blob: 4f31fcfbbe42ce160ac56f3d6b926a985e8d2b87 [file] [log] [blame]
// Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/regexp_assembler_bytecode.h"
#include "vm/regexp_assembler_bytecode_inl.h"
#include "vm/exceptions.h"
#include "vm/object_store.h"
#include "vm/regexp_bytecodes.h"
#include "vm/regexp_assembler.h"
#include "vm/regexp.h"
#include "vm/regexp_parser.h"
#include "vm/regexp_interpreter.h"
#include "vm/timeline.h"
namespace dart {
BytecodeRegExpMacroAssembler::BytecodeRegExpMacroAssembler(
ZoneGrowableArray<uint8_t>* buffer,
Zone* zone)
: RegExpMacroAssembler(zone),
buffer_(buffer),
pc_(0),
advance_current_end_(kInvalidPC) {}
BytecodeRegExpMacroAssembler::~BytecodeRegExpMacroAssembler() {
if (backtrack_.is_linked()) backtrack_.Unuse();
}
BytecodeRegExpMacroAssembler::IrregexpImplementation
BytecodeRegExpMacroAssembler::Implementation() {
return kBytecodeImplementation;
}
void BytecodeRegExpMacroAssembler::BindBlock(BlockLabel* l) {
advance_current_end_ = kInvalidPC;
ASSERT(!l->is_bound());
if (l->is_linked()) {
intptr_t pos = l->pos();
while (pos != 0) {
intptr_t fixup = pos;
pos = *reinterpret_cast<int32_t*>(buffer_->data() + fixup);
*reinterpret_cast<uint32_t*>(buffer_->data() + fixup) = pc_;
}
}
l->bind_to(pc_);
}
void BytecodeRegExpMacroAssembler::EmitOrLink(BlockLabel* l) {
if (l == NULL) l = &backtrack_;
if (l->is_bound()) {
Emit32(l->pos());
} else {
int pos = 0;
if (l->is_linked()) {
pos = l->pos();
}
l->link_to(pc_);
Emit32(pos);
}
}
void BytecodeRegExpMacroAssembler::PopRegister(intptr_t register_index) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_POP_REGISTER, register_index);
}
void BytecodeRegExpMacroAssembler::PushRegister(intptr_t register_index) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_PUSH_REGISTER, register_index);
}
void BytecodeRegExpMacroAssembler::WriteCurrentPositionToRegister(
intptr_t register_index,
intptr_t cp_offset) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_SET_REGISTER_TO_CP, register_index);
Emit32(cp_offset); // Current position offset.
}
void BytecodeRegExpMacroAssembler::ClearRegisters(intptr_t reg_from,
intptr_t reg_to) {
ASSERT(reg_from <= reg_to);
for (int reg = reg_from; reg <= reg_to; reg++) {
SetRegister(reg, -1);
}
}
void BytecodeRegExpMacroAssembler::ReadCurrentPositionFromRegister(
intptr_t register_index) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_SET_CP_TO_REGISTER, register_index);
}
void BytecodeRegExpMacroAssembler::WriteStackPointerToRegister(
intptr_t register_index) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_SET_REGISTER_TO_SP, register_index);
}
void BytecodeRegExpMacroAssembler::ReadStackPointerFromRegister(
intptr_t register_index) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_SET_SP_TO_REGISTER, register_index);
}
void BytecodeRegExpMacroAssembler::SetCurrentPositionFromEnd(intptr_t by) {
ASSERT(Utils::IsUint(24, by));
Emit(BC_SET_CURRENT_POSITION_FROM_END, by);
}
void BytecodeRegExpMacroAssembler::SetRegister(intptr_t register_index,
intptr_t to) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_SET_REGISTER, register_index);
Emit32(to);
}
void BytecodeRegExpMacroAssembler::AdvanceRegister(intptr_t register_index,
intptr_t by) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_ADVANCE_REGISTER, register_index);
Emit32(by);
}
void BytecodeRegExpMacroAssembler::PopCurrentPosition() {
Emit(BC_POP_CP, 0);
}
void BytecodeRegExpMacroAssembler::PushCurrentPosition() {
Emit(BC_PUSH_CP, 0);
}
void BytecodeRegExpMacroAssembler::Backtrack() {
Emit(BC_POP_BT, 0);
}
void BytecodeRegExpMacroAssembler::GoTo(BlockLabel* l) {
if (advance_current_end_ == pc_) {
// Combine advance current and goto.
pc_ = advance_current_start_;
Emit(BC_ADVANCE_CP_AND_GOTO, advance_current_offset_);
EmitOrLink(l);
advance_current_end_ = kInvalidPC;
} else {
// Regular goto.
Emit(BC_GOTO, 0);
EmitOrLink(l);
}
}
void BytecodeRegExpMacroAssembler::PushBacktrack(BlockLabel* l) {
Emit(BC_PUSH_BT, 0);
EmitOrLink(l);
}
bool BytecodeRegExpMacroAssembler::Succeed() {
Emit(BC_SUCCEED, 0);
return false; // Restart matching for global regexp not supported.
}
void BytecodeRegExpMacroAssembler::Fail() {
Emit(BC_FAIL, 0);
}
void BytecodeRegExpMacroAssembler::AdvanceCurrentPosition(intptr_t by) {
ASSERT(by >= kMinCPOffset);
ASSERT(by <= kMaxCPOffset);
advance_current_start_ = pc_;
advance_current_offset_ = by;
Emit(BC_ADVANCE_CP, by);
advance_current_end_ = pc_;
}
void BytecodeRegExpMacroAssembler::CheckGreedyLoop(
BlockLabel* on_tos_equals_current_position) {
Emit(BC_CHECK_GREEDY, 0);
EmitOrLink(on_tos_equals_current_position);
}
void BytecodeRegExpMacroAssembler::LoadCurrentCharacter(intptr_t cp_offset,
BlockLabel* on_failure,
bool check_bounds,
intptr_t characters) {
ASSERT(cp_offset >= kMinCPOffset);
ASSERT(cp_offset <= kMaxCPOffset);
int bytecode;
if (check_bounds) {
if (characters == 4) {
bytecode = BC_LOAD_4_CURRENT_CHARS;
} else if (characters == 2) {
bytecode = BC_LOAD_2_CURRENT_CHARS;
} else {
ASSERT(characters == 1);
bytecode = BC_LOAD_CURRENT_CHAR;
}
} else {
if (characters == 4) {
bytecode = BC_LOAD_4_CURRENT_CHARS_UNCHECKED;
} else if (characters == 2) {
bytecode = BC_LOAD_2_CURRENT_CHARS_UNCHECKED;
} else {
ASSERT(characters == 1);
bytecode = BC_LOAD_CURRENT_CHAR_UNCHECKED;
}
}
Emit(bytecode, cp_offset);
if (check_bounds) EmitOrLink(on_failure);
}
void BytecodeRegExpMacroAssembler::CheckCharacterLT(uint16_t limit,
BlockLabel* on_less) {
Emit(BC_CHECK_LT, limit);
EmitOrLink(on_less);
}
void BytecodeRegExpMacroAssembler::CheckCharacterGT(uint16_t limit,
BlockLabel* on_greater) {
Emit(BC_CHECK_GT, limit);
EmitOrLink(on_greater);
}
void BytecodeRegExpMacroAssembler::CheckCharacter(uint32_t c,
BlockLabel* on_equal) {
if (c > MAX_FIRST_ARG) {
Emit(BC_CHECK_4_CHARS, 0);
Emit32(c);
} else {
Emit(BC_CHECK_CHAR, c);
}
EmitOrLink(on_equal);
}
void BytecodeRegExpMacroAssembler::CheckAtStart(BlockLabel* on_at_start) {
Emit(BC_CHECK_AT_START, 0);
EmitOrLink(on_at_start);
}
void BytecodeRegExpMacroAssembler::CheckNotAtStart(
BlockLabel* on_not_at_start) {
Emit(BC_CHECK_NOT_AT_START, 0);
EmitOrLink(on_not_at_start);
}
void BytecodeRegExpMacroAssembler::CheckNotCharacter(uint32_t c,
BlockLabel* on_not_equal) {
if (c > MAX_FIRST_ARG) {
Emit(BC_CHECK_NOT_4_CHARS, 0);
Emit32(c);
} else {
Emit(BC_CHECK_NOT_CHAR, c);
}
EmitOrLink(on_not_equal);
}
void BytecodeRegExpMacroAssembler::CheckCharacterAfterAnd(
uint32_t c,
uint32_t mask,
BlockLabel* on_equal) {
if (c > MAX_FIRST_ARG) {
Emit(BC_AND_CHECK_4_CHARS, 0);
Emit32(c);
} else {
Emit(BC_AND_CHECK_CHAR, c);
}
Emit32(mask);
EmitOrLink(on_equal);
}
void BytecodeRegExpMacroAssembler::CheckNotCharacterAfterAnd(
uint32_t c,
uint32_t mask,
BlockLabel* on_not_equal) {
if (c > MAX_FIRST_ARG) {
Emit(BC_AND_CHECK_NOT_4_CHARS, 0);
Emit32(c);
} else {
Emit(BC_AND_CHECK_NOT_CHAR, c);
}
Emit32(mask);
EmitOrLink(on_not_equal);
}
void BytecodeRegExpMacroAssembler::CheckNotCharacterAfterMinusAnd(
uint16_t c,
uint16_t minus,
uint16_t mask,
BlockLabel* on_not_equal) {
Emit(BC_MINUS_AND_CHECK_NOT_CHAR, c);
Emit16(minus);
Emit16(mask);
EmitOrLink(on_not_equal);
}
void BytecodeRegExpMacroAssembler::CheckCharacterInRange(
uint16_t from,
uint16_t to,
BlockLabel* on_in_range) {
Emit(BC_CHECK_CHAR_IN_RANGE, 0);
Emit16(from);
Emit16(to);
EmitOrLink(on_in_range);
}
void BytecodeRegExpMacroAssembler::CheckCharacterNotInRange(
uint16_t from,
uint16_t to,
BlockLabel* on_not_in_range) {
Emit(BC_CHECK_CHAR_NOT_IN_RANGE, 0);
Emit16(from);
Emit16(to);
EmitOrLink(on_not_in_range);
}
void BytecodeRegExpMacroAssembler::CheckBitInTable(const TypedData& table,
BlockLabel* on_bit_set) {
Emit(BC_CHECK_BIT_IN_TABLE, 0);
EmitOrLink(on_bit_set);
for (int i = 0; i < kTableSize; i += kBitsPerByte) {
int byte = 0;
for (int j = 0; j < kBitsPerByte; j++) {
if (table.GetUint8(i + j) != 0) byte |= 1 << j;
}
Emit8(byte);
}
}
void BytecodeRegExpMacroAssembler::CheckNotBackReference(
intptr_t start_reg,
BlockLabel* on_not_equal) {
ASSERT(start_reg >= 0);
ASSERT(start_reg <= kMaxRegister);
Emit(BC_CHECK_NOT_BACK_REF, start_reg);
EmitOrLink(on_not_equal);
}
void BytecodeRegExpMacroAssembler::CheckNotBackReferenceIgnoreCase(
intptr_t start_reg,
BlockLabel* on_not_equal) {
ASSERT(start_reg >= 0);
ASSERT(start_reg <= kMaxRegister);
Emit(BC_CHECK_NOT_BACK_REF_NO_CASE, start_reg);
EmitOrLink(on_not_equal);
}
void BytecodeRegExpMacroAssembler::IfRegisterLT(intptr_t register_index,
intptr_t comparand,
BlockLabel* on_less_than) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_CHECK_REGISTER_LT, register_index);
Emit32(comparand);
EmitOrLink(on_less_than);
}
void BytecodeRegExpMacroAssembler::IfRegisterGE(
intptr_t register_index,
intptr_t comparand,
BlockLabel* on_greater_or_equal) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_CHECK_REGISTER_GE, register_index);
Emit32(comparand);
EmitOrLink(on_greater_or_equal);
}
void BytecodeRegExpMacroAssembler::IfRegisterEqPos(intptr_t register_index,
BlockLabel* on_eq) {
ASSERT(register_index >= 0);
ASSERT(register_index <= kMaxRegister);
Emit(BC_CHECK_REGISTER_EQ_POS, register_index);
EmitOrLink(on_eq);
}
RawTypedData* BytecodeRegExpMacroAssembler::GetBytecode() {
BindBlock(&backtrack_);
Emit(BC_POP_BT, 0);
intptr_t len = length();
const TypedData& bytecode =
TypedData::Handle(TypedData::New(kTypedDataUint8ArrayCid, len));
NoSafepointScope no_safepoint;
memmove(bytecode.DataAddr(0), buffer_->data(), len);
return bytecode.raw();
}
intptr_t BytecodeRegExpMacroAssembler::length() {
return pc_;
}
void BytecodeRegExpMacroAssembler::Expand() {
// BOGUS
buffer_->Add(0);
buffer_->Add(0);
buffer_->Add(0);
buffer_->Add(0);
intptr_t x = buffer_->length();
for (intptr_t i = 0; i < x; i++)
buffer_->Add(0);
}
static intptr_t Prepare(const RegExp& regexp,
const String& subject,
bool sticky,
Zone* zone) {
bool is_one_byte =
subject.IsOneByteString() || subject.IsExternalOneByteString();
if (regexp.bytecode(is_one_byte, sticky) == TypedData::null()) {
const String& pattern = String::Handle(zone, regexp.pattern());
#if !defined(PRODUCT)
TimelineDurationScope tds(Thread::Current(), Timeline::GetCompilerStream(),
"CompileIrregexpBytecode");
if (tds.enabled()) {
tds.SetNumArguments(1);
tds.CopyArgument(0, "pattern", pattern.ToCString());
}
#endif // !defined(PRODUCT)
const bool multiline = regexp.is_multi_line();
RegExpCompileData* compile_data = new (zone) RegExpCompileData();
if (!RegExpParser::ParseRegExp(pattern, multiline, compile_data)) {
// Parsing failures are handled in the RegExp factory constructor.
UNREACHABLE();
}
regexp.set_num_bracket_expressions(compile_data->capture_count);
if (compile_data->simple) {
regexp.set_is_simple();
} else {
regexp.set_is_complex();
}
RegExpEngine::CompilationResult result = RegExpEngine::CompileBytecode(
compile_data, regexp, is_one_byte, sticky, zone);
ASSERT(result.bytecode != NULL);
ASSERT((regexp.num_registers() == -1) ||
(regexp.num_registers() == result.num_registers));
regexp.set_num_registers(result.num_registers);
regexp.set_bytecode(is_one_byte, sticky, *(result.bytecode));
}
ASSERT(regexp.num_registers() != -1);
return regexp.num_registers() +
(Smi::Value(regexp.num_bracket_expressions()) + 1) * 2;
}
static IrregexpInterpreter::IrregexpResult ExecRaw(const RegExp& regexp,
const String& subject,
intptr_t index,
bool sticky,
int32_t* output,
intptr_t output_size,
Zone* zone) {
bool is_one_byte =
subject.IsOneByteString() || subject.IsExternalOneByteString();
ASSERT(regexp.num_bracket_expressions() != Smi::null());
// We must have done EnsureCompiledIrregexp, so we can get the number of
// registers.
int number_of_capture_registers =
(Smi::Value(regexp.num_bracket_expressions()) + 1) * 2;
int32_t* raw_output = &output[number_of_capture_registers];
// We do not touch the actual capture result registers until we know there
// has been a match so that we can use those capture results to set the
// last match info.
for (int i = number_of_capture_registers - 1; i >= 0; i--) {
raw_output[i] = -1;
}
const TypedData& bytecode =
TypedData::Handle(zone, regexp.bytecode(is_one_byte, sticky));
ASSERT(!bytecode.IsNull());
IrregexpInterpreter::IrregexpResult result =
IrregexpInterpreter::Match(bytecode, subject, raw_output, index, zone);
if (result == IrregexpInterpreter::RE_SUCCESS) {
// Copy capture results to the start of the registers array.
memmove(output, raw_output, number_of_capture_registers * sizeof(int32_t));
}
if (result == IrregexpInterpreter::RE_EXCEPTION) {
Thread* thread = Thread::Current();
Isolate* isolate = thread->isolate();
const Instance& exception =
Instance::Handle(isolate->object_store()->stack_overflow());
Exceptions::Throw(thread, exception);
UNREACHABLE();
}
return result;
}
RawInstance* BytecodeRegExpMacroAssembler::Interpret(const RegExp& regexp,
const String& subject,
const Smi& start_index,
bool sticky,
Zone* zone) {
intptr_t required_registers = Prepare(regexp, subject, sticky, zone);
if (required_registers < 0) {
// Compiling failed with an exception.
UNREACHABLE();
}
// V8 uses a shared copy on the isolate when smaller than some threshold.
int32_t* output_registers = zone->Alloc<int32_t>(required_registers);
IrregexpInterpreter::IrregexpResult result =
ExecRaw(regexp, subject, start_index.Value(), sticky, output_registers,
required_registers, zone);
if (result == IrregexpInterpreter::RE_SUCCESS) {
intptr_t capture_count = Smi::Value(regexp.num_bracket_expressions());
intptr_t capture_register_count = (capture_count + 1) * 2;
ASSERT(required_registers >= capture_register_count);
const TypedData& result = TypedData::Handle(
TypedData::New(kTypedDataInt32ArrayCid, capture_register_count));
{
#ifdef DEBUG
// These indices will be used with substring operations that don't check
// bounds, so sanity check them here.
for (intptr_t i = 0; i < capture_register_count; i++) {
int32_t val = output_registers[i];
ASSERT(val == -1 || (val >= 0 && val <= subject.Length()));
}
#endif
NoSafepointScope no_safepoint;
memmove(result.DataAddr(0), output_registers,
capture_register_count * sizeof(int32_t));
}
return result.raw();
}
if (result == IrregexpInterpreter::RE_EXCEPTION) {
UNREACHABLE();
}
ASSERT(result == IrregexpInterpreter::RE_FAILURE);
return Instance::null();
}
} // namespace dart