blob: dbb89a43e4160b9b8fe556eafa96f970186dabbe [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_REGEXP_H_
#define RUNTIME_VM_REGEXP_H_
#include "vm/assembler.h"
#include "vm/intermediate_language.h"
#include "vm/flow_graph_compiler.h"
#include "vm/object.h"
#include "vm/regexp_assembler.h"
namespace dart {
class NodeVisitor;
class RegExpCompiler;
class RegExpMacroAssembler;
class RegExpNode;
class RegExpTree;
class BoyerMooreLookahead;
// Represents code units in the range from from_ to to_, both ends are
// inclusive.
class CharacterRange {
public:
CharacterRange() : from_(0), to_(0) {}
CharacterRange(uint16_t from, uint16_t to) : from_(from), to_(to) {}
static void AddClassEscape(uint16_t type,
ZoneGrowableArray<CharacterRange>* ranges);
static GrowableArray<const intptr_t> GetWordBounds();
static inline CharacterRange Singleton(uint16_t value) {
return CharacterRange(value, value);
}
static inline CharacterRange Range(uint16_t from, uint16_t to) {
ASSERT(from <= to);
return CharacterRange(from, to);
}
static inline CharacterRange Everything() {
return CharacterRange(0, 0xFFFF);
}
bool Contains(uint16_t i) const { return from_ <= i && i <= to_; }
uint16_t from() const { return from_; }
void set_from(uint16_t value) { from_ = value; }
uint16_t to() const { return to_; }
void set_to(uint16_t value) { to_ = value; }
bool is_valid() const { return from_ <= to_; }
bool IsEverything(uint16_t max) const { return from_ == 0 && to_ >= max; }
bool IsSingleton() const { return (from_ == to_); }
void AddCaseEquivalents(ZoneGrowableArray<CharacterRange>* ranges,
bool is_one_byte,
Zone* zone);
static void Split(ZoneGrowableArray<CharacterRange>* base,
GrowableArray<const intptr_t> overlay,
ZoneGrowableArray<CharacterRange>** included,
ZoneGrowableArray<CharacterRange>** excluded,
Zone* zone);
// Whether a range list is in canonical form: Ranges ordered by from value,
// and ranges non-overlapping and non-adjacent.
static bool IsCanonical(ZoneGrowableArray<CharacterRange>* ranges);
// Convert range list to canonical form. The characters covered by the ranges
// will still be the same, but no character is in more than one range, and
// adjacent ranges are merged. The resulting list may be shorter than the
// original, but cannot be longer.
static void Canonicalize(ZoneGrowableArray<CharacterRange>* ranges);
// Negate the contents of a character range in canonical form.
static void Negate(ZoneGrowableArray<CharacterRange>* src,
ZoneGrowableArray<CharacterRange>* dst);
static const intptr_t kStartMarker = (1 << 24);
static const intptr_t kPayloadMask = (1 << 24) - 1;
private:
uint16_t from_;
uint16_t to_;
DISALLOW_ALLOCATION();
};
// A set of unsigned integers that behaves especially well on small
// integers (< 32). May do zone-allocation.
class OutSet : public ZoneAllocated {
public:
OutSet() : first_(0), remaining_(NULL), successors_(NULL) {}
OutSet* Extend(unsigned value, Zone* zone);
bool Get(unsigned value) const;
static const unsigned kFirstLimit = 32;
private:
// Destructively set a value in this set. In most cases you want
// to use Extend instead to ensure that only one instance exists
// that contains the same values.
void Set(unsigned value, Zone* zone);
// The successors are a list of sets that contain the same values
// as this set and the one more value that is not present in this
// set.
ZoneGrowableArray<OutSet*>* successors() { return successors_; }
OutSet(uint32_t first, ZoneGrowableArray<unsigned>* remaining)
: first_(first), remaining_(remaining), successors_(NULL) {}
uint32_t first_;
ZoneGrowableArray<unsigned>* remaining_;
ZoneGrowableArray<OutSet*>* successors_;
friend class Trace;
};
#define FOR_EACH_NODE_TYPE(VISIT) \
VISIT(End) \
VISIT(Action) \
VISIT(Choice) \
VISIT(BackReference) \
VISIT(Assertion) \
VISIT(Text)
#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
VISIT(Disjunction) \
VISIT(Alternative) \
VISIT(Assertion) \
VISIT(CharacterClass) \
VISIT(Atom) \
VISIT(Quantifier) \
VISIT(Capture) \
VISIT(Lookahead) \
VISIT(BackReference) \
VISIT(Empty) \
VISIT(Text)
#define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
#undef FORWARD_DECLARE
class TextElement {
public:
enum TextType { ATOM, CHAR_CLASS };
static TextElement Atom(RegExpAtom* atom);
static TextElement CharClass(RegExpCharacterClass* char_class);
intptr_t cp_offset() const { return cp_offset_; }
void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; }
intptr_t length() const;
TextType text_type() const { return text_type_; }
RegExpTree* tree() const { return tree_; }
RegExpAtom* atom() const {
ASSERT(text_type() == ATOM);
return reinterpret_cast<RegExpAtom*>(tree());
}
RegExpCharacterClass* char_class() const {
ASSERT(text_type() == CHAR_CLASS);
return reinterpret_cast<RegExpCharacterClass*>(tree());
}
private:
TextElement(TextType text_type, RegExpTree* tree)
: cp_offset_(-1), text_type_(text_type), tree_(tree) {}
intptr_t cp_offset_;
TextType text_type_;
RegExpTree* tree_;
DISALLOW_ALLOCATION();
};
class Trace;
struct PreloadState;
class GreedyLoopState;
class AlternativeGenerationList;
struct NodeInfo {
NodeInfo()
: being_analyzed(false),
been_analyzed(false),
follows_word_interest(false),
follows_newline_interest(false),
follows_start_interest(false),
at_end(false),
visited(false),
replacement_calculated(false) {}
// Returns true if the interests and assumptions of this node
// matches the given one.
bool Matches(NodeInfo* that) {
return (at_end == that->at_end) &&
(follows_word_interest == that->follows_word_interest) &&
(follows_newline_interest == that->follows_newline_interest) &&
(follows_start_interest == that->follows_start_interest);
}
// Updates the interests of this node given the interests of the
// node preceding it.
void AddFromPreceding(NodeInfo* that) {
at_end |= that->at_end;
follows_word_interest |= that->follows_word_interest;
follows_newline_interest |= that->follows_newline_interest;
follows_start_interest |= that->follows_start_interest;
}
bool HasLookbehind() {
return follows_word_interest || follows_newline_interest ||
follows_start_interest;
}
// Sets the interests of this node to include the interests of the
// following node.
void AddFromFollowing(NodeInfo* that) {
follows_word_interest |= that->follows_word_interest;
follows_newline_interest |= that->follows_newline_interest;
follows_start_interest |= that->follows_start_interest;
}
void ResetCompilationState() {
being_analyzed = false;
been_analyzed = false;
}
bool being_analyzed : 1;
bool been_analyzed : 1;
// These bits are set of this node has to know what the preceding
// character was.
bool follows_word_interest : 1;
bool follows_newline_interest : 1;
bool follows_start_interest : 1;
bool at_end : 1;
bool visited : 1;
bool replacement_calculated : 1;
};
// Details of a quick mask-compare check that can look ahead in the
// input stream.
class QuickCheckDetails {
public:
QuickCheckDetails()
: characters_(0), mask_(0), value_(0), cannot_match_(false) {}
explicit QuickCheckDetails(intptr_t characters)
: characters_(characters), mask_(0), value_(0), cannot_match_(false) {}
bool Rationalize(bool one_byte);
// Merge in the information from another branch of an alternation.
void Merge(QuickCheckDetails* other, intptr_t from_index);
// Advance the current position by some amount.
void Advance(intptr_t by, bool one_byte);
void Clear();
bool cannot_match() { return cannot_match_; }
void set_cannot_match() { cannot_match_ = true; }
struct Position {
Position() : mask(0), value(0), determines_perfectly(false) {}
uint16_t mask;
uint16_t value;
bool determines_perfectly;
};
intptr_t characters() { return characters_; }
void set_characters(intptr_t characters) { characters_ = characters; }
Position* positions(intptr_t index) {
ASSERT(index >= 0);
ASSERT(index < characters_);
return positions_ + index;
}
uint32_t mask() { return mask_; }
uint32_t value() { return value_; }
private:
// How many characters do we have quick check information from. This is
// the same for all branches of a choice node.
intptr_t characters_;
Position positions_[4];
// These values are the condensate of the above array after Rationalize().
uint32_t mask_;
uint32_t value_;
// If set to true, there is no way this quick check can match at all.
// E.g., if it requires to be at the start of the input, and isn't.
bool cannot_match_;
DISALLOW_ALLOCATION();
};
class RegExpNode : public ZoneAllocated {
public:
explicit RegExpNode(Zone* zone)
: replacement_(NULL), trace_count_(0), zone_(zone) {
bm_info_[0] = bm_info_[1] = NULL;
}
virtual ~RegExpNode();
virtual void Accept(NodeVisitor* visitor) = 0;
// Generates a goto to this node or actually generates the code at this point.
virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
// How many characters must this node consume at a minimum in order to
// succeed. If we have found at least 'still_to_find' characters that
// must be consumed there is no need to ask any following nodes whether
// they are sure to eat any more characters. The not_at_start argument is
// used to indicate that we know we are not at the start of the input. In
// this case anchored branches will always fail and can be ignored when
// determining how many characters are consumed on success.
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start) = 0;
// Emits some quick code that checks whether the preloaded characters match.
// Falls through on certain failure, jumps to the label on possible success.
// If the node cannot make a quick check it does nothing and returns false.
bool EmitQuickCheck(RegExpCompiler* compiler,
Trace* bounds_check_trace,
Trace* trace,
bool preload_has_checked_bounds,
BlockLabel* on_possible_success,
QuickCheckDetails* details_return,
bool fall_through_on_failure);
// For a given number of characters this returns a mask and a value. The
// next n characters are anded with the mask and compared with the value.
// A comparison failure indicates the node cannot match the next n characters.
// A comparison success indicates the node may match.
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start) = 0;
static const intptr_t kNodeIsTooComplexForGreedyLoops = -1;
virtual intptr_t GreedyLoopTextLength() {
return kNodeIsTooComplexForGreedyLoops;
}
// Only returns the successor for a text node of length 1 that matches any
// character and that has no guards on it.
virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
RegExpCompiler* compiler) {
return NULL;
}
// Collects information on the possible code units (mod 128) that can match if
// we look forward. This is used for a Boyer-Moore-like string searching
// implementation. TODO(erikcorry): This should share more code with
// EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
// the number of nodes we are willing to look at in order to create this data.
static const intptr_t kRecursionBudget = 200;
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
UNREACHABLE();
}
// If we know that the input is one-byte then there are some nodes that can
// never match. This method returns a node that can be substituted for
// itself, or NULL if the node can never match.
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case) {
return this;
}
// Helper for FilterOneByte.
RegExpNode* replacement() {
ASSERT(info()->replacement_calculated);
return replacement_;
}
RegExpNode* set_replacement(RegExpNode* replacement) {
info()->replacement_calculated = true;
replacement_ = replacement;
return replacement; // For convenience.
}
// We want to avoid recalculating the lookahead info, so we store it on the
// node. Only info that is for this node is stored. We can tell that the
// info is for this node when offset == 0, so the information is calculated
// relative to this node.
void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, intptr_t offset) {
if (offset == 0) set_bm_info(not_at_start, bm);
}
BlockLabel* label() { return &label_; }
// If non-generic code is generated for a node (i.e. the node is not at the
// start of the trace) then it cannot be reused. This variable sets a limit
// on how often we allow that to happen before we insist on starting a new
// trace and generating generic code for a node that can be reused by flushing
// the deferred actions in the current trace and generating a goto.
static const intptr_t kMaxCopiesCodeGenerated = 10;
NodeInfo* info() { return &info_; }
BoyerMooreLookahead* bm_info(bool not_at_start) {
return bm_info_[not_at_start ? 1 : 0];
}
Zone* zone() const { return zone_; }
protected:
enum LimitResult { DONE, CONTINUE };
RegExpNode* replacement_;
LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
bm_info_[not_at_start ? 1 : 0] = bm;
}
private:
static const intptr_t kFirstCharBudget = 10;
BlockLabel label_;
NodeInfo info_;
// This variable keeps track of how many times code has been generated for
// this node (in different traces). We don't keep track of where the
// generated code is located unless the code is generated at the start of
// a trace, in which case it is generic and can be reused by flushing the
// deferred operations in the current trace and generating a goto.
intptr_t trace_count_;
BoyerMooreLookahead* bm_info_[2];
Zone* zone_;
};
// A simple closed interval.
class Interval {
public:
Interval() : from_(kNone), to_(kNone) {}
Interval(intptr_t from, intptr_t to) : from_(from), to_(to) {}
Interval Union(Interval that) {
if (that.from_ == kNone)
return *this;
else if (from_ == kNone)
return that;
else
return Interval(Utils::Minimum(from_, that.from_),
Utils::Maximum(to_, that.to_));
}
bool Contains(intptr_t value) const {
return (from_ <= value) && (value <= to_);
}
bool is_empty() const { return from_ == kNone; }
intptr_t from() const { return from_; }
intptr_t to() const { return to_; }
static Interval Empty() { return Interval(); }
static const intptr_t kNone = -1;
private:
intptr_t from_;
intptr_t to_;
DISALLOW_ALLOCATION();
};
class SeqRegExpNode : public RegExpNode {
public:
explicit SeqRegExpNode(RegExpNode* on_success)
: RegExpNode(on_success->zone()), on_success_(on_success) {}
RegExpNode* on_success() { return on_success_; }
void set_on_success(RegExpNode* node) { on_success_ = node; }
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
if (offset == 0) set_bm_info(not_at_start, bm);
}
protected:
RegExpNode* FilterSuccessor(intptr_t depth, bool ignore_case);
private:
RegExpNode* on_success_;
};
class ActionNode : public SeqRegExpNode {
public:
enum ActionType {
SET_REGISTER,
INCREMENT_REGISTER,
STORE_POSITION,
BEGIN_SUBMATCH,
POSITIVE_SUBMATCH_SUCCESS,
EMPTY_MATCH_CHECK,
CLEAR_CAPTURES
};
static ActionNode* SetRegister(intptr_t reg,
intptr_t val,
RegExpNode* on_success);
static ActionNode* IncrementRegister(intptr_t reg, RegExpNode* on_success);
static ActionNode* StorePosition(intptr_t reg,
bool is_capture,
RegExpNode* on_success);
static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
static ActionNode* BeginSubmatch(intptr_t stack_pointer_reg,
intptr_t position_reg,
RegExpNode* on_success);
static ActionNode* PositiveSubmatchSuccess(intptr_t stack_pointer_reg,
intptr_t restore_reg,
intptr_t clear_capture_count,
intptr_t clear_capture_from,
RegExpNode* on_success);
static ActionNode* EmptyMatchCheck(intptr_t start_register,
intptr_t repetition_register,
intptr_t repetition_limit,
RegExpNode* on_success);
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t filled_in,
bool not_at_start) {
return on_success()->GetQuickCheckDetails(details, compiler, filled_in,
not_at_start);
}
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start);
ActionType action_type() { return action_type_; }
// TODO(erikcorry): We should allow some action nodes in greedy loops.
virtual intptr_t GreedyLoopTextLength() {
return kNodeIsTooComplexForGreedyLoops;
}
private:
union {
struct {
intptr_t reg;
intptr_t value;
} u_store_register;
struct {
intptr_t reg;
} u_increment_register;
struct {
intptr_t reg;
bool is_capture;
} u_position_register;
struct {
intptr_t stack_pointer_register;
intptr_t current_position_register;
intptr_t clear_register_count;
intptr_t clear_register_from;
} u_submatch;
struct {
intptr_t start_register;
intptr_t repetition_register;
intptr_t repetition_limit;
} u_empty_match_check;
struct {
intptr_t range_from;
intptr_t range_to;
} u_clear_captures;
} data_;
ActionNode(ActionType action_type, RegExpNode* on_success)
: SeqRegExpNode(on_success), action_type_(action_type) {}
ActionType action_type_;
friend class DotPrinter;
};
class TextNode : public SeqRegExpNode {
public:
TextNode(ZoneGrowableArray<TextElement>* elms, RegExpNode* on_success)
: SeqRegExpNode(on_success), elms_(elms) {}
TextNode(RegExpCharacterClass* that, RegExpNode* on_success)
: SeqRegExpNode(on_success),
elms_(new (zone()) ZoneGrowableArray<TextElement>(1)) {
elms_->Add(TextElement::CharClass(that));
}
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start);
ZoneGrowableArray<TextElement>* elements() { return elms_; }
void MakeCaseIndependent(bool is_one_byte);
virtual intptr_t GreedyLoopTextLength();
virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
RegExpCompiler* compiler);
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start);
void CalculateOffsets();
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
private:
enum TextEmitPassType {
NON_LATIN1_MATCH, // Check for characters that can't match.
SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
CASE_CHARACTER_MATCH, // Case-independent single character check.
CHARACTER_CLASS_MATCH // Character class.
};
static bool SkipPass(intptr_t pass, bool ignore_case);
static const intptr_t kFirstRealPass = SIMPLE_CHARACTER_MATCH;
static const intptr_t kLastPass = CHARACTER_CLASS_MATCH;
void TextEmitPass(RegExpCompiler* compiler,
TextEmitPassType pass,
bool preloaded,
Trace* trace,
bool first_element_checked,
intptr_t* checked_up_to);
intptr_t Length();
ZoneGrowableArray<TextElement>* elms_;
};
class AssertionNode : public SeqRegExpNode {
public:
enum AssertionType {
AT_END,
AT_START,
AT_BOUNDARY,
AT_NON_BOUNDARY,
AFTER_NEWLINE
};
static AssertionNode* AtEnd(RegExpNode* on_success) {
return new (on_success->zone()) AssertionNode(AT_END, on_success);
}
static AssertionNode* AtStart(RegExpNode* on_success) {
return new (on_success->zone()) AssertionNode(AT_START, on_success);
}
static AssertionNode* AtBoundary(RegExpNode* on_success) {
return new (on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
}
static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
return new (on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
}
static AssertionNode* AfterNewline(RegExpNode* on_success) {
return new (on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
}
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t filled_in,
bool not_at_start);
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start);
AssertionType assertion_type() { return assertion_type_; }
private:
void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
enum IfPrevious { kIsNonWord, kIsWord };
void BacktrackIfPrevious(RegExpCompiler* compiler,
Trace* trace,
IfPrevious backtrack_if_previous);
AssertionNode(AssertionType t, RegExpNode* on_success)
: SeqRegExpNode(on_success), assertion_type_(t) {}
AssertionType assertion_type_;
};
class BackReferenceNode : public SeqRegExpNode {
public:
BackReferenceNode(intptr_t start_reg,
intptr_t end_reg,
RegExpNode* on_success)
: SeqRegExpNode(on_success), start_reg_(start_reg), end_reg_(end_reg) {}
virtual void Accept(NodeVisitor* visitor);
intptr_t start_register() { return start_reg_; }
intptr_t end_register() { return end_reg_; }
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t recursion_depth,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start) {
return;
}
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start);
private:
intptr_t start_reg_;
intptr_t end_reg_;
};
class EndNode : public RegExpNode {
public:
enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
explicit EndNode(Action action, Zone* zone)
: RegExpNode(zone), action_(action) {}
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t recursion_depth,
bool not_at_start) {
return 0;
}
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start) {
// Returning 0 from EatsAtLeast should ensure we never get here.
UNREACHABLE();
}
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
// Returning 0 from EatsAtLeast should ensure we never get here.
UNREACHABLE();
}
private:
Action action_;
};
class NegativeSubmatchSuccess : public EndNode {
public:
NegativeSubmatchSuccess(intptr_t stack_pointer_reg,
intptr_t position_reg,
intptr_t clear_capture_count,
intptr_t clear_capture_start,
Zone* zone)
: EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
stack_pointer_register_(stack_pointer_reg),
current_position_register_(position_reg),
clear_capture_count_(clear_capture_count),
clear_capture_start_(clear_capture_start) {}
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
private:
intptr_t stack_pointer_register_;
intptr_t current_position_register_;
intptr_t clear_capture_count_;
intptr_t clear_capture_start_;
};
class Guard : public ZoneAllocated {
public:
enum Relation { LT, GEQ };
Guard(intptr_t reg, Relation op, intptr_t value)
: reg_(reg), op_(op), value_(value) {}
intptr_t reg() { return reg_; }
Relation op() { return op_; }
intptr_t value() { return value_; }
private:
intptr_t reg_;
Relation op_;
intptr_t value_;
};
class GuardedAlternative {
public:
explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) {}
void AddGuard(Guard* guard, Zone* zone);
RegExpNode* node() { return node_; }
void set_node(RegExpNode* node) { node_ = node; }
ZoneGrowableArray<Guard*>* guards() { return guards_; }
private:
RegExpNode* node_;
ZoneGrowableArray<Guard*>* guards_;
DISALLOW_ALLOCATION();
};
struct AlternativeGeneration;
class ChoiceNode : public RegExpNode {
public:
explicit ChoiceNode(intptr_t expected_size, Zone* zone)
: RegExpNode(zone),
alternatives_(new (zone)
ZoneGrowableArray<GuardedAlternative>(expected_size)),
not_at_start_(false),
being_calculated_(false) {}
virtual void Accept(NodeVisitor* visitor);
void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); }
ZoneGrowableArray<GuardedAlternative>* alternatives() {
return alternatives_;
}
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start);
intptr_t EatsAtLeastHelper(intptr_t still_to_find,
intptr_t budget,
RegExpNode* ignore_this_node,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start);
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start);
bool being_calculated() { return being_calculated_; }
bool not_at_start() { return not_at_start_; }
void set_not_at_start() { not_at_start_ = true; }
void set_being_calculated(bool b) { being_calculated_ = b; }
virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
return true;
}
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
protected:
intptr_t GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
ZoneGrowableArray<GuardedAlternative>* alternatives_;
private:
friend class Analysis;
void GenerateGuard(RegExpMacroAssembler* macro_assembler,
Guard* guard,
Trace* trace);
intptr_t CalculatePreloadCharacters(RegExpCompiler* compiler,
intptr_t eats_at_least);
void EmitOutOfLineContinuation(RegExpCompiler* compiler,
Trace* trace,
GuardedAlternative alternative,
AlternativeGeneration* alt_gen,
intptr_t preload_characters,
bool next_expects_preload);
void SetUpPreLoad(RegExpCompiler* compiler,
Trace* current_trace,
PreloadState* preloads);
void AssertGuardsMentionRegisters(Trace* trace);
intptr_t EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
Trace* trace);
Trace* EmitGreedyLoop(RegExpCompiler* compiler,
Trace* trace,
AlternativeGenerationList* alt_gens,
PreloadState* preloads,
GreedyLoopState* greedy_loop_state,
intptr_t text_length);
void EmitChoices(RegExpCompiler* compiler,
AlternativeGenerationList* alt_gens,
intptr_t first_choice,
Trace* trace,
PreloadState* preloads);
// If true, this node is never checked at the start of the input.
// Allows a new trace to start with at_start() set to false.
bool not_at_start_;
bool being_calculated_;
};
class NegativeLookaheadChoiceNode : public ChoiceNode {
public:
explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
GuardedAlternative then_do_this,
Zone* zone)
: ChoiceNode(2, zone) {
AddAlternative(this_must_fail);
AddAlternative(then_do_this);
}
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start);
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
(*alternatives_)[1].node()->FillInBMInfo(offset, budget - 1, bm,
not_at_start);
if (offset == 0) set_bm_info(not_at_start, bm);
}
// For a negative lookahead we don't emit the quick check for the
// alternative that is expected to fail. This is because quick check code
// starts by loading enough characters for the alternative that takes fewest
// characters, but on a negative lookahead the negative branch did not take
// part in that calculation (EatsAtLeast) so the assumptions don't hold.
virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
return !is_first;
}
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
};
class LoopChoiceNode : public ChoiceNode {
public:
explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
: ChoiceNode(2, zone),
loop_node_(NULL),
continue_node_(NULL),
body_can_be_zero_length_(body_can_be_zero_length) {}
void AddLoopAlternative(GuardedAlternative alt);
void AddContinueAlternative(GuardedAlternative alt);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual intptr_t EatsAtLeast(intptr_t still_to_find,
intptr_t budget,
bool not_at_start);
virtual void GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start);
virtual void FillInBMInfo(intptr_t offset,
intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start);
RegExpNode* loop_node() { return loop_node_; }
RegExpNode* continue_node() { return continue_node_; }
bool body_can_be_zero_length() { return body_can_be_zero_length_; }
virtual void Accept(NodeVisitor* visitor);
virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case);
private:
// AddAlternative is made private for loop nodes because alternatives
// should not be added freely, we need to keep track of which node
// goes back to the node itself.
void AddAlternative(GuardedAlternative node) {
ChoiceNode::AddAlternative(node);
}
RegExpNode* loop_node_;
RegExpNode* continue_node_;
bool body_can_be_zero_length_;
};
// Improve the speed that we scan for an initial point where a non-anchored
// regexp can match by using a Boyer-Moore-like table. This is done by
// identifying non-greedy non-capturing loops in the nodes that eat any
// character one at a time. For example in the middle of the regexp
// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
// inserted at the start of any non-anchored regexp.
//
// When we have found such a loop we look ahead in the nodes to find the set of
// characters that can come at given distances. For example for the regexp
// /.?foo/ we know that there are at least 3 characters ahead of us, and the
// sets of characters that can occur are [any, [f, o], [o]]. We find a range in
// the lookahead info where the set of characters is reasonably constrained. In
// our example this is from index 1 to 2 (0 is not constrained). We can now
// look 3 characters ahead and if we don't find one of [f, o] (the union of
// [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
//
// For Unicode input strings we do the same, but modulo 128.
//
// We also look at the first string fed to the regexp and use that to get a hint
// of the character frequencies in the inputs. This affects the assessment of
// whether the set of characters is 'reasonably constrained'.
//
// We also have another lookahead mechanism (called quick check in the code),
// which uses a wide load of multiple characters followed by a mask and compare
// to determine whether a match is possible at this point.
enum ContainedInLattice {
kNotYet = 0,
kLatticeIn = 1,
kLatticeOut = 2,
kLatticeUnknown = 3 // Can also mean both in and out.
};
inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
return static_cast<ContainedInLattice>(a | b);
}
ContainedInLattice AddRange(ContainedInLattice a,
const intptr_t* ranges,
intptr_t ranges_size,
Interval new_range);
class BoyerMoorePositionInfo : public ZoneAllocated {
public:
explicit BoyerMoorePositionInfo(Zone* zone)
: map_(new (zone) ZoneGrowableArray<bool>(kMapSize)),
map_count_(0),
w_(kNotYet),
s_(kNotYet),
d_(kNotYet),
surrogate_(kNotYet) {
for (intptr_t i = 0; i < kMapSize; i++) {
map_->Add(false);
}
}
bool& at(intptr_t i) { return (*map_)[i]; }
static const intptr_t kMapSize = 128;
static const intptr_t kMask = kMapSize - 1;
intptr_t map_count() const { return map_count_; }
void Set(intptr_t character);
void SetInterval(const Interval& interval);
void SetAll();
bool is_non_word() { return w_ == kLatticeOut; }
bool is_word() { return w_ == kLatticeIn; }
private:
ZoneGrowableArray<bool>* map_;
intptr_t map_count_; // Number of set bits in the map.
ContainedInLattice w_; // The \w character class.
ContainedInLattice s_; // The \s character class.
ContainedInLattice d_; // The \d character class.
ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
};
class BoyerMooreLookahead : public ZoneAllocated {
public:
BoyerMooreLookahead(intptr_t length, RegExpCompiler* compiler, Zone* Zone);
intptr_t length() { return length_; }
intptr_t max_char() { return max_char_; }
RegExpCompiler* compiler() { return compiler_; }
intptr_t Count(intptr_t map_number) {
return bitmaps_->At(map_number)->map_count();
}
BoyerMoorePositionInfo* at(intptr_t i) { return bitmaps_->At(i); }
void Set(intptr_t map_number, intptr_t character) {
if (character > max_char_) return;
BoyerMoorePositionInfo* info = bitmaps_->At(map_number);
info->Set(character);
}
void SetInterval(intptr_t map_number, const Interval& interval) {
if (interval.from() > max_char_) return;
BoyerMoorePositionInfo* info = bitmaps_->At(map_number);
if (interval.to() > max_char_) {
info->SetInterval(Interval(interval.from(), max_char_));
} else {
info->SetInterval(interval);
}
}
void SetAll(intptr_t map_number) { bitmaps_->At(map_number)->SetAll(); }
void SetRest(intptr_t from_map) {
for (intptr_t i = from_map; i < length_; i++)
SetAll(i);
}
void EmitSkipInstructions(RegExpMacroAssembler* masm);
private:
// This is the value obtained by EatsAtLeast. If we do not have at least this
// many characters left in the sample string then the match is bound to fail.
// Therefore it is OK to read a character this far ahead of the current match
// point.
intptr_t length_;
RegExpCompiler* compiler_;
// 0xff for Latin1, 0xffff for UTF-16.
intptr_t max_char_;
ZoneGrowableArray<BoyerMoorePositionInfo*>* bitmaps_;
intptr_t GetSkipTable(intptr_t min_lookahead,
intptr_t max_lookahead,
const TypedData& boolean_skip_table);
bool FindWorthwhileInterval(intptr_t* from, intptr_t* to);
intptr_t FindBestInterval(intptr_t max_number_of_chars,
intptr_t old_biggest_points,
intptr_t* from,
intptr_t* to);
};
// There are many ways to generate code for a node. This class encapsulates
// the current way we should be generating. In other words it encapsulates
// the current state of the code generator. The effect of this is that we
// generate code for paths that the matcher can take through the regular
// expression. A given node in the regexp can be code-generated several times
// as it can be part of several traces. For example for the regexp:
// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
// to match foo is generated only once (the traces have a common prefix). The
// code to store the capture is deferred and generated (twice) after the places
// where baz has been matched.
class Trace {
public:
// A value for a property that is either known to be true, know to be false,
// or not known.
enum TriBool { UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 };
class DeferredAction {
public:
DeferredAction(ActionNode::ActionType action_type, intptr_t reg)
: action_type_(action_type), reg_(reg), next_(NULL) {}
DeferredAction* next() { return next_; }
bool Mentions(intptr_t reg);
intptr_t reg() { return reg_; }
ActionNode::ActionType action_type() { return action_type_; }
private:
ActionNode::ActionType action_type_;
intptr_t reg_;
DeferredAction* next_;
friend class Trace;
DISALLOW_ALLOCATION();
};
class DeferredCapture : public DeferredAction {
public:
DeferredCapture(intptr_t reg, bool is_capture, Trace* trace)
: DeferredAction(ActionNode::STORE_POSITION, reg),
cp_offset_(trace->cp_offset()),
is_capture_(is_capture) {}
intptr_t cp_offset() { return cp_offset_; }
bool is_capture() { return is_capture_; }
private:
intptr_t cp_offset_;
bool is_capture_;
void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; }
};
class DeferredSetRegister : public DeferredAction {
public:
DeferredSetRegister(intptr_t reg, intptr_t value)
: DeferredAction(ActionNode::SET_REGISTER, reg), value_(value) {}
intptr_t value() { return value_; }
private:
intptr_t value_;
};
class DeferredClearCaptures : public DeferredAction {
public:
explicit DeferredClearCaptures(Interval range)
: DeferredAction(ActionNode::CLEAR_CAPTURES, -1), range_(range) {}
Interval range() { return range_; }
private:
Interval range_;
};
class DeferredIncrementRegister : public DeferredAction {
public:
explicit DeferredIncrementRegister(intptr_t reg)
: DeferredAction(ActionNode::INCREMENT_REGISTER, reg) {}
};
Trace()
: cp_offset_(0),
actions_(NULL),
backtrack_(NULL),
stop_node_(NULL),
loop_label_(NULL),
characters_preloaded_(0),
bound_checked_up_to_(0),
flush_budget_(100),
at_start_(UNKNOWN) {}
// End the trace. This involves flushing the deferred actions in the trace
// and pushing a backtrack location onto the backtrack stack. Once this is
// done we can start a new trace or go to one that has already been
// generated.
void Flush(RegExpCompiler* compiler, RegExpNode* successor);
intptr_t cp_offset() { return cp_offset_; }
DeferredAction* actions() { return actions_; }
// A trivial trace is one that has no deferred actions or other state that
// affects the assumptions used when generating code. There is no recorded
// backtrack location in a trivial trace, so with a trivial trace we will
// generate code that, on a failure to match, gets the backtrack location
// from the backtrack stack rather than using a direct jump instruction. We
// always start code generation with a trivial trace and non-trivial traces
// are created as we emit code for nodes or add to the list of deferred
// actions in the trace. The location of the code generated for a node using
// a trivial trace is recorded in a label in the node so that gotos can be
// generated to that code.
bool is_trivial() {
return backtrack_ == NULL && actions_ == NULL && cp_offset_ == 0 &&
characters_preloaded_ == 0 && bound_checked_up_to_ == 0 &&
quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN;
}
TriBool at_start() { return at_start_; }
void set_at_start(bool at_start) {
at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
}
BlockLabel* backtrack() { return backtrack_; }
BlockLabel* loop_label() { return loop_label_; }
RegExpNode* stop_node() { return stop_node_; }
intptr_t characters_preloaded() { return characters_preloaded_; }
intptr_t bound_checked_up_to() { return bound_checked_up_to_; }
intptr_t flush_budget() { return flush_budget_; }
QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
bool mentions_reg(intptr_t reg);
// Returns true if a deferred position store exists to the specified
// register and stores the offset in the out-parameter. Otherwise
// returns false.
bool GetStoredPosition(intptr_t reg, intptr_t* cp_offset);
// These set methods and AdvanceCurrentPositionInTrace should be used only on
// new traces - the intention is that traces are immutable after creation.
void add_action(DeferredAction* new_action) {
ASSERT(new_action->next_ == NULL);
new_action->next_ = actions_;
actions_ = new_action;
}
void set_backtrack(BlockLabel* backtrack) { backtrack_ = backtrack; }
void set_stop_node(RegExpNode* node) { stop_node_ = node; }
void set_loop_label(BlockLabel* label) { loop_label_ = label; }
void set_characters_preloaded(intptr_t count) {
characters_preloaded_ = count;
}
void set_bound_checked_up_to(intptr_t to) { bound_checked_up_to_ = to; }
void set_flush_budget(intptr_t to) { flush_budget_ = to; }
void set_quick_check_performed(QuickCheckDetails* d) {
quick_check_performed_ = *d;
}
void InvalidateCurrentCharacter();
void AdvanceCurrentPositionInTrace(intptr_t by, RegExpCompiler* compiler);
private:
intptr_t FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
void PerformDeferredActions(RegExpMacroAssembler* macro,
intptr_t max_register,
const OutSet& affected_registers,
OutSet* registers_to_pop,
OutSet* registers_to_clear,
Zone* zone);
void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
intptr_t max_register,
const OutSet& registers_to_pop,
const OutSet& registers_to_clear);
intptr_t cp_offset_;
DeferredAction* actions_;
BlockLabel* backtrack_;
RegExpNode* stop_node_;
BlockLabel* loop_label_;
intptr_t characters_preloaded_;
intptr_t bound_checked_up_to_;
QuickCheckDetails quick_check_performed_;
intptr_t flush_budget_;
TriBool at_start_;
DISALLOW_ALLOCATION();
};
class GreedyLoopState {
public:
explicit GreedyLoopState(bool not_at_start);
BlockLabel* label() { return &label_; }
Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
private:
BlockLabel label_;
Trace counter_backtrack_trace_;
};
struct PreloadState {
static const intptr_t kEatsAtLeastNotYetInitialized = -1;
bool preload_is_current_;
bool preload_has_checked_bounds_;
intptr_t preload_characters_;
intptr_t eats_at_least_;
void init() { eats_at_least_ = kEatsAtLeastNotYetInitialized; }
DISALLOW_ALLOCATION();
};
class NodeVisitor : public ValueObject {
public:
virtual ~NodeVisitor() {}
#define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
#undef DECLARE_VISIT
virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
};
// Assertion propagation moves information about assertions such as
// \b to the affected nodes. For instance, in /.\b./ information must
// be propagated to the first '.' that whatever follows needs to know
// if it matched a word or a non-word, and to the second '.' that it
// has to check if it succeeds a word or non-word. In this case the
// result will be something like:
//
// +-------+ +------------+
// | . | | . |
// +-------+ ---> +------------+
// | word? | | check word |
// +-------+ +------------+
class Analysis : public NodeVisitor {
public:
Analysis(bool ignore_case, bool is_one_byte)
: ignore_case_(ignore_case),
is_one_byte_(is_one_byte),
error_message_(NULL) {}
void EnsureAnalyzed(RegExpNode* node);
#define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
#undef DECLARE_VISIT
virtual void VisitLoopChoice(LoopChoiceNode* that);
bool has_failed() { return error_message_ != NULL; }
const char* error_message() {
ASSERT(error_message_ != NULL);
return error_message_;
}
void fail(const char* error_message) { error_message_ = error_message; }
private:
bool ignore_case_;
bool is_one_byte_;
const char* error_message_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
};
struct RegExpCompileData : public ZoneAllocated {
RegExpCompileData()
: tree(NULL),
node(NULL),
simple(true),
contains_anchor(false),
error(String::Handle(String::null())),
capture_count(0) {}
RegExpTree* tree;
RegExpNode* node;
bool simple;
bool contains_anchor;
String& error;
intptr_t capture_count;
};
class RegExpEngine : public AllStatic {
public:
struct CompilationResult {
explicit CompilationResult(const char* error_message)
: backtrack_goto(NULL),
graph_entry(NULL),
num_blocks(-1),
num_stack_locals(-1),
error_message(error_message),
bytecode(NULL),
num_registers(-1) {}
CompilationResult(TypedData* bytecode, intptr_t num_registers)
: backtrack_goto(NULL),
graph_entry(NULL),
num_blocks(-1),
num_stack_locals(-1),
error_message(NULL),
bytecode(bytecode),
num_registers(num_registers) {}
CompilationResult(IndirectGotoInstr* backtrack_goto,
GraphEntryInstr* graph_entry,
intptr_t num_blocks,
intptr_t num_stack_locals,
intptr_t num_registers)
: backtrack_goto(backtrack_goto),
graph_entry(graph_entry),
num_blocks(num_blocks),
num_stack_locals(num_stack_locals),
error_message(NULL),
bytecode(NULL) {}
IndirectGotoInstr* backtrack_goto;
GraphEntryInstr* graph_entry;
const intptr_t num_blocks;
const intptr_t num_stack_locals;
const char* error_message;
TypedData* bytecode;
intptr_t num_registers;
};
static CompilationResult CompileIR(
RegExpCompileData* input,
const ParsedFunction* parsed_function,
const ZoneGrowableArray<const ICData*>& ic_data_array);
static CompilationResult CompileBytecode(RegExpCompileData* data,
const RegExp& regexp,
bool is_one_byte,
bool sticky,
Zone* zone);
static RawRegExp* CreateRegExp(Thread* thread,
const String& pattern,
bool multi_line,
bool ignore_case);
static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
};
} // namespace dart
#endif // RUNTIME_VM_REGEXP_H_