blob: a4db52164a90072df4e3fcefada233b751ca4a2e [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(HOST_OS_MACOS)
#include "vm/os.h"
#include <errno.h> // NOLINT
#include <limits.h> // NOLINT
#include <mach/mach.h> // NOLINT
#include <mach/clock.h> // NOLINT
#include <mach/mach_time.h> // NOLINT
#include <sys/time.h> // NOLINT
#include <sys/resource.h> // NOLINT
#include <unistd.h> // NOLINT
#if HOST_OS_IOS
#include <sys/sysctl.h> // NOLINT
#include <syslog.h> // NOLINT
#endif
#include "platform/utils.h"
#include "vm/isolate.h"
#include "vm/zone.h"
namespace dart {
const char* OS::Name() {
#if HOST_OS_IOS
return "ios";
#else
return "macos";
#endif
}
intptr_t OS::ProcessId() {
return static_cast<intptr_t>(getpid());
}
static bool LocalTime(int64_t seconds_since_epoch, tm* tm_result) {
time_t seconds = static_cast<time_t>(seconds_since_epoch);
if (seconds != seconds_since_epoch) return false;
struct tm* error_code = localtime_r(&seconds, tm_result);
return error_code != NULL;
}
const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// If unsuccessful, return an empty string like V8 does.
return (succeeded && (decomposed.tm_zone != NULL)) ? decomposed.tm_zone : "";
}
int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// If unsuccessful, return zero like V8 does.
return succeeded ? static_cast<int>(decomposed.tm_gmtoff) : 0;
}
int OS::GetLocalTimeZoneAdjustmentInSeconds() {
// TODO(floitsch): avoid excessive calls to tzset?
tzset();
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// Note that Unix and Dart disagree on the sign.
return static_cast<int>(-timezone);
}
int64_t OS::GetCurrentTimeMillis() {
return GetCurrentTimeMicros() / 1000;
}
int64_t OS::GetCurrentTimeMicros() {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) {
UNREACHABLE();
return 0;
}
return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
}
#if !HOST_OS_IOS
static mach_timebase_info_data_t timebase_info;
#endif
int64_t OS::GetCurrentMonotonicTicks() {
#if HOST_OS_IOS
// On iOS mach_absolute_time stops while the device is sleeping. Instead use
// now - KERN_BOOTTIME to get a time difference that is not impacted by clock
// changes. KERN_BOOTTIME will be updated by the system whenever the system
// clock change.
struct timeval boottime;
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
size_t size = sizeof(boottime);
int kr = sysctl(mib, sizeof(mib) / sizeof(mib[0]), &boottime, &size, NULL, 0);
ASSERT(KERN_SUCCESS == kr);
int64_t now = GetCurrentTimeMicros();
int64_t origin = boottime.tv_sec * kMicrosecondsPerSecond;
origin += boottime.tv_usec;
return now - origin;
#else
if (timebase_info.denom == 0) {
kern_return_t kr = mach_timebase_info(&timebase_info);
ASSERT(KERN_SUCCESS == kr);
}
ASSERT(timebase_info.denom != 0);
// timebase_info converts absolute time tick units into nanoseconds.
int64_t result = mach_absolute_time();
result *= timebase_info.numer;
result /= timebase_info.denom;
return result;
#endif // HOST_OS_IOS
}
int64_t OS::GetCurrentMonotonicFrequency() {
#if HOST_OS_IOS
return kMicrosecondsPerSecond;
#else
return kNanosecondsPerSecond;
#endif // HOST_OS_IOS
}
int64_t OS::GetCurrentMonotonicMicros() {
#if HOST_OS_IOS
ASSERT(GetCurrentMonotonicFrequency() == kMicrosecondsPerSecond);
return GetCurrentMonotonicTicks();
#else
ASSERT(GetCurrentMonotonicFrequency() == kNanosecondsPerSecond);
return GetCurrentMonotonicTicks() / kNanosecondsPerMicrosecond;
#endif // HOST_OS_IOS
}
int64_t OS::GetCurrentThreadCPUMicros() {
mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
thread_basic_info_data_t info_data;
thread_basic_info_t info = &info_data;
mach_port_t thread_port = mach_thread_self();
if (thread_port == MACH_PORT_NULL) {
return -1;
}
kern_return_t r =
thread_info(thread_port, THREAD_BASIC_INFO, (thread_info_t)info, &count);
mach_port_deallocate(mach_task_self(), thread_port);
ASSERT(r == KERN_SUCCESS);
int64_t thread_cpu_micros =
(info->system_time.seconds + info->user_time.seconds);
thread_cpu_micros *= kMicrosecondsPerSecond;
thread_cpu_micros += info->user_time.microseconds;
thread_cpu_micros += info->system_time.microseconds;
return thread_cpu_micros;
}
intptr_t OS::ActivationFrameAlignment() {
#if HOST_OS_IOS
#if TARGET_ARCH_ARM
// Even if we generate code that maintains a stronger alignment, we cannot
// assert the stronger stack alignment because C++ code will not maintain it.
return 8;
#elif TARGET_ARCH_ARM64
return 16;
#elif TARGET_ARCH_IA32
return 16; // iOS simulator
#elif TARGET_ARCH_X64
return 16; // iOS simulator
#elif TARGET_ARCH_DBC
return 16;
#else
#error Unimplemented
#endif
#else // HOST_OS_IOS
// OS X activation frames must be 16 byte-aligned; see "Mac OS X ABI
// Function Call Guide".
return 16;
#endif // HOST_OS_IOS
}
intptr_t OS::PreferredCodeAlignment() {
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64) || defined(TARGET_ARCH_DBC)
const int kMinimumAlignment = 32;
#elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS)
const int kMinimumAlignment = 16;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default code alignment for
// testing purposes.
// Flags::DebugIsInt("codealign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
ASSERT(alignment <= OS::kMaxPreferredCodeAlignment);
return alignment;
}
bool OS::AllowStackFrameIteratorFromAnotherThread() {
return false;
}
int OS::NumberOfAvailableProcessors() {
return sysconf(_SC_NPROCESSORS_ONLN);
}
uintptr_t OS::MaxRSS() {
struct rusage usage;
usage.ru_maxrss = 0;
int r = getrusage(RUSAGE_SELF, &usage);
ASSERT(r == 0);
return usage.ru_maxrss;
}
void OS::Sleep(int64_t millis) {
int64_t micros = millis * kMicrosecondsPerMillisecond;
SleepMicros(micros);
}
void OS::SleepMicros(int64_t micros) {
struct timespec req; // requested.
struct timespec rem; // remainder.
int64_t seconds = micros / kMicrosecondsPerSecond;
if (seconds > kMaxInt32) {
// Avoid truncation of overly large sleep values.
seconds = kMaxInt32;
}
micros = micros - seconds * kMicrosecondsPerSecond;
int64_t nanos = micros * kNanosecondsPerMicrosecond;
req.tv_sec = static_cast<int32_t>(seconds);
req.tv_nsec = static_cast<long>(nanos); // NOLINT (long used in timespec).
while (true) {
int r = nanosleep(&req, &rem);
if (r == 0) {
break;
}
// We should only ever see an interrupt error.
ASSERT(errno == EINTR);
// Copy remainder into requested and repeat.
req = rem;
}
}
void OS::DebugBreak() {
__builtin_trap();
}
uintptr_t DART_NOINLINE OS::GetProgramCounter() {
return reinterpret_cast<uintptr_t>(
__builtin_extract_return_addr(__builtin_return_address(0)));
}
char* OS::StrNDup(const char* s, intptr_t n) {
// strndup has only been added to Mac OS X in 10.7. We are supplying
// our own copy here if needed.
#if !defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) || \
__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ <= 1060
intptr_t len = strlen(s);
if ((n < 0) || (len < 0)) {
return NULL;
}
if (n < len) {
len = n;
}
char* result = reinterpret_cast<char*>(malloc(len + 1));
if (result == NULL) {
return NULL;
}
result[len] = '\0';
return reinterpret_cast<char*>(memmove(result, s, len));
#else // !defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) || ...
return strndup(s, n);
#endif // !defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) || ...
}
intptr_t OS::StrNLen(const char* s, intptr_t n) {
// strnlen has only been added to Mac OS X in 10.7. We are supplying
// our own copy here if needed.
#if !defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) || \
__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ <= 1060
intptr_t len = 0;
while ((len <= n) && (*s != '\0')) {
s++;
len++;
}
return len;
#else // !defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) || ...
return strnlen(s, n);
#endif // !defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) || ...
}
void OS::Print(const char* format, ...) {
#if HOST_OS_IOS
va_list args;
va_start(args, format);
vsyslog(LOG_INFO, format, args);
va_end(args);
#else
va_list args;
va_start(args, format);
VFPrint(stdout, format, args);
va_end(args);
#endif
}
void OS::VFPrint(FILE* stream, const char* format, va_list args) {
vfprintf(stream, format, args);
fflush(stream);
}
int OS::SNPrint(char* str, size_t size, const char* format, ...) {
va_list args;
va_start(args, format);
int retval = VSNPrint(str, size, format, args);
va_end(args);
return retval;
}
int OS::VSNPrint(char* str, size_t size, const char* format, va_list args) {
int retval = vsnprintf(str, size, format, args);
if (retval < 0) {
FATAL1("Fatal error in OS::VSNPrint with format '%s'", format);
}
return retval;
}
char* OS::SCreate(Zone* zone, const char* format, ...) {
va_list args;
va_start(args, format);
char* buffer = VSCreate(zone, format, args);
va_end(args);
return buffer;
}
char* OS::VSCreate(Zone* zone, const char* format, va_list args) {
// Measure.
va_list measure_args;
va_copy(measure_args, args);
intptr_t len = VSNPrint(NULL, 0, format, measure_args);
va_end(measure_args);
char* buffer;
if (zone) {
buffer = zone->Alloc<char>(len + 1);
} else {
buffer = reinterpret_cast<char*>(malloc(len + 1));
}
ASSERT(buffer != NULL);
// Print.
va_list print_args;
va_copy(print_args, args);
VSNPrint(buffer, len + 1, format, print_args);
va_end(print_args);
return buffer;
}
bool OS::StringToInt64(const char* str, int64_t* value) {
ASSERT(str != NULL && strlen(str) > 0 && value != NULL);
int32_t base = 10;
char* endptr;
int i = 0;
if (str[0] == '-') {
i = 1;
}
if ((str[i] == '0') && (str[i + 1] == 'x' || str[i + 1] == 'X') &&
(str[i + 2] != '\0')) {
base = 16;
}
errno = 0;
*value = strtoll(str, &endptr, base);
return ((errno == 0) && (endptr != str) && (*endptr == 0));
}
void OS::RegisterCodeObservers() {}
void OS::PrintErr(const char* format, ...) {
#if HOST_OS_IOS
va_list args;
va_start(args, format);
vsyslog(LOG_ERR, format, args);
va_end(args);
#else
va_list args;
va_start(args, format);
VFPrint(stderr, format, args);
va_end(args);
#endif
}
void OS::InitOnce() {
// TODO(5411554): For now we check that initonce is called only once,
// Once there is more formal mechanism to call InitOnce we can move
// this check there.
static bool init_once_called = false;
ASSERT(init_once_called == false);
init_once_called = true;
}
void OS::Shutdown() {}
void OS::Abort() {
abort();
}
void OS::Exit(int code) {
exit(code);
}
} // namespace dart
#endif // defined(HOST_OS_MACOS)