| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| #if defined(HOST_OS_WINDOWS) |
| |
| #include "vm/os.h" |
| |
| #include <malloc.h> // NOLINT |
| #include <process.h> // NOLINT |
| #include <psapi.h> // NOLINT |
| #include <time.h> // NOLINT |
| |
| #include "platform/utils.h" |
| #include "platform/assert.h" |
| #include "vm/os_thread.h" |
| #include "vm/zone.h" |
| |
| namespace dart { |
| |
| // Defined in vm/os_thread_win.cc |
| extern bool private_flag_windows_run_tls_destructors; |
| |
| const char* OS::Name() { |
| return "windows"; |
| } |
| |
| |
| intptr_t OS::ProcessId() { |
| return static_cast<intptr_t>(GetCurrentProcessId()); |
| } |
| |
| |
| // As a side-effect sets the globals _timezone, _daylight and _tzname. |
| static bool LocalTime(int64_t seconds_since_epoch, tm* tm_result) { |
| time_t seconds = static_cast<time_t>(seconds_since_epoch); |
| if (seconds != seconds_since_epoch) { |
| return false; |
| } |
| // localtime_s implicitly sets _timezone, _daylight and _tzname. |
| errno_t error_code = localtime_s(tm_result, &seconds); |
| return error_code == 0; |
| } |
| |
| |
| static int GetDaylightSavingBiasInSeconds() { |
| TIME_ZONE_INFORMATION zone_information; |
| memset(&zone_information, 0, sizeof(zone_information)); |
| if (GetTimeZoneInformation(&zone_information) == TIME_ZONE_ID_INVALID) { |
| // By default the daylight saving offset is an hour. |
| return -60 * 60; |
| } else { |
| return static_cast<int>(zone_information.DaylightBias * 60); |
| } |
| } |
| |
| |
| const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) { |
| TIME_ZONE_INFORMATION zone_information; |
| memset(&zone_information, 0, sizeof(zone_information)); |
| |
| // Initialize and grab the time zone data. |
| _tzset(); |
| DWORD status = GetTimeZoneInformation(&zone_information); |
| if (GetTimeZoneInformation(&zone_information) == TIME_ZONE_ID_INVALID) { |
| // If we can't get the time zone data, the Windows docs indicate that we |
| // are probably out of memory. Return an empty string. |
| return ""; |
| } |
| |
| // Figure out whether we're in standard or daylight. |
| bool daylight_savings = (status == TIME_ZONE_ID_DAYLIGHT); |
| if (status == TIME_ZONE_ID_UNKNOWN) { |
| tm local_time; |
| if (LocalTime(seconds_since_epoch, &local_time)) { |
| daylight_savings = (local_time.tm_isdst == 1); |
| } |
| } |
| |
| // Convert the wchar string to a null-terminated utf8 string. |
| wchar_t* wchar_name = daylight_savings ? zone_information.DaylightName |
| : zone_information.StandardName; |
| intptr_t utf8_len = |
| WideCharToMultiByte(CP_UTF8, 0, wchar_name, -1, NULL, 0, NULL, NULL); |
| char* name = Thread::Current()->zone()->Alloc<char>(utf8_len + 1); |
| WideCharToMultiByte(CP_UTF8, 0, wchar_name, -1, name, utf8_len, NULL, NULL); |
| name[utf8_len] = '\0'; |
| return name; |
| } |
| |
| |
| int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) { |
| tm decomposed; |
| // LocalTime will set _timezone. |
| bool succeeded = LocalTime(seconds_since_epoch, &decomposed); |
| if (succeeded) { |
| int inDaylightSavingsTime = decomposed.tm_isdst; |
| ASSERT(inDaylightSavingsTime == 0 || inDaylightSavingsTime == 1); |
| // Dart and Windows disagree on the sign of the bias. |
| int offset = static_cast<int>(-_timezone); |
| if (inDaylightSavingsTime == 1) { |
| static int daylight_bias = GetDaylightSavingBiasInSeconds(); |
| // Subtract because windows and Dart disagree on the sign. |
| offset = offset - daylight_bias; |
| } |
| return offset; |
| } else { |
| // Return zero like V8 does. |
| return 0; |
| } |
| } |
| |
| |
| int OS::GetLocalTimeZoneAdjustmentInSeconds() { |
| // TODO(floitsch): avoid excessive calls to _tzset? |
| _tzset(); |
| // Dart and Windows disagree on the sign of the bias. |
| return static_cast<int>(-_timezone); |
| } |
| |
| |
| int64_t OS::GetCurrentTimeMillis() { |
| return GetCurrentTimeMicros() / 1000; |
| } |
| |
| |
| int64_t OS::GetCurrentTimeMicros() { |
| static const int64_t kTimeEpoc = 116444736000000000LL; |
| static const int64_t kTimeScaler = 10; // 100 ns to us. |
| |
| // Although win32 uses 64-bit integers for representing timestamps, |
| // these are packed into a FILETIME structure. The FILETIME |
| // structure is just a struct representing a 64-bit integer. The |
| // TimeStamp union allows access to both a FILETIME and an integer |
| // representation of the timestamp. The Windows timestamp is in |
| // 100-nanosecond intervals since January 1, 1601. |
| union TimeStamp { |
| FILETIME ft_; |
| int64_t t_; |
| }; |
| TimeStamp time; |
| GetSystemTimeAsFileTime(&time.ft_); |
| return (time.t_ - kTimeEpoc) / kTimeScaler; |
| } |
| |
| |
| static int64_t qpc_ticks_per_second = 0; |
| |
| |
| int64_t OS::GetCurrentMonotonicTicks() { |
| if (qpc_ticks_per_second == 0) { |
| // QueryPerformanceCounter not supported, fallback. |
| return GetCurrentTimeMicros(); |
| } |
| // Grab performance counter value. |
| LARGE_INTEGER now; |
| QueryPerformanceCounter(&now); |
| return static_cast<int64_t>(now.QuadPart); |
| } |
| |
| |
| int64_t OS::GetCurrentMonotonicFrequency() { |
| if (qpc_ticks_per_second == 0) { |
| // QueryPerformanceCounter not supported, fallback. |
| return kMicrosecondsPerSecond; |
| } |
| return qpc_ticks_per_second; |
| } |
| |
| |
| int64_t OS::GetCurrentMonotonicMicros() { |
| int64_t ticks = GetCurrentMonotonicTicks(); |
| int64_t frequency = GetCurrentMonotonicFrequency(); |
| |
| // Convert to microseconds. |
| int64_t seconds = ticks / frequency; |
| int64_t leftover_ticks = ticks - (seconds * frequency); |
| int64_t result = seconds * kMicrosecondsPerSecond; |
| result += ((leftover_ticks * kMicrosecondsPerSecond) / frequency); |
| return result; |
| } |
| |
| |
| int64_t OS::GetCurrentThreadCPUMicros() { |
| // TODO(johnmccutchan): Implement. See base/time_win.cc for details. |
| return -1; |
| } |
| |
| |
| intptr_t OS::ActivationFrameAlignment() { |
| #if defined(TARGET_ARCH_ARM64) |
| return 16; |
| #elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS) |
| return 8; |
| #elif defined(_WIN64) |
| // Windows 64-bit ABI requires the stack to be 16-byte aligned. |
| return 16; |
| #else |
| // No requirements on Win32. |
| return 1; |
| #endif |
| } |
| |
| |
| intptr_t OS::PreferredCodeAlignment() { |
| ASSERT(32 <= OS::kMaxPreferredCodeAlignment); |
| #if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \ |
| defined(TARGET_ARCH_ARM64) || defined(TARGET_ARCH_DBC) |
| return 32; |
| #elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS) |
| return 16; |
| #else |
| #error Unsupported architecture. |
| #endif |
| } |
| |
| |
| bool OS::AllowStackFrameIteratorFromAnotherThread() { |
| return true; |
| } |
| |
| |
| int OS::NumberOfAvailableProcessors() { |
| SYSTEM_INFO info; |
| GetSystemInfo(&info); |
| return info.dwNumberOfProcessors; |
| } |
| |
| |
| uintptr_t OS::MaxRSS() { |
| PROCESS_MEMORY_COUNTERS pmc; |
| GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc)); |
| return pmc.PeakWorkingSetSize; |
| } |
| |
| |
| void OS::Sleep(int64_t millis) { |
| ::Sleep(millis); |
| } |
| |
| |
| void OS::SleepMicros(int64_t micros) { |
| // Windows only supports millisecond sleeps. |
| if (micros < kMicrosecondsPerMillisecond) { |
| // Calling ::Sleep with 0 has no determined behaviour, round up. |
| micros = kMicrosecondsPerMillisecond; |
| } |
| OS::Sleep(micros / kMicrosecondsPerMillisecond); |
| } |
| |
| |
| void OS::DebugBreak() { |
| #if defined(_MSC_VER) |
| // Microsoft Visual C/C++ or drop-in replacement. |
| __debugbreak(); |
| #elif defined(__GCC__) |
| __builtin_trap(); |
| #else |
| // Microsoft style assembly. |
| __asm { |
| int 3 |
| } |
| #endif |
| } |
| |
| |
| DART_NOINLINE uintptr_t OS::GetProgramCounter() { |
| return reinterpret_cast<uintptr_t>(_ReturnAddress()); |
| } |
| |
| |
| char* OS::StrNDup(const char* s, intptr_t n) { |
| intptr_t len = strlen(s); |
| if ((n < 0) || (len < 0)) { |
| return NULL; |
| } |
| if (n < len) { |
| len = n; |
| } |
| char* result = reinterpret_cast<char*>(malloc(len + 1)); |
| if (result == NULL) { |
| return NULL; |
| } |
| result[len] = '\0'; |
| return reinterpret_cast<char*>(memmove(result, s, len)); |
| } |
| |
| |
| intptr_t OS::StrNLen(const char* s, intptr_t n) { |
| return strnlen(s, n); |
| } |
| |
| |
| void OS::Print(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VFPrint(stdout, format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::VFPrint(FILE* stream, const char* format, va_list args) { |
| vfprintf(stream, format, args); |
| fflush(stream); |
| } |
| |
| |
| int OS::SNPrint(char* str, size_t size, const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| int retval = VSNPrint(str, size, format, args); |
| va_end(args); |
| return retval; |
| } |
| |
| |
| int OS::VSNPrint(char* str, size_t size, const char* format, va_list args) { |
| if (str == NULL || size == 0) { |
| int retval = _vscprintf(format, args); |
| if (retval < 0) { |
| FATAL1("Fatal error in OS::VSNPrint with format '%s'", format); |
| } |
| return retval; |
| } |
| va_list args_copy; |
| va_copy(args_copy, args); |
| int written = _vsnprintf(str, size, format, args_copy); |
| va_end(args_copy); |
| if (written < 0) { |
| // _vsnprintf returns -1 if the number of characters to be written is |
| // larger than 'size', so we call _vscprintf which returns the number |
| // of characters that would have been written. |
| va_list args_retry; |
| va_copy(args_retry, args); |
| written = _vscprintf(format, args_retry); |
| if (written < 0) { |
| FATAL1("Fatal error in OS::VSNPrint with format '%s'", format); |
| } |
| va_end(args_retry); |
| } |
| // Make sure to zero-terminate the string if the output was |
| // truncated or if there was an error. |
| // The static cast is safe here as we have already determined that 'written' |
| // is >= 0. |
| if (static_cast<size_t>(written) >= size) { |
| str[size - 1] = '\0'; |
| } |
| return written; |
| } |
| |
| |
| char* OS::SCreate(Zone* zone, const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| char* buffer = VSCreate(zone, format, args); |
| va_end(args); |
| return buffer; |
| } |
| |
| |
| char* OS::VSCreate(Zone* zone, const char* format, va_list args) { |
| // Measure. |
| va_list measure_args; |
| va_copy(measure_args, args); |
| intptr_t len = VSNPrint(NULL, 0, format, measure_args); |
| va_end(measure_args); |
| |
| char* buffer; |
| if (zone) { |
| buffer = zone->Alloc<char>(len + 1); |
| } else { |
| buffer = reinterpret_cast<char*>(malloc(len + 1)); |
| } |
| ASSERT(buffer != NULL); |
| |
| // Print. |
| va_list print_args; |
| va_copy(print_args, args); |
| VSNPrint(buffer, len + 1, format, print_args); |
| va_end(print_args); |
| return buffer; |
| } |
| |
| |
| bool OS::StringToInt64(const char* str, int64_t* value) { |
| ASSERT(str != NULL && strlen(str) > 0 && value != NULL); |
| int32_t base = 10; |
| char* endptr; |
| int i = 0; |
| if (str[0] == '-') { |
| i = 1; |
| } |
| if ((str[i] == '0') && (str[i + 1] == 'x' || str[i + 1] == 'X') && |
| (str[i + 2] != '\0')) { |
| base = 16; |
| } |
| errno = 0; |
| *value = _strtoi64(str, &endptr, base); |
| return ((errno == 0) && (endptr != str) && (*endptr == 0)); |
| } |
| |
| |
| void OS::RegisterCodeObservers() {} |
| |
| |
| void OS::PrintErr(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| VFPrint(stderr, format, args); |
| va_end(args); |
| } |
| |
| |
| void OS::InitOnce() { |
| // TODO(5411554): For now we check that initonce is called only once, |
| // Once there is more formal mechanism to call InitOnce we can move |
| // this check there. |
| static bool init_once_called = false; |
| ASSERT(init_once_called == false); |
| init_once_called = true; |
| // Do not pop up a message box when abort is called. |
| _set_abort_behavior(0, _WRITE_ABORT_MSG); |
| ThreadLocalData::InitOnce(); |
| MonitorWaitData::monitor_wait_data_key_ = OSThread::CreateThreadLocal(); |
| MonitorData::GetMonitorWaitDataForThread(); |
| LARGE_INTEGER ticks_per_sec; |
| if (!QueryPerformanceFrequency(&ticks_per_sec)) { |
| qpc_ticks_per_second = 0; |
| } else { |
| qpc_ticks_per_second = static_cast<int64_t>(ticks_per_sec.QuadPart); |
| } |
| } |
| |
| |
| void OS::Shutdown() { |
| // TODO(zra): Enable once VM can shutdown cleanly. |
| // ThreadLocalData::Shutdown(); |
| } |
| |
| |
| void OS::Abort() { |
| // TODO(zra): Remove once VM shuts down cleanly. |
| private_flag_windows_run_tls_destructors = false; |
| abort(); |
| } |
| |
| |
| void OS::Exit(int code) { |
| // TODO(zra): Remove once VM shuts down cleanly. |
| private_flag_windows_run_tls_destructors = false; |
| // On Windows we use ExitProcess so that threads can't clobber the exit_code. |
| // See: https://code.google.com/p/nativeclient/issues/detail?id=2870 |
| ::ExitProcess(code); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined(HOST_OS_WINDOWS) |