| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| #ifndef DART_PRECOMPILED_RUNTIME |
| #include "vm/jit_optimizer.h" |
| |
| #include "vm/bit_vector.h" |
| #include "vm/branch_optimizer.h" |
| #include "vm/cha.h" |
| #include "vm/compiler.h" |
| #include "vm/cpu.h" |
| #include "vm/dart_entry.h" |
| #include "vm/exceptions.h" |
| #include "vm/flow_graph_builder.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/flow_graph_inliner.h" |
| #include "vm/flow_graph_range_analysis.h" |
| #include "vm/hash_map.h" |
| #include "vm/il_printer.h" |
| #include "vm/intermediate_language.h" |
| #include "vm/object_store.h" |
| #include "vm/parser.h" |
| #include "vm/resolver.h" |
| #include "vm/scopes.h" |
| #include "vm/stack_frame.h" |
| #include "vm/symbols.h" |
| |
| namespace dart { |
| |
| // Quick access to the current isolate and zone. |
| #define I (isolate()) |
| #define Z (zone()) |
| |
| static bool ShouldInlineSimd() { |
| return FlowGraphCompiler::SupportsUnboxedSimd128(); |
| } |
| |
| |
| static bool CanUnboxDouble() { |
| return FlowGraphCompiler::SupportsUnboxedDoubles(); |
| } |
| |
| |
| static bool CanConvertUnboxedMintToDouble() { |
| return FlowGraphCompiler::CanConvertUnboxedMintToDouble(); |
| } |
| |
| |
| // Optimize instance calls using ICData. |
| void JitOptimizer::ApplyICData() { |
| VisitBlocks(); |
| } |
| |
| |
| // Optimize instance calls using cid. This is called after optimizer |
| // converted instance calls to instructions. Any remaining |
| // instance calls are either megamorphic calls, cannot be optimized or |
| // have no runtime type feedback collected. |
| // Attempts to convert an instance call (IC call) using propagated class-ids, |
| // e.g., receiver class id, guarded-cid, or by guessing cid-s. |
| void JitOptimizer::ApplyClassIds() { |
| ASSERT(current_iterator_ == NULL); |
| for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| !block_it.Done(); block_it.Advance()) { |
| ForwardInstructionIterator it(block_it.Current()); |
| current_iterator_ = ⁢ |
| for (; !it.Done(); it.Advance()) { |
| Instruction* instr = it.Current(); |
| if (instr->IsInstanceCall()) { |
| InstanceCallInstr* call = instr->AsInstanceCall(); |
| if (call->HasICData()) { |
| if (TryCreateICData(call)) { |
| VisitInstanceCall(call); |
| } |
| } |
| } else if (instr->IsPolymorphicInstanceCall()) { |
| SpecializePolymorphicInstanceCall(instr->AsPolymorphicInstanceCall()); |
| } |
| } |
| current_iterator_ = NULL; |
| } |
| } |
| |
| |
| // TODO(srdjan): Test/support other number types as well. |
| static bool IsNumberCid(intptr_t cid) { |
| return (cid == kSmiCid) || (cid == kDoubleCid); |
| } |
| |
| |
| bool JitOptimizer::TryCreateICData(InstanceCallInstr* call) { |
| ASSERT(call->HasICData()); |
| if (call->ic_data()->NumberOfUsedChecks() > 0) { |
| // This occurs when an instance call has too many checks, will be converted |
| // to megamorphic call. |
| return false; |
| } |
| |
| GrowableArray<intptr_t> class_ids(call->ic_data()->NumArgsTested()); |
| ASSERT(call->ic_data()->NumArgsTested() <= call->ArgumentCount()); |
| for (intptr_t i = 0; i < call->ic_data()->NumArgsTested(); i++) { |
| class_ids.Add(call->PushArgumentAt(i)->value()->Type()->ToCid()); |
| } |
| |
| const Token::Kind op_kind = call->token_kind(); |
| if (Token::IsRelationalOperator(op_kind) || |
| Token::IsEqualityOperator(op_kind) || Token::IsBinaryOperator(op_kind)) { |
| // Guess cid: if one of the inputs is a number assume that the other |
| // is a number of same type. |
| if (FLAG_guess_icdata_cid) { |
| const intptr_t cid_0 = class_ids[0]; |
| const intptr_t cid_1 = class_ids[1]; |
| if ((cid_0 == kDynamicCid) && (IsNumberCid(cid_1))) { |
| class_ids[0] = cid_1; |
| } else if (IsNumberCid(cid_0) && (cid_1 == kDynamicCid)) { |
| class_ids[1] = cid_0; |
| } |
| } |
| } |
| |
| bool all_cids_known = true; |
| for (intptr_t i = 0; i < class_ids.length(); i++) { |
| if (class_ids[i] == kDynamicCid) { |
| // Not all cid-s known. |
| all_cids_known = false; |
| break; |
| } |
| } |
| |
| if (all_cids_known) { |
| const Class& receiver_class = |
| Class::Handle(Z, isolate()->class_table()->At(class_ids[0])); |
| if (!receiver_class.is_finalized()) { |
| // Do not eagerly finalize classes. ResolveDynamicForReceiverClass can |
| // cause class finalization, since callee's receiver class may not be |
| // finalized yet. |
| return false; |
| } |
| const Array& args_desc_array = |
| Array::Handle(Z, ArgumentsDescriptor::New(call->ArgumentCount(), |
| call->argument_names())); |
| ArgumentsDescriptor args_desc(args_desc_array); |
| const Function& function = |
| Function::Handle(Z, Resolver::ResolveDynamicForReceiverClass( |
| receiver_class, call->function_name(), |
| args_desc, false /* allow add */)); |
| if (function.IsNull()) { |
| return false; |
| } |
| |
| // Create new ICData, do not modify the one attached to the instruction |
| // since it is attached to the assembly instruction itself. |
| // TODO(srdjan): Prevent modification of ICData object that is |
| // referenced in assembly code. |
| const ICData& ic_data = ICData::ZoneHandle( |
| Z, ICData::NewFrom(*call->ic_data(), class_ids.length())); |
| if (class_ids.length() > 1) { |
| ic_data.AddCheck(class_ids, function); |
| } else { |
| ASSERT(class_ids.length() == 1); |
| ic_data.AddReceiverCheck(class_ids[0], function); |
| } |
| call->set_ic_data(&ic_data); |
| return true; |
| } |
| |
| // Check if getter or setter in function's class and class is currently leaf. |
| if (FLAG_guess_icdata_cid && ((call->token_kind() == Token::kGET) || |
| (call->token_kind() == Token::kSET))) { |
| const Class& owner_class = Class::Handle(Z, function().Owner()); |
| if (!owner_class.is_abstract() && !CHA::HasSubclasses(owner_class) && |
| !CHA::IsImplemented(owner_class)) { |
| const Array& args_desc_array = |
| Array::Handle(Z, ArgumentsDescriptor::New(call->ArgumentCount(), |
| call->argument_names())); |
| ArgumentsDescriptor args_desc(args_desc_array); |
| const Function& function = |
| Function::Handle(Z, Resolver::ResolveDynamicForReceiverClass( |
| owner_class, call->function_name(), args_desc, |
| false /* allow_add */)); |
| if (!function.IsNull()) { |
| const ICData& ic_data = ICData::ZoneHandle( |
| Z, ICData::NewFrom(*call->ic_data(), class_ids.length())); |
| ic_data.AddReceiverCheck(owner_class.id(), function); |
| call->set_ic_data(&ic_data); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| void JitOptimizer::SpecializePolymorphicInstanceCall( |
| PolymorphicInstanceCallInstr* call) { |
| if (!FLAG_polymorphic_with_deopt) { |
| // Specialization adds receiver checks which can lead to deoptimization. |
| return; |
| } |
| if (!call->with_checks()) { |
| return; // Already specialized. |
| } |
| |
| const intptr_t receiver_cid = |
| call->PushArgumentAt(0)->value()->Type()->ToCid(); |
| if (receiver_cid == kDynamicCid) { |
| return; // No information about receiver was infered. |
| } |
| |
| const ICData& ic_data = FlowGraphCompiler::TrySpecializeICDataByReceiverCid( |
| call->ic_data(), receiver_cid); |
| if (ic_data.raw() == call->ic_data().raw()) { |
| // No specialization. |
| return; |
| } |
| |
| const bool with_checks = false; |
| const bool complete = false; |
| PolymorphicInstanceCallInstr* specialized = |
| new (Z) PolymorphicInstanceCallInstr(call->instance_call(), ic_data, |
| with_checks, complete); |
| call->ReplaceWith(specialized, current_iterator()); |
| } |
| |
| |
| static bool ClassIdIsOneOf(intptr_t class_id, |
| const GrowableArray<intptr_t>& class_ids) { |
| for (intptr_t i = 0; i < class_ids.length(); i++) { |
| ASSERT(class_ids[i] != kIllegalCid); |
| if (class_ids[i] == class_id) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| // Returns true if ICData tests two arguments and all ICData cids are in the |
| // required sets 'receiver_class_ids' or 'argument_class_ids', respectively. |
| static bool ICDataHasOnlyReceiverArgumentClassIds( |
| const ICData& ic_data, |
| const GrowableArray<intptr_t>& receiver_class_ids, |
| const GrowableArray<intptr_t>& argument_class_ids) { |
| if (ic_data.NumArgsTested() != 2) { |
| return false; |
| } |
| const intptr_t len = ic_data.NumberOfChecks(); |
| GrowableArray<intptr_t> class_ids; |
| for (intptr_t i = 0; i < len; i++) { |
| if (ic_data.IsUsedAt(i)) { |
| ic_data.GetClassIdsAt(i, &class_ids); |
| ASSERT(class_ids.length() == 2); |
| if (!ClassIdIsOneOf(class_ids[0], receiver_class_ids) || |
| !ClassIdIsOneOf(class_ids[1], argument_class_ids)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| |
| static bool ICDataHasReceiverArgumentClassIds(const ICData& ic_data, |
| intptr_t receiver_class_id, |
| intptr_t argument_class_id) { |
| if (ic_data.NumArgsTested() != 2) { |
| return false; |
| } |
| const intptr_t len = ic_data.NumberOfChecks(); |
| for (intptr_t i = 0; i < len; i++) { |
| if (ic_data.IsUsedAt(i)) { |
| GrowableArray<intptr_t> class_ids; |
| ic_data.GetClassIdsAt(i, &class_ids); |
| ASSERT(class_ids.length() == 2); |
| if ((class_ids[0] == receiver_class_id) && |
| (class_ids[1] == argument_class_id)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| |
| static bool HasOnlyOneSmi(const ICData& ic_data) { |
| return (ic_data.NumberOfUsedChecks() == 1) && |
| ic_data.HasReceiverClassId(kSmiCid); |
| } |
| |
| |
| static bool HasOnlySmiOrMint(const ICData& ic_data) { |
| if (ic_data.NumberOfUsedChecks() == 1) { |
| return ic_data.HasReceiverClassId(kSmiCid) || |
| ic_data.HasReceiverClassId(kMintCid); |
| } |
| return (ic_data.NumberOfUsedChecks() == 2) && |
| ic_data.HasReceiverClassId(kSmiCid) && |
| ic_data.HasReceiverClassId(kMintCid); |
| } |
| |
| |
| static bool HasOnlyTwoOf(const ICData& ic_data, intptr_t cid) { |
| if (ic_data.NumberOfUsedChecks() != 1) { |
| return false; |
| } |
| GrowableArray<intptr_t> first; |
| GrowableArray<intptr_t> second; |
| ic_data.GetUsedCidsForTwoArgs(&first, &second); |
| return (first[0] == cid) && (second[0] == cid); |
| } |
| |
| // Returns false if the ICData contains anything other than the 4 combinations |
| // of Mint and Smi for the receiver and argument classes. |
| static bool HasTwoMintOrSmi(const ICData& ic_data) { |
| GrowableArray<intptr_t> first; |
| GrowableArray<intptr_t> second; |
| ic_data.GetUsedCidsForTwoArgs(&first, &second); |
| for (intptr_t i = 0; i < first.length(); i++) { |
| if ((first[i] != kSmiCid) && (first[i] != kMintCid)) { |
| return false; |
| } |
| if ((second[i] != kSmiCid) && (second[i] != kMintCid)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| // Returns false if the ICData contains anything other than the 4 combinations |
| // of Double and Smi for the receiver and argument classes. |
| static bool HasTwoDoubleOrSmi(const ICData& ic_data) { |
| GrowableArray<intptr_t> class_ids(2); |
| class_ids.Add(kSmiCid); |
| class_ids.Add(kDoubleCid); |
| return ICDataHasOnlyReceiverArgumentClassIds(ic_data, class_ids, class_ids); |
| } |
| |
| |
| static bool HasOnlyOneDouble(const ICData& ic_data) { |
| return (ic_data.NumberOfUsedChecks() == 1) && |
| ic_data.HasReceiverClassId(kDoubleCid); |
| } |
| |
| |
| static bool ShouldSpecializeForDouble(const ICData& ic_data) { |
| // Don't specialize for double if we can't unbox them. |
| if (!CanUnboxDouble()) { |
| return false; |
| } |
| |
| // Unboxed double operation can't handle case of two smis. |
| if (ICDataHasReceiverArgumentClassIds(ic_data, kSmiCid, kSmiCid)) { |
| return false; |
| } |
| |
| // Check that it have seen only smis and doubles. |
| return HasTwoDoubleOrSmi(ic_data); |
| } |
| |
| |
| void JitOptimizer::ReplaceCall(Definition* call, Definition* replacement) { |
| // Remove the original push arguments. |
| for (intptr_t i = 0; i < call->ArgumentCount(); ++i) { |
| PushArgumentInstr* push = call->PushArgumentAt(i); |
| push->ReplaceUsesWith(push->value()->definition()); |
| push->RemoveFromGraph(); |
| } |
| call->ReplaceWith(replacement, current_iterator()); |
| } |
| |
| |
| void JitOptimizer::AddCheckSmi(Definition* to_check, |
| intptr_t deopt_id, |
| Environment* deopt_environment, |
| Instruction* insert_before) { |
| if (to_check->Type()->ToCid() != kSmiCid) { |
| InsertBefore(insert_before, |
| new (Z) CheckSmiInstr(new (Z) Value(to_check), deopt_id, |
| insert_before->token_pos()), |
| deopt_environment, FlowGraph::kEffect); |
| } |
| } |
| |
| |
| Instruction* JitOptimizer::GetCheckClass(Definition* to_check, |
| const ICData& unary_checks, |
| intptr_t deopt_id, |
| TokenPosition token_pos) { |
| if ((unary_checks.NumberOfUsedChecks() == 1) && |
| unary_checks.HasReceiverClassId(kSmiCid)) { |
| return new (Z) CheckSmiInstr(new (Z) Value(to_check), deopt_id, token_pos); |
| } |
| return new (Z) CheckClassInstr(new (Z) Value(to_check), deopt_id, |
| unary_checks, token_pos); |
| } |
| |
| |
| void JitOptimizer::AddCheckClass(Definition* to_check, |
| const ICData& unary_checks, |
| intptr_t deopt_id, |
| Environment* deopt_environment, |
| Instruction* insert_before) { |
| // Type propagation has not run yet, we cannot eliminate the check. |
| Instruction* check = GetCheckClass(to_check, unary_checks, deopt_id, |
| insert_before->token_pos()); |
| InsertBefore(insert_before, check, deopt_environment, FlowGraph::kEffect); |
| } |
| |
| |
| void JitOptimizer::AddReceiverCheck(InstanceCallInstr* call) { |
| AddCheckClass(call->ArgumentAt(0), |
| ICData::ZoneHandle(Z, call->ic_data()->AsUnaryClassChecks()), |
| call->deopt_id(), call->env(), call); |
| } |
| |
| |
| static bool ArgIsAlways(intptr_t cid, |
| const ICData& ic_data, |
| intptr_t arg_number) { |
| ASSERT(ic_data.NumArgsTested() > arg_number); |
| if (ic_data.NumberOfUsedChecks() == 0) { |
| return false; |
| } |
| const intptr_t num_checks = ic_data.NumberOfChecks(); |
| for (intptr_t i = 0; i < num_checks; i++) { |
| if (ic_data.IsUsedAt(i) && ic_data.GetClassIdAt(i, arg_number) != cid) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| bool JitOptimizer::TryReplaceWithIndexedOp(InstanceCallInstr* call) { |
| // Check for monomorphic IC data. |
| if (!call->HasICData()) return false; |
| const ICData& ic_data = |
| ICData::Handle(Z, call->ic_data()->AsUnaryClassChecks()); |
| if (!ic_data.NumberOfChecksIs(1)) { |
| return false; |
| } |
| return FlowGraphInliner::TryReplaceInstanceCallWithInline( |
| flow_graph_, current_iterator(), call); |
| } |
| |
| |
| // Return true if d is a string of length one (a constant or result from |
| // from string-from-char-code instruction. |
| static bool IsLengthOneString(Definition* d) { |
| if (d->IsConstant()) { |
| const Object& obj = d->AsConstant()->value(); |
| if (obj.IsString()) { |
| return String::Cast(obj).Length() == 1; |
| } else { |
| return false; |
| } |
| } else { |
| return d->IsOneByteStringFromCharCode(); |
| } |
| } |
| |
| |
| // Returns true if the string comparison was converted into char-code |
| // comparison. Conversion is only possible for strings of length one. |
| // E.g., detect str[x] == "x"; and use an integer comparison of char-codes. |
| // TODO(srdjan): Expand for two-byte and external strings. |
| bool JitOptimizer::TryStringLengthOneEquality(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| ASSERT(HasOnlyTwoOf(*call->ic_data(), kOneByteStringCid)); |
| // Check that left and right are length one strings (either string constants |
| // or results of string-from-char-code. |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| Value* left_val = NULL; |
| Definition* to_remove_left = NULL; |
| if (IsLengthOneString(right)) { |
| // Swap, since we know that both arguments are strings |
| Definition* temp = left; |
| left = right; |
| right = temp; |
| } |
| if (IsLengthOneString(left)) { |
| // Optimize if left is a string with length one (either constant or |
| // result of string-from-char-code. |
| if (left->IsConstant()) { |
| ConstantInstr* left_const = left->AsConstant(); |
| const String& str = String::Cast(left_const->value()); |
| ASSERT(str.Length() == 1); |
| ConstantInstr* char_code_left = flow_graph()->GetConstant( |
| Smi::ZoneHandle(Z, Smi::New(static_cast<intptr_t>(str.CharAt(0))))); |
| left_val = new (Z) Value(char_code_left); |
| } else if (left->IsOneByteStringFromCharCode()) { |
| // Use input of string-from-charcode as left value. |
| OneByteStringFromCharCodeInstr* instr = |
| left->AsOneByteStringFromCharCode(); |
| left_val = new (Z) Value(instr->char_code()->definition()); |
| to_remove_left = instr; |
| } else { |
| // IsLengthOneString(left) should have been false. |
| UNREACHABLE(); |
| } |
| |
| Definition* to_remove_right = NULL; |
| Value* right_val = NULL; |
| if (right->IsOneByteStringFromCharCode()) { |
| // Skip string-from-char-code, and use its input as right value. |
| OneByteStringFromCharCodeInstr* right_instr = |
| right->AsOneByteStringFromCharCode(); |
| right_val = new (Z) Value(right_instr->char_code()->definition()); |
| to_remove_right = right_instr; |
| } else { |
| const ICData& unary_checks_1 = |
| ICData::ZoneHandle(Z, call->ic_data()->AsUnaryClassChecksForArgNr(1)); |
| AddCheckClass(right, unary_checks_1, call->deopt_id(), call->env(), call); |
| // String-to-char-code instructions returns -1 (illegal charcode) if |
| // string is not of length one. |
| StringToCharCodeInstr* char_code_right = new (Z) |
| StringToCharCodeInstr(new (Z) Value(right), kOneByteStringCid); |
| InsertBefore(call, char_code_right, call->env(), FlowGraph::kValue); |
| right_val = new (Z) Value(char_code_right); |
| } |
| |
| // Comparing char-codes instead of strings. |
| EqualityCompareInstr* comp = |
| new (Z) EqualityCompareInstr(call->token_pos(), op_kind, left_val, |
| right_val, kSmiCid, call->deopt_id()); |
| ReplaceCall(call, comp); |
| |
| // Remove dead instructions. |
| if ((to_remove_left != NULL) && |
| (to_remove_left->input_use_list() == NULL)) { |
| to_remove_left->ReplaceUsesWith(flow_graph()->constant_null()); |
| to_remove_left->RemoveFromGraph(); |
| } |
| if ((to_remove_right != NULL) && |
| (to_remove_right->input_use_list() == NULL)) { |
| to_remove_right->ReplaceUsesWith(flow_graph()->constant_null()); |
| to_remove_right->RemoveFromGraph(); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| |
| static bool SmiFitsInDouble() { |
| return kSmiBits < 53; |
| } |
| |
| bool JitOptimizer::TryReplaceWithEqualityOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| const ICData& ic_data = *call->ic_data(); |
| ASSERT(ic_data.NumArgsTested() == 2); |
| |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| |
| intptr_t cid = kIllegalCid; |
| if (HasOnlyTwoOf(ic_data, kOneByteStringCid)) { |
| if (TryStringLengthOneEquality(call, op_kind)) { |
| return true; |
| } else { |
| return false; |
| } |
| } else if (HasOnlyTwoOf(ic_data, kSmiCid)) { |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(left), call->deopt_id(), |
| call->token_pos()), |
| call->env(), FlowGraph::kEffect); |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(right), call->deopt_id(), |
| call->token_pos()), |
| call->env(), FlowGraph::kEffect); |
| cid = kSmiCid; |
| } else if (HasTwoMintOrSmi(ic_data) && |
| FlowGraphCompiler::SupportsUnboxedMints()) { |
| cid = kMintCid; |
| } else if (HasTwoDoubleOrSmi(ic_data) && CanUnboxDouble()) { |
| // Use double comparison. |
| if (SmiFitsInDouble()) { |
| cid = kDoubleCid; |
| } else { |
| if (ICDataHasReceiverArgumentClassIds(ic_data, kSmiCid, kSmiCid)) { |
| // We cannot use double comparison on two smis. Need polymorphic |
| // call. |
| return false; |
| } else { |
| InsertBefore(call, new (Z) CheckEitherNonSmiInstr(new (Z) Value(left), |
| new (Z) Value(right), |
| call->deopt_id()), |
| call->env(), FlowGraph::kEffect); |
| cid = kDoubleCid; |
| } |
| } |
| } else { |
| // Check if ICDData contains checks with Smi/Null combinations. In that case |
| // we can still emit the optimized Smi equality operation but need to add |
| // checks for null or Smi. |
| GrowableArray<intptr_t> smi_or_null(2); |
| smi_or_null.Add(kSmiCid); |
| smi_or_null.Add(kNullCid); |
| if (ICDataHasOnlyReceiverArgumentClassIds(ic_data, smi_or_null, |
| smi_or_null)) { |
| const ICData& unary_checks_0 = |
| ICData::ZoneHandle(Z, call->ic_data()->AsUnaryClassChecks()); |
| AddCheckClass(left, unary_checks_0, call->deopt_id(), call->env(), call); |
| |
| const ICData& unary_checks_1 = |
| ICData::ZoneHandle(Z, call->ic_data()->AsUnaryClassChecksForArgNr(1)); |
| AddCheckClass(right, unary_checks_1, call->deopt_id(), call->env(), call); |
| cid = kSmiCid; |
| } else { |
| // Shortcut for equality with null. |
| ConstantInstr* right_const = right->AsConstant(); |
| ConstantInstr* left_const = left->AsConstant(); |
| if ((right_const != NULL && right_const->value().IsNull()) || |
| (left_const != NULL && left_const->value().IsNull())) { |
| StrictCompareInstr* comp = new (Z) |
| StrictCompareInstr(call->token_pos(), Token::kEQ_STRICT, |
| new (Z) Value(left), new (Z) Value(right), |
| false); // No number check. |
| ReplaceCall(call, comp); |
| return true; |
| } |
| return false; |
| } |
| } |
| ASSERT(cid != kIllegalCid); |
| EqualityCompareInstr* comp = new (Z) |
| EqualityCompareInstr(call->token_pos(), op_kind, new (Z) Value(left), |
| new (Z) Value(right), cid, call->deopt_id()); |
| ReplaceCall(call, comp); |
| return true; |
| } |
| |
| |
| bool JitOptimizer::TryReplaceWithRelationalOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| const ICData& ic_data = *call->ic_data(); |
| ASSERT(ic_data.NumArgsTested() == 2); |
| |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| |
| intptr_t cid = kIllegalCid; |
| if (HasOnlyTwoOf(ic_data, kSmiCid)) { |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(left), call->deopt_id(), |
| call->token_pos()), |
| call->env(), FlowGraph::kEffect); |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(right), call->deopt_id(), |
| call->token_pos()), |
| call->env(), FlowGraph::kEffect); |
| cid = kSmiCid; |
| } else if (HasTwoMintOrSmi(ic_data) && |
| FlowGraphCompiler::SupportsUnboxedMints()) { |
| cid = kMintCid; |
| } else if (HasTwoDoubleOrSmi(ic_data) && CanUnboxDouble()) { |
| // Use double comparison. |
| if (SmiFitsInDouble()) { |
| cid = kDoubleCid; |
| } else { |
| if (ICDataHasReceiverArgumentClassIds(ic_data, kSmiCid, kSmiCid)) { |
| // We cannot use double comparison on two smis. Need polymorphic |
| // call. |
| return false; |
| } else { |
| InsertBefore(call, new (Z) CheckEitherNonSmiInstr(new (Z) Value(left), |
| new (Z) Value(right), |
| call->deopt_id()), |
| call->env(), FlowGraph::kEffect); |
| cid = kDoubleCid; |
| } |
| } |
| } else { |
| return false; |
| } |
| ASSERT(cid != kIllegalCid); |
| RelationalOpInstr* comp = |
| new (Z) RelationalOpInstr(call->token_pos(), op_kind, new (Z) Value(left), |
| new (Z) Value(right), cid, call->deopt_id()); |
| ReplaceCall(call, comp); |
| return true; |
| } |
| |
| |
| bool JitOptimizer::TryReplaceWithBinaryOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| intptr_t operands_type = kIllegalCid; |
| ASSERT(call->HasICData()); |
| const ICData& ic_data = *call->ic_data(); |
| switch (op_kind) { |
| case Token::kADD: |
| case Token::kSUB: |
| case Token::kMUL: |
| if (HasOnlyTwoOf(ic_data, kSmiCid)) { |
| // Don't generate smi code if the IC data is marked because |
| // of an overflow. |
| operands_type = ic_data.HasDeoptReason(ICData::kDeoptBinarySmiOp) |
| ? kMintCid |
| : kSmiCid; |
| } else if (HasTwoMintOrSmi(ic_data) && |
| FlowGraphCompiler::SupportsUnboxedMints()) { |
| // Don't generate mint code if the IC data is marked because of an |
| // overflow. |
| if (ic_data.HasDeoptReason(ICData::kDeoptBinaryMintOp)) return false; |
| operands_type = kMintCid; |
| } else if (ShouldSpecializeForDouble(ic_data)) { |
| operands_type = kDoubleCid; |
| } else if (HasOnlyTwoOf(ic_data, kFloat32x4Cid)) { |
| operands_type = kFloat32x4Cid; |
| } else if (HasOnlyTwoOf(ic_data, kInt32x4Cid)) { |
| ASSERT(op_kind != Token::kMUL); // Int32x4 doesn't have a multiply op. |
| operands_type = kInt32x4Cid; |
| } else if (HasOnlyTwoOf(ic_data, kFloat64x2Cid)) { |
| operands_type = kFloat64x2Cid; |
| } else { |
| return false; |
| } |
| break; |
| case Token::kDIV: |
| if (!FlowGraphCompiler::SupportsHardwareDivision()) return false; |
| if (ShouldSpecializeForDouble(ic_data) || |
| HasOnlyTwoOf(ic_data, kSmiCid)) { |
| operands_type = kDoubleCid; |
| } else if (HasOnlyTwoOf(ic_data, kFloat32x4Cid)) { |
| operands_type = kFloat32x4Cid; |
| } else if (HasOnlyTwoOf(ic_data, kFloat64x2Cid)) { |
| operands_type = kFloat64x2Cid; |
| } else { |
| return false; |
| } |
| break; |
| case Token::kBIT_AND: |
| case Token::kBIT_OR: |
| case Token::kBIT_XOR: |
| if (HasOnlyTwoOf(ic_data, kSmiCid)) { |
| operands_type = kSmiCid; |
| } else if (HasTwoMintOrSmi(ic_data)) { |
| operands_type = kMintCid; |
| } else if (HasOnlyTwoOf(ic_data, kInt32x4Cid)) { |
| operands_type = kInt32x4Cid; |
| } else { |
| return false; |
| } |
| break; |
| case Token::kSHR: |
| case Token::kSHL: |
| if (HasOnlyTwoOf(ic_data, kSmiCid)) { |
| // Left shift may overflow from smi into mint or big ints. |
| // Don't generate smi code if the IC data is marked because |
| // of an overflow. |
| if (ic_data.HasDeoptReason(ICData::kDeoptBinaryMintOp)) { |
| return false; |
| } |
| operands_type = ic_data.HasDeoptReason(ICData::kDeoptBinarySmiOp) |
| ? kMintCid |
| : kSmiCid; |
| } else if (HasTwoMintOrSmi(ic_data) && |
| HasOnlyOneSmi(ICData::Handle( |
| Z, ic_data.AsUnaryClassChecksForArgNr(1)))) { |
| // Don't generate mint code if the IC data is marked because of an |
| // overflow. |
| if (ic_data.HasDeoptReason(ICData::kDeoptBinaryMintOp)) { |
| return false; |
| } |
| // Check for smi/mint << smi or smi/mint >> smi. |
| operands_type = kMintCid; |
| } else { |
| return false; |
| } |
| break; |
| case Token::kMOD: |
| case Token::kTRUNCDIV: |
| if (!FlowGraphCompiler::SupportsHardwareDivision()) return false; |
| if (HasOnlyTwoOf(ic_data, kSmiCid)) { |
| if (ic_data.HasDeoptReason(ICData::kDeoptBinarySmiOp)) { |
| return false; |
| } |
| operands_type = kSmiCid; |
| } else { |
| return false; |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| if (operands_type == kDoubleCid) { |
| if (!CanUnboxDouble()) { |
| return false; |
| } |
| // Check that either left or right are not a smi. Result of a |
| // binary operation with two smis is a smi not a double, except '/' which |
| // returns a double for two smis. |
| if (op_kind != Token::kDIV) { |
| InsertBefore(call, new (Z) CheckEitherNonSmiInstr(new (Z) Value(left), |
| new (Z) Value(right), |
| call->deopt_id()), |
| call->env(), FlowGraph::kEffect); |
| } |
| |
| BinaryDoubleOpInstr* double_bin_op = new (Z) |
| BinaryDoubleOpInstr(op_kind, new (Z) Value(left), new (Z) Value(right), |
| call->deopt_id(), call->token_pos()); |
| ReplaceCall(call, double_bin_op); |
| } else if (operands_type == kMintCid) { |
| if (!FlowGraphCompiler::SupportsUnboxedMints()) return false; |
| if ((op_kind == Token::kSHR) || (op_kind == Token::kSHL)) { |
| ShiftMintOpInstr* shift_op = new (Z) ShiftMintOpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, shift_op); |
| } else { |
| BinaryMintOpInstr* bin_op = new (Z) BinaryMintOpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, bin_op); |
| } |
| } else if (operands_type == kFloat32x4Cid) { |
| return InlineFloat32x4BinaryOp(call, op_kind); |
| } else if (operands_type == kInt32x4Cid) { |
| return InlineInt32x4BinaryOp(call, op_kind); |
| } else if (operands_type == kFloat64x2Cid) { |
| return InlineFloat64x2BinaryOp(call, op_kind); |
| } else if (op_kind == Token::kMOD) { |
| ASSERT(operands_type == kSmiCid); |
| if (right->IsConstant()) { |
| const Object& obj = right->AsConstant()->value(); |
| if (obj.IsSmi() && Utils::IsPowerOfTwo(Smi::Cast(obj).Value())) { |
| // Insert smi check and attach a copy of the original environment |
| // because the smi operation can still deoptimize. |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(left), |
| call->deopt_id(), call->token_pos()), |
| call->env(), FlowGraph::kEffect); |
| ConstantInstr* constant = flow_graph()->GetConstant( |
| Smi::Handle(Z, Smi::New(Smi::Cast(obj).Value() - 1))); |
| BinarySmiOpInstr* bin_op = |
| new (Z) BinarySmiOpInstr(Token::kBIT_AND, new (Z) Value(left), |
| new (Z) Value(constant), call->deopt_id()); |
| ReplaceCall(call, bin_op); |
| return true; |
| } |
| } |
| // Insert two smi checks and attach a copy of the original |
| // environment because the smi operation can still deoptimize. |
| AddCheckSmi(left, call->deopt_id(), call->env(), call); |
| AddCheckSmi(right, call->deopt_id(), call->env(), call); |
| BinarySmiOpInstr* bin_op = new (Z) BinarySmiOpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, bin_op); |
| } else { |
| ASSERT(operands_type == kSmiCid); |
| // Insert two smi checks and attach a copy of the original |
| // environment because the smi operation can still deoptimize. |
| AddCheckSmi(left, call->deopt_id(), call->env(), call); |
| AddCheckSmi(right, call->deopt_id(), call->env(), call); |
| if (left->IsConstant() && |
| ((op_kind == Token::kADD) || (op_kind == Token::kMUL))) { |
| // Constant should be on the right side. |
| Definition* temp = left; |
| left = right; |
| right = temp; |
| } |
| BinarySmiOpInstr* bin_op = new (Z) BinarySmiOpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, bin_op); |
| } |
| return true; |
| } |
| |
| |
| bool JitOptimizer::TryReplaceWithUnaryOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| ASSERT(call->ArgumentCount() == 1); |
| Definition* input = call->ArgumentAt(0); |
| Definition* unary_op = NULL; |
| if (HasOnlyOneSmi(*call->ic_data())) { |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(input), call->deopt_id(), |
| call->token_pos()), |
| call->env(), FlowGraph::kEffect); |
| unary_op = new (Z) |
| UnarySmiOpInstr(op_kind, new (Z) Value(input), call->deopt_id()); |
| } else if ((op_kind == Token::kBIT_NOT) && |
| HasOnlySmiOrMint(*call->ic_data()) && |
| FlowGraphCompiler::SupportsUnboxedMints()) { |
| unary_op = new (Z) |
| UnaryMintOpInstr(op_kind, new (Z) Value(input), call->deopt_id()); |
| } else if (HasOnlyOneDouble(*call->ic_data()) && |
| (op_kind == Token::kNEGATE) && CanUnboxDouble()) { |
| AddReceiverCheck(call); |
| unary_op = new (Z) UnaryDoubleOpInstr(Token::kNEGATE, new (Z) Value(input), |
| call->deopt_id()); |
| } else { |
| return false; |
| } |
| ASSERT(unary_op != NULL); |
| ReplaceCall(call, unary_op); |
| return true; |
| } |
| |
| |
| // Using field class. |
| RawField* JitOptimizer::GetField(intptr_t class_id, const String& field_name) { |
| Class& cls = Class::Handle(Z, isolate()->class_table()->At(class_id)); |
| Field& field = Field::Handle(Z); |
| while (!cls.IsNull()) { |
| field = cls.LookupInstanceField(field_name); |
| if (!field.IsNull()) { |
| if (Compiler::IsBackgroundCompilation() || |
| FLAG_force_clone_compiler_objects) { |
| return field.CloneFromOriginal(); |
| } else { |
| return field.raw(); |
| } |
| } |
| cls = cls.SuperClass(); |
| } |
| return Field::null(); |
| } |
| |
| |
| bool JitOptimizer::InlineImplicitInstanceGetter(InstanceCallInstr* call) { |
| ASSERT(call->HasICData()); |
| const ICData& ic_data = *call->ic_data(); |
| ASSERT(ic_data.HasOneTarget()); |
| GrowableArray<intptr_t> class_ids; |
| ic_data.GetClassIdsAt(0, &class_ids); |
| ASSERT(class_ids.length() == 1); |
| // Inline implicit instance getter. |
| const String& field_name = |
| String::Handle(Z, Field::NameFromGetter(call->function_name())); |
| const Field& field = Field::ZoneHandle(Z, GetField(class_ids[0], field_name)); |
| ASSERT(!field.IsNull()); |
| |
| if (flow_graph()->InstanceCallNeedsClassCheck(call, |
| RawFunction::kImplicitGetter)) { |
| AddReceiverCheck(call); |
| } |
| LoadFieldInstr* load = new (Z) |
| LoadFieldInstr(new (Z) Value(call->ArgumentAt(0)), &field, |
| AbstractType::ZoneHandle(Z, field.type()), |
| call->token_pos(), &flow_graph()->parsed_function()); |
| load->set_is_immutable(field.is_final()); |
| |
| // Discard the environment from the original instruction because the load |
| // can't deoptimize. |
| call->RemoveEnvironment(); |
| ReplaceCall(call, load); |
| |
| if (load->result_cid() != kDynamicCid) { |
| // Reset value types if guarded_cid was used. |
| for (Value::Iterator it(load->input_use_list()); !it.Done(); it.Advance()) { |
| it.Current()->SetReachingType(NULL); |
| } |
| } |
| return true; |
| } |
| |
| |
| bool JitOptimizer::InlineFloat32x4BinaryOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| if (!ShouldInlineSimd()) { |
| return false; |
| } |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| // Type check left. |
| AddCheckClass(left, ICData::ZoneHandle( |
| Z, call->ic_data()->AsUnaryClassChecksForArgNr(0)), |
| call->deopt_id(), call->env(), call); |
| // Type check right. |
| AddCheckClass(right, ICData::ZoneHandle( |
| Z, call->ic_data()->AsUnaryClassChecksForArgNr(1)), |
| call->deopt_id(), call->env(), call); |
| // Replace call. |
| BinaryFloat32x4OpInstr* float32x4_bin_op = new (Z) BinaryFloat32x4OpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, float32x4_bin_op); |
| |
| return true; |
| } |
| |
| |
| bool JitOptimizer::InlineInt32x4BinaryOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| if (!ShouldInlineSimd()) { |
| return false; |
| } |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| // Type check left. |
| AddCheckClass(left, ICData::ZoneHandle( |
| Z, call->ic_data()->AsUnaryClassChecksForArgNr(0)), |
| call->deopt_id(), call->env(), call); |
| // Type check right. |
| AddCheckClass(right, ICData::ZoneHandle( |
| Z, call->ic_data()->AsUnaryClassChecksForArgNr(1)), |
| call->deopt_id(), call->env(), call); |
| // Replace call. |
| BinaryInt32x4OpInstr* int32x4_bin_op = new (Z) BinaryInt32x4OpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, int32x4_bin_op); |
| return true; |
| } |
| |
| |
| bool JitOptimizer::InlineFloat64x2BinaryOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| if (!ShouldInlineSimd()) { |
| return false; |
| } |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| // Type check left. |
| AddCheckClass( |
| left, ICData::ZoneHandle(call->ic_data()->AsUnaryClassChecksForArgNr(0)), |
| call->deopt_id(), call->env(), call); |
| // Type check right. |
| AddCheckClass( |
| right, ICData::ZoneHandle(call->ic_data()->AsUnaryClassChecksForArgNr(1)), |
| call->deopt_id(), call->env(), call); |
| // Replace call. |
| BinaryFloat64x2OpInstr* float64x2_bin_op = new (Z) BinaryFloat64x2OpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, float64x2_bin_op); |
| return true; |
| } |
| |
| |
| // Only unique implicit instance getters can be currently handled. |
| bool JitOptimizer::TryInlineInstanceGetter(InstanceCallInstr* call) { |
| ASSERT(call->HasICData()); |
| const ICData& ic_data = *call->ic_data(); |
| if (ic_data.NumberOfUsedChecks() == 0) { |
| // No type feedback collected. |
| return false; |
| } |
| |
| if (!ic_data.HasOneTarget()) { |
| // Polymorphic sites are inlined like normal methods by conventional |
| // inlining in FlowGraphInliner. |
| return false; |
| } |
| |
| const Function& target = Function::Handle(Z, ic_data.GetTargetAt(0)); |
| if (target.kind() != RawFunction::kImplicitGetter) { |
| // Non-implicit getters are inlined like normal methods by conventional |
| // inlining in FlowGraphInliner. |
| return false; |
| } |
| return InlineImplicitInstanceGetter(call); |
| } |
| |
| |
| void JitOptimizer::ReplaceWithMathCFunction( |
| InstanceCallInstr* call, |
| MethodRecognizer::Kind recognized_kind) { |
| AddReceiverCheck(call); |
| ZoneGrowableArray<Value*>* args = |
| new (Z) ZoneGrowableArray<Value*>(call->ArgumentCount()); |
| for (intptr_t i = 0; i < call->ArgumentCount(); i++) { |
| args->Add(new (Z) Value(call->ArgumentAt(i))); |
| } |
| InvokeMathCFunctionInstr* invoke = new (Z) InvokeMathCFunctionInstr( |
| args, call->deopt_id(), recognized_kind, call->token_pos()); |
| ReplaceCall(call, invoke); |
| } |
| |
| |
| // Inline only simple, frequently called core library methods. |
| bool JitOptimizer::TryInlineInstanceMethod(InstanceCallInstr* call) { |
| ASSERT(call->HasICData()); |
| const ICData& ic_data = *call->ic_data(); |
| if (ic_data.NumberOfUsedChecks() != 1) { |
| // No type feedback collected or multiple targets found. |
| return false; |
| } |
| |
| Function& target = Function::Handle(Z); |
| GrowableArray<intptr_t> class_ids; |
| ic_data.GetCheckAt(0, &class_ids, &target); |
| MethodRecognizer::Kind recognized_kind = |
| MethodRecognizer::RecognizeKind(target); |
| |
| if (CanUnboxDouble() && |
| (recognized_kind == MethodRecognizer::kIntegerToDouble)) { |
| if (class_ids[0] == kSmiCid) { |
| AddReceiverCheck(call); |
| ReplaceCall(call, |
| new (Z) SmiToDoubleInstr(new (Z) Value(call->ArgumentAt(0)), |
| call->token_pos())); |
| return true; |
| } else if ((class_ids[0] == kMintCid) && CanConvertUnboxedMintToDouble()) { |
| AddReceiverCheck(call); |
| ReplaceCall(call, |
| new (Z) MintToDoubleInstr(new (Z) Value(call->ArgumentAt(0)), |
| call->deopt_id())); |
| return true; |
| } |
| } |
| |
| if (class_ids[0] == kDoubleCid) { |
| if (!CanUnboxDouble()) { |
| return false; |
| } |
| switch (recognized_kind) { |
| case MethodRecognizer::kDoubleToInteger: { |
| AddReceiverCheck(call); |
| ASSERT(call->HasICData()); |
| const ICData& ic_data = *call->ic_data(); |
| Definition* input = call->ArgumentAt(0); |
| Definition* d2i_instr = NULL; |
| if (ic_data.HasDeoptReason(ICData::kDeoptDoubleToSmi)) { |
| // Do not repeatedly deoptimize because result didn't fit into Smi. |
| d2i_instr = new (Z) DoubleToIntegerInstr(new (Z) Value(input), call); |
| } else { |
| // Optimistically assume result fits into Smi. |
| d2i_instr = |
| new (Z) DoubleToSmiInstr(new (Z) Value(input), call->deopt_id()); |
| } |
| ReplaceCall(call, d2i_instr); |
| return true; |
| } |
| case MethodRecognizer::kDoubleMod: |
| case MethodRecognizer::kDoubleRound: |
| ReplaceWithMathCFunction(call, recognized_kind); |
| return true; |
| case MethodRecognizer::kDoubleTruncate: |
| case MethodRecognizer::kDoubleFloor: |
| case MethodRecognizer::kDoubleCeil: |
| if (!TargetCPUFeatures::double_truncate_round_supported()) { |
| ReplaceWithMathCFunction(call, recognized_kind); |
| } else { |
| AddReceiverCheck(call); |
| DoubleToDoubleInstr* d2d_instr = |
| new (Z) DoubleToDoubleInstr(new (Z) Value(call->ArgumentAt(0)), |
| recognized_kind, call->deopt_id()); |
| ReplaceCall(call, d2d_instr); |
| } |
| return true; |
| default: |
| break; |
| } |
| } |
| |
| return FlowGraphInliner::TryReplaceInstanceCallWithInline( |
| flow_graph_, current_iterator(), call); |
| } |
| |
| |
| // If type tests specified by 'ic_data' do not depend on type arguments, |
| // return mapping cid->result in 'results' (i : cid; i + 1: result). |
| // If all tests yield the same result, return it otherwise return Bool::null. |
| // If no mapping is possible, 'results' is empty. |
| // An instance-of test returning all same results can be converted to a class |
| // check. |
| RawBool* JitOptimizer::InstanceOfAsBool( |
| const ICData& ic_data, |
| const AbstractType& type, |
| ZoneGrowableArray<intptr_t>* results) const { |
| ASSERT(results->is_empty()); |
| ASSERT(ic_data.NumArgsTested() == 1); // Unary checks only. |
| if (type.IsFunctionType() || type.IsDartFunctionType() || |
| !type.IsInstantiated() || type.IsMalformedOrMalbounded()) { |
| return Bool::null(); |
| } |
| const Class& type_class = Class::Handle(Z, type.type_class()); |
| const intptr_t num_type_args = type_class.NumTypeArguments(); |
| if (num_type_args > 0) { |
| // Only raw types can be directly compared, thus disregarding type |
| // arguments. |
| const intptr_t num_type_params = type_class.NumTypeParameters(); |
| const intptr_t from_index = num_type_args - num_type_params; |
| const TypeArguments& type_arguments = |
| TypeArguments::Handle(Z, type.arguments()); |
| const bool is_raw_type = type_arguments.IsNull() || |
| type_arguments.IsRaw(from_index, num_type_params); |
| if (!is_raw_type) { |
| // Unknown result. |
| return Bool::null(); |
| } |
| } |
| |
| const ClassTable& class_table = *isolate()->class_table(); |
| Bool& prev = Bool::Handle(Z); |
| Class& cls = Class::Handle(Z); |
| |
| bool results_differ = false; |
| const intptr_t number_of_checks = ic_data.NumberOfChecks(); |
| for (int i = 0; i < number_of_checks; i++) { |
| cls = class_table.At(ic_data.GetReceiverClassIdAt(i)); |
| if (cls.NumTypeArguments() > 0) { |
| return Bool::null(); |
| } |
| // As of Dart 1.5, the Null type is a subtype of (and is more specific than) |
| // any type. However, we are checking instances here and not types. The |
| // null instance is only an instance of Null, Object, and dynamic. |
| const bool is_subtype = |
| cls.IsNullClass() |
| ? (type_class.IsNullClass() || type_class.IsObjectClass() || |
| type_class.IsDynamicClass()) |
| : cls.IsSubtypeOf(Object::null_type_arguments(), type_class, |
| Object::null_type_arguments(), NULL, NULL, |
| Heap::kOld); |
| results->Add(cls.id()); |
| results->Add(is_subtype); |
| if (prev.IsNull()) { |
| prev = Bool::Get(is_subtype).raw(); |
| } else { |
| if (is_subtype != prev.value()) { |
| results_differ = true; |
| } |
| } |
| } |
| return results_differ ? Bool::null() : prev.raw(); |
| } |
| |
| |
| // Returns true if checking against this type is a direct class id comparison. |
| bool JitOptimizer::TypeCheckAsClassEquality(const AbstractType& type) { |
| ASSERT(type.IsFinalized() && !type.IsMalformedOrMalbounded()); |
| // Requires CHA. |
| if (!type.IsInstantiated()) return false; |
| // Function types have different type checking rules. |
| if (type.IsFunctionType()) return false; |
| const Class& type_class = Class::Handle(type.type_class()); |
| // Could be an interface check? |
| if (CHA::IsImplemented(type_class)) return false; |
| // Check if there are subclasses. |
| if (CHA::HasSubclasses(type_class)) { |
| return false; |
| } |
| |
| // Private classes cannot be subclassed by later loaded libs. |
| if (!type_class.IsPrivate()) { |
| if (FLAG_use_cha_deopt || isolate()->all_classes_finalized()) { |
| if (FLAG_trace_cha) { |
| THR_Print( |
| " **(CHA) Typecheck as class equality since no " |
| "subclasses: %s\n", |
| type_class.ToCString()); |
| } |
| if (FLAG_use_cha_deopt) { |
| thread()->cha()->AddToGuardedClasses(type_class, /*subclass_count=*/0); |
| } |
| } else { |
| return false; |
| } |
| } |
| const intptr_t num_type_args = type_class.NumTypeArguments(); |
| if (num_type_args > 0) { |
| // Only raw types can be directly compared, thus disregarding type |
| // arguments. |
| const intptr_t num_type_params = type_class.NumTypeParameters(); |
| const intptr_t from_index = num_type_args - num_type_params; |
| const TypeArguments& type_arguments = |
| TypeArguments::Handle(type.arguments()); |
| const bool is_raw_type = type_arguments.IsNull() || |
| type_arguments.IsRaw(from_index, num_type_params); |
| return is_raw_type; |
| } |
| return true; |
| } |
| |
| |
| static bool CidTestResultsContains(const ZoneGrowableArray<intptr_t>& results, |
| intptr_t test_cid) { |
| for (intptr_t i = 0; i < results.length(); i += 2) { |
| if (results[i] == test_cid) return true; |
| } |
| return false; |
| } |
| |
| |
| static void TryAddTest(ZoneGrowableArray<intptr_t>* results, |
| intptr_t test_cid, |
| bool result) { |
| if (!CidTestResultsContains(*results, test_cid)) { |
| results->Add(test_cid); |
| results->Add(result); |
| } |
| } |
| |
| |
| // Tries to add cid tests to 'results' so that no deoptimization is |
| // necessary. |
| // TODO(srdjan): Do also for other than 'int' type. |
| static bool TryExpandTestCidsResult(ZoneGrowableArray<intptr_t>* results, |
| const AbstractType& type) { |
| ASSERT(results->length() >= 2); // At least on eentry. |
| const ClassTable& class_table = *Isolate::Current()->class_table(); |
| if ((*results)[0] != kSmiCid) { |
| const Class& cls = Class::Handle(class_table.At(kSmiCid)); |
| const Class& type_class = Class::Handle(type.type_class()); |
| const bool smi_is_subtype = |
| cls.IsSubtypeOf(Object::null_type_arguments(), type_class, |
| Object::null_type_arguments(), NULL, NULL, Heap::kOld); |
| results->Add((*results)[results->length() - 2]); |
| results->Add((*results)[results->length() - 2]); |
| for (intptr_t i = results->length() - 3; i > 1; --i) { |
| (*results)[i] = (*results)[i - 2]; |
| } |
| (*results)[0] = kSmiCid; |
| (*results)[1] = smi_is_subtype; |
| } |
| |
| ASSERT(type.IsInstantiated() && !type.IsMalformedOrMalbounded()); |
| ASSERT(results->length() >= 2); |
| if (type.IsIntType()) { |
| ASSERT((*results)[0] == kSmiCid); |
| TryAddTest(results, kMintCid, true); |
| TryAddTest(results, kBigintCid, true); |
| // Cannot deoptimize since all tests returning true have been added. |
| return false; |
| } |
| |
| return true; // May deoptimize since we have not identified all 'true' tests. |
| } |
| |
| |
| // TODO(srdjan): Use ICData to check if always true or false. |
| void JitOptimizer::ReplaceWithInstanceOf(InstanceCallInstr* call) { |
| ASSERT(Token::IsTypeTestOperator(call->token_kind())); |
| Definition* left = call->ArgumentAt(0); |
| Definition* type_args = NULL; |
| AbstractType& type = AbstractType::ZoneHandle(Z); |
| if (call->ArgumentCount() == 2) { |
| type_args = flow_graph()->constant_null(); |
| ASSERT(call->MatchesCoreName(Symbols::_simpleInstanceOf())); |
| type = AbstractType::Cast(call->ArgumentAt(1)->AsConstant()->value()).raw(); |
| } else { |
| type_args = call->ArgumentAt(1); |
| type = AbstractType::Cast(call->ArgumentAt(2)->AsConstant()->value()).raw(); |
| } |
| const ICData& unary_checks = |
| ICData::ZoneHandle(Z, call->ic_data()->AsUnaryClassChecks()); |
| const intptr_t number_of_checks = unary_checks.NumberOfChecks(); |
| if ((number_of_checks > 0) && |
| (number_of_checks <= FLAG_max_polymorphic_checks)) { |
| ZoneGrowableArray<intptr_t>* results = |
| new (Z) ZoneGrowableArray<intptr_t>(number_of_checks * 2); |
| Bool& as_bool = |
| Bool::ZoneHandle(Z, InstanceOfAsBool(unary_checks, type, results)); |
| if (as_bool.IsNull()) { |
| if (results->length() == number_of_checks * 2) { |
| const bool can_deopt = TryExpandTestCidsResult(results, type); |
| TestCidsInstr* test_cids = new (Z) TestCidsInstr( |
| call->token_pos(), Token::kIS, new (Z) Value(left), *results, |
| can_deopt ? call->deopt_id() : Thread::kNoDeoptId); |
| // Remove type. |
| ReplaceCall(call, test_cids); |
| return; |
| } |
| } else { |
| // TODO(srdjan): Use TestCidsInstr also for this case. |
| // One result only. |
| AddReceiverCheck(call); |
| ConstantInstr* bool_const = flow_graph()->GetConstant(as_bool); |
| for (intptr_t i = 0; i < call->ArgumentCount(); ++i) { |
| PushArgumentInstr* push = call->PushArgumentAt(i); |
| push->ReplaceUsesWith(push->value()->definition()); |
| push->RemoveFromGraph(); |
| } |
| call->ReplaceUsesWith(bool_const); |
| ASSERT(current_iterator()->Current() == call); |
| current_iterator()->RemoveCurrentFromGraph(); |
| return; |
| } |
| } |
| |
| if (TypeCheckAsClassEquality(type)) { |
| LoadClassIdInstr* left_cid = new (Z) LoadClassIdInstr(new (Z) Value(left)); |
| InsertBefore(call, left_cid, NULL, FlowGraph::kValue); |
| const intptr_t type_cid = Class::Handle(Z, type.type_class()).id(); |
| ConstantInstr* cid = |
| flow_graph()->GetConstant(Smi::Handle(Z, Smi::New(type_cid))); |
| |
| StrictCompareInstr* check_cid = |
| new (Z) StrictCompareInstr(call->token_pos(), Token::kEQ_STRICT, |
| new (Z) Value(left_cid), new (Z) Value(cid), |
| false); // No number check. |
| ReplaceCall(call, check_cid); |
| return; |
| } |
| |
| InstanceOfInstr* instance_of = new (Z) InstanceOfInstr( |
| call->token_pos(), new (Z) Value(left), new (Z) Value(type_args), |
| NULL, // TODO(regis): Pass function type args. |
| type, call->deopt_id()); |
| ReplaceCall(call, instance_of); |
| } |
| |
| |
| // TODO(srdjan): Apply optimizations as in ReplaceWithInstanceOf (TestCids). |
| void JitOptimizer::ReplaceWithTypeCast(InstanceCallInstr* call) { |
| ASSERT(Token::IsTypeCastOperator(call->token_kind())); |
| Definition* left = call->ArgumentAt(0); |
| Definition* type_args = call->ArgumentAt(1); |
| const AbstractType& type = |
| AbstractType::Cast(call->ArgumentAt(2)->AsConstant()->value()); |
| ASSERT(!type.IsMalformedOrMalbounded()); |
| const ICData& unary_checks = |
| ICData::ZoneHandle(Z, call->ic_data()->AsUnaryClassChecks()); |
| const intptr_t number_of_checks = unary_checks.NumberOfChecks(); |
| if ((number_of_checks > 0) && |
| (number_of_checks <= FLAG_max_polymorphic_checks)) { |
| ZoneGrowableArray<intptr_t>* results = |
| new (Z) ZoneGrowableArray<intptr_t>(number_of_checks * 2); |
| const Bool& as_bool = |
| Bool::ZoneHandle(Z, InstanceOfAsBool(unary_checks, type, results)); |
| if (as_bool.raw() == Bool::True().raw()) { |
| AddReceiverCheck(call); |
| // Remove the original push arguments. |
| for (intptr_t i = 0; i < call->ArgumentCount(); ++i) { |
| PushArgumentInstr* push = call->PushArgumentAt(i); |
| push->ReplaceUsesWith(push->value()->definition()); |
| push->RemoveFromGraph(); |
| } |
| // Remove call, replace it with 'left'. |
| call->ReplaceUsesWith(left); |
| ASSERT(current_iterator()->Current() == call); |
| current_iterator()->RemoveCurrentFromGraph(); |
| return; |
| } |
| } |
| AssertAssignableInstr* assert_as = new (Z) AssertAssignableInstr( |
| call->token_pos(), new (Z) Value(left), new (Z) Value(type_args), |
| NULL, // TODO(regis): Pass function type arguments. |
| type, Symbols::InTypeCast(), call->deopt_id()); |
| ReplaceCall(call, assert_as); |
| } |
| |
| |
| bool JitOptimizer::LookupMethodFor(int class_id, |
| const ArgumentsDescriptor& args_desc, |
| const String& name, |
| Function* fn_return) { |
| if (class_id < 0) return false; |
| if (class_id >= I->class_table()->NumCids()) return false; |
| |
| RawClass* raw_class = I->class_table()->At(class_id); |
| if (raw_class == NULL) return false; |
| Class& cls = Class::Handle(Z, raw_class); |
| if (cls.IsNull()) return false; |
| if (!cls.is_finalized()) return false; |
| if (Array::Handle(cls.functions()).IsNull()) return false; |
| |
| Function& target_function = Function::Handle( |
| Z, Resolver::ResolveDynamicForReceiverClass(cls, name, args_desc)); |
| if (target_function.IsNull()) return false; |
| *fn_return ^= target_function.raw(); |
| return true; |
| } |
| |
| |
| static int OrderById(const intptr_t* a, const intptr_t* b) { |
| // Negative if 'a' should sort before 'b'. |
| return *a - *b; |
| } |
| |
| |
| void JitOptimizer::TryExpandClassesInICData(const ICData& ic_data) { |
| if (ic_data.NumberOfChecks() == 0) return; |
| |
| Function& dummy = Function::Handle(Z); |
| |
| GrowableArray<intptr_t> ids; |
| for (int i = 0; i < ic_data.NumberOfChecks(); i++) { |
| // The API works for multi dispatch ICs that check more than one argument, |
| // but we know we only check one arg here, so only the 0th element of id |
| // will be used. |
| GrowableArray<intptr_t> id; |
| ic_data.GetCheckAt(i, &id, &dummy); |
| ids.Add(id[0]); |
| } |
| ids.Sort(OrderById); |
| |
| Array& args_desc_array = Array::Handle(Z, ic_data.arguments_descriptor()); |
| ArgumentsDescriptor args_desc(args_desc_array); |
| String& name = String::Handle(Z, ic_data.target_name()); |
| |
| Function& fn = Function::Handle(Z); |
| Function& fn_high = Function::Handle(Z); |
| Function& possible_match = Function::Handle(Z); |
| |
| for (int cid_index = 0; cid_index < ids.length() - 1; cid_index++) { |
| int low_cid = ids[cid_index]; |
| int high_cid = ids[cid_index + 1]; |
| if (low_cid + 1 == high_cid) continue; |
| if (LookupMethodFor(low_cid, args_desc, name, &fn) && |
| LookupMethodFor(high_cid, args_desc, name, &fn_high) && |
| fn.raw() == fn_high.raw()) { |
| // Try to fill in the IC table by going downwards from a known class-id. |
| bool can_fill_in = true; |
| for (int i = low_cid + 1; i < high_cid; i++) { |
| if (!LookupMethodFor(i, args_desc, name, &possible_match) || |
| possible_match.raw() != fn.raw()) { |
| can_fill_in = false; |
| break; |
| } |
| } |
| if (can_fill_in) { |
| for (int i = low_cid + 1; i < high_cid; i++) { |
| ic_data.AddReceiverCheck(i, fn, 0); |
| } |
| } |
| } |
| } |
| } |
| |
| // Tries to optimize instance call by replacing it with a faster instruction |
| // (e.g, binary op, field load, ..). |
| void JitOptimizer::VisitInstanceCall(InstanceCallInstr* instr) { |
| if (!instr->HasICData() || (instr->ic_data()->NumberOfUsedChecks() == 0)) { |
| return; |
| } |
| const Token::Kind op_kind = instr->token_kind(); |
| |
| // Type test is special as it always gets converted into inlined code. |
| if (Token::IsTypeTestOperator(op_kind)) { |
| ReplaceWithInstanceOf(instr); |
| return; |
| } |
| |
| if (Token::IsTypeCastOperator(op_kind)) { |
| ReplaceWithTypeCast(instr); |
| return; |
| } |
| |
| const ICData& unary_checks = |
| ICData::ZoneHandle(Z, instr->ic_data()->AsUnaryClassChecks()); |
| |
| if ((op_kind == Token::kASSIGN_INDEX) && TryReplaceWithIndexedOp(instr)) { |
| return; |
| } |
| if ((op_kind == Token::kINDEX) && TryReplaceWithIndexedOp(instr)) { |
| return; |
| } |
| |
| if (op_kind == Token::kEQ && TryReplaceWithEqualityOp(instr, op_kind)) { |
| return; |
| } |
| |
| if (Token::IsRelationalOperator(op_kind) && |
| TryReplaceWithRelationalOp(instr, op_kind)) { |
| return; |
| } |
| |
| if (Token::IsBinaryOperator(op_kind) && |
| TryReplaceWithBinaryOp(instr, op_kind)) { |
| return; |
| } |
| if (Token::IsUnaryOperator(op_kind) && |
| TryReplaceWithUnaryOp(instr, op_kind)) { |
| return; |
| } |
| if ((op_kind == Token::kGET) && TryInlineInstanceGetter(instr)) { |
| return; |
| } |
| if ((op_kind == Token::kSET) && |
| TryInlineInstanceSetter(instr, unary_checks)) { |
| return; |
| } |
| if (TryInlineInstanceMethod(instr)) { |
| return; |
| } |
| |
| // Now we are done trying the inlining options that benefit from only having |
| // 1 entry in the IC table. |
| TryExpandClassesInICData(unary_checks); |
| |
| bool has_one_target = unary_checks.HasOneTarget(); |
| |
| if (has_one_target) { |
| // Check if the single target is a polymorphic target, if it is, |
| // we don't have one target. |
| const Function& target = Function::Handle(Z, unary_checks.GetTargetAt(0)); |
| if (target.recognized_kind() == MethodRecognizer::kObjectRuntimeType) { |
| has_one_target = PolymorphicInstanceCallInstr::ComputeRuntimeType( |
| unary_checks) != Type::null(); |
| } else { |
| const bool polymorphic_target = |
| MethodRecognizer::PolymorphicTarget(target); |
| has_one_target = !polymorphic_target; |
| } |
| } |
| |
| if (has_one_target) { |
| const Function& target = Function::Handle(Z, unary_checks.GetTargetAt(0)); |
| const RawFunction::Kind function_kind = target.kind(); |
| if (!flow_graph()->InstanceCallNeedsClassCheck(instr, function_kind)) { |
| PolymorphicInstanceCallInstr* call = |
| new (Z) PolymorphicInstanceCallInstr(instr, unary_checks, |
| /* call_with_checks = */ false, |
| /* complete = */ false); |
| instr->ReplaceWith(call, current_iterator()); |
| return; |
| } |
| } |
| |
| bool call_with_checks; |
| if (has_one_target && FLAG_polymorphic_with_deopt) { |
| // Type propagation has not run yet, we cannot eliminate the check. |
| AddReceiverCheck(instr); |
| // Call can still deoptimize, do not detach environment from instr. |
| call_with_checks = false; |
| } else { |
| call_with_checks = true; |
| } |
| PolymorphicInstanceCallInstr* call = new (Z) |
| PolymorphicInstanceCallInstr(instr, unary_checks, call_with_checks, |
| /* complete = */ false); |
| instr->ReplaceWith(call, current_iterator()); |
| } |
| |
| |
| void JitOptimizer::VisitStaticCall(StaticCallInstr* call) { |
| MethodRecognizer::Kind recognized_kind = |
| MethodRecognizer::RecognizeKind(call->function()); |
| switch (recognized_kind) { |
| case MethodRecognizer::kObjectConstructor: |
| case MethodRecognizer::kObjectArrayAllocate: |
| case MethodRecognizer::kFloat32x4Zero: |
| case MethodRecognizer::kFloat32x4Splat: |
| case MethodRecognizer::kFloat32x4Constructor: |
| case MethodRecognizer::kFloat32x4FromFloat64x2: |
| case MethodRecognizer::kFloat64x2Constructor: |
| case MethodRecognizer::kFloat64x2Zero: |
| case MethodRecognizer::kFloat64x2Splat: |
| case MethodRecognizer::kFloat64x2FromFloat32x4: |
| case MethodRecognizer::kInt32x4BoolConstructor: |
| case MethodRecognizer::kInt32x4Constructor: |
| case MethodRecognizer::kMathSqrt: |
| case MethodRecognizer::kMathDoublePow: |
| case MethodRecognizer::kMathSin: |
| case MethodRecognizer::kMathCos: |
| case MethodRecognizer::kMathTan: |
| case MethodRecognizer::kMathAsin: |
| case MethodRecognizer::kMathAcos: |
| case MethodRecognizer::kMathAtan: |
| case MethodRecognizer::kMathAtan2: |
| FlowGraphInliner::TryReplaceStaticCallWithInline( |
| flow_graph_, current_iterator(), call); |
| break; |
| case MethodRecognizer::kMathMin: |
| case MethodRecognizer::kMathMax: { |
| // We can handle only monomorphic min/max call sites with both arguments |
| // being either doubles or smis. |
| if (CanUnboxDouble() && call->HasICData() && |
| call->ic_data()->NumberOfChecksIs(1)) { |
| const ICData& ic_data = *call->ic_data(); |
| intptr_t result_cid = kIllegalCid; |
| if (ICDataHasReceiverArgumentClassIds(ic_data, kDoubleCid, |
| kDoubleCid)) { |
| result_cid = kDoubleCid; |
| } else if (ICDataHasReceiverArgumentClassIds(ic_data, kSmiCid, |
| kSmiCid)) { |
| result_cid = kSmiCid; |
| } |
| if (result_cid != kIllegalCid) { |
| MathMinMaxInstr* min_max = new (Z) MathMinMaxInstr( |
| recognized_kind, new (Z) Value(call->ArgumentAt(0)), |
| new (Z) Value(call->ArgumentAt(1)), call->deopt_id(), result_cid); |
| const ICData& unary_checks = |
| ICData::ZoneHandle(Z, ic_data.AsUnaryClassChecks()); |
| AddCheckClass(min_max->left()->definition(), unary_checks, |
| call->deopt_id(), call->env(), call); |
| AddCheckClass(min_max->right()->definition(), unary_checks, |
| call->deopt_id(), call->env(), call); |
| ReplaceCall(call, min_max); |
| } |
| } |
| break; |
| } |
| |
| case MethodRecognizer::kDoubleFromInteger: { |
| if (call->HasICData() && call->ic_data()->NumberOfChecksIs(1)) { |
| const ICData& ic_data = *call->ic_data(); |
| if (CanUnboxDouble()) { |
| if (ArgIsAlways(kSmiCid, ic_data, 1)) { |
| Definition* arg = call->ArgumentAt(1); |
| AddCheckSmi(arg, call->deopt_id(), call->env(), call); |
| ReplaceCall(call, new (Z) SmiToDoubleInstr(new (Z) Value(arg), |
| call->token_pos())); |
| } else if (ArgIsAlways(kMintCid, ic_data, 1) && |
| CanConvertUnboxedMintToDouble()) { |
| Definition* arg = call->ArgumentAt(1); |
| ReplaceCall(call, new (Z) MintToDoubleInstr(new (Z) Value(arg), |
| call->deopt_id())); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| |
| void JitOptimizer::VisitStoreInstanceField(StoreInstanceFieldInstr* instr) { |
| if (instr->IsUnboxedStore()) { |
| // Determine if this field should be unboxed based on the usage of getter |
| // and setter functions: The heuristic requires that the setter has a |
| // usage count of at least 1/kGetterSetterRatio of the getter usage count. |
| // This is to avoid unboxing fields where the setter is never or rarely |
| // executed. |
| const Field& field = instr->field(); |
| const String& field_name = String::Handle(Z, field.name()); |
| const Class& owner = Class::Handle(Z, field.Owner()); |
| const Function& getter = |
| Function::Handle(Z, owner.LookupGetterFunction(field_name)); |
| const Function& setter = |
| Function::Handle(Z, owner.LookupSetterFunction(field_name)); |
| bool unboxed_field = false; |
| if (!getter.IsNull() && !setter.IsNull()) { |
| if (field.is_double_initialized()) { |
| unboxed_field = true; |
| } else if ((setter.usage_counter() > 0) && |
| ((FLAG_getter_setter_ratio * setter.usage_counter()) >= |
| getter.usage_counter())) { |
| unboxed_field = true; |
| } |
| } |
| if (!unboxed_field) { |
| // TODO(srdjan): Instead of aborting pass this field to the mutator thread |
| // so that it can: |
| // - set it to unboxed |
| // - deoptimize dependent code. |
| if (Compiler::IsBackgroundCompilation()) { |
| isolate()->AddDeoptimizingBoxedField(field); |
| Compiler::AbortBackgroundCompilation( |
| Thread::kNoDeoptId, "Unboxing instance field while compiling"); |
| UNREACHABLE(); |
| } |
| if (FLAG_trace_optimization || FLAG_trace_field_guards) { |
| THR_Print("Disabling unboxing of %s\n", field.ToCString()); |
| if (!setter.IsNull()) { |
| OS::Print(" setter usage count: %" Pd "\n", setter.usage_counter()); |
| } |
| if (!getter.IsNull()) { |
| OS::Print(" getter usage count: %" Pd "\n", getter.usage_counter()); |
| } |
| } |
| ASSERT(field.IsOriginal()); |
| field.set_is_unboxing_candidate(false); |
| field.DeoptimizeDependentCode(); |
| } else { |
| flow_graph()->parsed_function().AddToGuardedFields(&field); |
| } |
| } |
| } |
| |
| |
| void JitOptimizer::VisitAllocateContext(AllocateContextInstr* instr) { |
| // Replace generic allocation with a sequence of inlined allocation and |
| // explicit initalizing stores. |
| AllocateUninitializedContextInstr* replacement = |
| new AllocateUninitializedContextInstr(instr->token_pos(), |
| instr->num_context_variables()); |
| instr->ReplaceWith(replacement, current_iterator()); |
| |
| StoreInstanceFieldInstr* store = new (Z) |
| StoreInstanceFieldInstr(Context::parent_offset(), new Value(replacement), |
| new Value(flow_graph_->constant_null()), |
| kNoStoreBarrier, instr->token_pos()); |
| // Storing into uninitialized memory; remember to prevent dead store |
| // elimination and ensure proper GC barrier. |
| store->set_is_initialization(true); |
| flow_graph_->InsertAfter(replacement, store, NULL, FlowGraph::kEffect); |
| Definition* cursor = store; |
| for (intptr_t i = 0; i < instr->num_context_variables(); ++i) { |
| store = new (Z) StoreInstanceFieldInstr( |
| Context::variable_offset(i), new Value(replacement), |
| new Value(flow_graph_->constant_null()), kNoStoreBarrier, |
| instr->token_pos()); |
| // Storing into uninitialized memory; remember to prevent dead store |
| // elimination and ensure proper GC barrier. |
| store->set_is_initialization(true); |
| flow_graph_->InsertAfter(cursor, store, NULL, FlowGraph::kEffect); |
| cursor = store; |
| } |
| } |
| |
| |
| void JitOptimizer::VisitLoadCodeUnits(LoadCodeUnitsInstr* instr) { |
| // TODO(zerny): Use kUnboxedUint32 once it is fully supported/optimized. |
| #if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) |
| if (!instr->can_pack_into_smi()) instr->set_representation(kUnboxedMint); |
| #endif |
| } |
| |
| |
| bool JitOptimizer::TryInlineInstanceSetter(InstanceCallInstr* instr, |
| const ICData& unary_ic_data) { |
| ASSERT(!unary_ic_data.NumberOfChecksIs(0) && |
| (unary_ic_data.NumArgsTested() == 1)); |
| if (I->type_checks()) { |
| // Checked mode setters are inlined like normal methods by conventional |
| // inlining. |
| return false; |
| } |
| |
| ASSERT(instr->HasICData()); |
| if (unary_ic_data.NumberOfChecksIs(0)) { |
| // No type feedback collected. |
| return false; |
| } |
| if (!unary_ic_data.HasOneTarget()) { |
| // Polymorphic sites are inlined like normal method calls by conventional |
| // inlining. |
| return false; |
| } |
| Function& target = Function::Handle(Z); |
| intptr_t class_id; |
| unary_ic_data.GetOneClassCheckAt(0, &class_id, &target); |
| if (target.kind() != RawFunction::kImplicitSetter) { |
| // Non-implicit setter are inlined like normal method calls. |
| return false; |
| } |
| // Inline implicit instance setter. |
| const String& field_name = |
| String::Handle(Z, Field::NameFromSetter(instr->function_name())); |
| const Field& field = Field::ZoneHandle(Z, GetField(class_id, field_name)); |
| ASSERT(!field.IsNull()); |
| |
| if (flow_graph()->InstanceCallNeedsClassCheck(instr, |
| RawFunction::kImplicitSetter)) { |
| AddReceiverCheck(instr); |
| } |
| if (field.guarded_cid() != kDynamicCid) { |
| ASSERT(I->use_field_guards()); |
| InsertBefore( |
| instr, new (Z) GuardFieldClassInstr(new (Z) Value(instr->ArgumentAt(1)), |
| field, instr->deopt_id()), |
| instr->env(), FlowGraph::kEffect); |
| } |
| |
| if (field.needs_length_check()) { |
| ASSERT(I->use_field_guards()); |
| InsertBefore(instr, new (Z) GuardFieldLengthInstr( |
| new (Z) Value(instr->ArgumentAt(1)), field, |
| instr->deopt_id()), |
| instr->env(), FlowGraph::kEffect); |
| } |
| |
| // Field guard was detached. |
| StoreInstanceFieldInstr* store = new (Z) |
| StoreInstanceFieldInstr(field, new (Z) Value(instr->ArgumentAt(0)), |
| new (Z) Value(instr->ArgumentAt(1)), |
| kEmitStoreBarrier, instr->token_pos()); |
| |
| if (store->IsUnboxedStore()) { |
| flow_graph()->parsed_function().AddToGuardedFields(&field); |
| } |
| |
| // Discard the environment from the original instruction because the store |
| // can't deoptimize. |
| instr->RemoveEnvironment(); |
| ReplaceCall(instr, store); |
| return true; |
| } |
| |
| |
| } // namespace dart |
| #endif // DART_PRECOMPILED_RUNTIME |