction if there is no overflow.
#define SMI_OP_CHECK(ResultT, Func) \
{ \
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]); \
const intptr_t rhs = reinterpret_cast<intptr_t>(FP[rC]); \
ResultT* slot = reinterpret_cast<ResultT*>(&FP[rA]); \
if (LIKELY(!Func(lhs, rhs, slot))) { \
/* Success. Skip the instruction that follows. */ \
pc++; \
} \
}
// Do not check for overflow.
#define SMI_OP_NOCHECK(ResultT, Func) \
{ \
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]); \
const intptr_t rhs = reinterpret_cast<intptr_t>(FP[rC]); \
ResultT* slot = reinterpret_cast<ResultT*>(&FP[rA]); \
Func(lhs, rhs, slot); \
}
// Exception handling helper. Gets handler FP and PC from the Simulator where
// they were stored by Simulator::Longjmp and proceeds to execute the handler.
// Corner case: handler PC can be a fake marker that marks entry frame, which
// means exception was not handled in the Dart code. In this case we return
// caught exception from Simulator::Call.
#define HANDLE_EXCEPTION \
do { \
FP = reinterpret_cast<RawObject**>(fp_); \
pc = reinterpret_cast<uint32_t*>(pc_); \
if ((reinterpret_cast<uword>(pc) & 2) != 0) { /* Entry frame? */ \
fp_ = reinterpret_cast<RawObject**>(fp_[0]); \
thread->set_top_exit_frame_info(reinterpret_cast<uword>(fp_)); \
thread->set_top_resource(top_resource); \
thread->set_vm_tag(vm_tag); \
return special_[kExceptionSpecialIndex]; \
} \
pp = SimulatorHelpers::FrameCode(FP)->ptr()->object_pool_->ptr(); \
goto DispatchAfterException; \
} while (0)
// Runtime call helpers: handle invocation and potential exception after return.
#define INVOKE_RUNTIME(Func, Args) \
if (!InvokeRuntime(thread, this, Func, Args)) { \
HANDLE_EXCEPTION; \
}
#define INVOKE_NATIVE(Func, Args) \
if (!InvokeNative(thread, this, Func, &Args)) { \
HANDLE_EXCEPTION; \
}
#define INVOKE_NATIVE_WRAPPER(Func, Args) \
if (!InvokeNativeWrapper(thread, this, Func, &Args)) { \
HANDLE_EXCEPTION; \
}
#define LOAD_CONSTANT(index) (pp->data()[(index)].raw_obj_)
// Returns true if deoptimization succeeds.
DART_FORCE_INLINE bool Simulator::Deoptimize(Thread* thread,
RawObjectPool** pp,
uint32_t** pc,
RawObject*** FP,
RawObject*** SP,
bool is_lazy) {
// Note: frame translation will take care of preserving result at the
// top of the stack. See CompilerDeoptInfo::CreateDeoptInfo.
// Make sure we preserve SP[0] when entering synthetic frame below.
(*SP)++;
// Leaf runtime function DeoptimizeCopyFrame expects a Dart frame.
// The code in this frame may not cause GC.
// DeoptimizeCopyFrame and DeoptimizeFillFrame are leaf runtime calls.
EnterSyntheticFrame(FP, SP, *pc - (is_lazy ? 1 : 0));
const intptr_t frame_size_in_bytes =
DLRT_DeoptimizeCopyFrame(reinterpret_cast<uword>(*FP), is_lazy ? 1 : 0);
LeaveSyntheticFrame(FP, SP);
*SP = *FP + (frame_size_in_bytes / kWordSize);
EnterSyntheticFrame(FP, SP, *pc - (is_lazy ? 1 : 0));
DLRT_DeoptimizeFillFrame(reinterpret_cast<uword>(*FP));
// We are now inside a valid frame.
{
*++(*SP) = 0; // Space for the result: number of materialization args.
Exit(thread, *FP, *SP + 1, /*pc=*/0);
NativeArguments native_args(thread, 0, *SP, *SP);
if (!InvokeRuntime(thread, this, DRT_DeoptimizeMaterialize, native_args)) {
return false;
}
}
const intptr_t materialization_arg_count =
Smi::Value(RAW_CAST(Smi, *(*SP)--)) / kWordSize;
// Restore caller PC.
*pc = SavedCallerPC(*FP);
pc_ = reinterpret_cast<uword>(*pc); // For the profiler.
// Check if it is a fake PC marking the entry frame.
ASSERT((reinterpret_cast<uword>(*pc) & 2) == 0);
// Restore SP, FP and PP.
// Unoptimized frame SP is one below FrameArguments(...) because
// FrameArguments(...) returns a pointer to the first argument.
*SP = FrameArguments(*FP, materialization_arg_count) - 1;
*FP = SavedCallerFP(*FP);
// Restore pp.
*pp = SimulatorHelpers::FrameCode(*FP)->ptr()->object_pool_->ptr();
return true;
}
RawObject* Simulator::Call(const Code& code,
const Array& arguments_descriptor,
const Array& arguments,
Thread* thread) {
// Dispatch used to interpret bytecode. Contains addresses of
// labels of bytecode handlers. Handlers themselves are defined below.
static const void* dispatch[] = {
#define TARGET(name, fmt, fmta, fmtb, fmtc) &&bc##name,
BYTECODES_LIST(TARGET)
#undef TARGET
};
// Interpreter state (see constants_dbc.h for high-level overview).
uint32_t* pc; // Program Counter: points to the next op to execute.
RawObjectPool* pp; // Pool Pointer.
RawObject** FP; // Frame Pointer.
RawObject** SP; // Stack Pointer.
RawArray* argdesc; // Arguments Descriptor: used to pass information between
// call instruction and the function entry.
uint32_t op; // Currently executing op.
uint16_t rA; // A component of the currently executing op.
if (fp_ == NULL) {
fp_ = reinterpret_cast<RawObject**>(stack_);
}
// Save current VM tag and mark thread as executing Dart code.
const uword vm_tag = thread->vm_tag();
thread->set_vm_tag(VMTag::kDartTagId);
// Save current top stack resource and reset the list.
StackResource* top_resource = thread->top_resource();
thread->set_top_resource(NULL);
// Setup entry frame:
//
// ^
// | previous Dart frames
// ~~~~~~~~~~~~~~~ |
// | ........... | -+
// fp_ > | | saved top_exit_frame_info
// | arg 0 | -+
// ~~~~~~~~~~~~~~~ |
// > incoming arguments
// ~~~~~~~~~~~~~~~ |
// | arg 1 | -+
// | function | -+
// | code | |
// | callee PC | ---> special fake PC marking an entry frame
// SP > | fp_ | |
// FP > | ........... | > normal Dart frame (see stack_frame_dbc.h)
// |
// v
//
FP = fp_ + 1 + arguments.Length() + kDartFrameFixedSize;
SP = FP - 1;
// Save outer top_exit_frame_info.
fp_[0] = reinterpret_cast<RawObject*>(thread->top_exit_frame_info());
thread->set_top_exit_frame_info(0);
// Copy arguments and setup the Dart frame.
const intptr_t argc = arguments.Length();
for (intptr_t i = 0; i < argc; i++) {
fp_[1 + i] = arguments.At(i);
}
FP[kFunctionSlotFromFp] = code.function();
FP[kPcMarkerSlotFromFp] = code.raw();
FP[kSavedCallerPcSlotFromFp] = reinterpret_cast<RawObject*>((argc << 2) | 2);
FP[kSavedCallerFpSlotFromFp] = reinterpret_cast<RawObject*>(fp_);
// Load argument descriptor.
argdesc = arguments_descriptor.raw();
// Ready to start executing bytecode. Load entry point and corresponding
// object pool.
pc = reinterpret_cast<uint32_t*>(code.raw()->ptr()->entry_point_);
pc_ = reinterpret_cast<uword>(pc); // For the profiler.
pp = code.object_pool()->ptr();
// Cache some frequently used values in the frame.
RawBool* true_value = Bool::True().raw();
RawBool* false_value = Bool::False().raw();
RawObject* null_value = Object::null();
RawObject* empty_context = thread->isolate()->object_store()->empty_context();
#if defined(DEBUG)
Function& function_h = Function::Handle();
#endif
// Enter the dispatch loop.
DISPATCH();
// Bytecode handlers (see constants_dbc.h for bytecode descriptions).
{
BYTECODE(Entry, A_B_C);
const uint8_t num_fixed_params = rA;
const uint16_t num_locals = rB;
const uint16_t context_reg = rC;
// Decode arguments descriptor.
const intptr_t pos_count = Smi::Value(*reinterpret_cast<RawSmi**>(
reinterpret_cast<uword>(argdesc->ptr()) +
Array::element_offset(ArgumentsDescriptor::kPositionalCountIndex)));
// Check that we got the right number of positional parameters.
if (pos_count != num_fixed_params) {
// Mismatch can only occur if current function is a closure.
goto ClosureNoSuchMethod;
}
// Initialize locals with null and set current context variable to
// empty context.
{
RawObject** L = FP;
for (intptr_t i = 0; i < num_locals; i++) {
L[i] = null_value;
}
L[context_reg] = empty_context;
SP = FP + num_locals - 1;
}
DISPATCH();
}
{
BYTECODE(EntryOptimized, A_D);
const uint8_t num_fixed_params = rA;
const uint16_t num_registers = rD;
// Decode arguments descriptor.
const intptr_t pos_count = Smi::Value(*reinterpret_cast<RawSmi**>(
reinterpret_cast<uword>(argdesc->ptr()) +
Array::element_offset(ArgumentsDescriptor::kPositionalCountIndex)));
// Check that we got the right number of positional parameters.
if (pos_count != num_fixed_params) {
// Mismatch can only occur if current function is a closure.
goto ClosureNoSuchMethod;
}
// Reserve space for registers used by the optimized code.
SP = FP + num_registers - 1;
DISPATCH();
}
{
BYTECODE(EntryOptional, A_B_C);
const uint16_t num_fixed_params = rA;
const uint16_t num_opt_pos_params = rB;
const uint16_t num_opt_named_params = rC;
const intptr_t min_num_pos_args = num_fixed_params;
const intptr_t max_num_pos_args = num_fixed_params + num_opt_pos_params;
// Decode arguments descriptor.
const intptr_t arg_count = Smi::Value(*reinterpret_cast<RawSmi**>(
reinterpret_cast<uword>(argdesc->ptr()) +
Array::element_offset(ArgumentsDescriptor::kCountIndex)));
const intptr_t pos_count = Smi::Value(*reinterpret_cast<RawSmi**>(
reinterpret_cast<uword>(argdesc->ptr()) +
Array::element_offset(ArgumentsDescriptor::kPositionalCountIndex)));
const intptr_t named_count = (arg_count - pos_count);
// Check that got the right number of positional parameters.
if ((min_num_pos_args > pos_count) || (pos_count > max_num_pos_args)) {
goto ClosureNoSuchMethod;
}
// Copy all passed position arguments.
RawObject** first_arg = FrameArguments(FP, arg_count);
memmove(FP, first_arg, pos_count * kWordSize);
if (num_opt_named_params != 0) {
// This is a function with named parameters.
// Walk the list of named parameters and their
// default values encoded as pairs of LoadConstant instructions that
// follows the entry point and find matching values via arguments
// descriptor.
RawObject** argdesc_data = argdesc->ptr()->data();
intptr_t i = named_count - 1; // argument position
intptr_t j = num_opt_named_params - 1; // parameter position
while ((j >= 0) && (i >= 0)) {
// Fetch formal parameter information: name, default value, target slot.
const uint32_t load_name = pc[2 * j];
const uint32_t load_value = pc[2 * j + 1];
ASSERT(Bytecode::DecodeOpcode(load_name) == Bytecode::kLoadConstant);
ASSERT(Bytecode::DecodeOpcode(load_value) == Bytecode::kLoadConstant);
const uint8_t reg = Bytecode::DecodeA(load_name);
ASSERT(reg == Bytecode::DecodeA(load_value));
RawString* name = static_cast<RawString*>(
LOAD_CONSTANT(Bytecode::DecodeD(load_name)));
if (name == argdesc_data[ArgumentsDescriptor::name_index(i)]) {
// Parameter was passed. Fetch passed value.
const intptr_t arg_index = Smi::Value(static_cast<RawSmi*>(
argdesc_data[ArgumentsDescriptor::position_index(i)]));
FP[reg] = first_arg[arg_index];
i--; // Consume passed argument.
} else {
// Parameter was not passed. Fetch default value.
FP[reg] = LOAD_CONSTANT(Bytecode::DecodeD(load_value));
}
j--; // Next formal parameter.
}
// If we have unprocessed formal parameters then initialize them all
// using default values.
while (j >= 0) {
const uint32_t load_name = pc[2 * j];
const uint32_t load_value = pc[2 * j + 1];
ASSERT(Bytecode::DecodeOpcode(load_name) == Bytecode::kLoadConstant);
ASSERT(Bytecode::DecodeOpcode(load_value) == Bytecode::kLoadConstant);
const uint8_t reg = Bytecode::DecodeA(load_name);
ASSERT(reg == Bytecode::DecodeA(load_value));
FP[reg] = LOAD_CONSTANT(Bytecode::DecodeD(load_value));
j--;
}
// If we have unprocessed passed arguments that means we have mismatch
// between formal parameters and concrete arguments. This can only
// occur if the current function is a closure.
if (i != -1) {
goto ClosureNoSuchMethod;
}
// Skip LoadConstant-s encoding information about named parameters.
pc += num_opt_named_params * 2;
// SP points past copied arguments.
SP = FP + num_fixed_params + num_opt_named_params - 1;
} else {
ASSERT(num_opt_pos_params != 0);
if (named_count != 0) {
// Function can't have both named and optional positional parameters.
// This kind of mismatch can only occur if the current function
// is a closure.
goto ClosureNoSuchMethod;
}
// Process the list of default values encoded as a sequence of
// LoadConstant instructions after EntryOpt bytecode.
// Execute only those that correspond to parameters the were not passed.
for (intptr_t i = pos_count - num_fixed_params; i < num_opt_pos_params;
i++) {
const uint32_t load_value = pc[i];
ASSERT(Bytecode::DecodeOpcode(load_value) == Bytecode::kLoadConstant);
#if defined(DEBUG)
const uint8_t reg = Bytecode::DecodeA(load_value);
ASSERT((num_fixed_params + i) == reg);
#endif
FP[num_fixed_params + i] = LOAD_CONSTANT(Bytecode::DecodeD(load_value));
}
// Skip LoadConstant-s encoding default values for optional positional
// parameters.
pc += num_opt_pos_params;
// SP points past the last copied parameter.
SP = FP + max_num_pos_args - 1;
}
DISPATCH();
}
{
BYTECODE(Frame, A_D);
// Initialize locals with null and increment SP.
const uint16_t num_locals = rD;
for (intptr_t i = 1; i <= num_locals; i++) {
SP[i] = null_value;
}
SP += num_locals;
DISPATCH();
}
{
BYTECODE(SetFrame, A);
SP = FP + rA - 1;
DISPATCH();
}
{
BYTECODE(Compile, 0);
FP[0] = FrameFunction(FP);
FP[1] = 0;
Exit(thread, FP, FP + 2, pc);
NativeArguments args(thread, 1, FP, FP + 1);
INVOKE_RUNTIME(DRT_CompileFunction, args);
{
// Function should be compiled now, dispatch to its entry point.
RawCode* code = FrameFunction(FP)->ptr()->code_;
SimulatorHelpers::SetFrameCode(FP, code);
pp = code->ptr()->object_pool_->ptr();
pc = reinterpret_cast<uint32_t*>(code->ptr()->entry_point_);
pc_ = reinterpret_cast<uword>(pc); // For the profiler.
}
DISPATCH();
}
{
BYTECODE(HotCheck, A_D);
const uint8_t increment = rA;
const uint16_t threshold = rD;
RawFunction* f = FrameFunction(FP);
int32_t counter = f->ptr()->usage_counter_;
// Note: we don't increment usage counter in the prologue of optimized
// functions.
if (increment) {
counter += increment;
f->ptr()->usage_counter_ = counter;
}
if (UNLIKELY(counter >= threshold)) {
FP[0] = f;
FP[1] = 0;
// Make the DRT_OptimizeInvokedFunction see a stub as its caller for
// consistency with the other architectures, and to avoid needing to
// generate a stackmap for the HotCheck pc.
const StubEntry* stub = StubCode::OptimizeFunction_entry();
FP[kPcMarkerSlotFromFp] = stub->code();
pc = reinterpret_cast<uint32_t*>(stub->EntryPoint());
Exit(thread, FP, FP + 2, pc);
NativeArguments args(thread, 1, FP, FP + 1);
INVOKE_RUNTIME(DRT_OptimizeInvokedFunction, args);
{
// DRT_OptimizeInvokedFunction returns the code object to execute.
ASSERT(FP[1]->GetClassId() == kFunctionCid);
RawFunction* function = static_cast<RawFunction*>(FP[1]);
RawCode* code = function->ptr()->code_;
SimulatorHelpers::SetFrameCode(FP, code);
pp = code->ptr()->object_pool_->ptr();
pc = reinterpret_cast<uint32_t*>(function->ptr()->entry_point_);
pc_ = reinterpret_cast<uword>(pc); // For the profiler.
}
}
DISPATCH();
}
{
BYTECODE(CheckStack, A);
{
if (reinterpret_cast<uword>(SP) >= thread->stack_limit()) {
Exit(thread, FP, SP + 1, pc);
NativeArguments args(thread, 0, NULL, NULL);
INVOKE_RUNTIME(DRT_StackOverflow, args);
}
}
DISPATCH();
}
{
BYTECODE(CheckStackAlwaysExit, A);
{
Exit(thread, FP, SP + 1, pc);
NativeArguments args(thread, 0, NULL, NULL);
INVOKE_RUNTIME(DRT_StackOverflow, args);
}
DISPATCH();
}
{
BYTECODE(DebugStep, A);
if (thread->isolate()->single_step()) {
Exit(thread, FP, SP + 1, pc);
NativeArguments args(thread, 0, NULL, NULL);
INVOKE_RUNTIME(DRT_SingleStepHandler, args);
}
DISPATCH();
}
{
BYTECODE(DebugBreak, A);
#if !defined(PRODUCT)
{
const uint32_t original_bc =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(
thread->isolate()->debugger()->GetPatchedStubAddress(
reinterpret_cast<uword>(pc))));
SP[1] = null_value;
Exit(thread, FP, SP + 2, pc);
NativeArguments args(thread, 0, NULL, SP + 1);
INVOKE_RUNTIME(DRT_BreakpointRuntimeHandler, args)
DISPATCH_OP(original_bc);
}
#else
// There should be no debug breaks in product mode.
UNREACHABLE();
#endif
DISPATCH();
}
{
BYTECODE(InstantiateType, A_D);
RawObject* type = LOAD_CONSTANT(rD);
SP[1] = type;
SP[2] = SP[0];
SP[0] = null_value;
Exit(thread, FP, SP + 3, pc);
{
NativeArguments args(thread, 2, SP + 1, SP);
INVOKE_RUNTIME(DRT_InstantiateType, args);
}
DISPATCH();
}
{
BYTECODE(InstantiateTypeArgumentsTOS, A_D);
RawTypeArguments* type_arguments =
static_cast<RawTypeArguments*>(LOAD_CONSTANT(rD));
RawObject* instantiator = SP[0];
// If the instantiator is null and if the type argument vector
// instantiated from null becomes a vector of dynamic, then use null as
// the type arguments.
if (rA == 0 || null_value != instantiator) {
// First lookup in the cache.
RawArray* instantiations = type_arguments->ptr()->instantiations_;
for (intptr_t i = 0;
instantiations->ptr()->data()[i] != NULL; // kNoInstantiator
i += 2) {
if (instantiations->ptr()->data()[i] == instantiator) {
// Found in the cache.
SP[0] = instantiations->ptr()->data()[i + 1];
goto InstantiateTypeArgumentsTOSDone;
}
}
// Cache lookup failed, call runtime.
SP[1] = type_arguments;
SP[2] = instantiator;
Exit(thread, FP, SP + 3, pc);
NativeArguments args(thread, 2, SP + 1, SP);
INVOKE_RUNTIME(DRT_InstantiateTypeArguments, args);
}
InstantiateTypeArgumentsTOSDone:
DISPATCH();
}
{
BYTECODE(Throw, A);
{
SP[1] = 0; // Space for result.
Exit(thread, FP, SP + 2, pc);
if (rA == 0) { // Throw
NativeArguments args(thread, 1, SP, SP + 1);
INVOKE_RUNTIME(DRT_Throw, args);
} else { // ReThrow
NativeArguments args(thread, 2, SP - 1, SP + 1);
INVOKE_RUNTIME(DRT_ReThrow, args);
}
}
DISPATCH();
}
{
BYTECODE(Drop1, 0);
SP--;
DISPATCH();
}
{
BYTECODE(Drop, 0);
SP -= rA;
DISPATCH();
}
{
BYTECODE(DropR, 0);
RawObject* result = SP[0];
SP -= rA;
SP[0] = result;
DISPATCH();
}
{
BYTECODE(LoadConstant, A_D);
FP[rA] = LOAD_CONSTANT(rD);
DISPATCH();
}
{
BYTECODE(PushConstant, __D);
*++SP = LOAD_CONSTANT(rD);
DISPATCH();
}
{
BYTECODE(Push, A_X);
*++SP = FP[rD];
DISPATCH();
}
{
BYTECODE(Move, A_X);
FP[rA] = FP[rD];
DISPATCH();
}
{
BYTECODE(Swap, A_X);
RawObject* tmp = FP[rD];
FP[rD] = FP[rA];
FP[rA] = tmp;
DISPATCH();
}
{
BYTECODE(StoreLocal, A_X);
FP[rD] = *SP;
DISPATCH();
}
{
BYTECODE(PopLocal, A_X);
FP[rD] = *SP--;
DISPATCH();
}
{
BYTECODE(MoveSpecial, A_D);
FP[rA] = special_[rD];
DISPATCH();
}
{
BYTECODE(BooleanNegateTOS, 0);
SP[0] = (SP[0] == true_value) ? false_value : true_value;
DISPATCH();
}
{
BYTECODE(BooleanNegate, A_D);
FP[rA] = (FP[rD] == true_value) ? false_value : true_value;
DISPATCH();
}
{
BYTECODE(IndirectStaticCall, A_D);
// Check if single stepping.
if (thread->isolate()->single_step()) {
Exit(thread, FP, SP + 1, pc);
NativeArguments args(thread, 0, NULL, NULL);
INVOKE_RUNTIME(DRT_SingleStepHandler, args);
}
// Invoke target function.
{
const uint16_t argc = rA;
// Lookup the funciton in the ICData.
RawObject* ic_data_obj = SP[0];
RawICData* ic_data = RAW_CAST(ICData, ic_data_obj);
RawObject** data = ic_data->ptr()->ic_data_->ptr()->data();
SimulatorHelpers::IncrementICUsageCount(data, 0, 0);
SP[0] = data[ICData::TargetIndexFor(ic_data->ptr()->state_bits_ & 0x3)];
RawObject** call_base = SP - argc;
RawObject** call_top = SP; // *SP contains function
argdesc = static_cast<RawArray*>(LOAD_CONSTANT(rD));
Invoke(thread, call_base, call_top, &pp, &pc, &FP, &SP);
}
DISPATCH();
}
{
BYTECODE(StaticCall, A_D);
const uint16_t argc = rA;
RawObject** call_base = SP - argc;
RawObject** call_top = SP; // *SP contains function
argdesc = static_cast<RawArray*>(LOAD_CONSTANT(rD));
Invoke(thread, call_base, call_top, &pp, &pc, &FP, &SP);
DISPATCH();
}
{
BYTECODE(InstanceCall1, A_D);
// Check if single stepping.
if (thread->isolate()->single_step()) {
Exit(thread, FP, SP + 1, pc);
NativeArguments args(thread, 0, NULL, NULL);
INVOKE_RUNTIME(DRT_SingleStepHandler, args);
}
{
const uint16_t argc = rA;
const uint16_t kidx = rD;
RawObject** call_base = SP - argc + 1;
RawObject** call_top = SP + 1;
RawICData* icdata = RAW_CAST(ICData, LOAD_CONSTANT(kidx));
SimulatorHelpers::IncrementUsageCounter(
RAW_CAST(Function, icdata->ptr()->owner_));
InstanceCall1(thread, icdata, call_base, call_top, &argdesc, &pp, &pc,
&FP, &SP, false /* optimized */);
}
DISPATCH();
}
{
BYTECODE(InstanceCall2, A_D);
if (thread->isolate()->single_step()) {
Exit(thread, FP, SP + 1, pc);
NativeArguments args(thread, 0, NULL, NULL);
INVOKE_RUNTIME(DRT_SingleStepHandler, args);
}
{
const uint16_t argc = rA;
const uint16_t kidx = rD;
RawObject** call_base = SP - argc + 1;
RawObject** call_top = SP + 1;
RawICData* icdata = RAW_CAST(ICData, LOAD_CONSTANT(kidx));
SimulatorHelpers::IncrementUsageCounter(
RAW_CAST(Function, icdata->ptr()->owner_));
InstanceCall2(thread, icdata, call_base, call_top, &argdesc, &pp, &pc,
&FP, &SP, false /* optimized */);
}
DISPATCH();
}
{
BYTECODE(InstanceCall1Opt, A_D);
{
const uint16_t argc = rA;
const uint16_t kidx = rD;
RawObject** call_base = SP - argc + 1;
RawObject** call_top = SP + 1;
RawICData* icdata = RAW_CAST(ICData, LOAD_CONSTANT(kidx));
SimulatorHelpers::IncrementUsageCounter(FrameFunction(FP));
InstanceCall1(thread, icdata, call_base, call_top, &argdesc, &pp, &pc,
&FP, &SP, true /* optimized */);
}
DISPATCH();
}
{
BYTECODE(InstanceCall2Opt, A_D);
{
const uint16_t argc = rA;
const uint16_t kidx = rD;
RawObject** call_base = SP - argc + 1;
RawObject** call_top = SP + 1;
RawICData* icdata = RAW_CAST(ICData, LOAD_CONSTANT(kidx));
SimulatorHelpers::IncrementUsageCounter(FrameFunction(FP));
InstanceCall2(thread, icdata, call_base, call_top, &argdesc, &pp, &pc,
&FP, &SP, true /* optimized */);
}
DISPATCH();
}
{
BYTECODE(PushPolymorphicInstanceCall, A_D);
const uint8_t argc = rA;
const intptr_t cids_length = rD;
RawObject** args = SP - argc + 1;
const intptr_t receiver_cid = SimulatorHelpers::GetClassId(args[0]);
for (intptr_t i = 0; i < 2 * cids_length; i += 2) {
const intptr_t icdata_cid = Bytecode::DecodeD(*(pc + i));
if (receiver_cid == icdata_cid) {
RawFunction* target =
RAW_CAST(Function, LOAD_CONSTANT(Bytecode::DecodeD(*(pc + i + 1))));
*++SP = target;
pc++;
break;
}
}
pc += 2 * cids_length;
DISPATCH();
}
{
BYTECODE(PushPolymorphicInstanceCallByRange, A_D);
const uint8_t argc = rA;
const intptr_t cids_length = rD;
RawObject** args = SP - argc + 1;
const intptr_t receiver_cid = SimulatorHelpers::GetClassId(args[0]);
for (intptr_t i = 0; i < 3 * cids_length; i += 3) {
// Note unsigned types to get an unsigned range compare.
const uintptr_t cid_start = Bytecode::DecodeD(*(pc + i));
const uintptr_t cids = Bytecode::DecodeD(*(pc + i + 1));
if (receiver_cid - cid_start < cids) {
RawFunction* target =
RAW_CAST(Function, LOAD_CONSTANT(Bytecode::DecodeD(*(pc + i + 2))));
*++SP = target;
pc++;
break;
}
}
pc += 3 * cids_length;
DISPATCH();
}
{
BYTECODE(NativeBootstrapCall, 0);
RawFunction* function = FrameFunction(FP);
RawObject** incoming_args =
(function->ptr()->num_optional_parameters_ == 0)
? FrameArguments(FP, function->ptr()->num_fixed_parameters_)
: FP;
SimulatorBootstrapNativeCall native_target =
reinterpret_cast<SimulatorBootstrapNativeCall>(SP[-1]);
intptr_t argc_tag = reinterpret_cast<intptr_t>(SP[-0]);
SP[-0] = 0; // Note: argc_tag is not smi-tagged.
SP[-1] = null_value;
Exit(thread, FP, SP + 1, pc);
NativeArguments args(thread, argc_tag, incoming_args, SP - 1);
INVOKE_NATIVE(native_target, args);
SP -= 1;
DISPATCH();
}
{
BYTECODE(NativeCall, 0);
RawFunction* function = FrameFunction(FP);
RawObject** incoming_args =
(function->ptr()->num_optional_parameters_ == 0)
? FrameArguments(FP, function->ptr()->num_fixed_parameters_)
: FP;
Dart_NativeFunction native_target =
reinterpret_cast<Dart_NativeFunction>(SP[-1]);
intptr_t argc_tag = reinterpret_cast<intptr_t>(SP[-0]);
SP[-0] = 0; // argc_tag is not smi tagged!
SP[-1] = null_value;
Exit(thread, FP, SP + 1, pc);
NativeArguments args(thread, argc_tag, incoming_args, SP - 1);
INVOKE_NATIVE_WRAPPER(native_target, args);
SP -= 1;
DISPATCH();
}
{
BYTECODE(OneByteStringFromCharCode, A_X);
const intptr_t char_code = Smi::Value(RAW_CAST(Smi, FP[rD]));
ASSERT(char_code >= 0);
ASSERT(char_code <= 255);
RawString** strings = Symbols::PredefinedAddress();
const intptr_t index = char_code + Symbols::kNullCharCodeSymbolOffset;
FP[rA] = strings[index];
DISPATCH();
}
{
BYTECODE(StringToCharCode, A_X);
RawOneByteString* str = RAW_CAST(OneByteString, FP[rD]);
if (str->ptr()->length_ == Smi::New(1)) {
FP[rA] = Smi::New(str->ptr()->data()[0]);
} else {
FP[rA] = Smi::New(-1);
}
DISPATCH();
}
{
BYTECODE(AddTOS, A_B_C);
SMI_FASTPATH_TOS(intptr_t, SignedAddWithOverflow);
DISPATCH();
}
{
BYTECODE(SubTOS, A_B_C);
SMI_FASTPATH_TOS(intptr_t, SignedSubWithOverflow);
DISPATCH();
}
{
BYTECODE(MulTOS, A_B_C);
SMI_FASTPATH_TOS(intptr_t, SMI_MUL);
DISPATCH();
}
{
BYTECODE(BitOrTOS, A_B_C);
SMI_FASTPATH_TOS(intptr_t, SMI_BITOR);
DISPATCH();
}
{
BYTECODE(BitAndTOS, A_B_C);
SMI_FASTPATH_TOS(intptr_t, SMI_BITAND);
DISPATCH();
}
{
BYTECODE(EqualTOS, A_B_C);
SMI_FASTPATH_TOS(RawObject*, SMI_EQ);
DISPATCH();
}
{
BYTECODE(LessThanTOS, A_B_C);
SMI_FASTPATH_TOS(RawObject*, SMI_LT);
DISPATCH();
}
{
BYTECODE(GreaterThanTOS, A_B_C);
SMI_FASTPATH_TOS(RawObject*, SMI_GT);
DISPATCH();
}
{
BYTECODE(Add, A_B_C);
SMI_OP_CHECK(intptr_t, SignedAddWithOverflow);
DISPATCH();
}
{
BYTECODE(Sub, A_B_C);
SMI_OP_CHECK(intptr_t, SignedSubWithOverflow);
DISPATCH();
}
{
BYTECODE(Mul, A_B_C);
SMI_OP_CHECK(intptr_t, SMI_MUL);
DISPATCH();
}
{
BYTECODE(Neg, A_D);
const intptr_t value = reinterpret_cast<intptr_t>(FP[rD]);
intptr_t* out = reinterpret_cast<intptr_t*>(&FP[rA]);
if (LIKELY(!SignedSubWithOverflow(0, value, out))) {
pc++;
}
DISPATCH();
}
{
BYTECODE(BitOr, A_B_C);
SMI_OP_NOCHECK(intptr_t, SMI_BITOR);
DISPATCH();
}
{
BYTECODE(BitAnd, A_B_C);
SMI_OP_NOCHECK(intptr_t, SMI_BITAND);
DISPATCH();
}
{
BYTECODE(BitXor, A_B_C);
SMI_OP_NOCHECK(intptr_t, SMI_BITXOR);
DISPATCH();
}
{
BYTECODE(BitNot, A_D);
const intptr_t value = reinterpret_cast<intptr_t>(FP[rD]);
*reinterpret_cast<intptr_t*>(&FP[rA]) = ~value & (~kSmiTagMask);
DISPATCH();
}
{
BYTECODE(Div, A_B_C);
const intptr_t rhs = reinterpret_cast<intptr_t>(FP[rC]);
if (rhs != 0) {
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]);
const intptr_t res = (lhs >> kSmiTagSize) / (rhs >> kSmiTagSize);
#if defined(ARCH_IS_64_BIT)
const intptr_t untaggable = 0x4000000000000000LL;
#else
const intptr_t untaggable = 0x40000000L;
#endif // defined(ARCH_IS_64_BIT)
if (res != untaggable) {
*reinterpret_cast<intptr_t*>(&FP[rA]) = res << kSmiTagSize;
pc++;
}
}
DISPATCH();
}
{
BYTECODE(Mod, A_B_C);
const intptr_t rhs = reinterpret_cast<intptr_t>(FP[rC]);
if (rhs != 0) {
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]);
const intptr_t res = ((lhs >> kSmiTagSize) % (rhs >> kSmiTagSize))
<< kSmiTagSize;
*reinterpret_cast<intptr_t*>(&FP[rA]) =
(res < 0) ? ((rhs < 0) ? (res - rhs) : (res + rhs)) : res;
pc++;
}
DISPATCH();
}
{
BYTECODE(Shl, A_B_C);
const intptr_t rhs = reinterpret_cast<intptr_t>(FP[rC]) >> kSmiTagSize;
if (static_cast<uintptr_t>(rhs) < kBitsPerWord) {
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]);
const intptr_t res = lhs << rhs;
if (lhs == (res >> rhs)) {
*reinterpret_cast<intptr_t*>(&FP[rA]) = res;
pc++;
}
}
DISPATCH();
}
{
BYTECODE(Shr, A_B_C);
const intptr_t rhs = reinterpret_cast<intptr_t>(FP[rC]) >> kSmiTagSize;
if (rhs >= 0) {
const intptr_t shift_amount =
(rhs >= kBitsPerWord) ? (kBitsPerWord - 1) : rhs;
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]) >> kSmiTagSize;
*reinterpret_cast<intptr_t*>(&FP[rA]) = (lhs >> shift_amount)
<< kSmiTagSize;
pc++;
}
DISPATCH();
}
{
BYTECODE(ShlImm, A_B_C);
const uint8_t shift = rC;
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]);
FP[rA] = reinterpret_cast<RawObject*>(lhs << shift);
DISPATCH();
}
{
BYTECODE(Min, A_B_C);
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]);
const intptr_t rhs = reinterpret_cast<intptr_t>(FP[rC]);
FP[rA] = reinterpret_cast<RawObject*>((lhs < rhs) ? lhs : rhs);
DISPATCH();
}
{
BYTECODE(Max, A_B_C);
const intptr_t lhs = reinterpret_cast<intptr_t>(FP[rB]);
const intptr_t rhs = reinterpret_cast<intptr_t>(FP[rC]);
FP[rA] = reinterpret_cast<RawObject*>((lhs > rhs) ? lhs : rhs);
DISPATCH();
}
{
BYTECODE(UnboxInt32, A_B_C);
const intptr_t box_cid = SimulatorHelpers::GetClassId(FP[rB]);
const bool may_truncate = rC == 1;
if (box_cid == kSmiCid) {
const intptr_t value = reinterpret_cast<intptr_t>(FP[rB]) >> kSmiTagSize;
const int32_t value32 = static_cast<int32_t>(value);
if (may_truncate || (value == static_cast<intptr_t>(value32))) {
FP[rA] = reinterpret_cast<RawObject*>(value);
pc++;
}
} else if (box_cid == kMintCid) {
RawMint* mint = RAW_CAST(Mint, FP[rB]);
const int64_t value = mint->ptr()->value_;
const int32_t value32 = static_cast<int32_t>(value);
if (may_truncate || (value == static_cast<int64_t>(value32))) {
FP[rA] = reinterpret_cast<RawObject*>(value);
pc++;
}
}
DISPATCH();
}
#if defined(ARCH_IS_64_BIT)
{
BYTECODE(WriteIntoDouble, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
RawDouble* box = RAW_CAST(Double, FP[rA]);
box->ptr()->value_ = value;
DISPATCH();
}
{
BYTECODE(UnboxDouble, A_D);
const RawDouble* box = RAW_CAST(Double, FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(box->ptr()->value_);
DISPATCH();
}
{
BYTECODE(CheckedUnboxDouble, A_D);
const intptr_t box_cid = SimulatorHelpers::GetClassId(FP[rD]);
if (box_cid == kSmiCid) {
const intptr_t value = reinterpret_cast<intptr_t>(FP[rD]) >> kSmiTagSize;
const double result = static_cast<double>(value);
FP[rA] = bit_cast<RawObject*, double>(result);
pc++;
} else if (box_cid == kDoubleCid) {
const RawDouble* box = RAW_CAST(Double, FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(box->ptr()->value_);
pc++;
}
DISPATCH();
}
{
BYTECODE(DoubleToSmi, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
if (!isnan(value)) {
const intptr_t result = static_cast<intptr_t>(value);
if ((result <= Smi::kMaxValue) && (result >= Smi::kMinValue)) {
FP[rA] = reinterpret_cast<RawObject*>(result << kSmiTagSize);
pc++;
}
}
DISPATCH();
}
{
BYTECODE(SmiToDouble, A_D);
const intptr_t value = reinterpret_cast<intptr_t>(FP[rD]) >> kSmiTagSize;
const double result = static_cast<double>(value);
FP[rA] = bit_cast<RawObject*, double>(result);
DISPATCH();
}
{
BYTECODE(DAdd, A_B_C);
const double lhs = bit_cast<double, RawObject*>(FP[rB]);
const double rhs = bit_cast<double, RawObject*>(FP[rC]);
FP[rA] = bit_cast<RawObject*, double>(lhs + rhs);
DISPATCH();
}
{
BYTECODE(DSub, A_B_C);
const double lhs = bit_cast<double, RawObject*>(FP[rB]);
const double rhs = bit_cast<double, RawObject*>(FP[rC]);
FP[rA] = bit_cast<RawObject*, double>(lhs - rhs);
DISPATCH();
}
{
BYTECODE(DMul, A_B_C);
const double lhs = bit_cast<double, RawObject*>(FP[rB]);
const double rhs = bit_cast<double, RawObject*>(FP[rC]);
FP[rA] = bit_cast<RawObject*, double>(lhs * rhs);
DISPATCH();
}
{
BYTECODE(DDiv, A_B_C);
const double lhs = bit_cast<double, RawObject*>(FP[rB]);
const double rhs = bit_cast<double, RawObject*>(FP[rC]);
const double result = lhs / rhs;
FP[rA] = bit_cast<RawObject*, double>(result);
DISPATCH();
}
{
BYTECODE(DNeg, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(-value);
DISPATCH();
}
{
BYTECODE(DSqrt, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(sqrt(value));
DISPATCH();
}
{
BYTECODE(DSin, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(sin(value));
DISPATCH();
}
{
BYTECODE(DCos, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(cos(value));
DISPATCH();
}
{
BYTECODE(DPow, A_B_C);
const double lhs = bit_cast<double, RawObject*>(FP[rB]);
const double rhs = bit_cast<double, RawObject*>(FP[rC]);
const double result = pow(lhs, rhs);
FP[rA] = bit_cast<RawObject*, double>(result);
DISPATCH();
}
{
BYTECODE(DMod, A_B_C);
const double lhs = bit_cast<double, RawObject*>(FP[rB]);
const double rhs = bit_cast<double, RawObject*>(FP[rC]);
const double result = DartModulo(lhs, rhs);
FP[rA] = bit_cast<RawObject*, double>(result);
DISPATCH();
}
{
BYTECODE(DMin, A_B_C);
const double lhs = bit_cast<double, RawObject*>(FP[rB]);
const double rhs = bit_cast<double, RawObject*>(FP[rC]);
FP[rA] = bit_cast<RawObject*, double>(fmin(lhs, rhs));
DISPATCH();
}
{
BYTECODE(DMax, A_B_C);
const double lhs = bit_cast<double, RawObject*>(FP[rB]);
const double rhs = bit_cast<double, RawObject*>(FP[rC]);
FP[rA] = bit_cast<RawObject*, double>(fmax(lhs, rhs));
DISPATCH();
}
{
BYTECODE(DTruncate, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(trunc(value));
DISPATCH();
}
{
BYTECODE(DFloor, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(floor(value));
DISPATCH();
}
{
BYTECODE(DCeil, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
FP[rA] = bit_cast<RawObject*, double>(ceil(value));
DISPATCH();
}
{
BYTECODE(DoubleToFloat, A_D);
const double value = bit_cast<double, RawObject*>(FP[rD]);
const float valuef = static_cast<float>(value);
*reinterpret_cast<float*>(&FP[rA]) = valuef;
DISPATCH();
}
{
BYTECODE(FloatToDouble, A_D);
const float valuef = *reinterpret_cast<float*>(&FP[rD]);
const double value = static_cast<double>(valuef);
FP[rA] = bit_cast<RawObject*, double>(value);
DISPATCH();
}
{
BYTECODE(DoubleIsNaN, A);
const double v = bit_cast<double, RawObject*>(FP[rA]);
if (!isnan(v)) {
pc++;
}
DISPATCH();
}
{
BYTECODE(DoubleIsInfinite, A);
const double v = bit_cast<double, RawObject*>(FP[rA]);
if (!isinf(v)) {
pc++;
}
DISPATCH();
}
{
BYTECODE(LoadIndexedFloat32, A_B_C);
uint8_t* data = SimulatorHelpers::GetTypedData(FP[rB], FP[rC]);
const uint32_t value = *reinterpret_cast<uint32_t*>(data);
const uint64_t value64 = value;
FP[rA] = reinterpret_cast<RawObject*>(value64);
DISPATCH();
}
{
BYTECODE(LoadIndexed4Float32, A_B_C);
ASSERT(RawObject::IsTypedDataClassId(FP[rB]->GetClassId()));
RawTypedData* array = reinterpret_cast<RawTypedData*>(FP[rB]);
RawSmi* index = RAW_CAST(Smi, FP[rC]);
ASSERT(SimulatorHelpers::CheckIndex(index, array->ptr()->length_));
const uint32_t value =
reinterpret_cast<uint32_t*>(array->ptr()->data())[Smi::Value(index)];
const uint64_t value64 = value; // sign extend to clear high bits.
FP[rA] = reinterpret_cast<RawObject*>(value64);
DISPATCH();
}
{
BYTECODE(LoadIndexedFloat64, A_B_C);
uint8_t* data = SimulatorHelpers::GetTypedData(FP[rB], FP[rC]);
*reinterpret_cast<uint64_t*>(&FP[rA]) = *reinterpret_cast<uint64_t*>(data);
DISPATCH();
}
{
BYTECODE(LoadIndexed8Float64, A_B_C);
ASSERT(RawObject::IsTypedDataClassId(FP[rB]->GetClassId()));
RawTypedData* array = reinterpret_cast<RawTypedData*>(FP[rB]);
RawSmi* index = RAW_CAST(Smi, FP[rC]);
ASSERT(SimulatorHelpers::CheckIndex(index, array->ptr()->length_));
const int64_t value =
reinterpret_cast<int64_t*>(array->ptr()->data())[Smi::Value(index)];
FP[rA] = reinterpret_cast<RawObject*>(value);
DISPATCH();
}
{
BYTECODE(StoreIndexedFloat32, A_B_C);
uint8_t* data = SimulatorHelpers::GetTypedData(FP[rA], FP[rB]);
const uint64_t value = reinterpret_cast<uint64_t>(FP[rC]);
const uint32_t value32 = value;
*reinterpret_cast<uint32_t*>(data) = value32;
DISPATCH();
}
{
BYTECODE(StoreIndexed4Float32, A_B_C);
ASSERT(RawObject::IsTypedDataClassId(FP[rA]->GetClassId()));
RawTypedData* array = reinterpret_cast<RawTypedData*>(FP[rA]);
RawSmi* index = RAW_CAST(Smi, FP[rB]);
ASSERT(SimulatorHelpers::CheckIndex(index, array->ptr()->length_));
const uint64_t value = reinterpret_cast<uint64_t>(FP[rC]);
const uint32_t value32 = value;
reinterpret_cast<uint32_t*>(array->ptr()->data())[Smi::Value(index)] =
value32;
DISPATCH();
}
{
BYTECODE(StoreIndexedFloat64, A_B_C);
uint8_t* data = SimulatorHelpers::GetTypedData(FP[rA], FP[rB]);
*reinterpret_cast<uint64_t*>(data) = reinterpret_cast<uint64_t>(FP[rC]);
DISPATCH();
}
{
BYTECODE(StoreIndexed8Float64, A_B_C);
ASSERT(RawObject::IsTypedDataClassId(FP[rA]->GetClassId()));
RawTypedData* array = reinterpret_cast<RawTypedData*>(FP[rA]);
RawSmi* index = RAW_CAST(Smi, FP[rB]);
ASSERT(SimulatorHelpers::CheckIndex(index, array->ptr()->length_));
const int64_t value = reinterpret_cast<int64_t>(FP[rC]);
reinterpret_cast<int64_t*>(array->ptr()->data())[Smi::Value(index)] = value;
DISPATCH();
}
{
BYTECODE(BoxInt32, A_D);
// Casts sign-extend high 32 bits from low 32 bits.
const intptr_t value = reinterpret_cast<intptr_t>(FP[rD]);
const int32_t value32 = static_cast<int32_t>(value);
FP[rA] = Smi::New(static_cast<intptr_t>(value32));
DISPATCH();
}
{
BYTECODE(BoxUint32, A_D);
// Casts to zero out high 32 bits.
const uintptr_t value = reinterpret_cast<uintptr_t>(FP[rD]);
const uint32_t value32 = static_cast<uint32_t>(value);
FP[rA] = Smi::New(static_cast<intptr_t>(value32));
DISPATCH();
}
#else // defined(ARCH_IS_64_BIT)
{
BYTECODE(WriteIntoDouble, A_D);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(UnboxDouble, A_D);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(CheckedUnboxDouble, A_D);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(DoubleToSmi, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(SmiToDouble, A_D);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(DAdd, A_B_C);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(DSub, A_B_C);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(DMul, A_B_C);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(DDiv, A_B_C);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(DNeg, A_D);
UNIMPLEMENTED();
DISPATCH();
}
{
BYTECODE(DSqrt, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DSin, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DCos, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DPow, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DMod, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DMin, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DMax, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DTruncate, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DFloor, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DCeil, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DoubleToFloat, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(FloatToDouble, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DoubleIsNaN, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(DoubleIsInfinite, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(LoadIndexedFloat32, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(LoadIndexed4Float32, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(LoadIndexedFloat64, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(LoadIndexed8Float64, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(StoreIndexedFloat32, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(StoreIndexed4Float32, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(StoreIndexedFloat64, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(StoreIndexed8Float64, A_B_C);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(BoxInt32, A_D);
UNREACHABLE();
DISPATCH();
}
{
BYTECODE(BoxUint32, A_D);
UNREACHABLE();
DISPATCH();
}
#endif // defined(ARCH_IS_64_BIT)
// Return and return like instructions (Instrinsic).
{
RawObject* result; // result to return to the caller.
BYTECODE(Intrinsic, A);
// Try invoking intrinsic handler. If it succeeds (returns true)
// then just return the value it returned to the caller.
result = null_value;
if (!intrinsics_[rA](thread, FP, &result)) {
DISPATCH();
}
goto ReturnImpl;
BYTECODE(Return, A);
result = FP[rA];
goto ReturnImpl;
BYTECODE(ReturnTOS, 0);
result = *SP;
// Fall through to the ReturnImpl.
ReturnImpl:
// Restore caller PC.
pc = SavedCallerPC(FP);
pc_ = reinterpret_cast<uword>(pc); // For the profiler.
// Check if it is a fake PC marking the entry frame.
if ((reinterpret_cast<uword>(pc) & 2) != 0) {
const intptr_t argc = reinterpret_cast<uword>(pc) >> 2;
fp_ = reinterpret_cast<RawObject**>(FrameArguments(FP, argc + 1)[0]);
thread->set_top_exit_frame_info(reinterpret_cast<uword>(fp_));
thread->set_top_resource(top_resource);
thread->set_vm_tag(vm_tag);
return result;
}
// Look at the caller to determine how many arguments to pop.
const uint8_t argc = Bytecode::DecodeArgc(pc[-1]);
// Restore SP, FP and PP. Push result and dispatch.
SP = FrameArguments(FP, argc);
FP = SavedCallerFP(FP);
pp = SimulatorHelpers::FrameCode(FP)->ptr()->object_pool_->ptr();
*SP = result;
DISPATCH();
}
{
BYTECODE(StoreStaticTOS, A_D);
RawField* field = reinterpret_cast<RawField*>(LOAD_CONSTANT(rD));
RawInstance* value = static_cast<RawInstance*>(*SP--);
field->StorePointer(&field->ptr()->value_.static_value_, value);
DISPATCH();
}
{
BYTECODE(PushStatic, A_D);
RawField* field = reinterpret_cast<RawField*>(LOAD_CONSTANT(rD));
// Note: field is also on the stack, hence no increment.
*SP = field->ptr()->value_.static_value_;
DISPATCH();
}
{
BYTECODE(StoreField, A_B_C);
const uint16_t offset_in_words = rB;
const uint16_t value_reg = rC;
RawInstance* instance = reinterpret_cast<RawInstance*>(FP[rA]);
RawObject* value = FP[value_reg];
instance->StorePointer(
reinterpret_cast<RawObject**>(instance->ptr()) + offset_in_words,
value);
DISPATCH();
}
{
BYTECODE(StoreFieldExt, A_D);
// The offset is stored in the following nop-instruction which is skipped.
const uint16_t offset_in_words = Bytecode::DecodeD(*pc++);
RawInstance* instance = reinterpret_cast<RawInstance*>(FP[rA]);
RawObject* value = FP[rD];
instance->StorePointer(
reinterpret_cast<RawObject**>(instance->ptr()) + offset_in_words,
value);
DISPATCH();
}
{
BYTECODE(StoreFieldTOS, A_D);
const uint16_t offset_in_words = rD;
RawInstance* instance = reinterpret_cast<RawInstance*>(SP[-1]);
RawObject* value = reinterpret_cast<RawObject*>(SP[0]);
SP -= 2; // Drop instance and value.
instance->StorePointer(
reinterpret_cast<RawObject**>(instance->ptr()) + offset_in_words,
value);
DISPATCH();
}
{
BYTECODE(LoadField, A_B_C);
const uint16_t instance_reg = rB;
const uint16_t offset_in_words = rC;
RawInstance* instance = reinterpret_cast<RawInstance*>(FP[instance_reg]);
FP[rA] = reinterpret_cast<RawObject**>(instance->ptr())[offset_in_words];
DISPATCH();
}
{
BYTECODE(LoadFieldExt, A_D);
// The offset is stored in the following nop-instruction which is skipped.
const uint16_t offset_in_words = Bytecode::DecodeD(*pc++);
const uint16_t instance_reg = rD;
RawInstance* instance = reinterpret_cast<RawInstance*>(FP[instance_reg]);
FP[rA] = reinterpret_cast<RawObject**>(instance->ptr())[offset_in_words];
DISPATCH();
}
{
BYTECODE(LoadUntagged, A_B_C);
const uint16_t instance_reg = rB;
const uint16_t offset_in_words = rC;
RawInstance* instance = reinterpret_cast<RawInstance*>(FP[instance_reg]);
FP[rA] = reinterpret_cast<RawObject**>(instance)[offset_in_words];
DISPATCH();
}
{
BYTECODE(LoadFieldTOS, __D);
const uint16_t offset_in_words = rD;
RawInstance* instance = static_cast<RawInstance*>(SP[0]);
SP[0] = reinterpret_cast<RawObject**>(instance->ptr())[offset_in_words];
DISPATCH();
}
{
BYTECODE(InitStaticTOS, 0);
RawField* field = static_cast<RawField*>(*SP--);
RawObject* value = field->ptr()->value_.static_value_;
if ((value == Object::sentinel().raw()) ||
(value == Object::transition_sentinel().raw())) {
// Note: SP[1] already contains the field object.
SP[2] = 0;
Exit(thread, FP, SP + 3, pc);
NativeArguments args(thread, 1, SP + 1, SP + 2);
INVOKE_RUNTIME(DRT_InitStaticField, args);
}
DISPATCH();
}
// TODO(vegorov) allocation bytecodes can benefit from the new-space
// allocation fast-path that does not transition into the runtime system.
{
BYTECODE(AllocateUninitializedContext, A_D);
const uint16_t num_context_variables = rD;
const intptr_t instance_size = Context::InstanceSize(num_context_variables);
const uword start = thread->heap()->new_space()->TryAllocate(instance_size);
if (LIKELY(start != 0)) {
uword tags = 0;
tags = RawObject::ClassIdTag::update(kContextCid, tags);
tags = RawObject::SizeTag::update(instance_size, tags);
*reinterpret_cast<uword*>(start + Array::tags_offset()) = tags;
*reinterpret_cast<uword*>(start + Context::num_variables_offset()) =
num_context_variables;
FP[rA] = reinterpret_cast<RawObject*>(start + kHeapObjectTag);
pc += 2;
}
DISPATCH();
}
{
BYTECODE(AllocateContext, A_D);
const uint16_t num_context_variables = rD;
{
*++SP = 0;
SP[1] = Smi::New(num_context_variables);
Exit(thread, FP, SP + 2, pc);
NativeArguments args(thread, 1, SP + 1, SP);
INVOKE_RUNTIME(DRT_AllocateContext, args);
}