| // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #ifndef RUNTIME_VM_REGEXP_H_ |
| #define RUNTIME_VM_REGEXP_H_ |
| |
| #include "vm/assembler.h" |
| #include "vm/intermediate_language.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/object.h" |
| #include "vm/regexp_assembler.h" |
| |
| namespace dart { |
| |
| class NodeVisitor; |
| class RegExpCompiler; |
| class RegExpMacroAssembler; |
| class RegExpNode; |
| class RegExpTree; |
| class BoyerMooreLookahead; |
| |
| |
| // Represents code units in the range from from_ to to_, both ends are |
| // inclusive. |
| class CharacterRange { |
| public: |
| CharacterRange() : from_(0), to_(0) {} |
| CharacterRange(uint16_t from, uint16_t to) : from_(from), to_(to) {} |
| |
| static void AddClassEscape(uint16_t type, |
| ZoneGrowableArray<CharacterRange>* ranges); |
| static GrowableArray<const intptr_t> GetWordBounds(); |
| static inline CharacterRange Singleton(uint16_t value) { |
| return CharacterRange(value, value); |
| } |
| static inline CharacterRange Range(uint16_t from, uint16_t to) { |
| ASSERT(from <= to); |
| return CharacterRange(from, to); |
| } |
| static inline CharacterRange Everything() { |
| return CharacterRange(0, 0xFFFF); |
| } |
| bool Contains(uint16_t i) const { return from_ <= i && i <= to_; } |
| uint16_t from() const { return from_; } |
| void set_from(uint16_t value) { from_ = value; } |
| uint16_t to() const { return to_; } |
| void set_to(uint16_t value) { to_ = value; } |
| bool is_valid() const { return from_ <= to_; } |
| bool IsEverything(uint16_t max) const { return from_ == 0 && to_ >= max; } |
| bool IsSingleton() const { return (from_ == to_); } |
| void AddCaseEquivalents(ZoneGrowableArray<CharacterRange>* ranges, |
| bool is_one_byte, |
| Zone* zone); |
| static void Split(ZoneGrowableArray<CharacterRange>* base, |
| GrowableArray<const intptr_t> overlay, |
| ZoneGrowableArray<CharacterRange>** included, |
| ZoneGrowableArray<CharacterRange>** excluded, |
| Zone* zone); |
| // Whether a range list is in canonical form: Ranges ordered by from value, |
| // and ranges non-overlapping and non-adjacent. |
| static bool IsCanonical(ZoneGrowableArray<CharacterRange>* ranges); |
| // Convert range list to canonical form. The characters covered by the ranges |
| // will still be the same, but no character is in more than one range, and |
| // adjacent ranges are merged. The resulting list may be shorter than the |
| // original, but cannot be longer. |
| static void Canonicalize(ZoneGrowableArray<CharacterRange>* ranges); |
| // Negate the contents of a character range in canonical form. |
| static void Negate(ZoneGrowableArray<CharacterRange>* src, |
| ZoneGrowableArray<CharacterRange>* dst); |
| static const intptr_t kStartMarker = (1 << 24); |
| static const intptr_t kPayloadMask = (1 << 24) - 1; |
| |
| private: |
| uint16_t from_; |
| uint16_t to_; |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| |
| // A set of unsigned integers that behaves especially well on small |
| // integers (< 32). May do zone-allocation. |
| class OutSet : public ZoneAllocated { |
| public: |
| OutSet() : first_(0), remaining_(NULL), successors_(NULL) {} |
| OutSet* Extend(unsigned value, Zone* zone); |
| bool Get(unsigned value) const; |
| static const unsigned kFirstLimit = 32; |
| |
| private: |
| // Destructively set a value in this set. In most cases you want |
| // to use Extend instead to ensure that only one instance exists |
| // that contains the same values. |
| void Set(unsigned value, Zone* zone); |
| |
| // The successors are a list of sets that contain the same values |
| // as this set and the one more value that is not present in this |
| // set. |
| ZoneGrowableArray<OutSet*>* successors() { return successors_; } |
| |
| OutSet(uint32_t first, ZoneGrowableArray<unsigned>* remaining) |
| : first_(first), remaining_(remaining), successors_(NULL) {} |
| uint32_t first_; |
| ZoneGrowableArray<unsigned>* remaining_; |
| ZoneGrowableArray<OutSet*>* successors_; |
| friend class Trace; |
| }; |
| |
| |
| #define FOR_EACH_NODE_TYPE(VISIT) \ |
| VISIT(End) \ |
| VISIT(Action) \ |
| VISIT(Choice) \ |
| VISIT(BackReference) \ |
| VISIT(Assertion) \ |
| VISIT(Text) |
| |
| |
| #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ |
| VISIT(Disjunction) \ |
| VISIT(Alternative) \ |
| VISIT(Assertion) \ |
| VISIT(CharacterClass) \ |
| VISIT(Atom) \ |
| VISIT(Quantifier) \ |
| VISIT(Capture) \ |
| VISIT(Lookahead) \ |
| VISIT(BackReference) \ |
| VISIT(Empty) \ |
| VISIT(Text) |
| |
| |
| #define FORWARD_DECLARE(Name) class RegExp##Name; |
| FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) |
| #undef FORWARD_DECLARE |
| |
| |
| class TextElement { |
| public: |
| enum TextType { ATOM, CHAR_CLASS }; |
| |
| static TextElement Atom(RegExpAtom* atom); |
| static TextElement CharClass(RegExpCharacterClass* char_class); |
| |
| intptr_t cp_offset() const { return cp_offset_; } |
| void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; } |
| intptr_t length() const; |
| |
| TextType text_type() const { return text_type_; } |
| |
| RegExpTree* tree() const { return tree_; } |
| |
| RegExpAtom* atom() const { |
| ASSERT(text_type() == ATOM); |
| return reinterpret_cast<RegExpAtom*>(tree()); |
| } |
| |
| RegExpCharacterClass* char_class() const { |
| ASSERT(text_type() == CHAR_CLASS); |
| return reinterpret_cast<RegExpCharacterClass*>(tree()); |
| } |
| |
| private: |
| TextElement(TextType text_type, RegExpTree* tree) |
| : cp_offset_(-1), text_type_(text_type), tree_(tree) {} |
| |
| intptr_t cp_offset_; |
| TextType text_type_; |
| RegExpTree* tree_; |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| |
| class Trace; |
| struct PreloadState; |
| class GreedyLoopState; |
| class AlternativeGenerationList; |
| |
| struct NodeInfo { |
| NodeInfo() |
| : being_analyzed(false), |
| been_analyzed(false), |
| follows_word_interest(false), |
| follows_newline_interest(false), |
| follows_start_interest(false), |
| at_end(false), |
| visited(false), |
| replacement_calculated(false) {} |
| |
| // Returns true if the interests and assumptions of this node |
| // matches the given one. |
| bool Matches(NodeInfo* that) { |
| return (at_end == that->at_end) && |
| (follows_word_interest == that->follows_word_interest) && |
| (follows_newline_interest == that->follows_newline_interest) && |
| (follows_start_interest == that->follows_start_interest); |
| } |
| |
| // Updates the interests of this node given the interests of the |
| // node preceding it. |
| void AddFromPreceding(NodeInfo* that) { |
| at_end |= that->at_end; |
| follows_word_interest |= that->follows_word_interest; |
| follows_newline_interest |= that->follows_newline_interest; |
| follows_start_interest |= that->follows_start_interest; |
| } |
| |
| bool HasLookbehind() { |
| return follows_word_interest || follows_newline_interest || |
| follows_start_interest; |
| } |
| |
| // Sets the interests of this node to include the interests of the |
| // following node. |
| void AddFromFollowing(NodeInfo* that) { |
| follows_word_interest |= that->follows_word_interest; |
| follows_newline_interest |= that->follows_newline_interest; |
| follows_start_interest |= that->follows_start_interest; |
| } |
| |
| void ResetCompilationState() { |
| being_analyzed = false; |
| been_analyzed = false; |
| } |
| |
| bool being_analyzed : 1; |
| bool been_analyzed : 1; |
| |
| // These bits are set of this node has to know what the preceding |
| // character was. |
| bool follows_word_interest : 1; |
| bool follows_newline_interest : 1; |
| bool follows_start_interest : 1; |
| |
| bool at_end : 1; |
| bool visited : 1; |
| bool replacement_calculated : 1; |
| }; |
| |
| |
| // Details of a quick mask-compare check that can look ahead in the |
| // input stream. |
| class QuickCheckDetails { |
| public: |
| QuickCheckDetails() |
| : characters_(0), mask_(0), value_(0), cannot_match_(false) {} |
| explicit QuickCheckDetails(intptr_t characters) |
| : characters_(characters), mask_(0), value_(0), cannot_match_(false) {} |
| bool Rationalize(bool one_byte); |
| // Merge in the information from another branch of an alternation. |
| void Merge(QuickCheckDetails* other, intptr_t from_index); |
| // Advance the current position by some amount. |
| void Advance(intptr_t by, bool one_byte); |
| void Clear(); |
| bool cannot_match() { return cannot_match_; } |
| void set_cannot_match() { cannot_match_ = true; } |
| struct Position { |
| Position() : mask(0), value(0), determines_perfectly(false) {} |
| uint16_t mask; |
| uint16_t value; |
| bool determines_perfectly; |
| }; |
| intptr_t characters() { return characters_; } |
| void set_characters(intptr_t characters) { characters_ = characters; } |
| Position* positions(intptr_t index) { |
| ASSERT(index >= 0); |
| ASSERT(index < characters_); |
| return positions_ + index; |
| } |
| uint32_t mask() { return mask_; } |
| uint32_t value() { return value_; } |
| |
| private: |
| // How many characters do we have quick check information from. This is |
| // the same for all branches of a choice node. |
| intptr_t characters_; |
| Position positions_[4]; |
| // These values are the condensate of the above array after Rationalize(). |
| uint32_t mask_; |
| uint32_t value_; |
| // If set to true, there is no way this quick check can match at all. |
| // E.g., if it requires to be at the start of the input, and isn't. |
| bool cannot_match_; |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| |
| class RegExpNode : public ZoneAllocated { |
| public: |
| explicit RegExpNode(Zone* zone) |
| : replacement_(NULL), trace_count_(0), zone_(zone) { |
| bm_info_[0] = bm_info_[1] = NULL; |
| } |
| virtual ~RegExpNode(); |
| virtual void Accept(NodeVisitor* visitor) = 0; |
| // Generates a goto to this node or actually generates the code at this point. |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; |
| // How many characters must this node consume at a minimum in order to |
| // succeed. If we have found at least 'still_to_find' characters that |
| // must be consumed there is no need to ask any following nodes whether |
| // they are sure to eat any more characters. The not_at_start argument is |
| // used to indicate that we know we are not at the start of the input. In |
| // this case anchored branches will always fail and can be ignored when |
| // determining how many characters are consumed on success. |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t budget, |
| bool not_at_start) = 0; |
| // Emits some quick code that checks whether the preloaded characters match. |
| // Falls through on certain failure, jumps to the label on possible success. |
| // If the node cannot make a quick check it does nothing and returns false. |
| bool EmitQuickCheck(RegExpCompiler* compiler, |
| Trace* bounds_check_trace, |
| Trace* trace, |
| bool preload_has_checked_bounds, |
| BlockLabel* on_possible_success, |
| QuickCheckDetails* details_return, |
| bool fall_through_on_failure); |
| // For a given number of characters this returns a mask and a value. The |
| // next n characters are anded with the mask and compared with the value. |
| // A comparison failure indicates the node cannot match the next n characters. |
| // A comparison success indicates the node may match. |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t characters_filled_in, |
| bool not_at_start) = 0; |
| static const intptr_t kNodeIsTooComplexForGreedyLoops = -1; |
| virtual intptr_t GreedyLoopTextLength() { |
| return kNodeIsTooComplexForGreedyLoops; |
| } |
| // Only returns the successor for a text node of length 1 that matches any |
| // character and that has no guards on it. |
| virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
| RegExpCompiler* compiler) { |
| return NULL; |
| } |
| |
| // Collects information on the possible code units (mod 128) that can match if |
| // we look forward. This is used for a Boyer-Moore-like string searching |
| // implementation. TODO(erikcorry): This should share more code with |
| // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit |
| // the number of nodes we are willing to look at in order to create this data. |
| static const intptr_t kRecursionBudget = 200; |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| UNREACHABLE(); |
| } |
| |
| // If we know that the input is one-byte then there are some nodes that can |
| // never match. This method returns a node that can be substituted for |
| // itself, or NULL if the node can never match. |
| virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case) { |
| return this; |
| } |
| // Helper for FilterOneByte. |
| RegExpNode* replacement() { |
| ASSERT(info()->replacement_calculated); |
| return replacement_; |
| } |
| RegExpNode* set_replacement(RegExpNode* replacement) { |
| info()->replacement_calculated = true; |
| replacement_ = replacement; |
| return replacement; // For convenience. |
| } |
| |
| // We want to avoid recalculating the lookahead info, so we store it on the |
| // node. Only info that is for this node is stored. We can tell that the |
| // info is for this node when offset == 0, so the information is calculated |
| // relative to this node. |
| void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, intptr_t offset) { |
| if (offset == 0) set_bm_info(not_at_start, bm); |
| } |
| |
| BlockLabel* label() { return &label_; } |
| // If non-generic code is generated for a node (i.e. the node is not at the |
| // start of the trace) then it cannot be reused. This variable sets a limit |
| // on how often we allow that to happen before we insist on starting a new |
| // trace and generating generic code for a node that can be reused by flushing |
| // the deferred actions in the current trace and generating a goto. |
| static const intptr_t kMaxCopiesCodeGenerated = 10; |
| |
| NodeInfo* info() { return &info_; } |
| |
| BoyerMooreLookahead* bm_info(bool not_at_start) { |
| return bm_info_[not_at_start ? 1 : 0]; |
| } |
| |
| Zone* zone() const { return zone_; } |
| |
| protected: |
| enum LimitResult { DONE, CONTINUE }; |
| RegExpNode* replacement_; |
| |
| LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); |
| |
| void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { |
| bm_info_[not_at_start ? 1 : 0] = bm; |
| } |
| |
| private: |
| static const intptr_t kFirstCharBudget = 10; |
| BlockLabel label_; |
| NodeInfo info_; |
| // This variable keeps track of how many times code has been generated for |
| // this node (in different traces). We don't keep track of where the |
| // generated code is located unless the code is generated at the start of |
| // a trace, in which case it is generic and can be reused by flushing the |
| // deferred operations in the current trace and generating a goto. |
| intptr_t trace_count_; |
| BoyerMooreLookahead* bm_info_[2]; |
| Zone* zone_; |
| }; |
| |
| |
| // A simple closed interval. |
| class Interval { |
| public: |
| Interval() : from_(kNone), to_(kNone) {} |
| Interval(intptr_t from, intptr_t to) : from_(from), to_(to) {} |
| |
| Interval Union(Interval that) { |
| if (that.from_ == kNone) |
| return *this; |
| else if (from_ == kNone) |
| return that; |
| else |
| return Interval(Utils::Minimum(from_, that.from_), |
| Utils::Maximum(to_, that.to_)); |
| } |
| bool Contains(intptr_t value) const { |
| return (from_ <= value) && (value <= to_); |
| } |
| bool is_empty() const { return from_ == kNone; } |
| intptr_t from() const { return from_; } |
| intptr_t to() const { return to_; } |
| static Interval Empty() { return Interval(); } |
| static const intptr_t kNone = -1; |
| |
| private: |
| intptr_t from_; |
| intptr_t to_; |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| |
| class SeqRegExpNode : public RegExpNode { |
| public: |
| explicit SeqRegExpNode(RegExpNode* on_success) |
| : RegExpNode(on_success->zone()), on_success_(on_success) {} |
| RegExpNode* on_success() { return on_success_; } |
| void set_on_success(RegExpNode* node) { on_success_ = node; } |
| virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case); |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start); |
| if (offset == 0) set_bm_info(not_at_start, bm); |
| } |
| |
| protected: |
| RegExpNode* FilterSuccessor(intptr_t depth, bool ignore_case); |
| |
| private: |
| RegExpNode* on_success_; |
| }; |
| |
| |
| class ActionNode : public SeqRegExpNode { |
| public: |
| enum ActionType { |
| SET_REGISTER, |
| INCREMENT_REGISTER, |
| STORE_POSITION, |
| BEGIN_SUBMATCH, |
| POSITIVE_SUBMATCH_SUCCESS, |
| EMPTY_MATCH_CHECK, |
| CLEAR_CAPTURES |
| }; |
| static ActionNode* SetRegister(intptr_t reg, |
| intptr_t val, |
| RegExpNode* on_success); |
| static ActionNode* IncrementRegister(intptr_t reg, RegExpNode* on_success); |
| static ActionNode* StorePosition(intptr_t reg, |
| bool is_capture, |
| RegExpNode* on_success); |
| static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); |
| static ActionNode* BeginSubmatch(intptr_t stack_pointer_reg, |
| intptr_t position_reg, |
| RegExpNode* on_success); |
| static ActionNode* PositiveSubmatchSuccess(intptr_t stack_pointer_reg, |
| intptr_t restore_reg, |
| intptr_t clear_capture_count, |
| intptr_t clear_capture_from, |
| RegExpNode* on_success); |
| static ActionNode* EmptyMatchCheck(intptr_t start_register, |
| intptr_t repetition_register, |
| intptr_t repetition_limit, |
| RegExpNode* on_success); |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t budget, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t filled_in, |
| bool not_at_start) { |
| return on_success()->GetQuickCheckDetails(details, compiler, filled_in, |
| not_at_start); |
| } |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start); |
| ActionType action_type() { return action_type_; } |
| // TODO(erikcorry): We should allow some action nodes in greedy loops. |
| virtual intptr_t GreedyLoopTextLength() { |
| return kNodeIsTooComplexForGreedyLoops; |
| } |
| |
| private: |
| union { |
| struct { |
| intptr_t reg; |
| intptr_t value; |
| } u_store_register; |
| struct { |
| intptr_t reg; |
| } u_increment_register; |
| struct { |
| intptr_t reg; |
| bool is_capture; |
| } u_position_register; |
| struct { |
| intptr_t stack_pointer_register; |
| intptr_t current_position_register; |
| intptr_t clear_register_count; |
| intptr_t clear_register_from; |
| } u_submatch; |
| struct { |
| intptr_t start_register; |
| intptr_t repetition_register; |
| intptr_t repetition_limit; |
| } u_empty_match_check; |
| struct { |
| intptr_t range_from; |
| intptr_t range_to; |
| } u_clear_captures; |
| } data_; |
| ActionNode(ActionType action_type, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), action_type_(action_type) {} |
| ActionType action_type_; |
| friend class DotPrinter; |
| }; |
| |
| |
| class TextNode : public SeqRegExpNode { |
| public: |
| TextNode(ZoneGrowableArray<TextElement>* elms, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), elms_(elms) {} |
| TextNode(RegExpCharacterClass* that, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), |
| elms_(new (zone()) ZoneGrowableArray<TextElement>(1)) { |
| elms_->Add(TextElement::CharClass(that)); |
| } |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t budget, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t characters_filled_in, |
| bool not_at_start); |
| ZoneGrowableArray<TextElement>* elements() { return elms_; } |
| void MakeCaseIndependent(bool is_one_byte); |
| virtual intptr_t GreedyLoopTextLength(); |
| virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
| RegExpCompiler* compiler); |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start); |
| void CalculateOffsets(); |
| virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case); |
| |
| private: |
| enum TextEmitPassType { |
| NON_LATIN1_MATCH, // Check for characters that can't match. |
| SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. |
| NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. |
| CASE_CHARACTER_MATCH, // Case-independent single character check. |
| CHARACTER_CLASS_MATCH // Character class. |
| }; |
| static bool SkipPass(intptr_t pass, bool ignore_case); |
| static const intptr_t kFirstRealPass = SIMPLE_CHARACTER_MATCH; |
| static const intptr_t kLastPass = CHARACTER_CLASS_MATCH; |
| void TextEmitPass(RegExpCompiler* compiler, |
| TextEmitPassType pass, |
| bool preloaded, |
| Trace* trace, |
| bool first_element_checked, |
| intptr_t* checked_up_to); |
| intptr_t Length(); |
| ZoneGrowableArray<TextElement>* elms_; |
| }; |
| |
| |
| class AssertionNode : public SeqRegExpNode { |
| public: |
| enum AssertionType { |
| AT_END, |
| AT_START, |
| AT_BOUNDARY, |
| AT_NON_BOUNDARY, |
| AFTER_NEWLINE |
| }; |
| static AssertionNode* AtEnd(RegExpNode* on_success) { |
| return new (on_success->zone()) AssertionNode(AT_END, on_success); |
| } |
| static AssertionNode* AtStart(RegExpNode* on_success) { |
| return new (on_success->zone()) AssertionNode(AT_START, on_success); |
| } |
| static AssertionNode* AtBoundary(RegExpNode* on_success) { |
| return new (on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); |
| } |
| static AssertionNode* AtNonBoundary(RegExpNode* on_success) { |
| return new (on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); |
| } |
| static AssertionNode* AfterNewline(RegExpNode* on_success) { |
| return new (on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); |
| } |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t budget, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t filled_in, |
| bool not_at_start); |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start); |
| AssertionType assertion_type() { return assertion_type_; } |
| |
| private: |
| void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); |
| enum IfPrevious { kIsNonWord, kIsWord }; |
| void BacktrackIfPrevious(RegExpCompiler* compiler, |
| Trace* trace, |
| IfPrevious backtrack_if_previous); |
| AssertionNode(AssertionType t, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), assertion_type_(t) {} |
| AssertionType assertion_type_; |
| }; |
| |
| |
| class BackReferenceNode : public SeqRegExpNode { |
| public: |
| BackReferenceNode(intptr_t start_reg, |
| intptr_t end_reg, |
| RegExpNode* on_success) |
| : SeqRegExpNode(on_success), start_reg_(start_reg), end_reg_(end_reg) {} |
| virtual void Accept(NodeVisitor* visitor); |
| intptr_t start_register() { return start_reg_; } |
| intptr_t end_register() { return end_reg_; } |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t recursion_depth, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t characters_filled_in, |
| bool not_at_start) { |
| return; |
| } |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start); |
| |
| private: |
| intptr_t start_reg_; |
| intptr_t end_reg_; |
| }; |
| |
| |
| class EndNode : public RegExpNode { |
| public: |
| enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; |
| explicit EndNode(Action action, Zone* zone) |
| : RegExpNode(zone), action_(action) {} |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t recursion_depth, |
| bool not_at_start) { |
| return 0; |
| } |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t characters_filled_in, |
| bool not_at_start) { |
| // Returning 0 from EatsAtLeast should ensure we never get here. |
| UNREACHABLE(); |
| } |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| // Returning 0 from EatsAtLeast should ensure we never get here. |
| UNREACHABLE(); |
| } |
| |
| private: |
| Action action_; |
| }; |
| |
| |
| class NegativeSubmatchSuccess : public EndNode { |
| public: |
| NegativeSubmatchSuccess(intptr_t stack_pointer_reg, |
| intptr_t position_reg, |
| intptr_t clear_capture_count, |
| intptr_t clear_capture_start, |
| Zone* zone) |
| : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), |
| stack_pointer_register_(stack_pointer_reg), |
| current_position_register_(position_reg), |
| clear_capture_count_(clear_capture_count), |
| clear_capture_start_(clear_capture_start) {} |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| |
| private: |
| intptr_t stack_pointer_register_; |
| intptr_t current_position_register_; |
| intptr_t clear_capture_count_; |
| intptr_t clear_capture_start_; |
| }; |
| |
| |
| class Guard : public ZoneAllocated { |
| public: |
| enum Relation { LT, GEQ }; |
| Guard(intptr_t reg, Relation op, intptr_t value) |
| : reg_(reg), op_(op), value_(value) {} |
| intptr_t reg() { return reg_; } |
| Relation op() { return op_; } |
| intptr_t value() { return value_; } |
| |
| private: |
| intptr_t reg_; |
| Relation op_; |
| intptr_t value_; |
| }; |
| |
| |
| class GuardedAlternative { |
| public: |
| explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) {} |
| void AddGuard(Guard* guard, Zone* zone); |
| RegExpNode* node() { return node_; } |
| void set_node(RegExpNode* node) { node_ = node; } |
| ZoneGrowableArray<Guard*>* guards() { return guards_; } |
| |
| private: |
| RegExpNode* node_; |
| ZoneGrowableArray<Guard*>* guards_; |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| |
| struct AlternativeGeneration; |
| |
| |
| class ChoiceNode : public RegExpNode { |
| public: |
| explicit ChoiceNode(intptr_t expected_size, Zone* zone) |
| : RegExpNode(zone), |
| alternatives_(new (zone) |
| ZoneGrowableArray<GuardedAlternative>(expected_size)), |
| not_at_start_(false), |
| being_calculated_(false) {} |
| virtual void Accept(NodeVisitor* visitor); |
| void AddAlternative(GuardedAlternative node) { alternatives()->Add(node); } |
| ZoneGrowableArray<GuardedAlternative>* alternatives() { |
| return alternatives_; |
| } |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t budget, |
| bool not_at_start); |
| intptr_t EatsAtLeastHelper(intptr_t still_to_find, |
| intptr_t budget, |
| RegExpNode* ignore_this_node, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t characters_filled_in, |
| bool not_at_start); |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start); |
| |
| bool being_calculated() { return being_calculated_; } |
| bool not_at_start() { return not_at_start_; } |
| void set_not_at_start() { not_at_start_ = true; } |
| void set_being_calculated(bool b) { being_calculated_ = b; } |
| virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
| return true; |
| } |
| virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case); |
| |
| protected: |
| intptr_t GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); |
| ZoneGrowableArray<GuardedAlternative>* alternatives_; |
| |
| private: |
| friend class Analysis; |
| void GenerateGuard(RegExpMacroAssembler* macro_assembler, |
| Guard* guard, |
| Trace* trace); |
| intptr_t CalculatePreloadCharacters(RegExpCompiler* compiler, |
| intptr_t eats_at_least); |
| void EmitOutOfLineContinuation(RegExpCompiler* compiler, |
| Trace* trace, |
| GuardedAlternative alternative, |
| AlternativeGeneration* alt_gen, |
| intptr_t preload_characters, |
| bool next_expects_preload); |
| void SetUpPreLoad(RegExpCompiler* compiler, |
| Trace* current_trace, |
| PreloadState* preloads); |
| void AssertGuardsMentionRegisters(Trace* trace); |
| intptr_t EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
| Trace* trace); |
| Trace* EmitGreedyLoop(RegExpCompiler* compiler, |
| Trace* trace, |
| AlternativeGenerationList* alt_gens, |
| PreloadState* preloads, |
| GreedyLoopState* greedy_loop_state, |
| intptr_t text_length); |
| void EmitChoices(RegExpCompiler* compiler, |
| AlternativeGenerationList* alt_gens, |
| intptr_t first_choice, |
| Trace* trace, |
| PreloadState* preloads); |
| // If true, this node is never checked at the start of the input. |
| // Allows a new trace to start with at_start() set to false. |
| bool not_at_start_; |
| bool being_calculated_; |
| }; |
| |
| |
| class NegativeLookaheadChoiceNode : public ChoiceNode { |
| public: |
| explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail, |
| GuardedAlternative then_do_this, |
| Zone* zone) |
| : ChoiceNode(2, zone) { |
| AddAlternative(this_must_fail); |
| AddAlternative(then_do_this); |
| } |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t budget, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t characters_filled_in, |
| bool not_at_start); |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start) { |
| (*alternatives_)[1].node()->FillInBMInfo(offset, budget - 1, bm, |
| not_at_start); |
| if (offset == 0) set_bm_info(not_at_start, bm); |
| } |
| // For a negative lookahead we don't emit the quick check for the |
| // alternative that is expected to fail. This is because quick check code |
| // starts by loading enough characters for the alternative that takes fewest |
| // characters, but on a negative lookahead the negative branch did not take |
| // part in that calculation (EatsAtLeast) so the assumptions don't hold. |
| virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
| return !is_first; |
| } |
| virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case); |
| }; |
| |
| |
| class LoopChoiceNode : public ChoiceNode { |
| public: |
| explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone) |
| : ChoiceNode(2, zone), |
| loop_node_(NULL), |
| continue_node_(NULL), |
| body_can_be_zero_length_(body_can_be_zero_length) {} |
| void AddLoopAlternative(GuardedAlternative alt); |
| void AddContinueAlternative(GuardedAlternative alt); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual intptr_t EatsAtLeast(intptr_t still_to_find, |
| intptr_t budget, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| intptr_t characters_filled_in, |
| bool not_at_start); |
| virtual void FillInBMInfo(intptr_t offset, |
| intptr_t budget, |
| BoyerMooreLookahead* bm, |
| bool not_at_start); |
| RegExpNode* loop_node() { return loop_node_; } |
| RegExpNode* continue_node() { return continue_node_; } |
| bool body_can_be_zero_length() { return body_can_be_zero_length_; } |
| virtual void Accept(NodeVisitor* visitor); |
| virtual RegExpNode* FilterOneByte(intptr_t depth, bool ignore_case); |
| |
| private: |
| // AddAlternative is made private for loop nodes because alternatives |
| // should not be added freely, we need to keep track of which node |
| // goes back to the node itself. |
| void AddAlternative(GuardedAlternative node) { |
| ChoiceNode::AddAlternative(node); |
| } |
| |
| RegExpNode* loop_node_; |
| RegExpNode* continue_node_; |
| bool body_can_be_zero_length_; |
| }; |
| |
| |
| // Improve the speed that we scan for an initial point where a non-anchored |
| // regexp can match by using a Boyer-Moore-like table. This is done by |
| // identifying non-greedy non-capturing loops in the nodes that eat any |
| // character one at a time. For example in the middle of the regexp |
| // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly |
| // inserted at the start of any non-anchored regexp. |
| // |
| // When we have found such a loop we look ahead in the nodes to find the set of |
| // characters that can come at given distances. For example for the regexp |
| // /.?foo/ we know that there are at least 3 characters ahead of us, and the |
| // sets of characters that can occur are [any, [f, o], [o]]. We find a range in |
| // the lookahead info where the set of characters is reasonably constrained. In |
| // our example this is from index 1 to 2 (0 is not constrained). We can now |
| // look 3 characters ahead and if we don't find one of [f, o] (the union of |
| // [f, o] and [o]) then we can skip forwards by the range size (in this case 2). |
| // |
| // For Unicode input strings we do the same, but modulo 128. |
| // |
| // We also look at the first string fed to the regexp and use that to get a hint |
| // of the character frequencies in the inputs. This affects the assessment of |
| // whether the set of characters is 'reasonably constrained'. |
| // |
| // We also have another lookahead mechanism (called quick check in the code), |
| // which uses a wide load of multiple characters followed by a mask and compare |
| // to determine whether a match is possible at this point. |
| enum ContainedInLattice { |
| kNotYet = 0, |
| kLatticeIn = 1, |
| kLatticeOut = 2, |
| kLatticeUnknown = 3 // Can also mean both in and out. |
| }; |
| |
| |
| inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { |
| return static_cast<ContainedInLattice>(a | b); |
| } |
| |
| |
| ContainedInLattice AddRange(ContainedInLattice a, |
| const intptr_t* ranges, |
| intptr_t ranges_size, |
| Interval new_range); |
| |
| |
| class BoyerMoorePositionInfo : public ZoneAllocated { |
| public: |
| explicit BoyerMoorePositionInfo(Zone* zone) |
| : map_(new (zone) ZoneGrowableArray<bool>(kMapSize)), |
| map_count_(0), |
| w_(kNotYet), |
| s_(kNotYet), |
| d_(kNotYet), |
| surrogate_(kNotYet) { |
| for (intptr_t i = 0; i < kMapSize; i++) { |
| map_->Add(false); |
| } |
| } |
| |
| bool& at(intptr_t i) { return (*map_)[i]; } |
| |
| static const intptr_t kMapSize = 128; |
| static const intptr_t kMask = kMapSize - 1; |
| |
| intptr_t map_count() const { return map_count_; } |
| |
| void Set(intptr_t character); |
| void SetInterval(const Interval& interval); |
| void SetAll(); |
| bool is_non_word() { return w_ == kLatticeOut; } |
| bool is_word() { return w_ == kLatticeIn; } |
| |
| private: |
| ZoneGrowableArray<bool>* map_; |
| intptr_t map_count_; // Number of set bits in the map. |
| ContainedInLattice w_; // The \w character class. |
| ContainedInLattice s_; // The \s character class. |
| ContainedInLattice d_; // The \d character class. |
| ContainedInLattice surrogate_; // Surrogate UTF-16 code units. |
| }; |
| |
| |
| class BoyerMooreLookahead : public ZoneAllocated { |
| public: |
| BoyerMooreLookahead(intptr_t length, RegExpCompiler* compiler, Zone* Zone); |
| |
| intptr_t length() { return length_; } |
| intptr_t max_char() { return max_char_; } |
| RegExpCompiler* compiler() { return compiler_; } |
| |
| intptr_t Count(intptr_t map_number) { |
| return bitmaps_->At(map_number)->map_count(); |
| } |
| |
| BoyerMoorePositionInfo* at(intptr_t i) { return bitmaps_->At(i); } |
| |
| void Set(intptr_t map_number, intptr_t character) { |
| if (character > max_char_) return; |
| BoyerMoorePositionInfo* info = bitmaps_->At(map_number); |
| info->Set(character); |
| } |
| |
| void SetInterval(intptr_t map_number, const Interval& interval) { |
| if (interval.from() > max_char_) return; |
| BoyerMoorePositionInfo* info = bitmaps_->At(map_number); |
| if (interval.to() > max_char_) { |
| info->SetInterval(Interval(interval.from(), max_char_)); |
| } else { |
| info->SetInterval(interval); |
| } |
| } |
| |
| void SetAll(intptr_t map_number) { bitmaps_->At(map_number)->SetAll(); } |
| |
| void SetRest(intptr_t from_map) { |
| for (intptr_t i = from_map; i < length_; i++) |
| SetAll(i); |
| } |
| void EmitSkipInstructions(RegExpMacroAssembler* masm); |
| |
| private: |
| // This is the value obtained by EatsAtLeast. If we do not have at least this |
| // many characters left in the sample string then the match is bound to fail. |
| // Therefore it is OK to read a character this far ahead of the current match |
| // point. |
| intptr_t length_; |
| RegExpCompiler* compiler_; |
| // 0xff for Latin1, 0xffff for UTF-16. |
| intptr_t max_char_; |
| ZoneGrowableArray<BoyerMoorePositionInfo*>* bitmaps_; |
| |
| intptr_t GetSkipTable(intptr_t min_lookahead, |
| intptr_t max_lookahead, |
| const TypedData& boolean_skip_table); |
| bool FindWorthwhileInterval(intptr_t* from, intptr_t* to); |
| intptr_t FindBestInterval(intptr_t max_number_of_chars, |
| intptr_t old_biggest_points, |
| intptr_t* from, |
| intptr_t* to); |
| }; |
| |
| |
| // There are many ways to generate code for a node. This class encapsulates |
| // the current way we should be generating. In other words it encapsulates |
| // the current state of the code generator. The effect of this is that we |
| // generate code for paths that the matcher can take through the regular |
| // expression. A given node in the regexp can be code-generated several times |
| // as it can be part of several traces. For example for the regexp: |
| // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part |
| // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code |
| // to match foo is generated only once (the traces have a common prefix). The |
| // code to store the capture is deferred and generated (twice) after the places |
| // where baz has been matched. |
| class Trace { |
| public: |
| // A value for a property that is either known to be true, know to be false, |
| // or not known. |
| enum TriBool { UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 }; |
| |
| class DeferredAction { |
| public: |
| DeferredAction(ActionNode::ActionType action_type, intptr_t reg) |
| : action_type_(action_type), reg_(reg), next_(NULL) {} |
| DeferredAction* next() { return next_; } |
| bool Mentions(intptr_t reg); |
| intptr_t reg() { return reg_; } |
| ActionNode::ActionType action_type() { return action_type_; } |
| |
| private: |
| ActionNode::ActionType action_type_; |
| intptr_t reg_; |
| DeferredAction* next_; |
| friend class Trace; |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| class DeferredCapture : public DeferredAction { |
| public: |
| DeferredCapture(intptr_t reg, bool is_capture, Trace* trace) |
| : DeferredAction(ActionNode::STORE_POSITION, reg), |
| cp_offset_(trace->cp_offset()), |
| is_capture_(is_capture) {} |
| intptr_t cp_offset() { return cp_offset_; } |
| bool is_capture() { return is_capture_; } |
| |
| private: |
| intptr_t cp_offset_; |
| bool is_capture_; |
| void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; } |
| }; |
| |
| class DeferredSetRegister : public DeferredAction { |
| public: |
| DeferredSetRegister(intptr_t reg, intptr_t value) |
| : DeferredAction(ActionNode::SET_REGISTER, reg), value_(value) {} |
| intptr_t value() { return value_; } |
| |
| private: |
| intptr_t value_; |
| }; |
| |
| class DeferredClearCaptures : public DeferredAction { |
| public: |
| explicit DeferredClearCaptures(Interval range) |
| : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), range_(range) {} |
| Interval range() { return range_; } |
| |
| private: |
| Interval range_; |
| }; |
| |
| class DeferredIncrementRegister : public DeferredAction { |
| public: |
| explicit DeferredIncrementRegister(intptr_t reg) |
| : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) {} |
| }; |
| |
| Trace() |
| : cp_offset_(0), |
| actions_(NULL), |
| backtrack_(NULL), |
| stop_node_(NULL), |
| loop_label_(NULL), |
| characters_preloaded_(0), |
| bound_checked_up_to_(0), |
| flush_budget_(100), |
| at_start_(UNKNOWN) {} |
| |
| // End the trace. This involves flushing the deferred actions in the trace |
| // and pushing a backtrack location onto the backtrack stack. Once this is |
| // done we can start a new trace or go to one that has already been |
| // generated. |
| void Flush(RegExpCompiler* compiler, RegExpNode* successor); |
| intptr_t cp_offset() { return cp_offset_; } |
| DeferredAction* actions() { return actions_; } |
| // A trivial trace is one that has no deferred actions or other state that |
| // affects the assumptions used when generating code. There is no recorded |
| // backtrack location in a trivial trace, so with a trivial trace we will |
| // generate code that, on a failure to match, gets the backtrack location |
| // from the backtrack stack rather than using a direct jump instruction. We |
| // always start code generation with a trivial trace and non-trivial traces |
| // are created as we emit code for nodes or add to the list of deferred |
| // actions in the trace. The location of the code generated for a node using |
| // a trivial trace is recorded in a label in the node so that gotos can be |
| // generated to that code. |
| bool is_trivial() { |
| return backtrack_ == NULL && actions_ == NULL && cp_offset_ == 0 && |
| characters_preloaded_ == 0 && bound_checked_up_to_ == 0 && |
| quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN; |
| } |
| TriBool at_start() { return at_start_; } |
| void set_at_start(bool at_start) { |
| at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE; |
| } |
| BlockLabel* backtrack() { return backtrack_; } |
| BlockLabel* loop_label() { return loop_label_; } |
| RegExpNode* stop_node() { return stop_node_; } |
| intptr_t characters_preloaded() { return characters_preloaded_; } |
| intptr_t bound_checked_up_to() { return bound_checked_up_to_; } |
| intptr_t flush_budget() { return flush_budget_; } |
| QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } |
| bool mentions_reg(intptr_t reg); |
| // Returns true if a deferred position store exists to the specified |
| // register and stores the offset in the out-parameter. Otherwise |
| // returns false. |
| bool GetStoredPosition(intptr_t reg, intptr_t* cp_offset); |
| // These set methods and AdvanceCurrentPositionInTrace should be used only on |
| // new traces - the intention is that traces are immutable after creation. |
| void add_action(DeferredAction* new_action) { |
| ASSERT(new_action->next_ == NULL); |
| new_action->next_ = actions_; |
| actions_ = new_action; |
| } |
| void set_backtrack(BlockLabel* backtrack) { backtrack_ = backtrack; } |
| void set_stop_node(RegExpNode* node) { stop_node_ = node; } |
| void set_loop_label(BlockLabel* label) { loop_label_ = label; } |
| void set_characters_preloaded(intptr_t count) { |
| characters_preloaded_ = count; |
| } |
| void set_bound_checked_up_to(intptr_t to) { bound_checked_up_to_ = to; } |
| void set_flush_budget(intptr_t to) { flush_budget_ = to; } |
| void set_quick_check_performed(QuickCheckDetails* d) { |
| quick_check_performed_ = *d; |
| } |
| void InvalidateCurrentCharacter(); |
| void AdvanceCurrentPositionInTrace(intptr_t by, RegExpCompiler* compiler); |
| |
| private: |
| intptr_t FindAffectedRegisters(OutSet* affected_registers, Zone* zone); |
| void PerformDeferredActions(RegExpMacroAssembler* macro, |
| intptr_t max_register, |
| const OutSet& affected_registers, |
| OutSet* registers_to_pop, |
| OutSet* registers_to_clear, |
| Zone* zone); |
| void RestoreAffectedRegisters(RegExpMacroAssembler* macro, |
| intptr_t max_register, |
| const OutSet& registers_to_pop, |
| const OutSet& registers_to_clear); |
| intptr_t cp_offset_; |
| DeferredAction* actions_; |
| BlockLabel* backtrack_; |
| RegExpNode* stop_node_; |
| BlockLabel* loop_label_; |
| intptr_t characters_preloaded_; |
| intptr_t bound_checked_up_to_; |
| QuickCheckDetails quick_check_performed_; |
| intptr_t flush_budget_; |
| TriBool at_start_; |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| |
| class GreedyLoopState { |
| public: |
| explicit GreedyLoopState(bool not_at_start); |
| |
| BlockLabel* label() { return &label_; } |
| Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } |
| |
| private: |
| BlockLabel label_; |
| Trace counter_backtrack_trace_; |
| }; |
| |
| |
| struct PreloadState { |
| static const intptr_t kEatsAtLeastNotYetInitialized = -1; |
| bool preload_is_current_; |
| bool preload_has_checked_bounds_; |
| intptr_t preload_characters_; |
| intptr_t eats_at_least_; |
| void init() { eats_at_least_ = kEatsAtLeastNotYetInitialized; } |
| |
| DISALLOW_ALLOCATION(); |
| }; |
| |
| |
| class NodeVisitor : public ValueObject { |
| public: |
| virtual ~NodeVisitor() {} |
| #define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that) = 0; |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } |
| }; |
| |
| |
| // Assertion propagation moves information about assertions such as |
| // \b to the affected nodes. For instance, in /.\b./ information must |
| // be propagated to the first '.' that whatever follows needs to know |
| // if it matched a word or a non-word, and to the second '.' that it |
| // has to check if it succeeds a word or non-word. In this case the |
| // result will be something like: |
| // |
| // +-------+ +------------+ |
| // | . | | . | |
| // +-------+ ---> +------------+ |
| // | word? | | check word | |
| // +-------+ +------------+ |
| class Analysis : public NodeVisitor { |
| public: |
| Analysis(bool ignore_case, bool is_one_byte) |
| : ignore_case_(ignore_case), |
| is_one_byte_(is_one_byte), |
| error_message_(NULL) {} |
| void EnsureAnalyzed(RegExpNode* node); |
| |
| #define DECLARE_VISIT(Type) virtual void Visit##Type(Type##Node* that); |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| virtual void VisitLoopChoice(LoopChoiceNode* that); |
| |
| bool has_failed() { return error_message_ != NULL; } |
| const char* error_message() { |
| ASSERT(error_message_ != NULL); |
| return error_message_; |
| } |
| void fail(const char* error_message) { error_message_ = error_message; } |
| |
| private: |
| bool ignore_case_; |
| bool is_one_byte_; |
| const char* error_message_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); |
| }; |
| |
| |
| struct RegExpCompileData : public ZoneAllocated { |
| RegExpCompileData() |
| : tree(NULL), |
| node(NULL), |
| simple(true), |
| contains_anchor(false), |
| error(String::Handle(String::null())), |
| capture_count(0) {} |
| RegExpTree* tree; |
| RegExpNode* node; |
| bool simple; |
| bool contains_anchor; |
| String& error; |
| intptr_t capture_count; |
| }; |
| |
| |
| class RegExpEngine : public AllStatic { |
| public: |
| struct CompilationResult { |
| explicit CompilationResult(const char* error_message) |
| : backtrack_goto(NULL), |
| graph_entry(NULL), |
| num_blocks(-1), |
| num_stack_locals(-1), |
| error_message(error_message), |
| bytecode(NULL), |
| num_registers(-1) {} |
| |
| CompilationResult(TypedData* bytecode, intptr_t num_registers) |
| : backtrack_goto(NULL), |
| graph_entry(NULL), |
| num_blocks(-1), |
| num_stack_locals(-1), |
| error_message(NULL), |
| bytecode(bytecode), |
| num_registers(num_registers) {} |
| |
| CompilationResult(IndirectGotoInstr* backtrack_goto, |
| GraphEntryInstr* graph_entry, |
| intptr_t num_blocks, |
| intptr_t num_stack_locals, |
| intptr_t num_registers) |
| : backtrack_goto(backtrack_goto), |
| graph_entry(graph_entry), |
| num_blocks(num_blocks), |
| num_stack_locals(num_stack_locals), |
| error_message(NULL), |
| bytecode(NULL) {} |
| |
| IndirectGotoInstr* backtrack_goto; |
| GraphEntryInstr* graph_entry; |
| const intptr_t num_blocks; |
| const intptr_t num_stack_locals; |
| |
| const char* error_message; |
| |
| TypedData* bytecode; |
| intptr_t num_registers; |
| }; |
| |
| static CompilationResult CompileIR( |
| RegExpCompileData* input, |
| const ParsedFunction* parsed_function, |
| const ZoneGrowableArray<const ICData*>& ic_data_array); |
| |
| static CompilationResult CompileBytecode(RegExpCompileData* data, |
| const RegExp& regexp, |
| bool is_one_byte, |
| bool sticky, |
| Zone* zone); |
| |
| static RawRegExp* CreateRegExp(Thread* thread, |
| const String& pattern, |
| bool multi_line, |
| bool ignore_case); |
| |
| static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); |
| }; |
| |
| } // namespace dart |
| |
| #endif // RUNTIME_VM_REGEXP_H_ |