blob: 9768bc5f2510fad9045046e9a9564144c5968753 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/pages.h"
#include "platform/address_sanitizer.h"
#include "platform/assert.h"
#include "vm/compiler_stats.h"
#include "vm/gc_marker.h"
#include "vm/gc_sweeper.h"
#include "vm/lockers.h"
#include "vm/object.h"
#include "vm/object_set.h"
#include "vm/os_thread.h"
#include "vm/safepoint.h"
#include "vm/virtual_memory.h"
namespace dart {
DEFINE_FLAG(int,
heap_growth_rate,
0,
"The max number of pages the heap can grow at a time");
DEFINE_FLAG(int,
old_gen_growth_space_ratio,
20,
"The desired maximum percentage of free space after old gen GC");
DEFINE_FLAG(int,
old_gen_growth_time_ratio,
3,
"The desired maximum percentage of time spent in old gen GC");
DEFINE_FLAG(int,
old_gen_growth_rate,
280,
"The max number of pages the old generation can grow at a time");
DEFINE_FLAG(bool,
print_free_list_before_gc,
false,
"Print free list statistics before a GC");
DEFINE_FLAG(bool,
print_free_list_after_gc,
false,
"Print free list statistics after a GC");
DEFINE_FLAG(int,
code_collection_interval_in_us,
30000000,
"Time between attempts to collect unused code.");
DEFINE_FLAG(bool,
log_code_drop,
false,
"Emit a log message when pointers to unused code are dropped.");
DEFINE_FLAG(bool,
always_drop_code,
false,
"Always try to drop code if the function's usage counter is >= 0");
DEFINE_FLAG(bool, log_growth, false, "Log PageSpace growth policy decisions.");
HeapPage* HeapPage::Initialize(VirtualMemory* memory, PageType type) {
ASSERT(memory != NULL);
ASSERT(memory->size() > VirtualMemory::PageSize());
bool is_executable = (type == kExecutable);
// Create the new page executable (RWX) only if we're not in W^X mode
bool create_executable = !FLAG_write_protect_code && is_executable;
if (!memory->Commit(create_executable)) {
return NULL;
}
HeapPage* result = reinterpret_cast<HeapPage*>(memory->address());
ASSERT(result != NULL);
result->memory_ = memory;
result->next_ = NULL;
result->type_ = type;
LSAN_REGISTER_ROOT_REGION(result, sizeof(*result));
return result;
}
HeapPage* HeapPage::Allocate(intptr_t size_in_words, PageType type) {
VirtualMemory* memory =
VirtualMemory::Reserve(size_in_words << kWordSizeLog2);
if (memory == NULL) {
return NULL;
}
HeapPage* result = Initialize(memory, type);
if (result == NULL) {
delete memory; // Release reservation to OS.
return NULL;
}
return result;
}
void HeapPage::Deallocate() {
bool image_page = is_image_page();
if (!image_page) {
LSAN_UNREGISTER_ROOT_REGION(this, sizeof(*this));
}
// For a regular heap pages, the memory for this object will become
// unavailable after the delete below.
delete memory_;
// For a heap page from a snapshot, the HeapPage object lives in the malloc
// heap rather than the page itself.
if (image_page) {
free(this);
}
}
void HeapPage::VisitObjects(ObjectVisitor* visitor) const {
NoSafepointScope no_safepoint;
uword obj_addr = object_start();
uword end_addr = object_end();
while (obj_addr < end_addr) {
RawObject* raw_obj = RawObject::FromAddr(obj_addr);
visitor->VisitObject(raw_obj);
obj_addr += raw_obj->Size();
}
ASSERT(obj_addr == end_addr);
}
void HeapPage::VisitObjectPointers(ObjectPointerVisitor* visitor) const {
NoSafepointScope no_safepoint;
uword obj_addr = object_start();
uword end_addr = object_end();
while (obj_addr < end_addr) {
RawObject* raw_obj = RawObject::FromAddr(obj_addr);
obj_addr += raw_obj->VisitPointers(visitor);
}
ASSERT(obj_addr == end_addr);
}
RawObject* HeapPage::FindObject(FindObjectVisitor* visitor) const {
uword obj_addr = object_start();
uword end_addr = object_end();
if (visitor->VisitRange(obj_addr, end_addr)) {
while (obj_addr < end_addr) {
RawObject* raw_obj = RawObject::FromAddr(obj_addr);
uword next_obj_addr = obj_addr + raw_obj->Size();
if (visitor->VisitRange(obj_addr, next_obj_addr) &&
raw_obj->FindObject(visitor)) {
return raw_obj; // Found object, return it.
}
obj_addr = next_obj_addr;
}
ASSERT(obj_addr == end_addr);
}
return Object::null();
}
void HeapPage::WriteProtect(bool read_only) {
ASSERT(!is_image_page());
VirtualMemory::Protection prot;
if (read_only) {
if (type_ == kExecutable) {
prot = VirtualMemory::kReadExecute;
} else {
prot = VirtualMemory::kReadOnly;
}
} else {
prot = VirtualMemory::kReadWrite;
}
bool status = memory_->Protect(prot);
ASSERT(status);
}
PageSpace::PageSpace(Heap* heap,
intptr_t max_capacity_in_words,
intptr_t max_external_in_words)
: freelist_(),
heap_(heap),
pages_lock_(new Mutex()),
pages_(NULL),
pages_tail_(NULL),
exec_pages_(NULL),
exec_pages_tail_(NULL),
large_pages_(NULL),
bump_top_(0),
bump_end_(0),
max_capacity_in_words_(max_capacity_in_words),
max_external_in_words_(max_external_in_words),
tasks_lock_(new Monitor()),
tasks_(0),
#if defined(DEBUG)
iterating_thread_(NULL),
#endif
page_space_controller_(heap,
FLAG_old_gen_growth_space_ratio,
FLAG_old_gen_growth_rate,
FLAG_old_gen_growth_time_ratio),
gc_time_micros_(0),
collections_(0) {
// We aren't holding the lock but no one can reference us yet.
UpdateMaxCapacityLocked();
UpdateMaxUsed();
}
PageSpace::~PageSpace() {
{
MonitorLocker ml(tasks_lock());
while (tasks() > 0) {
ml.Wait();
}
}
FreePages(pages_);
FreePages(exec_pages_);
FreePages(large_pages_);
delete pages_lock_;
delete tasks_lock_;
}
intptr_t PageSpace::LargePageSizeInWordsFor(intptr_t size) {
intptr_t page_size = Utils::RoundUp(size + HeapPage::ObjectStartOffset(),
VirtualMemory::PageSize());
return page_size >> kWordSizeLog2;
}
HeapPage* PageSpace::AllocatePage(HeapPage::PageType type) {
HeapPage* page = HeapPage::Allocate(kPageSizeInWords, type);
if (page == NULL) {
return NULL;
}
bool is_exec = (type == HeapPage::kExecutable);
MutexLocker ml(pages_lock_);
if (!is_exec) {
if (pages_ == NULL) {
pages_ = page;
} else {
pages_tail_->set_next(page);
}
pages_tail_ = page;
} else {
// Should not allocate executable pages when running from a precompiled
// snapshot.
ASSERT(Dart::vm_snapshot_kind() != Snapshot::kAppAOT);
if (exec_pages_ == NULL) {
exec_pages_ = page;
} else {
if (FLAG_write_protect_code && !exec_pages_tail_->is_image_page()) {
exec_pages_tail_->WriteProtect(false);
}
exec_pages_tail_->set_next(page);
if (FLAG_write_protect_code && !exec_pages_tail_->is_image_page()) {
exec_pages_tail_->WriteProtect(true);
}
}
exec_pages_tail_ = page;
}
IncreaseCapacityInWordsLocked(kPageSizeInWords);
page->set_object_end(page->memory_->end());
return page;
}
HeapPage* PageSpace::AllocateLargePage(intptr_t size, HeapPage::PageType type) {
intptr_t page_size_in_words = LargePageSizeInWordsFor(size);
HeapPage* page = HeapPage::Allocate(page_size_in_words, type);
if (page == NULL) {
return NULL;
}
page->set_next(large_pages_);
large_pages_ = page;
IncreaseCapacityInWords(page_size_in_words);
// Only one object in this page (at least until String::MakeExternal or
// Array::MakeArray is called).
page->set_object_end(page->object_start() + size);
return page;
}
void PageSpace::TruncateLargePage(HeapPage* page,
intptr_t new_object_size_in_bytes) {
const intptr_t old_object_size_in_bytes =
page->object_end() - page->object_start();
ASSERT(new_object_size_in_bytes <= old_object_size_in_bytes);
const intptr_t new_page_size_in_words =
LargePageSizeInWordsFor(new_object_size_in_bytes);
VirtualMemory* memory = page->memory_;
const intptr_t old_page_size_in_words = (memory->size() >> kWordSizeLog2);
if (new_page_size_in_words < old_page_size_in_words) {
memory->Truncate(new_page_size_in_words << kWordSizeLog2);
IncreaseCapacityInWords(new_page_size_in_words - old_page_size_in_words);
page->set_object_end(page->object_start() + new_object_size_in_bytes);
}
}
void PageSpace::FreePage(HeapPage* page, HeapPage* previous_page) {
bool is_exec = (page->type() == HeapPage::kExecutable);
{
MutexLocker ml(pages_lock_);
IncreaseCapacityInWordsLocked(-(page->memory_->size() >> kWordSizeLog2));
if (!is_exec) {
// Remove the page from the list of data pages.
if (previous_page != NULL) {
previous_page->set_next(page->next());
} else {
pages_ = page->next();
}
if (page == pages_tail_) {
pages_tail_ = previous_page;
}
} else {
// Remove the page from the list of executable pages.
if (previous_page != NULL) {
previous_page->set_next(page->next());
} else {
exec_pages_ = page->next();
}
if (page == exec_pages_tail_) {
exec_pages_tail_ = previous_page;
}
}
}
// TODO(iposva): Consider adding to a pool of empty pages.
page->Deallocate();
}
void PageSpace::FreeLargePage(HeapPage* page, HeapPage* previous_page) {
IncreaseCapacityInWords(-(page->memory_->size() >> kWordSizeLog2));
// Remove the page from the list.
if (previous_page != NULL) {
previous_page->set_next(page->next());
} else {
large_pages_ = page->next();
}
page->Deallocate();
}
void PageSpace::FreePages(HeapPage* pages) {
HeapPage* page = pages;
while (page != NULL) {
HeapPage* next = page->next();
page->Deallocate();
page = next;
}
}
uword PageSpace::TryAllocateInFreshPage(intptr_t size,
HeapPage::PageType type,
GrowthPolicy growth_policy,
bool is_locked) {
ASSERT(size < kAllocatablePageSize);
uword result = 0;
SpaceUsage after_allocation = GetCurrentUsage();
after_allocation.used_in_words += size >> kWordSizeLog2;
// Can we grow by one page?
after_allocation.capacity_in_words += kPageSizeInWords;
if ((growth_policy == kForceGrowth ||
!page_space_controller_.NeedsGarbageCollection(after_allocation)) &&
CanIncreaseCapacityInWords(kPageSizeInWords)) {
HeapPage* page = AllocatePage(type);
if (page == NULL) {
return 0;
}
// Start of the newly allocated page is the allocated object.
result = page->object_start();
// Note: usage_.capacity_in_words is increased by AllocatePage.
AtomicOperations::IncrementBy(&(usage_.used_in_words),
(size >> kWordSizeLog2));
// Enqueue the remainder in the free list.
uword free_start = result + size;
intptr_t free_size = page->object_end() - free_start;
if (free_size > 0) {
if (is_locked) {
freelist_[type].FreeLocked(free_start, free_size);
} else {
freelist_[type].Free(free_start, free_size);
}
}
}
return result;
}
uword PageSpace::TryAllocateInternal(intptr_t size,
HeapPage::PageType type,
GrowthPolicy growth_policy,
bool is_protected,
bool is_locked) {
ASSERT(size >= kObjectAlignment);
ASSERT(Utils::IsAligned(size, kObjectAlignment));
uword result = 0;
if (size < kAllocatablePageSize) {
if (is_locked) {
result = freelist_[type].TryAllocateLocked(size, is_protected);
} else {
result = freelist_[type].TryAllocate(size, is_protected);
}
if (result == 0) {
result = TryAllocateInFreshPage(size, type, growth_policy, is_locked);
// usage_ is updated by the call above.
} else {
AtomicOperations::IncrementBy(&(usage_.used_in_words),
(size >> kWordSizeLog2));
}
} else {
// Large page allocation.
intptr_t page_size_in_words = LargePageSizeInWordsFor(size);
if ((page_size_in_words << kWordSizeLog2) < size) {
// On overflow we fail to allocate.
return 0;
}
SpaceUsage after_allocation = GetCurrentUsage();
after_allocation.used_in_words += size >> kWordSizeLog2;
after_allocation.capacity_in_words += page_size_in_words;
if ((growth_policy == kForceGrowth ||
!page_space_controller_.NeedsGarbageCollection(after_allocation)) &&
CanIncreaseCapacityInWords(page_size_in_words)) {
HeapPage* page = AllocateLargePage(size, type);
if (page != NULL) {
result = page->object_start();
// Note: usage_.capacity_in_words is increased by AllocateLargePage.
AtomicOperations::IncrementBy(&(usage_.used_in_words),
(size >> kWordSizeLog2));
}
}
}
ASSERT((result & kObjectAlignmentMask) == kOldObjectAlignmentOffset);
return result;
}
void PageSpace::AcquireDataLock() {
freelist_[HeapPage::kData].mutex()->Lock();
}
void PageSpace::ReleaseDataLock() {
freelist_[HeapPage::kData].mutex()->Unlock();
}
void PageSpace::AllocateExternal(intptr_t size) {
intptr_t size_in_words = size >> kWordSizeLog2;
AtomicOperations::IncrementBy(&(usage_.external_in_words), size_in_words);
// TODO(koda): Control growth.
}
void PageSpace::FreeExternal(intptr_t size) {
intptr_t size_in_words = size >> kWordSizeLog2;
AtomicOperations::DecrementBy(&(usage_.external_in_words), size_in_words);
}
// Provides exclusive access to all pages, and ensures they are walkable.
class ExclusivePageIterator : ValueObject {
public:
explicit ExclusivePageIterator(const PageSpace* space)
: space_(space), ml_(space->pages_lock_) {
space_->MakeIterable();
page_ = space_->pages_;
if (page_ == NULL) {
page_ = space_->exec_pages_;
if (page_ == NULL) {
page_ = space_->large_pages_;
}
}
}
HeapPage* page() const { return page_; }
bool Done() const { return page_ == NULL; }
void Advance() {
ASSERT(!Done());
page_ = space_->NextPageAnySize(page_);
}
private:
const PageSpace* space_;
MutexLocker ml_;
NoSafepointScope no_safepoint;
HeapPage* page_;
};
// Provides exclusive access to code pages, and ensures they are walkable.
// NOTE: This does not iterate over large pages which can contain code.
class ExclusiveCodePageIterator : ValueObject {
public:
explicit ExclusiveCodePageIterator(const PageSpace* space)
: space_(space), ml_(space->pages_lock_) {
space_->MakeIterable();
page_ = space_->exec_pages_;
}
HeapPage* page() const { return page_; }
bool Done() const { return page_ == NULL; }
void Advance() {
ASSERT(!Done());
page_ = page_->next();
}
private:
const PageSpace* space_;
MutexLocker ml_;
NoSafepointScope no_safepoint;
HeapPage* page_;
};
// Provides exclusive access to large pages, and ensures they are walkable.
class ExclusiveLargePageIterator : ValueObject {
public:
explicit ExclusiveLargePageIterator(const PageSpace* space)
: space_(space), ml_(space->pages_lock_) {
space_->MakeIterable();
page_ = space_->large_pages_;
}
HeapPage* page() const { return page_; }
bool Done() const { return page_ == NULL; }
void Advance() {
ASSERT(!Done());
page_ = page_->next();
}
private:
const PageSpace* space_;
MutexLocker ml_;
NoSafepointScope no_safepoint;
HeapPage* page_;
};
void PageSpace::MakeIterable() const {
// Assert not called from concurrent sweeper task.
// TODO(koda): Use thread/task identity when implemented.
ASSERT(Isolate::Current()->heap() != NULL);
if (bump_top_ < bump_end_) {
FreeListElement::AsElement(bump_top_, bump_end_ - bump_top_);
}
}
void PageSpace::AbandonBumpAllocation() {
if (bump_top_ < bump_end_) {
freelist_[HeapPage::kData].Free(bump_top_, bump_end_ - bump_top_);
bump_top_ = 0;
bump_end_ = 0;
}
}
void PageSpace::UpdateMaxCapacityLocked() {
if (heap_ == NULL) {
// Some unit tests.
return;
}
ASSERT(heap_ != NULL);
ASSERT(heap_->isolate() != NULL);
Isolate* isolate = heap_->isolate();
isolate->GetHeapOldCapacityMaxMetric()->SetValue(
static_cast<int64_t>(usage_.capacity_in_words) * kWordSize);
}
void PageSpace::UpdateMaxUsed() {
if (heap_ == NULL) {
// Some unit tests.
return;
}
ASSERT(heap_ != NULL);
ASSERT(heap_->isolate() != NULL);
Isolate* isolate = heap_->isolate();
isolate->GetHeapOldUsedMaxMetric()->SetValue(UsedInWords() * kWordSize);
}
bool PageSpace::Contains(uword addr) const {
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
if (it.page()->Contains(addr)) {
return true;
}
}
return false;
}
bool PageSpace::Contains(uword addr, HeapPage::PageType type) const {
if (type == HeapPage::kExecutable) {
// Fast path executable pages.
for (ExclusiveCodePageIterator it(this); !it.Done(); it.Advance()) {
if (it.page()->Contains(addr)) {
return true;
}
}
// Large pages can be executable, walk them too.
for (ExclusiveLargePageIterator it(this); !it.Done(); it.Advance()) {
if ((it.page()->type() == type) && it.page()->Contains(addr)) {
return true;
}
}
return false;
}
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
if ((it.page()->type() == type) && it.page()->Contains(addr)) {
return true;
}
}
return false;
}
bool PageSpace::DataContains(uword addr) const {
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
if ((it.page()->type() != HeapPage::kExecutable) &&
it.page()->Contains(addr)) {
return true;
}
}
return false;
}
void PageSpace::AddRegionsToObjectSet(ObjectSet* set) const {
ASSERT((pages_ != NULL) || (exec_pages_ != NULL) || (large_pages_ != NULL));
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
set->AddRegion(it.page()->object_start(), it.page()->object_end());
}
}
void PageSpace::VisitObjects(ObjectVisitor* visitor) const {
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
it.page()->VisitObjects(visitor);
}
}
void PageSpace::VisitObjectsNoImagePages(ObjectVisitor* visitor) const {
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
if (!it.page()->is_image_page()) {
it.page()->VisitObjects(visitor);
}
}
}
void PageSpace::VisitObjectsImagePages(ObjectVisitor* visitor) const {
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
if (it.page()->is_image_page()) {
it.page()->VisitObjects(visitor);
}
}
}
void PageSpace::VisitObjectPointers(ObjectPointerVisitor* visitor) const {
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
it.page()->VisitObjectPointers(visitor);
}
}
RawObject* PageSpace::FindObject(FindObjectVisitor* visitor,
HeapPage::PageType type) const {
if (type == HeapPage::kExecutable) {
// Fast path executable pages.
for (ExclusiveCodePageIterator it(this); !it.Done(); it.Advance()) {
RawObject* obj = it.page()->FindObject(visitor);
if (obj != Object::null()) {
return obj;
}
}
// Large pages can be executable, walk them too.
for (ExclusiveLargePageIterator it(this); !it.Done(); it.Advance()) {
if (it.page()->type() == type) {
RawObject* obj = it.page()->FindObject(visitor);
if (obj != Object::null()) {
return obj;
}
}
}
return Object::null();
}
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
if (it.page()->type() == type) {
RawObject* obj = it.page()->FindObject(visitor);
if (obj != Object::null()) {
return obj;
}
}
}
return Object::null();
}
void PageSpace::WriteProtect(bool read_only) {
if (read_only) {
// Avoid MakeIterable trying to write to the heap.
AbandonBumpAllocation();
}
for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) {
if (!it.page()->is_image_page()) {
it.page()->WriteProtect(read_only);
}
}
}
#ifndef PRODUCT
void PageSpace::PrintToJSONObject(JSONObject* object) const {
if (!FLAG_support_service) {
return;
}
Isolate* isolate = Isolate::Current();
ASSERT(isolate != NULL);
JSONObject space(object, "old");
space.AddProperty("type", "HeapSpace");
space.AddProperty("name", "old");
space.AddProperty("vmName", "PageSpace");
space.AddProperty("collections", collections());
space.AddProperty64("used", UsedInWords() * kWordSize);
space.AddProperty64("capacity", CapacityInWords() * kWordSize);
space.AddProperty64("external", ExternalInWords() * kWordSize);
space.AddProperty("time", MicrosecondsToSeconds(gc_time_micros()));
if (collections() > 0) {
int64_t run_time = isolate->UptimeMicros();
run_time = Utils::Maximum(run_time, static_cast<int64_t>(0));
double run_time_millis = MicrosecondsToMilliseconds(run_time);
double avg_time_between_collections =
run_time_millis / static_cast<double>(collections());
space.AddProperty("avgCollectionPeriodMillis",
avg_time_between_collections);
} else {
space.AddProperty("avgCollectionPeriodMillis", 0.0);
}
}
class HeapMapAsJSONVisitor : public ObjectVisitor {
public:
explicit HeapMapAsJSONVisitor(JSONArray* array) : array_(array) {}
virtual void VisitObject(RawObject* obj) {
array_->AddValue(obj->Size() / kObjectAlignment);
array_->AddValue(obj->GetClassId());
}
private:
JSONArray* array_;
};
void PageSpace::PrintHeapMapToJSONStream(Isolate* isolate,
JSONStream* stream) const {
if (!FLAG_support_service) {
return;
}
JSONObject heap_map(stream);
heap_map.AddProperty("type", "HeapMap");
heap_map.AddProperty("freeClassId", static_cast<intptr_t>(kFreeListElement));
heap_map.AddProperty("unitSizeBytes",
static_cast<intptr_t>(kObjectAlignment));
heap_map.AddProperty("pageSizeBytes", kPageSizeInWords * kWordSize);
{
JSONObject class_list(&heap_map, "classList");
isolate->class_table()->PrintToJSONObject(&class_list);
}
{
// "pages" is an array [page0, page1, ..., pageN], each page of the form
// {"object_start": "0x...", "objects": [size, class id, size, ...]}
// TODO(19445): Use ExclusivePageIterator once HeapMap supports large pages.
MutexLocker ml(pages_lock_);
MakeIterable();
NoSafepointScope no_safepoint;
JSONArray all_pages(&heap_map, "pages");
for (HeapPage* page = pages_; page != NULL; page = page->next()) {
JSONObject page_container(&all_pages);
page_container.AddPropertyF("objectStart", "0x%" Px "",
page->object_start());
JSONArray page_map(&page_container, "objects");
HeapMapAsJSONVisitor printer(&page_map);
page->VisitObjects(&printer);
}
for (HeapPage* page = exec_pages_; page != NULL; page = page->next()) {
JSONObject page_container(&all_pages);
page_container.AddPropertyF("objectStart", "0x%" Px "",
page->object_start());
JSONArray page_map(&page_container, "objects");
HeapMapAsJSONVisitor printer(&page_map);
page->VisitObjects(&printer);
}
}
}
#endif // PRODUCT
bool PageSpace::ShouldCollectCode() {
// Try to collect code if enough time has passed since the last attempt.
const int64_t start = OS::GetCurrentMonotonicMicros();
const int64_t last_code_collection_in_us =
page_space_controller_.last_code_collection_in_us();
if ((start - last_code_collection_in_us) >
FLAG_code_collection_interval_in_us) {
if (FLAG_log_code_drop) {
OS::Print("Trying to detach code.\n");
}
page_space_controller_.set_last_code_collection_in_us(start);
return true;
}
return false;
}
void PageSpace::WriteProtectCode(bool read_only) {
if (FLAG_write_protect_code) {
MutexLocker ml(pages_lock_);
NoSafepointScope no_safepoint;
// No need to go through all of the data pages first.
HeapPage* page = exec_pages_;
while (page != NULL) {
ASSERT(page->type() == HeapPage::kExecutable);
if (!page->is_image_page()) {
page->WriteProtect(read_only);
}
page = page->next();
}
page = large_pages_;
while (page != NULL) {
if (page->type() == HeapPage::kExecutable && !page->is_image_page()) {
page->WriteProtect(read_only);
}
page = page->next();
}
}
}
void PageSpace::MarkSweep(bool invoke_api_callbacks) {
Thread* thread = Thread::Current();
Isolate* isolate = heap_->isolate();
ASSERT(isolate == Isolate::Current());
// Wait for pending tasks to complete and then account for the driver task.
{
MonitorLocker locker(tasks_lock());
while (tasks() > 0) {
locker.WaitWithSafepointCheck(thread);
}
set_tasks(1);
}
// Ensure that all threads for this isolate are at a safepoint (either
// stopped or in native code). We have guards around Newgen GC and oldgen GC
// to ensure that if two threads are racing to collect at the same time the
// loser skips collection and goes straight to allocation.
{
SafepointOperationScope safepoint_scope(thread);
// Perform various cleanup that relies on no tasks interfering.
isolate->class_table()->FreeOldTables();
NoSafepointScope no_safepoints;
if (FLAG_print_free_list_before_gc) {
OS::Print("Data Freelist (before GC):\n");
freelist_[HeapPage::kData].Print();
OS::Print("Executable Freelist (before GC):\n");
freelist_[HeapPage::kExecutable].Print();
}
if (FLAG_verify_before_gc) {
OS::PrintErr("Verifying before marking...");
heap_->VerifyGC();
OS::PrintErr(" done.\n");
}
const int64_t start = OS::GetCurrentMonotonicMicros();
// Make code pages writable.
WriteProtectCode(false);
// Save old value before GCMarker visits the weak persistent handles.
SpaceUsage usage_before = GetCurrentUsage();
// Mark all reachable old-gen objects.
bool collect_code = FLAG_collect_code && ShouldCollectCode() &&
!isolate->HasAttemptedReload();
GCMarker marker(heap_);
marker.MarkObjects(isolate, this, invoke_api_callbacks, collect_code);
usage_.used_in_words = marker.marked_words();
int64_t mid1 = OS::GetCurrentMonotonicMicros();
// Abandon the remainder of the bump allocation block.
AbandonBumpAllocation();
// Reset the freelists and setup sweeping.
freelist_[HeapPage::kData].Reset();
freelist_[HeapPage::kExecutable].Reset();
int64_t mid2 = OS::GetCurrentMonotonicMicros();
int64_t mid3 = 0;
{
if (FLAG_verify_before_gc) {
OS::PrintErr("Verifying before sweeping...");
heap_->VerifyGC(kAllowMarked);
OS::PrintErr(" done.\n");
}
GCSweeper sweeper;
// During stop-the-world phases we should use bulk lock when adding
// elements to the free list.
MutexLocker mld(freelist_[HeapPage::kData].mutex());
MutexLocker mle(freelist_[HeapPage::kExecutable].mutex());
// Large and executable pages are always swept immediately.
HeapPage* prev_page = NULL;
HeapPage* page = large_pages_;
while (page != NULL) {
HeapPage* next_page = page->next();
const intptr_t words_to_end = sweeper.SweepLargePage(page);
if (words_to_end == 0) {
FreeLargePage(page, prev_page);
} else {
TruncateLargePage(page, words_to_end << kWordSizeLog2);
prev_page = page;
}
// Advance to the next page.
page = next_page;
}
prev_page = NULL;
page = exec_pages_;
FreeList* freelist = &freelist_[HeapPage::kExecutable];
while (page != NULL) {
HeapPage* next_page = page->next();
bool page_in_use = sweeper.SweepPage(page, freelist, true);
if (page_in_use) {
prev_page = page;
} else {
FreePage(page, prev_page);
}
// Advance to the next page.
page = next_page;
}
mid3 = OS::GetCurrentMonotonicMicros();
if (!FLAG_concurrent_sweep) {
// Sweep all regular sized pages now.
prev_page = NULL;
page = pages_;
while (page != NULL) {
HeapPage* next_page = page->next();
bool page_in_use =
sweeper.SweepPage(page, &freelist_[page->type()], true);
if (page_in_use) {
prev_page = page;
} else {
FreePage(page, prev_page);
}
// Advance to the next page.
page = next_page;
}
if (FLAG_verify_after_gc) {
OS::PrintErr("Verifying after sweeping...");
heap_->VerifyGC(kForbidMarked);
OS::PrintErr(" done.\n");
}
} else {
// Start the concurrent sweeper task now.
GCSweeper::SweepConcurrent(isolate, pages_, pages_tail_,
&freelist_[HeapPage::kData]);
}
}
// Make code pages read-only.
WriteProtectCode(true);
int64_t end = OS::GetCurrentMonotonicMicros();
// Record signals for growth control. Include size of external allocations.
page_space_controller_.EvaluateGarbageCollection(
usage_before, GetCurrentUsage(), start, end);
heap_->RecordTime(kMarkObjects, mid1 - start);
heap_->RecordTime(kResetFreeLists, mid2 - mid1);
heap_->RecordTime(kSweepPages, mid3 - mid2);
heap_->RecordTime(kSweepLargePages, end - mid3);
if (FLAG_print_free_list_after_gc) {
OS::Print("Data Freelist (after GC):\n");
freelist_[HeapPage::kData].Print();
OS::Print("Executable Freelist (after GC):\n");
freelist_[HeapPage::kExecutable].Print();
}
UpdateMaxUsed();
if (heap_ != NULL) {
heap_->UpdateGlobalMaxUsed();
}
}
// Done, reset the task count.
{
MonitorLocker ml(tasks_lock());
set_tasks(tasks() - 1);
ml.NotifyAll();
}
}
uword PageSpace::TryAllocateDataBumpInternal(intptr_t size,
GrowthPolicy growth_policy,
bool is_locked) {
ASSERT(size >= kObjectAlignment);
ASSERT(Utils::IsAligned(size, kObjectAlignment));
intptr_t remaining = bump_end_ - bump_top_;
if (remaining < size) {
// Checking this first would be logical, but needlessly slow.
if (size >= kAllocatablePageSize) {
return is_locked ? TryAllocateDataLocked(size, growth_policy)
: TryAllocate(size, HeapPage::kData, growth_policy);
}
FreeListElement* block =
is_locked ? freelist_[HeapPage::kData].TryAllocateLargeLocked(size)
: freelist_[HeapPage::kData].TryAllocateLarge(size);
if (block == NULL) {
// Allocating from a new page (if growth policy allows) will have the
// side-effect of populating the freelist with a large block. The next
// bump allocation request will have a chance to consume that block.
// TODO(koda): Could take freelist lock just once instead of twice.
return TryAllocateInFreshPage(size, HeapPage::kData, growth_policy,
is_locked);
}
intptr_t block_size = block->Size();
if (remaining > 0) {
if (is_locked) {
freelist_[HeapPage::kData].FreeLocked(bump_top_, remaining);
} else {
freelist_[HeapPage::kData].Free(bump_top_, remaining);
}
}
bump_top_ = reinterpret_cast<uword>(block);
bump_end_ = bump_top_ + block_size;
remaining = block_size;
}
ASSERT(remaining >= size);
uword result = bump_top_;
bump_top_ += size;
AtomicOperations::IncrementBy(&(usage_.used_in_words),
(size >> kWordSizeLog2));
// Note: Remaining block is unwalkable until MakeIterable is called.
#ifdef DEBUG
if (bump_top_ < bump_end_) {
// Fail fast if we try to walk the remaining block.
COMPILE_ASSERT(kIllegalCid == 0);
*reinterpret_cast<uword*>(bump_top_) = 0;
}
#endif // DEBUG
return result;
}
uword PageSpace::TryAllocateDataBump(intptr_t size,
GrowthPolicy growth_policy) {
return TryAllocateDataBumpInternal(size, growth_policy, false);
}
uword PageSpace::TryAllocateDataBumpLocked(intptr_t size,
GrowthPolicy growth_policy) {
return TryAllocateDataBumpInternal(size, growth_policy, true);
}
uword PageSpace::TryAllocatePromoLocked(intptr_t size,
GrowthPolicy growth_policy) {
FreeList* freelist = &freelist_[HeapPage::kData];
uword result = freelist->TryAllocateSmallLocked(size);
if (result != 0) {
AtomicOperations::IncrementBy(&(usage_.used_in_words),
(size >> kWordSizeLog2));
return result;
}
result = TryAllocateDataBumpLocked(size, growth_policy);
if (result != 0) return result;
return TryAllocateDataLocked(size, growth_policy);
}
void PageSpace::SetupImagePage(void* pointer, uword size, bool is_executable) {
// Setup a HeapPage so precompiled Instructions can be traversed.
// Instructions are contiguous at [pointer, pointer + size). HeapPage
// expects to find objects at [memory->start() + ObjectStartOffset,
// memory->end()).
uword offset = HeapPage::ObjectStartOffset();
pointer = reinterpret_cast<void*>(reinterpret_cast<uword>(pointer) - offset);
size += offset;
VirtualMemory* memory = VirtualMemory::ForImagePage(pointer, size);
ASSERT(memory != NULL);
HeapPage* page = reinterpret_cast<HeapPage*>(malloc(sizeof(HeapPage)));
page->memory_ = memory;
page->next_ = NULL;
page->object_end_ = memory->end();
MutexLocker ml(pages_lock_);
HeapPage **first, **tail;
if (is_executable) {
ASSERT(Utils::IsAligned(pointer, OS::PreferredCodeAlignment()));
page->type_ = HeapPage::kExecutable;
first = &exec_pages_;
tail = &exec_pages_tail_;
} else {
page->type_ = HeapPage::kData;
first = &pages_;
tail = &pages_tail_;
}
if (*first == NULL) {
*first = page;
} else {
if (is_executable && FLAG_write_protect_code && !(*tail)->is_image_page()) {
(*tail)->WriteProtect(false);
}
(*tail)->set_next(page);
if (is_executable && FLAG_write_protect_code && !(*tail)->is_image_page()) {
(*tail)->WriteProtect(true);
}
}
(*tail) = page;
}
PageSpaceController::PageSpaceController(Heap* heap,
int heap_growth_ratio,
int heap_growth_max,
int garbage_collection_time_ratio)
: heap_(heap),
is_enabled_(false),
grow_heap_(heap_growth_max / 2),
heap_growth_ratio_(heap_growth_ratio),
desired_utilization_((100.0 - heap_growth_ratio) / 100.0),
heap_growth_max_(heap_growth_max),
garbage_collection_time_ratio_(garbage_collection_time_ratio),
last_code_collection_in_us_(OS::GetCurrentMonotonicMicros()) {}
PageSpaceController::~PageSpaceController() {}
bool PageSpaceController::NeedsGarbageCollection(SpaceUsage after) const {
if (!is_enabled_) {
return false;
}
if (heap_growth_ratio_ == 100) {
return false;
}
intptr_t capacity_increase_in_words =
after.capacity_in_words - last_usage_.capacity_in_words;
// The concurrent sweeper might have freed more capacity than was allocated.
capacity_increase_in_words =
Utils::Maximum<intptr_t>(0, capacity_increase_in_words);
capacity_increase_in_words =
Utils::RoundUp(capacity_increase_in_words, PageSpace::kPageSizeInWords);
intptr_t capacity_increase_in_pages =
capacity_increase_in_words / PageSpace::kPageSizeInWords;
double multiplier = 1.0;
// To avoid waste, the first GC should be triggered before too long. After
// kInitialTimeoutSeconds, gradually lower the capacity limit.
static const double kInitialTimeoutSeconds = 1.00;
if (history_.IsEmpty()) {
double seconds_since_init =
MicrosecondsToSeconds(heap_->isolate()->UptimeMicros());
if (seconds_since_init > kInitialTimeoutSeconds) {
multiplier *= seconds_since_init / kInitialTimeoutSeconds;
}
}
bool needs_gc = capacity_increase_in_pages * multiplier > grow_heap_;
if (FLAG_log_growth) {
OS::PrintErr("%s: %" Pd " * %f %s %" Pd "\n",
needs_gc ? "NEEDS GC" : "grow", capacity_increase_in_pages,
multiplier, needs_gc ? ">" : "<=", grow_heap_);
}
return needs_gc;
}
void PageSpaceController::EvaluateGarbageCollection(SpaceUsage before,
SpaceUsage after,
int64_t start,
int64_t end) {
ASSERT(end >= start);
history_.AddGarbageCollectionTime(start, end);
const int gc_time_fraction = history_.GarbageCollectionTimeFraction();
heap_->RecordData(PageSpace::kGCTimeFraction, gc_time_fraction);
// Assume garbage increases linearly with allocation:
// G = kA, and estimate k from the previous cycle.
const intptr_t allocated_since_previous_gc =
before.used_in_words - last_usage_.used_in_words;
if (allocated_since_previous_gc > 0) {
const intptr_t garbage = before.used_in_words - after.used_in_words;
ASSERT(garbage >= 0);
const double k = garbage / static_cast<double>(allocated_since_previous_gc);
const int garbage_ratio = static_cast<int>(k * 100);
heap_->RecordData(PageSpace::kGarbageRatio, garbage_ratio);
// Define GC to be 'worthwhile' iff at least fraction t of heap is garbage.
double t = 1.0 - desired_utilization_;
// If we spend too much time in GC, strive for even more free space.
if (gc_time_fraction > garbage_collection_time_ratio_) {
t += (gc_time_fraction - garbage_collection_time_ratio_) / 100.0;
}
const intptr_t grow_ratio =
(static_cast<intptr_t>(after.capacity_in_words / desired_utilization_) -
after.capacity_in_words) /
PageSpace::kPageSizeInWords;
if (garbage_ratio == 0) {
// No garbage in the previous cycle so it would be hard to compute a
// grow_heap_ size based on estimated garbage so we use growth ratio
// heuristics instead.
grow_heap_ =
Utils::Maximum(static_cast<intptr_t>(heap_growth_max_), grow_ratio);
} else {
// Find minimum 'grow_heap_' such that after increasing capacity by
// 'grow_heap_' pages and filling them, we expect a GC to be worthwhile.
intptr_t max = heap_growth_max_;
intptr_t min = 0;
intptr_t local_grow_heap = 0;
while (min < max) {
local_grow_heap = (max + min) / 2;
const intptr_t limit = after.capacity_in_words +
(grow_heap_ * PageSpace::kPageSizeInWords);
const intptr_t allocated_before_next_gc = limit - after.used_in_words;
const double estimated_garbage = k * allocated_before_next_gc;
if (t <= estimated_garbage / limit) {
max = local_grow_heap - 1;
} else {
min = local_grow_heap + 1;
}
}
grow_heap_ = local_grow_heap;
ASSERT(grow_heap_ >= 0);
// If we are going to grow by heap_grow_max_ then ensure that we
// will be growing the heap at least by the growth ratio heuristics.
if ((grow_heap_ == heap_growth_max_) && (grow_ratio > grow_heap_)) {
grow_heap_ = grow_ratio;
}
}
} else {
heap_->RecordData(PageSpace::kGarbageRatio, 100);
grow_heap_ = 0;
}
heap_->RecordData(PageSpace::kPageGrowth, grow_heap_);
// Limit shrinkage: allow growth by at least half the pages freed by GC.
const intptr_t freed_pages =
(before.capacity_in_words - after.capacity_in_words) /
PageSpace::kPageSizeInWords;
grow_heap_ = Utils::Maximum(grow_heap_, freed_pages / 2);
heap_->RecordData(PageSpace::kAllowedGrowth, grow_heap_);
last_usage_ = after;
}
void PageSpaceGarbageCollectionHistory::AddGarbageCollectionTime(int64_t start,
int64_t end) {
Entry entry;
entry.start = start;
entry.end = end;
history_.Add(entry);
}
int PageSpaceGarbageCollectionHistory::GarbageCollectionTimeFraction() {
int64_t gc_time = 0;
int64_t total_time = 0;
for (int i = 0; i < history_.Size() - 1; i++) {
Entry current = history_.Get(i);
Entry previous = history_.Get(i + 1);
gc_time += current.end - current.start;
total_time += current.end - previous.end;
}
if (total_time == 0) {
return 0;
} else {
ASSERT(total_time >= gc_time);
int result = static_cast<int>(
(static_cast<double>(gc_time) / static_cast<double>(total_time)) * 100);
return result;
}
}
} // namespace dart