| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| // |
| // The intrinsic code below is executed before a method has built its frame. |
| // The return address is on the stack and the arguments below it. |
| // Registers EDX (arguments descriptor) and ECX (function) must be preserved. |
| // Each intrinsification method returns true if the corresponding |
| // Dart method was intrinsified. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32. |
| #if defined(TARGET_ARCH_IA32) |
| |
| #include "vm/intrinsifier.h" |
| |
| #include "vm/assembler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/object.h" |
| #include "vm/object_store.h" |
| #include "vm/os.h" |
| #include "vm/regexp_assembler.h" |
| #include "vm/symbols.h" |
| #include "vm/timeline.h" |
| |
| namespace dart { |
| |
| // When entering intrinsics code: |
| // ECX: IC Data |
| // EDX: Arguments descriptor |
| // TOS: Return address |
| // The ECX, EDX registers can be destroyed only if there is no slow-path, i.e. |
| // if the intrinsified method always executes a return. |
| // The EBP register should not be modified, because it is used by the profiler. |
| // The THR register (see constants_ia32.h) must be preserved. |
| |
| #define __ assembler-> |
| |
| |
| intptr_t Intrinsifier::ParameterSlotFromSp() { |
| return 0; |
| } |
| |
| |
| void Intrinsifier::IntrinsicCallPrologue(Assembler* assembler) { |
| COMPILE_ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG); |
| |
| assembler->Comment("IntrinsicCallPrologue"); |
| assembler->movl(CALLEE_SAVED_TEMP, ARGS_DESC_REG); |
| } |
| |
| |
| void Intrinsifier::IntrinsicCallEpilogue(Assembler* assembler) { |
| assembler->Comment("IntrinsicCallEpilogue"); |
| assembler->movl(ARGS_DESC_REG, CALLEE_SAVED_TEMP); |
| } |
| |
| |
| static intptr_t ComputeObjectArrayTypeArgumentsOffset() { |
| const Library& core_lib = Library::Handle(Library::CoreLibrary()); |
| const Class& cls = |
| Class::Handle(core_lib.LookupClassAllowPrivate(Symbols::_List())); |
| ASSERT(!cls.IsNull()); |
| ASSERT(cls.NumTypeArguments() == 1); |
| const intptr_t field_offset = cls.type_arguments_field_offset(); |
| ASSERT(field_offset != Class::kNoTypeArguments); |
| return field_offset; |
| } |
| |
| |
| // Intrinsify only for Smi value and index. Non-smi values need a store buffer |
| // update. Array length is always a Smi. |
| void Intrinsifier::ObjectArraySetIndexed(Assembler* assembler) { |
| Label fall_through; |
| if (Isolate::Current()->type_checks()) { |
| const intptr_t type_args_field_offset = |
| ComputeObjectArrayTypeArgumentsOffset(); |
| // Inline simple tests (Smi, null), fallthrough if not positive. |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| Label checked_ok; |
| __ movl(EDI, Address(ESP, +1 * kWordSize)); // Value. |
| // Null value is valid for any type. |
| __ cmpl(EDI, raw_null); |
| __ j(EQUAL, &checked_ok, Assembler::kNearJump); |
| |
| __ movl(EBX, Address(ESP, +3 * kWordSize)); // Array. |
| __ movl(EBX, FieldAddress(EBX, type_args_field_offset)); |
| // EBX: Type arguments of array. |
| __ cmpl(EBX, raw_null); |
| __ j(EQUAL, &checked_ok, Assembler::kNearJump); |
| // Check if it's dynamic. |
| // Get type at index 0. |
| __ movl(EAX, FieldAddress(EBX, TypeArguments::type_at_offset(0))); |
| __ CompareObject(EAX, Object::dynamic_type()); |
| __ j(EQUAL, &checked_ok, Assembler::kNearJump); |
| // Check for int and num. |
| __ testl(EDI, Immediate(kSmiTagMask)); // Value is Smi? |
| __ j(NOT_ZERO, &fall_through); // Non-smi value. |
| __ CompareObject(EAX, Type::ZoneHandle(Type::IntType())); |
| __ j(EQUAL, &checked_ok, Assembler::kNearJump); |
| __ CompareObject(EAX, Type::ZoneHandle(Type::Number())); |
| __ j(NOT_EQUAL, &fall_through); |
| __ Bind(&checked_ok); |
| } |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); // Index. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| // Index not Smi. |
| __ j(NOT_ZERO, &fall_through); |
| __ movl(EAX, Address(ESP, +3 * kWordSize)); // Array. |
| // Range check. |
| __ cmpl(EBX, FieldAddress(EAX, Array::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through); |
| // Note that EBX is Smi, i.e, times 2. |
| ASSERT(kSmiTagShift == 1); |
| // Destroy ECX (ic data) as we will not continue in the function. |
| __ movl(ECX, Address(ESP, +1 * kWordSize)); // Value. |
| __ StoreIntoObject(EAX, FieldAddress(EAX, EBX, TIMES_2, Array::data_offset()), |
| ECX); |
| // Caller is responsible of preserving the value if necessary. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Allocate a GrowableObjectArray using the backing array specified. |
| // On stack: type argument (+2), data (+1), return-address (+0). |
| void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) { |
| // This snippet of inlined code uses the following registers: |
| // EAX, EBX |
| // and the newly allocated object is returned in EAX. |
| const intptr_t kTypeArgumentsOffset = 2 * kWordSize; |
| const intptr_t kArrayOffset = 1 * kWordSize; |
| Label fall_through; |
| |
| // Try allocating in new space. |
| const Class& cls = Class::Handle( |
| Isolate::Current()->object_store()->growable_object_array_class()); |
| __ TryAllocate(cls, &fall_through, Assembler::kNearJump, EAX, EBX); |
| |
| // Store backing array object in growable array object. |
| __ movl(EBX, Address(ESP, kArrayOffset)); // data argument. |
| // EAX is new, no barrier needed. |
| __ StoreIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, GrowableObjectArray::data_offset()), EBX); |
| |
| // EAX: new growable array object start as a tagged pointer. |
| // Store the type argument field in the growable array object. |
| __ movl(EBX, Address(ESP, kTypeArgumentsOffset)); // type argument. |
| __ StoreIntoObjectNoBarrier( |
| EAX, FieldAddress(EAX, GrowableObjectArray::type_arguments_offset()), |
| EBX); |
| |
| __ ZeroInitSmiField(FieldAddress(EAX, GrowableObjectArray::length_offset())); |
| __ ret(); // returns the newly allocated object in EAX. |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Add an element to growable array if it doesn't need to grow, otherwise |
| // call into regular code. |
| // On stack: growable array (+2), value (+1), return-address (+0). |
| void Intrinsifier::GrowableArray_add(Assembler* assembler) { |
| // In checked mode we need to type-check the incoming argument. |
| if (Isolate::Current()->type_checks()) return; |
| |
| Label fall_through; |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // Array. |
| __ movl(EBX, FieldAddress(EAX, GrowableObjectArray::length_offset())); |
| // EBX: length. |
| __ movl(EDI, FieldAddress(EAX, GrowableObjectArray::data_offset())); |
| // EDI: data. |
| // Compare length with capacity. |
| __ cmpl(EBX, FieldAddress(EDI, Array::length_offset())); |
| __ j(EQUAL, &fall_through); // Must grow data. |
| __ IncrementSmiField(FieldAddress(EAX, GrowableObjectArray::length_offset()), |
| 1); |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); // Value |
| ASSERT(kSmiTagShift == 1); |
| __ StoreIntoObject(EDI, FieldAddress(EDI, EBX, TIMES_2, Array::data_offset()), |
| EAX); |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<int32_t>(Object::null())); |
| __ movl(EAX, raw_null); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| #define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_factor) \ |
| Label fall_through; \ |
| const intptr_t kArrayLengthStackOffset = 1 * kWordSize; \ |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, EDI, &fall_through, false)); \ |
| __ movl(EDI, Address(ESP, kArrayLengthStackOffset)); /* Array length. */ \ |
| /* Check that length is a positive Smi. */ \ |
| /* EDI: requested array length argument. */ \ |
| __ testl(EDI, Immediate(kSmiTagMask)); \ |
| __ j(NOT_ZERO, &fall_through); \ |
| __ cmpl(EDI, Immediate(0)); \ |
| __ j(LESS, &fall_through); \ |
| __ SmiUntag(EDI); \ |
| /* Check for maximum allowed length. */ \ |
| /* EDI: untagged array length. */ \ |
| __ cmpl(EDI, Immediate(max_len)); \ |
| __ j(GREATER, &fall_through); \ |
| /* Special case for scaling by 16. */ \ |
| if (scale_factor == TIMES_16) { \ |
| /* double length of array. */ \ |
| __ addl(EDI, EDI); \ |
| /* only scale by 8. */ \ |
| scale_factor = TIMES_8; \ |
| } \ |
| const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \ |
| __ leal(EDI, Address(EDI, scale_factor, fixed_size)); \ |
| __ andl(EDI, Immediate(-kObjectAlignment)); \ |
| Heap::Space space = Heap::kNew; \ |
| __ movl(ECX, Address(THR, Thread::heap_offset())); \ |
| __ movl(EAX, Address(ECX, Heap::TopOffset(space))); \ |
| __ movl(EBX, EAX); \ |
| \ |
| /* EDI: allocation size. */ \ |
| __ addl(EBX, EDI); \ |
| __ j(CARRY, &fall_through); \ |
| \ |
| /* Check if the allocation fits into the remaining space. */ \ |
| /* EAX: potential new object start. */ \ |
| /* EBX: potential next object start. */ \ |
| /* EDI: allocation size. */ \ |
| /* ECX: heap. */ \ |
| __ cmpl(EBX, Address(ECX, Heap::EndOffset(space))); \ |
| __ j(ABOVE_EQUAL, &fall_through); \ |
| \ |
| /* Successfully allocated the object(s), now update top to point to */ \ |
| /* next object start and initialize the object. */ \ |
| __ movl(Address(ECX, Heap::TopOffset(space)), EBX); \ |
| __ addl(EAX, Immediate(kHeapObjectTag)); \ |
| NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, EDI, ECX, space)); \ |
| \ |
| /* Initialize the tags. */ \ |
| /* EAX: new object start as a tagged pointer. */ \ |
| /* EBX: new object end address. */ \ |
| /* EDI: allocation size. */ \ |
| { \ |
| Label size_tag_overflow, done; \ |
| __ cmpl(EDI, Immediate(RawObject::SizeTag::kMaxSizeTag)); \ |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); \ |
| __ shll(EDI, Immediate(RawObject::kSizeTagPos - kObjectAlignmentLog2)); \ |
| __ jmp(&done, Assembler::kNearJump); \ |
| \ |
| __ Bind(&size_tag_overflow); \ |
| __ movl(EDI, Immediate(0)); \ |
| __ Bind(&done); \ |
| \ |
| /* Get the class index and insert it into the tags. */ \ |
| __ orl(EDI, Immediate(RawObject::ClassIdTag::encode(cid))); \ |
| __ movl(FieldAddress(EAX, type_name::tags_offset()), EDI); /* Tags. */ \ |
| } \ |
| /* Set the length field. */ \ |
| /* EAX: new object start as a tagged pointer. */ \ |
| /* EBX: new object end address. */ \ |
| __ movl(EDI, Address(ESP, kArrayLengthStackOffset)); /* Array length. */ \ |
| __ StoreIntoObjectNoBarrier( \ |
| EAX, FieldAddress(EAX, type_name::length_offset()), EDI); \ |
| /* Initialize all array elements to 0. */ \ |
| /* EAX: new object start as a tagged pointer. */ \ |
| /* EBX: new object end address. */ \ |
| /* EDI: iterator which initially points to the start of the variable */ \ |
| /* ECX: scratch register. */ \ |
| /* data area to be initialized. */ \ |
| __ xorl(ECX, ECX); /* Zero. */ \ |
| __ leal(EDI, FieldAddress(EAX, sizeof(Raw##type_name))); \ |
| Label done, init_loop; \ |
| __ Bind(&init_loop); \ |
| __ cmpl(EDI, EBX); \ |
| __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); \ |
| __ movl(Address(EDI, 0), ECX); \ |
| __ addl(EDI, Immediate(kWordSize)); \ |
| __ jmp(&init_loop, Assembler::kNearJump); \ |
| __ Bind(&done); \ |
| \ |
| __ ret(); \ |
| __ Bind(&fall_through); |
| |
| |
| static ScaleFactor GetScaleFactor(intptr_t size) { |
| switch (size) { |
| case 1: |
| return TIMES_1; |
| case 2: |
| return TIMES_2; |
| case 4: |
| return TIMES_4; |
| case 8: |
| return TIMES_8; |
| case 16: |
| return TIMES_16; |
| } |
| UNREACHABLE(); |
| return static_cast<ScaleFactor>(0); |
| } |
| |
| |
| #define TYPED_DATA_ALLOCATOR(clazz) \ |
| void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \ |
| intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
| intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
| ScaleFactor scale = GetScaleFactor(size); \ |
| TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, scale); \ |
| } |
| CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
| #undef TYPED_DATA_ALLOCATOR |
| |
| |
| // Tests if two top most arguments are smis, jumps to label not_smi if not. |
| // Topmost argument is in EAX. |
| static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); |
| __ orl(EBX, EAX); |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi, Assembler::kNearJump); |
| } |
| |
| |
| void Intrinsifier::Integer_addFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ addl(EAX, Address(ESP, +2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_add(Assembler* assembler) { |
| Integer_addFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_subFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ subl(EAX, Address(ESP, +2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_sub(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, EAX); |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); |
| __ subl(EAX, EBX); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| __ SmiUntag(EAX); |
| __ imull(EAX, Address(ESP, +2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_mul(Assembler* assembler) { |
| Integer_mulFromInteger(assembler); |
| } |
| |
| |
| // Optimizations: |
| // - result is 0 if: |
| // - left is 0 |
| // - left equals right |
| // - result is left if |
| // - left > 0 && left < right |
| // EAX: Tagged left (dividend). |
| // EBX: Tagged right (divisor). |
| // Returns: |
| // EDX: Untagged fallthrough result (remainder to be adjusted), or |
| // EAX: Tagged return result (remainder). |
| static void EmitRemainderOperation(Assembler* assembler) { |
| Label return_zero, modulo; |
| // Check for quick zero results. |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &return_zero, Assembler::kNearJump); |
| __ cmpl(EAX, EBX); |
| __ j(EQUAL, &return_zero, Assembler::kNearJump); |
| |
| // Check if result equals left. |
| __ cmpl(EAX, Immediate(0)); |
| __ j(LESS, &modulo, Assembler::kNearJump); |
| // left is positive. |
| __ cmpl(EAX, EBX); |
| __ j(GREATER, &modulo, Assembler::kNearJump); |
| // left is less than right, result is left (EAX). |
| __ ret(); |
| |
| __ Bind(&return_zero); |
| __ xorl(EAX, EAX); |
| __ ret(); |
| |
| __ Bind(&modulo); |
| __ SmiUntag(EBX); |
| __ SmiUntag(EAX); |
| __ cdq(); |
| __ idivl(EBX); |
| } |
| |
| |
| // Implementation: |
| // res = left % right; |
| // if (res < 0) { |
| // if (right < 0) { |
| // res = res - right; |
| // } else { |
| // res = res + right; |
| // } |
| // } |
| void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) { |
| Label fall_through, subtract; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); |
| // EAX: Tagged left (dividend). |
| // EBX: Tagged right (divisor). |
| // Check if modulo by zero -> exception thrown in main function. |
| __ cmpl(EBX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| EmitRemainderOperation(assembler); |
| // Untagged remainder result in EDX. |
| Label done; |
| __ movl(EAX, EDX); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(GREATER_EQUAL, &done, Assembler::kNearJump); |
| // Result is negative, adjust it. |
| __ cmpl(EBX, Immediate(0)); |
| __ j(LESS, &subtract, Assembler::kNearJump); |
| __ addl(EAX, EBX); |
| __ SmiTag(EAX); |
| __ ret(); |
| |
| __ Bind(&subtract); |
| __ subl(EAX, EBX); |
| |
| __ Bind(&done); |
| // The remainder of two smis is always a smi, no overflow check needed. |
| __ SmiTag(EAX); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_truncDivide(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // EAX: right argument (divisor) |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| __ movl(EBX, EAX); |
| __ SmiUntag(EBX); |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // Left argument (dividend). |
| __ SmiUntag(EAX); |
| __ pushl(EDX); // Preserve EDX in case of 'fall_through'. |
| __ cdq(); |
| __ idivl(EBX); |
| __ popl(EDX); |
| // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
| // cannot tag the result. |
| __ cmpl(EAX, Immediate(0x40000000)); |
| __ j(EQUAL, &fall_through); |
| __ SmiTag(EAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_negate(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi value. |
| __ negl(EAX); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); |
| __ andl(EAX, EBX); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitAnd(Assembler* assembler) { |
| Integer_bitAndFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); |
| __ orl(EAX, EBX); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitOr(Assembler* assembler) { |
| Integer_bitOrFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); |
| __ xorl(EAX, EBX); |
| // Result is in EAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitXor(Assembler* assembler) { |
| Integer_bitXorFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_shl(Assembler* assembler) { |
| ASSERT(kSmiTagShift == 1); |
| ASSERT(kSmiTag == 0); |
| Label fall_through, overflow; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // Shift value is in EAX. Compare with tagged Smi. |
| __ cmpl(EAX, Immediate(Smi::RawValue(Smi::kBits))); |
| __ j(ABOVE_EQUAL, &fall_through, Assembler::kNearJump); |
| |
| __ SmiUntag(EAX); |
| __ movl(ECX, EAX); // Shift amount must be in ECX. |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // Value. |
| |
| // Overflow test - all the shifted-out bits must be same as the sign bit. |
| __ movl(EBX, EAX); |
| __ shll(EAX, ECX); |
| __ sarl(EAX, ECX); |
| __ cmpl(EAX, EBX); |
| __ j(NOT_EQUAL, &overflow, Assembler::kNearJump); |
| |
| __ shll(EAX, ECX); // Shift for result now we know there is no overflow. |
| |
| // EAX is a correctly tagged Smi. |
| __ ret(); |
| |
| __ Bind(&overflow); |
| // Arguments are Smi but the shift produced an overflow to Mint. |
| __ cmpl(EBX, Immediate(0)); |
| // TODO(srdjan): Implement negative values, for now fall through. |
| __ j(LESS, &fall_through, Assembler::kNearJump); |
| __ SmiUntag(EBX); |
| __ movl(EAX, EBX); |
| __ shll(EBX, ECX); |
| __ xorl(EDI, EDI); |
| __ shldl(EDI, EAX, ECX); |
| // Result in EDI (high) and EBX (low). |
| const Class& mint_class = |
| Class::Handle(Isolate::Current()->object_store()->mint_class()); |
| __ TryAllocate(mint_class, &fall_through, Assembler::kNearJump, |
| EAX, // Result register. |
| ECX); // temp |
| // EBX and EDI are not objects but integer values. |
| __ movl(FieldAddress(EAX, Mint::value_offset()), EBX); |
| __ movl(FieldAddress(EAX, Mint::value_offset() + kWordSize), EDI); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| static void Push64SmiOrMint(Assembler* assembler, |
| Register reg, |
| Register tmp, |
| Label* not_smi_or_mint) { |
| Label not_smi, done; |
| __ testl(reg, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, ¬_smi, Assembler::kNearJump); |
| __ SmiUntag(reg); |
| // Sign extend to 64 bit |
| __ movl(tmp, reg); |
| __ sarl(tmp, Immediate(31)); |
| __ pushl(tmp); |
| __ pushl(reg); |
| __ jmp(&done); |
| __ Bind(¬_smi); |
| __ CompareClassId(reg, kMintCid, tmp); |
| __ j(NOT_EQUAL, not_smi_or_mint); |
| // Mint. |
| __ pushl(FieldAddress(reg, Mint::value_offset() + kWordSize)); |
| __ pushl(FieldAddress(reg, Mint::value_offset())); |
| __ Bind(&done); |
| } |
| |
| |
| static void CompareIntegers(Assembler* assembler, Condition true_condition) { |
| Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; |
| TestBothArgumentsSmis(assembler, &try_mint_smi); |
| // EAX contains the right argument. |
| __ cmpl(Address(ESP, +2 * kWordSize), EAX); |
| __ j(true_condition, &is_true, Assembler::kNearJump); |
| __ Bind(&is_false); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| |
| // 64-bit comparison |
| Condition hi_true_cond, hi_false_cond, lo_false_cond; |
| switch (true_condition) { |
| case LESS: |
| case LESS_EQUAL: |
| hi_true_cond = LESS; |
| hi_false_cond = GREATER; |
| lo_false_cond = (true_condition == LESS) ? ABOVE_EQUAL : ABOVE; |
| break; |
| case GREATER: |
| case GREATER_EQUAL: |
| hi_true_cond = GREATER; |
| hi_false_cond = LESS; |
| lo_false_cond = (true_condition == GREATER) ? BELOW_EQUAL : BELOW; |
| break; |
| default: |
| UNREACHABLE(); |
| hi_true_cond = hi_false_cond = lo_false_cond = OVERFLOW; |
| } |
| __ Bind(&try_mint_smi); |
| // Note that EDX and ECX must be preserved in case we fall through to main |
| // method. |
| // EAX contains the right argument. |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); // Left argument. |
| // Push left as 64 bit integer. |
| Push64SmiOrMint(assembler, EBX, EDI, &fall_through); |
| // Push right as 64 bit integer. |
| Push64SmiOrMint(assembler, EAX, EDI, &drop_two_fall_through); |
| __ popl(EBX); // Right.LO. |
| __ popl(ECX); // Right.HI. |
| __ popl(EAX); // Left.LO. |
| __ popl(EDX); // Left.HI. |
| __ cmpl(EDX, ECX); // cmpl left.HI, right.HI. |
| __ j(hi_false_cond, &is_false, Assembler::kNearJump); |
| __ j(hi_true_cond, &is_true, Assembler::kNearJump); |
| __ cmpl(EAX, EBX); // cmpl left.LO, right.LO. |
| __ j(lo_false_cond, &is_false, Assembler::kNearJump); |
| // Else is true. |
| __ jmp(&is_true); |
| |
| __ Bind(&drop_two_fall_through); |
| __ Drop(2); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) { |
| CompareIntegers(assembler, LESS); |
| } |
| |
| |
| void Intrinsifier::Integer_lessThan(Assembler* assembler) { |
| Integer_greaterThanFromInt(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterThan(Assembler* assembler) { |
| CompareIntegers(assembler, GREATER); |
| } |
| |
| |
| void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) { |
| CompareIntegers(assembler, LESS_EQUAL); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) { |
| CompareIntegers(assembler, GREATER_EQUAL); |
| } |
| |
| |
| // This is called for Smi, Mint and Bigint receivers. The right argument |
| // can be Smi, Mint, Bigint or double. |
| void Intrinsifier::Integer_equalToInteger(Assembler* assembler) { |
| Label fall_through, true_label, check_for_mint; |
| // For integer receiver '===' check first. |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ cmpl(EAX, Address(ESP, +2 * kWordSize)); |
| __ j(EQUAL, &true_label, Assembler::kNearJump); |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); |
| __ orl(EAX, EBX); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &check_for_mint, Assembler::kNearJump); |
| // Both arguments are smi, '===' is good enough. |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| |
| // At least one of the arguments was not Smi. |
| Label receiver_not_smi; |
| __ Bind(&check_for_mint); |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // Receiver. |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &receiver_not_smi); |
| |
| // Left (receiver) is Smi, return false if right is not Double. |
| // Note that an instance of Mint or Bigint never contains a value that can be |
| // represented by Smi. |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); // Right argument. |
| __ CompareClassId(EAX, kDoubleCid, EDI); |
| __ j(EQUAL, &fall_through); |
| __ LoadObject(EAX, Bool::False()); // Smi == Mint -> false. |
| __ ret(); |
| |
| __ Bind(&receiver_not_smi); |
| // EAX:: receiver. |
| __ CompareClassId(EAX, kMintCid, EDI); |
| __ j(NOT_EQUAL, &fall_through); |
| // Receiver is Mint, return false if right is Smi. |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); // Right argument. |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| // TODO(srdjan): Implement Mint == Mint comparison. |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_equal(Assembler* assembler) { |
| Integer_equalToInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_sar(Assembler* assembler) { |
| Label fall_through, shift_count_ok; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // Can destroy ECX since we are not falling through. |
| const Immediate& count_limit = Immediate(0x1F); |
| // Check that the count is not larger than what the hardware can handle. |
| // For shifting right a Smi the result is the same for all numbers |
| // >= count_limit. |
| __ SmiUntag(EAX); |
| // Negative counts throw exception. |
| __ cmpl(EAX, Immediate(0)); |
| __ j(LESS, &fall_through, Assembler::kNearJump); |
| __ cmpl(EAX, count_limit); |
| __ j(LESS_EQUAL, &shift_count_ok, Assembler::kNearJump); |
| __ movl(EAX, count_limit); |
| __ Bind(&shift_count_ok); |
| __ movl(ECX, EAX); // Shift amount must be in ECX. |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // Value. |
| __ SmiUntag(EAX); // Value. |
| __ sarl(EAX, ECX); |
| __ SmiTag(EAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Argument is Smi (receiver). |
| void Intrinsifier::Smi_bitNegate(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); // Receiver. |
| __ notl(EAX); |
| __ andl(EAX, Immediate(~kSmiTagMask)); // Remove inverted smi-tag. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Smi_bitLength(Assembler* assembler) { |
| ASSERT(kSmiTagShift == 1); |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); // Receiver. |
| // XOR with sign bit to complement bits if value is negative. |
| __ movl(ECX, EAX); |
| __ sarl(ECX, Immediate(31)); // All 0 or all 1. |
| __ xorl(EAX, ECX); |
| // BSR does not write the destination register if source is zero. Put a 1 in |
| // the Smi tag bit to ensure BSR writes to destination register. |
| __ orl(EAX, Immediate(kSmiTagMask)); |
| __ bsrl(EAX, EAX); |
| __ SmiTag(EAX); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Smi_bitAndFromSmi(Assembler* assembler) { |
| Integer_bitAndFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Bigint_lsh(Assembler* assembler) { |
| // static void _lsh(Uint32List x_digits, int x_used, int n, |
| // Uint32List r_digits) |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| __ movl(EDI, Address(ESP, 5 * kWordSize)); // x_digits |
| __ movl(ECX, Address(ESP, 3 * kWordSize)); // n is Smi |
| __ SmiUntag(ECX); |
| __ movl(EBX, Address(ESP, 2 * kWordSize)); // r_digits |
| __ movl(ESI, ECX); |
| __ sarl(ESI, Immediate(5)); // ESI = n ~/ _DIGIT_BITS. |
| __ leal(EBX, FieldAddress(EBX, ESI, TIMES_4, TypedData::data_offset())); |
| __ movl(ESI, Address(ESP, 4 * kWordSize)); // x_used > 0, Smi. |
| __ SmiUntag(ESI); |
| __ decl(ESI); |
| __ xorl(EAX, EAX); // EAX = 0. |
| __ movl(EDX, FieldAddress(EDI, ESI, TIMES_4, TypedData::data_offset())); |
| __ shldl(EAX, EDX, ECX); |
| __ movl(Address(EBX, ESI, TIMES_4, Bigint::kBytesPerDigit), EAX); |
| Label last; |
| __ cmpl(ESI, Immediate(0)); |
| __ j(EQUAL, &last, Assembler::kNearJump); |
| Label loop; |
| __ Bind(&loop); |
| __ movl(EAX, EDX); |
| __ movl(EDX, FieldAddress(EDI, ESI, TIMES_4, |
| TypedData::data_offset() - Bigint::kBytesPerDigit)); |
| __ shldl(EAX, EDX, ECX); |
| __ movl(Address(EBX, ESI, TIMES_4, 0), EAX); |
| __ decl(ESI); |
| __ j(NOT_ZERO, &loop, Assembler::kNearJump); |
| __ Bind(&last); |
| __ shldl(EDX, ESI, ECX); // ESI == 0. |
| __ movl(Address(EBX, 0), EDX); |
| |
| // Restore THR and return. |
| __ popl(THR); |
| // Returning Object::null() is not required, since this method is private. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_rsh(Assembler* assembler) { |
| // static void _rsh(Uint32List x_digits, int x_used, int n, |
| // Uint32List r_digits) |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| __ movl(EDI, Address(ESP, 5 * kWordSize)); // x_digits |
| __ movl(ECX, Address(ESP, 3 * kWordSize)); // n is Smi |
| __ SmiUntag(ECX); |
| __ movl(EBX, Address(ESP, 2 * kWordSize)); // r_digits |
| __ movl(EDX, ECX); |
| __ sarl(EDX, Immediate(5)); // EDX = n ~/ _DIGIT_BITS. |
| __ movl(ESI, Address(ESP, 4 * kWordSize)); // x_used > 0, Smi. |
| __ SmiUntag(ESI); |
| __ decl(ESI); |
| // EDI = &x_digits[x_used - 1]. |
| __ leal(EDI, FieldAddress(EDI, ESI, TIMES_4, TypedData::data_offset())); |
| __ subl(ESI, EDX); |
| // EBX = &r_digits[x_used - 1 - (n ~/ 32)]. |
| __ leal(EBX, FieldAddress(EBX, ESI, TIMES_4, TypedData::data_offset())); |
| __ negl(ESI); |
| __ movl(EDX, Address(EDI, ESI, TIMES_4, 0)); |
| Label last; |
| __ cmpl(ESI, Immediate(0)); |
| __ j(EQUAL, &last, Assembler::kNearJump); |
| Label loop; |
| __ Bind(&loop); |
| __ movl(EAX, EDX); |
| __ movl(EDX, Address(EDI, ESI, TIMES_4, Bigint::kBytesPerDigit)); |
| __ shrdl(EAX, EDX, ECX); |
| __ movl(Address(EBX, ESI, TIMES_4, 0), EAX); |
| __ incl(ESI); |
| __ j(NOT_ZERO, &loop, Assembler::kNearJump); |
| __ Bind(&last); |
| __ shrdl(EDX, ESI, ECX); // ESI == 0. |
| __ movl(Address(EBX, 0), EDX); |
| |
| // Restore THR and return. |
| __ popl(THR); |
| // Returning Object::null() is not required, since this method is private. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_absAdd(Assembler* assembler) { |
| // static void _absAdd(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| __ movl(EDI, Address(ESP, 6 * kWordSize)); // digits |
| __ movl(EAX, Address(ESP, 5 * kWordSize)); // used is Smi |
| __ SmiUntag(EAX); // used > 0. |
| __ movl(ESI, Address(ESP, 4 * kWordSize)); // a_digits |
| __ movl(ECX, Address(ESP, 3 * kWordSize)); // a_used is Smi |
| __ SmiUntag(ECX); // a_used > 0. |
| __ movl(EBX, Address(ESP, 2 * kWordSize)); // r_digits |
| |
| // Precompute 'used - a_used' now so that carry flag is not lost later. |
| __ subl(EAX, ECX); |
| __ incl(EAX); // To account for the extra test between loops. |
| __ pushl(EAX); |
| |
| __ xorl(EDX, EDX); // EDX = 0, carry flag = 0. |
| Label add_loop; |
| __ Bind(&add_loop); |
| // Loop a_used times, ECX = a_used, ECX > 0. |
| __ movl(EAX, FieldAddress(EDI, EDX, TIMES_4, TypedData::data_offset())); |
| __ adcl(EAX, FieldAddress(ESI, EDX, TIMES_4, TypedData::data_offset())); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, TypedData::data_offset()), EAX); |
| __ incl(EDX); // Does not affect carry flag. |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &add_loop, Assembler::kNearJump); |
| |
| Label last_carry; |
| __ popl(ECX); |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(ZERO, &last_carry, Assembler::kNearJump); // If used - a_used == 0. |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop used - a_used times, ECX = used - a_used, ECX > 0. |
| __ movl(EAX, FieldAddress(EDI, EDX, TIMES_4, TypedData::data_offset())); |
| __ adcl(EAX, Immediate(0)); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, TypedData::data_offset()), EAX); |
| __ incl(EDX); // Does not affect carry flag. |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&last_carry); |
| __ movl(EAX, Immediate(0)); |
| __ adcl(EAX, Immediate(0)); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, TypedData::data_offset()), EAX); |
| |
| // Restore THR and return. |
| __ popl(THR); |
| // Returning Object::null() is not required, since this method is private. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_absSub(Assembler* assembler) { |
| // static void _absSub(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| __ movl(EDI, Address(ESP, 6 * kWordSize)); // digits |
| __ movl(EAX, Address(ESP, 5 * kWordSize)); // used is Smi |
| __ SmiUntag(EAX); // used > 0. |
| __ movl(ESI, Address(ESP, 4 * kWordSize)); // a_digits |
| __ movl(ECX, Address(ESP, 3 * kWordSize)); // a_used is Smi |
| __ SmiUntag(ECX); // a_used > 0. |
| __ movl(EBX, Address(ESP, 2 * kWordSize)); // r_digits |
| |
| // Precompute 'used - a_used' now so that carry flag is not lost later. |
| __ subl(EAX, ECX); |
| __ incl(EAX); // To account for the extra test between loops. |
| __ pushl(EAX); |
| |
| __ xorl(EDX, EDX); // EDX = 0, carry flag = 0. |
| Label sub_loop; |
| __ Bind(&sub_loop); |
| // Loop a_used times, ECX = a_used, ECX > 0. |
| __ movl(EAX, FieldAddress(EDI, EDX, TIMES_4, TypedData::data_offset())); |
| __ sbbl(EAX, FieldAddress(ESI, EDX, TIMES_4, TypedData::data_offset())); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, TypedData::data_offset()), EAX); |
| __ incl(EDX); // Does not affect carry flag. |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &sub_loop, Assembler::kNearJump); |
| |
| Label done; |
| __ popl(ECX); |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(ZERO, &done, Assembler::kNearJump); // If used - a_used == 0. |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop used - a_used times, ECX = used - a_used, ECX > 0. |
| __ movl(EAX, FieldAddress(EDI, EDX, TIMES_4, TypedData::data_offset())); |
| __ sbbl(EAX, Immediate(0)); |
| __ movl(FieldAddress(EBX, EDX, TIMES_4, TypedData::data_offset()), EAX); |
| __ incl(EDX); // Does not affect carry flag. |
| __ decl(ECX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // Restore THR and return. |
| __ popl(THR); |
| // Returning Object::null() is not required, since this method is private. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_mulAdd(Assembler* assembler) { |
| // Pseudo code: |
| // static int _mulAdd(Uint32List x_digits, int xi, |
| // Uint32List m_digits, int i, |
| // Uint32List a_digits, int j, int n) { |
| // uint32_t x = x_digits[xi >> 1]; // xi is Smi. |
| // if (x == 0 || n == 0) { |
| // return 1; |
| // } |
| // uint32_t* mip = &m_digits[i >> 1]; // i is Smi. |
| // uint32_t* ajp = &a_digits[j >> 1]; // j is Smi. |
| // uint32_t c = 0; |
| // SmiUntag(n); |
| // do { |
| // uint32_t mi = *mip++; |
| // uint32_t aj = *ajp; |
| // uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit. |
| // *ajp++ = low32(t); |
| // c = high32(t); |
| // } while (--n > 0); |
| // while (c != 0) { |
| // uint64_t t = *ajp + c; |
| // *ajp++ = low32(t); |
| // c = high32(t); // c == 0 or 1. |
| // } |
| // return 1; |
| // } |
| |
| Label no_op; |
| // EBX = x, no_op if x == 0 |
| __ movl(ECX, Address(ESP, 7 * kWordSize)); // x_digits |
| __ movl(EAX, Address(ESP, 6 * kWordSize)); // xi is Smi |
| __ movl(EBX, FieldAddress(ECX, EAX, TIMES_2, TypedData::data_offset())); |
| __ testl(EBX, EBX); |
| __ j(ZERO, &no_op, Assembler::kNearJump); |
| |
| // EDX = SmiUntag(n), no_op if n == 0 |
| __ movl(EDX, Address(ESP, 1 * kWordSize)); |
| __ SmiUntag(EDX); |
| __ j(ZERO, &no_op, Assembler::kNearJump); |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| // EDI = mip = &m_digits[i >> 1] |
| __ movl(EDI, Address(ESP, 6 * kWordSize)); // m_digits |
| __ movl(EAX, Address(ESP, 5 * kWordSize)); // i is Smi |
| __ leal(EDI, FieldAddress(EDI, EAX, TIMES_2, TypedData::data_offset())); |
| |
| // ESI = ajp = &a_digits[j >> 1] |
| __ movl(ESI, Address(ESP, 4 * kWordSize)); // a_digits |
| __ movl(EAX, Address(ESP, 3 * kWordSize)); // j is Smi |
| __ leal(ESI, FieldAddress(ESI, EAX, TIMES_2, TypedData::data_offset())); |
| |
| // Save n |
| __ pushl(EDX); |
| Address n_addr = Address(ESP, 0 * kWordSize); |
| |
| // ECX = c = 0 |
| __ xorl(ECX, ECX); |
| |
| Label muladd_loop; |
| __ Bind(&muladd_loop); |
| // x: EBX |
| // mip: EDI |
| // ajp: ESI |
| // c: ECX |
| // t: EDX:EAX (not live at loop entry) |
| // n: ESP[0] |
| |
| // uint32_t mi = *mip++ |
| __ movl(EAX, Address(EDI, 0)); |
| __ addl(EDI, Immediate(Bigint::kBytesPerDigit)); |
| |
| // uint64_t t = x*mi |
| __ mull(EBX); // t = EDX:EAX = EAX * EBX |
| __ addl(EAX, ECX); // t += c |
| __ adcl(EDX, Immediate(0)); |
| |
| // uint32_t aj = *ajp; t += aj |
| __ addl(EAX, Address(ESI, 0)); |
| __ adcl(EDX, Immediate(0)); |
| |
| // *ajp++ = low32(t) |
| __ movl(Address(ESI, 0), EAX); |
| __ addl(ESI, Immediate(Bigint::kBytesPerDigit)); |
| |
| // c = high32(t) |
| __ movl(ECX, EDX); |
| |
| // while (--n > 0) |
| __ decl(n_addr); // --n |
| __ j(NOT_ZERO, &muladd_loop, Assembler::kNearJump); |
| |
| Label done; |
| __ testl(ECX, ECX); |
| __ j(ZERO, &done, Assembler::kNearJump); |
| |
| // *ajp += c |
| __ addl(Address(ESI, 0), ECX); |
| __ j(NOT_CARRY, &done, Assembler::kNearJump); |
| |
| Label propagate_carry_loop; |
| __ Bind(&propagate_carry_loop); |
| __ addl(ESI, Immediate(Bigint::kBytesPerDigit)); |
| __ incl(Address(ESI, 0)); // c == 0 or 1 |
| __ j(CARRY, &propagate_carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| __ Drop(1); // n |
| // Restore THR and return. |
| __ popl(THR); |
| |
| __ Bind(&no_op); |
| __ movl(EAX, Immediate(Smi::RawValue(1))); // One digit processed. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) { |
| // Pseudo code: |
| // static int _sqrAdd(Uint32List x_digits, int i, |
| // Uint32List a_digits, int used) { |
| // uint32_t* xip = &x_digits[i >> 1]; // i is Smi. |
| // uint32_t x = *xip++; |
| // if (x == 0) return 1; |
| // uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| // uint32_t aj = *ajp; |
| // uint64_t t = x*x + aj; |
| // *ajp++ = low32(t); |
| // uint64_t c = high32(t); |
| // int n = ((used - i) >> 1) - 1; // used and i are Smi. |
| // while (--n >= 0) { |
| // uint32_t xi = *xip++; |
| // uint32_t aj = *ajp; |
| // uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit. |
| // *ajp++ = low32(t); |
| // c = high64(t); // 33-bit. |
| // } |
| // uint32_t aj = *ajp; |
| // uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit. |
| // *ajp++ = low32(t); |
| // *ajp = high32(t); |
| // return 1; |
| // } |
| |
| // EDI = xip = &x_digits[i >> 1] |
| __ movl(EDI, Address(ESP, 4 * kWordSize)); // x_digits |
| __ movl(EAX, Address(ESP, 3 * kWordSize)); // i is Smi |
| __ leal(EDI, FieldAddress(EDI, EAX, TIMES_2, TypedData::data_offset())); |
| |
| // EBX = x = *xip++, return if x == 0 |
| Label x_zero; |
| __ movl(EBX, Address(EDI, 0)); |
| __ cmpl(EBX, Immediate(0)); |
| __ j(EQUAL, &x_zero, Assembler::kNearJump); |
| __ addl(EDI, Immediate(Bigint::kBytesPerDigit)); |
| |
| // Preserve THR to free ESI. |
| __ pushl(THR); |
| ASSERT(THR == ESI); |
| |
| // ESI = ajp = &a_digits[i] |
| __ movl(ESI, Address(ESP, 3 * kWordSize)); // a_digits |
| __ leal(ESI, FieldAddress(ESI, EAX, TIMES_4, TypedData::data_offset())); |
| |
| // EDX:EAX = t = x*x + *ajp |
| __ movl(EAX, EBX); |
| __ mull(EBX); |
| __ addl(EAX, Address(ESI, 0)); |
| __ adcl(EDX, Immediate(0)); |
| |
| // *ajp++ = low32(t) |
| __ movl(Address(ESI, 0), EAX); |
| __ addl(ESI, Immediate(Bigint::kBytesPerDigit)); |
| |
| // int n = used - i - 1 |
| __ movl(EAX, Address(ESP, 2 * kWordSize)); // used is Smi |
| __ subl(EAX, Address(ESP, 4 * kWordSize)); // i is Smi |
| __ SmiUntag(EAX); |
| __ decl(EAX); |
| __ pushl(EAX); // Save n on stack. |
| |
| // uint64_t c = high32(t) |
| __ pushl(Immediate(0)); // push high32(c) == 0 |
| __ pushl(EDX); // push low32(c) == high32(t) |
| |
| Address n_addr = Address(ESP, 2 * kWordSize); |
| Address ch_addr = Address(ESP, 1 * kWordSize); |
| Address cl_addr = Address(ESP, 0 * kWordSize); |
| |
| Label loop, done; |
| __ Bind(&loop); |
| // x: EBX |
| // xip: EDI |
| // ajp: ESI |
| // c: ESP[1]:ESP[0] |
| // t: ECX:EDX:EAX (not live at loop entry) |
| // n: ESP[2] |
| |
| // while (--n >= 0) |
| __ decl(Address(ESP, 2 * kWordSize)); // --n |
| __ j(NEGATIVE, &done, Assembler::kNearJump); |
| |
| // uint32_t xi = *xip++ |
| __ movl(EAX, Address(EDI, 0)); |
| __ addl(EDI, Immediate(Bigint::kBytesPerDigit)); |
| |
| // uint96_t t = ECX:EDX:EAX = 2*x*xi + aj + c |
| __ mull(EBX); // EDX:EAX = EAX * EBX |
| __ xorl(ECX, ECX); // ECX = 0 |
| __ shldl(ECX, EDX, Immediate(1)); |
| __ shldl(EDX, EAX, Immediate(1)); |
| __ shll(EAX, Immediate(1)); // ECX:EDX:EAX <<= 1 |
| __ addl(EAX, Address(ESI, 0)); // t += aj |
| __ adcl(EDX, Immediate(0)); |
| __ adcl(ECX, Immediate(0)); |
| __ addl(EAX, cl_addr); // t += low32(c) |
| __ adcl(EDX, ch_addr); // t += high32(c) << 32 |
| __ adcl(ECX, Immediate(0)); |
| |
| // *ajp++ = low32(t) |
| __ movl(Address(ESI, 0), EAX); |
| __ addl(ESI, Immediate(Bigint::kBytesPerDigit)); |
| |
| // c = high64(t) |
| __ movl(cl_addr, EDX); |
| __ movl(ch_addr, ECX); |
| |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // uint64_t t = aj + c |
| __ movl(EAX, cl_addr); // t = c |
| __ movl(EDX, ch_addr); |
| __ addl(EAX, Address(ESI, 0)); // t += *ajp |
| __ adcl(EDX, Immediate(0)); |
| |
| // *ajp++ = low32(t) |
| // *ajp = high32(t) |
| __ movl(Address(ESI, 0), EAX); |
| __ movl(Address(ESI, Bigint::kBytesPerDigit), EDX); |
| |
| // Restore THR and return. |
| __ Drop(3); |
| __ popl(THR); |
| __ Bind(&x_zero); |
| __ movl(EAX, Immediate(Smi::RawValue(1))); // One digit processed. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_estQuotientDigit(Assembler* assembler) { |
| // Pseudo code: |
| // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { |
| // uint32_t yt = args[_YT]; // _YT == 1. |
| // uint32_t* dp = &digits[i >> 1]; // i is Smi. |
| // uint32_t dh = dp[0]; // dh == digits[i >> 1]. |
| // uint32_t qd; |
| // if (dh == yt) { |
| // qd = DIGIT_MASK; |
| // } else { |
| // dl = dp[-1]; // dl == digits[(i - 1) >> 1]. |
| // qd = dh:dl / yt; // No overflow possible, because dh < yt. |
| // } |
| // args[_QD] = qd; // _QD == 2. |
| // return 1; |
| // } |
| |
| // EDI = args |
| __ movl(EDI, Address(ESP, 3 * kWordSize)); // args |
| |
| // ECX = yt = args[1] |
| __ movl(ECX, |
| FieldAddress(EDI, TypedData::data_offset() + Bigint::kBytesPerDigit)); |
| |
| // EBX = dp = &digits[i >> 1] |
| __ movl(EBX, Address(ESP, 2 * kWordSize)); // digits |
| __ movl(EAX, Address(ESP, 1 * kWordSize)); // i is Smi |
| __ leal(EBX, FieldAddress(EBX, EAX, TIMES_2, TypedData::data_offset())); |
| |
| // EDX = dh = dp[0] |
| __ movl(EDX, Address(EBX, 0)); |
| |
| // EAX = qd = DIGIT_MASK = -1 |
| __ movl(EAX, Immediate(-1)); |
| |
| // Return qd if dh == yt |
| Label return_qd; |
| __ cmpl(EDX, ECX); |
| __ j(EQUAL, &return_qd, Assembler::kNearJump); |
| |
| // EAX = dl = dp[-1] |
| __ movl(EAX, Address(EBX, -Bigint::kBytesPerDigit)); |
| |
| // EAX = qd = dh:dl / yt = EDX:EAX / ECX |
| __ divl(ECX); |
| |
| __ Bind(&return_qd); |
| // args[2] = qd |
| __ movl( |
| FieldAddress(EDI, TypedData::data_offset() + 2 * Bigint::kBytesPerDigit), |
| EAX); |
| |
| __ movl(EAX, Immediate(Smi::RawValue(1))); // One digit processed. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Montgomery_mulMod(Assembler* assembler) { |
| // Pseudo code: |
| // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| // uint32_t rho = args[_RHO]; // _RHO == 2. |
| // uint32_t d = digits[i >> 1]; // i is Smi. |
| // uint64_t t = rho*d; |
| // args[_MU] = t mod DIGIT_BASE; // _MU == 4. |
| // return 1; |
| // } |
| |
| // EDI = args |
| __ movl(EDI, Address(ESP, 3 * kWordSize)); // args |
| |
| // ECX = rho = args[2] |
| __ movl(ECX, FieldAddress( |
| EDI, TypedData::data_offset() + 2 * Bigint::kBytesPerDigit)); |
| |
| // EAX = digits[i >> 1] |
| __ movl(EBX, Address(ESP, 2 * kWordSize)); // digits |
| __ movl(EAX, Address(ESP, 1 * kWordSize)); // i is Smi |
| __ movl(EAX, FieldAddress(EBX, EAX, TIMES_2, TypedData::data_offset())); |
| |
| // EDX:EAX = t = rho*d |
| __ mull(ECX); |
| |
| // args[4] = t mod DIGIT_BASE = low32(t) |
| __ movl( |
| FieldAddress(EDI, TypedData::data_offset() + 4 * Bigint::kBytesPerDigit), |
| EAX); |
| |
| __ movl(EAX, Immediate(Smi::RawValue(1))); // One digit processed. |
| __ ret(); |
| } |
| |
| |
| // Check if the last argument is a double, jump to label 'is_smi' if smi |
| // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| // Returns the last argument in EAX. |
| static void TestLastArgumentIsDouble(Assembler* assembler, |
| Label* is_smi, |
| Label* not_double_smi) { |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(ZERO, is_smi, Assembler::kNearJump); // Jump if Smi. |
| __ CompareClassId(EAX, kDoubleCid, EBX); |
| __ j(NOT_EQUAL, not_double_smi, Assembler::kNearJump); |
| // Fall through if double. |
| } |
| |
| |
| // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
| // type. Return true or false object in the register EAX. Any NaN argument |
| // returns false. Any non-double arg1 causes control flow to fall through to the |
| // slow case (compiled method body). |
| static void CompareDoubles(Assembler* assembler, Condition true_condition) { |
| Label fall_through, is_false, is_true, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Both arguments are double, right operand is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, Double::value_offset())); |
| __ Bind(&double_op); |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // Left argument. |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ comisd(XMM0, XMM1); |
| __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false; |
| __ j(true_condition, &is_true, Assembler::kNearJump); |
| // Fall through false. |
| __ Bind(&is_false); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ jmp(&double_op); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| void Intrinsifier::Double_greaterThan(Assembler* assembler) { |
| CompareDoubles(assembler, ABOVE); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) { |
| CompareDoubles(assembler, ABOVE_EQUAL); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| void Intrinsifier::Double_lessThan(Assembler* assembler) { |
| CompareDoubles(assembler, BELOW); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| void Intrinsifier::Double_equal(Assembler* assembler) { |
| CompareDoubles(assembler, EQUAL); |
| } |
| |
| |
| // arg0 is Double, arg1 is unknown. |
| void Intrinsifier::Double_lessEqualThan(Assembler* assembler) { |
| CompareDoubles(assembler, BELOW_EQUAL); |
| } |
| |
| |
| // Expects left argument to be double (receiver). Right argument is unknown. |
| // Both arguments are on stack. |
| static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) { |
| Label fall_through, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Both arguments are double, right operand is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, Double::value_offset())); |
| __ Bind(&double_op); |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // Left argument. |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| switch (kind) { |
| case Token::kADD: |
| __ addsd(XMM0, XMM1); |
| break; |
| case Token::kSUB: |
| __ subsd(XMM0, XMM1); |
| break; |
| case Token::kMUL: |
| __ mulsd(XMM0, XMM1); |
| break; |
| case Token::kDIV: |
| __ divsd(XMM0, XMM1); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| const Class& double_class = |
| Class::Handle(Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, Assembler::kNearJump, |
| EAX, // Result register. |
| EBX); |
| __ movsd(FieldAddress(EAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ jmp(&double_op); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Double_add(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kADD); |
| } |
| |
| |
| void Intrinsifier::Double_mul(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kMUL); |
| } |
| |
| |
| void Intrinsifier::Double_sub(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kSUB); |
| } |
| |
| |
| void Intrinsifier::Double_div(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kDIV); |
| } |
| |
| |
| // Left is double right is integer (Bigint, Mint or Smi) |
| void Intrinsifier::Double_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| // Only smis allowed. |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); |
| // Is Smi. |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ mulsd(XMM0, XMM1); |
| const Class& double_class = |
| Class::Handle(Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, Assembler::kNearJump, |
| EAX, // Result register. |
| EBX); |
| __ movsd(FieldAddress(EAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::DoubleFromInteger(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); |
| // Is Smi. |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM0, EAX); |
| const Class& double_class = |
| Class::Handle(Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, Assembler::kNearJump, |
| EAX, // Result register. |
| EBX); |
| __ movsd(FieldAddress(EAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Double_getIsNaN(Assembler* assembler) { |
| Label is_true; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ comisd(XMM0, XMM0); |
| __ j(PARITY_EVEN, &is_true, Assembler::kNearJump); // NaN -> true; |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Double_getIsInfinite(Assembler* assembler) { |
| Label not_inf; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ movl(EBX, FieldAddress(EAX, Double::value_offset())); |
| |
| // If the low word isn't zero, then it isn't infinity. |
| __ cmpl(EBX, Immediate(0)); |
| __ j(NOT_EQUAL, ¬_inf, Assembler::kNearJump); |
| // Check the high word. |
| __ movl(EBX, FieldAddress(EAX, Double::value_offset() + kWordSize)); |
| // Mask off sign bit. |
| __ andl(EBX, Immediate(0x7FFFFFFF)); |
| // Compare with +infinity. |
| __ cmpl(EBX, Immediate(0x7FF00000)); |
| __ j(NOT_EQUAL, ¬_inf, Assembler::kNearJump); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| |
| __ Bind(¬_inf); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Double_getIsNegative(Assembler* assembler) { |
| Label is_false, is_true, is_zero; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ xorpd(XMM1, XMM1); // 0.0 -> XMM1. |
| __ comisd(XMM0, XMM1); |
| __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false. |
| __ j(EQUAL, &is_zero, Assembler::kNearJump); // Check for negative zero. |
| __ j(ABOVE_EQUAL, &is_false, Assembler::kNearJump); // >= 0 -> false. |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| __ Bind(&is_false); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_zero); |
| // Check for negative zero (get the sign bit). |
| __ movmskpd(EAX, XMM0); |
| __ testl(EAX, Immediate(1)); |
| __ j(NOT_ZERO, &is_true, Assembler::kNearJump); |
| __ jmp(&is_false, Assembler::kNearJump); |
| } |
| |
| |
| void Intrinsifier::DoubleToInteger(Assembler* assembler) { |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(EAX, Double::value_offset())); |
| __ cvttsd2si(EAX, XMM0); |
| // Overflow is signalled with minint. |
| Label fall_through; |
| // Check for overflow and that it fits into Smi. |
| __ cmpl(EAX, Immediate(0xC0000000)); |
| __ j(NEGATIVE, &fall_through, Assembler::kNearJump); |
| __ SmiTag(EAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Argument type is not known |
| void Intrinsifier::MathSqrt(Assembler* assembler) { |
| Label fall_through, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Argument is double and is in EAX. |
| __ movsd(XMM1, FieldAddress(EAX, Double::value_offset())); |
| __ Bind(&double_op); |
| __ sqrtsd(XMM0, XMM1); |
| const Class& double_class = |
| Class::Handle(Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, Assembler::kNearJump, |
| EAX, // Result register. |
| EBX); |
| __ movsd(FieldAddress(EAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(EAX); |
| __ cvtsi2sd(XMM1, EAX); |
| __ jmp(&double_op); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
| // _state[kSTATE_LO] = state & _MASK_32; |
| // _state[kSTATE_HI] = state >> 32; |
| void Intrinsifier::Random_nextState(Assembler* assembler) { |
| const Library& math_lib = Library::Handle(Library::MathLibrary()); |
| ASSERT(!math_lib.IsNull()); |
| const Class& random_class = |
| Class::Handle(math_lib.LookupClassAllowPrivate(Symbols::_Random())); |
| ASSERT(!random_class.IsNull()); |
| const Field& state_field = Field::ZoneHandle( |
| random_class.LookupInstanceFieldAllowPrivate(Symbols::_state())); |
| ASSERT(!state_field.IsNull()); |
| const Field& random_A_field = Field::ZoneHandle( |
| random_class.LookupStaticFieldAllowPrivate(Symbols::_A())); |
| ASSERT(!random_A_field.IsNull()); |
| ASSERT(random_A_field.is_const()); |
| Instance& a_value = Instance::Handle(random_A_field.StaticValue()); |
| if (a_value.raw() == Object::sentinel().raw() || |
| a_value.raw() == Object::transition_sentinel().raw()) { |
| random_A_field.EvaluateInitializer(); |
| a_value = random_A_field.StaticValue(); |
| } |
| const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value(); |
| // 'a_int_value' is a mask. |
| ASSERT(Utils::IsUint(32, a_int_value)); |
| int32_t a_int32_value = static_cast<int32_t>(a_int_value); |
| // Receiver. |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| // Field '_state'. |
| __ movl(EBX, FieldAddress(EAX, state_field.Offset())); |
| // Addresses of _state[0] and _state[1]. |
| const intptr_t scale = Instance::ElementSizeFor(kTypedDataUint32ArrayCid); |
| const intptr_t offset = Instance::DataOffsetFor(kTypedDataUint32ArrayCid); |
| Address addr_0 = FieldAddress(EBX, 0 * scale + offset); |
| Address addr_1 = FieldAddress(EBX, 1 * scale + offset); |
| __ movl(EAX, Immediate(a_int32_value)); |
| // 64-bit multiply EAX * value -> EDX:EAX. |
| __ mull(addr_0); |
| __ addl(EAX, addr_1); |
| __ adcl(EDX, Immediate(0)); |
| __ movl(addr_1, EDX); |
| __ movl(addr_0, EAX); |
| __ ret(); |
| } |
| |
| |
| // Identity comparison. |
| void Intrinsifier::ObjectEquals(Assembler* assembler) { |
| Label is_true; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ cmpl(EAX, Address(ESP, +2 * kWordSize)); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| } |
| |
| |
| static void RangeCheck(Assembler* assembler, |
| Register reg, |
| intptr_t low, |
| intptr_t high, |
| Condition cc, |
| Label* target) { |
| __ subl(reg, Immediate(low)); |
| __ cmpl(reg, Immediate(high - low)); |
| __ j(cc, target); |
| } |
| |
| |
| const Condition kIfNotInRange = ABOVE; |
| const Condition kIfInRange = BELOW_EQUAL; |
| |
| |
| static void JumpIfInteger(Assembler* assembler, Register cid, Label* target) { |
| RangeCheck(assembler, cid, kSmiCid, kBigintCid, kIfInRange, target); |
| } |
| |
| |
| static void JumpIfNotInteger(Assembler* assembler, |
| Register cid, |
| Label* target) { |
| RangeCheck(assembler, cid, kSmiCid, kBigintCid, kIfNotInRange, target); |
| } |
| |
| |
| static void JumpIfString(Assembler* assembler, Register cid, Label* target) { |
| RangeCheck(assembler, cid, kOneByteStringCid, kExternalTwoByteStringCid, |
| kIfInRange, target); |
| } |
| |
| |
| static void JumpIfNotString(Assembler* assembler, Register cid, Label* target) { |
| RangeCheck(assembler, cid, kOneByteStringCid, kExternalTwoByteStringCid, |
| kIfNotInRange, target); |
| } |
| |
| |
| // Return type quickly for simple types (not parameterized and not signature). |
| void Intrinsifier::ObjectRuntimeType(Assembler* assembler) { |
| Label fall_through, use_canonical_type, not_double, not_integer; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ LoadClassIdMayBeSmi(EDI, EAX); |
| |
| __ cmpl(EDI, Immediate(kClosureCid)); |
| __ j(EQUAL, &fall_through); // Instance is a closure. |
| |
| __ cmpl(EDI, Immediate(kNumPredefinedCids)); |
| __ j(ABOVE, &use_canonical_type); |
| |
| // If object is a instance of _Double return double type. |
| __ cmpl(EDI, Immediate(kDoubleCid)); |
| __ j(NOT_EQUAL, ¬_double); |
| |
| __ LoadIsolate(EAX); |
| __ movl(EAX, Address(EAX, Isolate::object_store_offset())); |
| __ movl(EAX, Address(EAX, ObjectStore::double_type_offset())); |
| __ ret(); |
| |
| __ Bind(¬_double); |
| // If object is an integer (smi, mint or bigint) return int type. |
| __ movl(EAX, EDI); |
| JumpIfNotInteger(assembler, EAX, ¬_integer); |
| |
| __ LoadIsolate(EAX); |
| __ movl(EAX, Address(EAX, Isolate::object_store_offset())); |
| __ movl(EAX, Address(EAX, ObjectStore::int_type_offset())); |
| __ ret(); |
| |
| __ Bind(¬_integer); |
| // If object is a string (one byte, two byte or external variants) return |
| // string type. |
| __ movl(EAX, EDI); |
| JumpIfNotString(assembler, EAX, &use_canonical_type); |
| |
| __ LoadIsolate(EAX); |
| __ movl(EAX, Address(EAX, Isolate::object_store_offset())); |
| __ movl(EAX, Address(EAX, ObjectStore::string_type_offset())); |
| __ ret(); |
| |
| // Object is neither double, nor integer, nor string. |
| __ Bind(&use_canonical_type); |
| __ LoadClassById(EBX, EDI); |
| __ movzxw(EDI, FieldAddress(EBX, Class::num_type_arguments_offset())); |
| __ cmpl(EDI, Immediate(0)); |
| __ j(NOT_EQUAL, &fall_through, Assembler::kNearJump); |
| __ movl(EAX, FieldAddress(EBX, Class::canonical_type_offset())); |
| __ CompareObject(EAX, Object::null_object()); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); // Not yet set. |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler) { |
| Label fall_through, different_cids, equal, not_equal, not_integer; |
| |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); |
| __ LoadClassIdMayBeSmi(EDI, EAX); |
| |
| // Check if left hand size is a closure. Closures are handled in the runtime. |
| __ cmpl(EDI, Immediate(kClosureCid)); |
| __ j(EQUAL, &fall_through); |
| |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); |
| __ LoadClassIdMayBeSmi(EBX, EAX); |
| |
| // Check whether class ids match. If class ids don't match objects can still |
| // have the same runtime type (e.g. multiple string implementation classes |
| // map to a single String type). |
| __ cmpl(EDI, EBX); |
| __ j(NOT_EQUAL, &different_cids); |
| |
| // Objects have the same class and neither is a closure. |
| // Check if there are no type arguments. In this case we can return true. |
| // Otherwise fall through into the runtime to handle comparison. |
| __ LoadClassById(EBX, EDI); |
| __ movzxw(EBX, FieldAddress(EBX, Class::num_type_arguments_offset())); |
| __ cmpl(EBX, Immediate(0)); |
| __ j(NOT_EQUAL, &fall_through, Assembler::kNearJump); |
| |
| __ Bind(&equal); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| |
| // Class ids are different. Check if we are comparing runtime types of |
| // two strings (with different representations) or two integers. |
| __ Bind(&different_cids); |
| __ cmpl(EDI, Immediate(kNumPredefinedCids)); |
| __ j(ABOVE_EQUAL, ¬_equal); |
| |
| __ movl(EAX, EDI); |
| JumpIfNotInteger(assembler, EAX, ¬_integer); |
| |
| // First object is an integer. Check if the second is an integer too. |
| // Otherwise types are unequal because only integers have the same runtime |
| // type as other integers. |
| JumpIfInteger(assembler, EBX, &equal); |
| __ jmp(¬_equal); |
| |
| __ Bind(¬_integer); |
| // Check if the first object is a string. If it is not then |
| // objects don't have the same runtime type because they have |
| // different class ids and they are not strings or integers. |
| JumpIfNotString(assembler, EDI, ¬_equal); |
| // First object is a string. Check if the second is a string too. |
| JumpIfString(assembler, EBX, &equal); |
| // Strings only have the same runtime type as other strings. |
| // Fall-through to the not equal case. |
| |
| __ Bind(¬_equal); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::String_getHashCode(Assembler* assembler) { |
| Label fall_through; |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); // String object. |
| __ movl(EAX, FieldAddress(EAX, String::hash_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(&fall_through); |
| // Hash not yet computed. |
| } |
| |
| |
| // bool _substringMatches(int start, String other) |
| void Intrinsifier::StringBaseSubstringMatches(Assembler* assembler) { |
| // For precompilation, not implemented on IA32. |
| } |
| |
| |
| void Intrinsifier::StringBaseCharAt(Assembler* assembler) { |
| Label fall_through, try_two_byte_string; |
| __ movl(EBX, Address(ESP, +1 * kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // String. |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi index. |
| // Range check. |
| __ cmpl(EBX, FieldAddress(EAX, String::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through, Assembler::kNearJump); |
| __ CompareClassId(EAX, kOneByteStringCid, EDI); |
| __ j(NOT_EQUAL, &try_two_byte_string, Assembler::kNearJump); |
| __ SmiUntag(EBX); |
| __ movzxb(EBX, FieldAddress(EAX, EBX, TIMES_1, OneByteString::data_offset())); |
| __ cmpl(EBX, Immediate(Symbols::kNumberOfOneCharCodeSymbols)); |
| __ j(GREATER_EQUAL, &fall_through); |
| __ movl(EAX, |
| Immediate(reinterpret_cast<uword>(Symbols::PredefinedAddress()))); |
| __ movl(EAX, Address(EAX, EBX, TIMES_4, |
| Symbols::kNullCharCodeSymbolOffset * kWordSize)); |
| __ ret(); |
| |
| __ Bind(&try_two_byte_string); |
| __ CompareClassId(EAX, kTwoByteStringCid, EDI); |
| __ j(NOT_EQUAL, &fall_through, Assembler::kNearJump); |
| ASSERT(kSmiTagShift == 1); |
| __ movzxw(EBX, FieldAddress(EAX, EBX, TIMES_1, TwoByteString::data_offset())); |
| __ cmpl(EBX, Immediate(Symbols::kNumberOfOneCharCodeSymbols)); |
| __ j(GREATER_EQUAL, &fall_through); |
| __ movl(EAX, |
| Immediate(reinterpret_cast<uword>(Symbols::PredefinedAddress()))); |
| __ movl(EAX, Address(EAX, EBX, TIMES_4, |
| Symbols::kNullCharCodeSymbolOffset * kWordSize)); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) { |
| Label is_true; |
| // Get length. |
| __ movl(EAX, Address(ESP, +1 * kWordSize)); // String object. |
| __ movl(EAX, FieldAddress(EAX, String::length_offset())); |
| __ cmpl(EAX, Immediate(Smi::RawValue(0))); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) { |
| Label compute_hash; |
| __ movl(EBX, Address(ESP, +1 * kWordSize)); // OneByteString object. |
| __ movl(EAX, FieldAddress(EBX, String::hash_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(EQUAL, &compute_hash, Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(&compute_hash); |
| // Hash not yet computed, use algorithm of class StringHasher. |
| __ movl(ECX, FieldAddress(EBX, String::length_offset())); |
| __ SmiUntag(ECX); |
| __ xorl(EAX, EAX); |
| __ xorl(EDI, EDI); |
| // EBX: Instance of OneByteString. |
| // ECX: String length, untagged integer. |
| // EDI: Loop counter, untagged integer. |
| // EAX: Hash code, untagged integer. |
| Label loop, done, set_hash_code; |
| __ Bind(&loop); |
| __ cmpl(EDI, ECX); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| // Add to hash code: (hash_ is uint32) |
| // hash_ += ch; |
| // hash_ += hash_ << 10; |
| // hash_ ^= hash_ >> 6; |
| // Get one characters (ch). |
| __ movzxb(EDX, FieldAddress(EBX, EDI, TIMES_1, OneByteString::data_offset())); |
| // EDX: ch and temporary. |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(10)); |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shrl(EDX, Immediate(6)); |
| __ xorl(EAX, EDX); |
| |
| __ incl(EDI); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // Finalize: |
| // hash_ += hash_ << 3; |
| // hash_ ^= hash_ >> 11; |
| // hash_ += hash_ << 15; |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(3)); |
| __ addl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shrl(EDX, Immediate(11)); |
| __ xorl(EAX, EDX); |
| __ movl(EDX, EAX); |
| __ shll(EDX, Immediate(15)); |
| __ addl(EAX, EDX); |
| // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| __ andl(EAX, |
| Immediate(((static_cast<intptr_t>(1) << String::kHashBits) - 1))); |
| |
| // return hash_ == 0 ? 1 : hash_; |
| __ cmpl(EAX, Immediate(0)); |
| __ j(NOT_EQUAL, &set_hash_code, Assembler::kNearJump); |
| __ incl(EAX); |
| __ Bind(&set_hash_code); |
| __ SmiTag(EAX); |
| __ StoreIntoSmiField(FieldAddress(EBX, String::hash_offset()), EAX); |
| __ ret(); |
| } |
| |
| |
| // Allocates one-byte string of length 'end - start'. The content is not |
| // initialized. 'length-reg' contains tagged length. |
| // Returns new string as tagged pointer in EAX. |
| static void TryAllocateOnebyteString(Assembler* assembler, |
| Label* ok, |
| Label* failure, |
| Register length_reg) { |
| NOT_IN_PRODUCT( |
| __ MaybeTraceAllocation(kOneByteStringCid, EAX, failure, false)); |
| if (length_reg != EDI) { |
| __ movl(EDI, length_reg); |
| } |
| Label pop_and_fail; |
| __ pushl(EDI); // Preserve length. |
| __ SmiUntag(EDI); |
| const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1; |
| __ leal(EDI, Address(EDI, TIMES_1, fixed_size)); // EDI is untagged. |
| __ andl(EDI, Immediate(-kObjectAlignment)); |
| |
| const intptr_t cid = kOneByteStringCid; |
| Heap::Space space = Heap::kNew; |
| __ movl(ECX, Address(THR, Thread::heap_offset())); |
| __ movl(EAX, Address(ECX, Heap::TopOffset(space))); |
| __ movl(EBX, EAX); |
| |
| // EDI: allocation size. |
| __ addl(EBX, EDI); |
| __ j(CARRY, &pop_and_fail); |
| |
| // Check if the allocation fits into the remaining space. |
| // EAX: potential new object start. |
| // EBX: potential next object start. |
| // EDI: allocation size. |
| // ECX: heap. |
| __ cmpl(EBX, Address(ECX, Heap::EndOffset(space))); |
| __ j(ABOVE_EQUAL, &pop_and_fail); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movl(Address(ECX, Heap::TopOffset(space)), EBX); |
| __ addl(EAX, Immediate(kHeapObjectTag)); |
| |
| NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, EDI, ECX, space)); |
| |
| // Initialize the tags. |
| // EAX: new object start as a tagged pointer. |
| // EBX: new object end address. |
| // EDI: allocation size. |
| { |
| Label size_tag_overflow, done; |
| __ cmpl(EDI, Immediate(RawObject::SizeTag::kMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shll(EDI, Immediate(RawObject::kSizeTagPos - kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ xorl(EDI, EDI); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| __ orl(EDI, Immediate(RawObject::ClassIdTag::encode(cid))); |
| __ movl(FieldAddress(EAX, String::tags_offset()), EDI); // Tags. |
| } |
| |
| // Set the length field. |
| __ popl(EDI); |
| __ StoreIntoObjectNoBarrier(EAX, FieldAddress(EAX, String::length_offset()), |
| EDI); |
| // Clear hash. |
| __ ZeroInitSmiField(FieldAddress(EAX, String::hash_offset())); |
| __ jmp(ok, Assembler::kNearJump); |
| |
| __ Bind(&pop_and_fail); |
| __ popl(EDI); |
| __ jmp(failure); |
| } |
| |
| |
| // Arg0: OneByteString (receiver) |
| // Arg1: Start index as Smi. |
| // Arg2: End index as Smi. |
| // The indexes must be valid. |
| void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) { |
| const intptr_t kStringOffset = 3 * kWordSize; |
| const intptr_t kStartIndexOffset = 2 * kWordSize; |
| const intptr_t kEndIndexOffset = 1 * kWordSize; |
| Label fall_through, ok; |
| __ movl(EAX, Address(ESP, +kStartIndexOffset)); |
| __ movl(EDI, Address(ESP, +kEndIndexOffset)); |
| __ orl(EAX, EDI); |
| __ testl(EAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); // 'start', 'end' not Smi. |
| |
| __ subl(EDI, Address(ESP, +kStartIndexOffset)); |
| TryAllocateOnebyteString(assembler, &ok, &fall_through, EDI); |
| __ Bind(&ok); |
| // EAX: new string as tagged pointer. |
| // Copy string. |
| __ movl(EDI, Address(ESP, +kStringOffset)); |
| __ movl(EBX, Address(ESP, +kStartIndexOffset)); |
| __ SmiUntag(EBX); |
| __ leal(EDI, FieldAddress(EDI, EBX, TIMES_1, OneByteString::data_offset())); |
| // EDI: Start address to copy from (untagged). |
| // EBX: Untagged start index. |
| __ movl(ECX, Address(ESP, +kEndIndexOffset)); |
| __ SmiUntag(ECX); |
| __ subl(ECX, EBX); |
| __ xorl(EDX, EDX); |
| // EDI: Start address to copy from (untagged). |
| // ECX: Untagged number of bytes to copy. |
| // EAX: Tagged result string. |
| // EDX: Loop counter. |
| // EBX: Scratch register. |
| Label loop, check; |
| __ jmp(&check, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ movzxb(EBX, Address(EDI, EDX, TIMES_1, 0)); |
| __ movb(FieldAddress(EAX, EDX, TIMES_1, OneByteString::data_offset()), BL); |
| __ incl(EDX); |
| __ Bind(&check); |
| __ cmpl(EDX, ECX); |
| __ j(LESS, &loop, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::OneByteStringSetAt(Assembler* assembler) { |
| __ movl(ECX, Address(ESP, +1 * kWordSize)); // Value. |
| __ movl(EBX, Address(ESP, +2 * kWordSize)); // Index. |
| __ movl(EAX, Address(ESP, +3 * kWordSize)); // OneByteString. |
| __ SmiUntag(EBX); |
| __ SmiUntag(ECX); |
| __ movb(FieldAddress(EAX, EBX, TIMES_1, OneByteString::data_offset()), CL); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::OneByteString_allocate(Assembler* assembler) { |
| __ movl(EDI, Address(ESP, +1 * kWordSize)); // Length. |
| Label fall_through, ok; |
| TryAllocateOnebyteString(assembler, &ok, &fall_through, EDI); |
| // EDI: Start address to copy from (untagged). |
| |
| __ Bind(&ok); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
| static void StringEquality(Assembler* assembler, intptr_t string_cid) { |
| Label fall_through, is_true, is_false, loop; |
| __ movl(EAX, Address(ESP, +2 * kWordSize)); // This. |
| __ movl(EBX, Address(ESP, +1 * kWordSize)); // Other. |
| |
| // Are identical? |
| __ cmpl(EAX, EBX); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| |
| // Is other OneByteString? |
| __ testl(EBX, Immediate(kSmiTagMask)); |
| __ j(ZERO, &is_false); // Smi |
| __ CompareClassId(EBX, string_cid, EDI); |
| __ j(NOT_EQUAL, &fall_through, Assembler::kNearJump); |
| |
| // Have same length? |
| __ movl(EDI, FieldAddress(EAX, String::length_offset())); |
| __ cmpl(EDI, FieldAddress(EBX, String::length_offset())); |
| __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); |
| |
| // Check contents, no fall-through possible. |
| // TODO(srdjan): write a faster check. |
| __ SmiUntag(EDI); |
| __ Bind(&loop); |
| __ decl(EDI); |
| __ cmpl(EDI, Immediate(0)); |
| __ j(LESS, &is_true, Assembler::kNearJump); |
| if (string_cid == kOneByteStringCid) { |
| __ movzxb(ECX, |
| FieldAddress(EAX, EDI, TIMES_1, OneByteString::data_offset())); |
| __ movzxb(EDX, |
| FieldAddress(EBX, EDI, TIMES_1, OneByteString::data_offset())); |
| } else if (string_cid == kTwoByteStringCid) { |
| __ movzxw(ECX, |
| FieldAddress(EAX, EDI, TIMES_2, TwoByteString::data_offset())); |
| __ movzxw(EDX, |
| FieldAddress(EBX, EDI, TIMES_2, TwoByteString::data_offset())); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| __ cmpl(ECX, EDX); |
| __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&is_true); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| |
| __ Bind(&is_false); |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::OneByteString_equality(Assembler* assembler) { |
| StringEquality(assembler, kOneByteStringCid); |
| } |
| |
| |
| void Intrinsifier::TwoByteString_equality(Assembler* assembler) { |
| StringEquality(assembler, kTwoByteStringCid); |
| } |
| |
| |
| void Intrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
| bool sticky) { |
| if (FLAG_interpret_irregexp) return; |
| |
| static const intptr_t kRegExpParamOffset = 3 * kWordSize; |
| static const intptr_t kStringParamOffset = 2 * kWordSize; |
| // start_index smi is located at offset 1. |
| |
| // Incoming registers: |
| // EAX: Function. (Will be loaded with the specialized matcher function.) |
| // ECX: Unknown. (Must be GC safe on tail call.) |
| // EDX: Arguments descriptor. (Will be preserved.) |
| |
| // Load the specialized function pointer into EAX. Leverage the fact the |
| // string CIDs as well as stored function pointers are in sequence. |
| __ movl(EBX, Address(ESP, kRegExpParamOffset)); |
| __ movl(EDI, Address(ESP, kStringParamOffset)); |
| __ LoadClassId(EDI, EDI); |
| __ SubImmediate(EDI, Immediate(kOneByteStringCid)); |
| __ movl(EAX, FieldAddress(EBX, EDI, TIMES_4, RegExp::function_offset( |
| kOneByteStringCid, sticky))); |
| |
| // Registers are now set up for the lazy compile stub. It expects the function |
| // in EAX, the argument descriptor in EDX, and IC-Data in ECX. |
| __ xorl(ECX, ECX); |
| |
| // Tail-call the function. |
| __ movl(EDI, FieldAddress(EAX, Function::entry_point_offset())); |
| __ jmp(EDI); |
| } |
| |
| |
| // On stack: user tag (+1), return-address (+0). |
| void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) { |
| // RDI: Isolate. |
| __ LoadIsolate(EDI); |
| // EAX: Current user tag. |
| __ movl(EAX, Address(EDI, Isolate::current_tag_offset())); |
| // EAX: UserTag. |
| __ movl(EBX, Address(ESP, +1 * kWordSize)); |
| // Set Isolate::current_tag_. |
| __ movl(Address(EDI, Isolate::current_tag_offset()), EBX); |
| // EAX: UserTag's tag. |
| __ movl(EBX, FieldAddress(EBX, UserTag::tag_offset())); |
| // Set Isolate::user_tag_. |
| __ movl(Address(EDI, Isolate::user_tag_offset()), EBX); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::UserTag_defaultTag(Assembler* assembler) { |
| __ LoadIsolate(EAX); |
| __ movl(EAX, Address(EAX, Isolate::default_tag_offset())); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) { |
| __ LoadIsolate(EAX); |
| __ movl(EAX, Address(EAX, Isolate::current_tag_offset())); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler) { |
| if (!FLAG_support_timeline) { |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| return; |
| } |
| Label true_label; |
| // Load TimelineStream*. |
| __ movl(EAX, Address(THR, Thread::dart_stream_offset())); |
| // Load uintptr_t from TimelineStream*. |
| __ movl(EAX, Address(EAX, TimelineStream::enabled_offset())); |
| __ cmpl(EAX, Immediate(0)); |
| __ j(NOT_ZERO, &true_label, Assembler::kNearJump); |
| // Not enabled. |
| __ LoadObject(EAX, Bool::False()); |
| __ ret(); |
| // Enabled. |
| __ Bind(&true_label); |
| __ LoadObject(EAX, Bool::True()); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler) { |
| __ LoadObject(EAX, Object::null_object()); |
| __ movl(Address(THR, Thread::async_stack_trace_offset()), EAX); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::SetAsyncThreadStackTrace(Assembler* assembler) { |
| __ movl(Address(THR, Thread::async_stack_trace_offset()), EAX); |
| __ LoadObject(EAX, Object::null_object()); |
| __ ret(); |
| } |
| |
| #undef __ |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_IA32 |