| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM. |
| #if defined(TARGET_ARCH_ARM) |
| |
| #include "vm/intrinsifier.h" |
| |
| #include "vm/assembler.h" |
| #include "vm/cpu.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/object.h" |
| #include "vm/object_store.h" |
| #include "vm/regexp_assembler.h" |
| #include "vm/symbols.h" |
| #include "vm/timeline.h" |
| |
| namespace dart { |
| |
| // When entering intrinsics code: |
| // R4: Arguments descriptor |
| // LR: Return address |
| // The R4 register can be destroyed only if there is no slow-path, i.e. |
| // if the intrinsified method always executes a return. |
| // The FP register should not be modified, because it is used by the profiler. |
| // The PP and THR registers (see constants_arm.h) must be preserved. |
| |
| #define __ assembler-> |
| |
| |
| intptr_t Intrinsifier::ParameterSlotFromSp() { |
| return -1; |
| } |
| |
| |
| static bool IsABIPreservedRegister(Register reg) { |
| return ((1 << reg) & kAbiPreservedCpuRegs) != 0; |
| } |
| |
| |
| void Intrinsifier::IntrinsicCallPrologue(Assembler* assembler) { |
| ASSERT(IsABIPreservedRegister(CODE_REG)); |
| ASSERT(IsABIPreservedRegister(ARGS_DESC_REG)); |
| ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP)); |
| |
| // Save LR by moving it to a callee saved temporary register. |
| assembler->Comment("IntrinsicCallPrologue"); |
| assembler->mov(CALLEE_SAVED_TEMP, Operand(LR)); |
| } |
| |
| |
| void Intrinsifier::IntrinsicCallEpilogue(Assembler* assembler) { |
| // Restore LR. |
| assembler->Comment("IntrinsicCallEpilogue"); |
| assembler->mov(LR, Operand(CALLEE_SAVED_TEMP)); |
| } |
| |
| |
| // Intrinsify only for Smi value and index. Non-smi values need a store buffer |
| // update. Array length is always a Smi. |
| void Intrinsifier::ObjectArraySetIndexed(Assembler* assembler) { |
| if (Isolate::Current()->type_checks()) { |
| return; |
| } |
| |
| Label fall_through; |
| __ ldr(R1, Address(SP, 1 * kWordSize)); // Index. |
| __ tst(R1, Operand(kSmiTagMask)); |
| // Index not Smi. |
| __ b(&fall_through, NE); |
| __ ldr(R0, Address(SP, 2 * kWordSize)); // Array. |
| |
| // Range check. |
| __ ldr(R3, FieldAddress(R0, Array::length_offset())); // Array length. |
| __ cmp(R1, Operand(R3)); |
| // Runtime throws exception. |
| __ b(&fall_through, CS); |
| |
| // Note that R1 is Smi, i.e, times 2. |
| ASSERT(kSmiTagShift == 1); |
| __ ldr(R2, Address(SP, 0 * kWordSize)); // Value. |
| __ add(R1, R0, Operand(R1, LSL, 1)); // R1 is Smi. |
| __ StoreIntoObject(R0, FieldAddress(R1, Array::data_offset()), R2); |
| // Caller is responsible for preserving the value if necessary. |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Allocate a GrowableObjectArray using the backing array specified. |
| // On stack: type argument (+1), data (+0). |
| void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) { |
| // The newly allocated object is returned in R0. |
| const intptr_t kTypeArgumentsOffset = 1 * kWordSize; |
| const intptr_t kArrayOffset = 0 * kWordSize; |
| Label fall_through; |
| |
| // Try allocating in new space. |
| const Class& cls = Class::Handle( |
| Isolate::Current()->object_store()->growable_object_array_class()); |
| __ TryAllocate(cls, &fall_through, R0, R1); |
| |
| // Store backing array object in growable array object. |
| __ ldr(R1, Address(SP, kArrayOffset)); // Data argument. |
| // R0 is new, no barrier needed. |
| __ StoreIntoObjectNoBarrier( |
| R0, FieldAddress(R0, GrowableObjectArray::data_offset()), R1); |
| |
| // R0: new growable array object start as a tagged pointer. |
| // Store the type argument field in the growable array object. |
| __ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument. |
| __ StoreIntoObjectNoBarrier( |
| R0, FieldAddress(R0, GrowableObjectArray::type_arguments_offset()), R1); |
| |
| // Set the length field in the growable array object to 0. |
| __ LoadImmediate(R1, 0); |
| __ StoreIntoObjectNoBarrier( |
| R0, FieldAddress(R0, GrowableObjectArray::length_offset()), R1); |
| __ Ret(); // Returns the newly allocated object in R0. |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Add an element to growable array if it doesn't need to grow, otherwise |
| // call into regular code. |
| // On stack: growable array (+1), value (+0). |
| void Intrinsifier::GrowableArray_add(Assembler* assembler) { |
| // In checked mode we need to type-check the incoming argument. |
| if (Isolate::Current()->type_checks()) { |
| return; |
| } |
| Label fall_through; |
| // R0: Array. |
| __ ldr(R0, Address(SP, 1 * kWordSize)); |
| // R1: length. |
| __ ldr(R1, FieldAddress(R0, GrowableObjectArray::length_offset())); |
| // R2: data. |
| __ ldr(R2, FieldAddress(R0, GrowableObjectArray::data_offset())); |
| // R3: capacity. |
| __ ldr(R3, FieldAddress(R2, Array::length_offset())); |
| // Compare length with capacity. |
| __ cmp(R1, Operand(R3)); |
| __ b(&fall_through, EQ); // Must grow data. |
| const int32_t value_one = reinterpret_cast<int32_t>(Smi::New(1)); |
| // len = len + 1; |
| __ add(R3, R1, Operand(value_one)); |
| __ StoreIntoSmiField(FieldAddress(R0, GrowableObjectArray::length_offset()), |
| R3); |
| __ ldr(R0, Address(SP, 0 * kWordSize)); // Value. |
| ASSERT(kSmiTagShift == 1); |
| __ add(R1, R2, Operand(R1, LSL, 1)); |
| __ StoreIntoObject(R2, FieldAddress(R1, Array::data_offset()), R0); |
| __ LoadObject(R0, Object::null_object()); |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| #define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \ |
| Label fall_through; \ |
| const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \ |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, R2, &fall_through)); \ |
| __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
| /* Check that length is a positive Smi. */ \ |
| /* R2: requested array length argument. */ \ |
| __ tst(R2, Operand(kSmiTagMask)); \ |
| __ b(&fall_through, NE); \ |
| __ CompareImmediate(R2, 0); \ |
| __ b(&fall_through, LT); \ |
| __ SmiUntag(R2); \ |
| /* Check for maximum allowed length. */ \ |
| /* R2: untagged array length. */ \ |
| __ CompareImmediate(R2, max_len); \ |
| __ b(&fall_through, GT); \ |
| __ mov(R2, Operand(R2, LSL, scale_shift)); \ |
| const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \ |
| __ AddImmediate(R2, fixed_size); \ |
| __ bic(R2, R2, Operand(kObjectAlignment - 1)); \ |
| Heap::Space space = Heap::kNew; \ |
| __ ldr(R3, Address(THR, Thread::heap_offset())); \ |
| __ ldr(R0, Address(R3, Heap::TopOffset(space))); \ |
| \ |
| /* R2: allocation size. */ \ |
| __ adds(R1, R0, Operand(R2)); \ |
| __ b(&fall_through, CS); /* Fail on unsigned overflow. */ \ |
| \ |
| /* Check if the allocation fits into the remaining space. */ \ |
| /* R0: potential new object start. */ \ |
| /* R1: potential next object start. */ \ |
| /* R2: allocation size. */ \ |
| /* R3: heap. */ \ |
| __ ldr(IP, Address(R3, Heap::EndOffset(space))); \ |
| __ cmp(R1, Operand(IP)); \ |
| __ b(&fall_through, CS); \ |
| \ |
| /* Successfully allocated the object(s), now update top to point to */ \ |
| /* next object start and initialize the object. */ \ |
| NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R4, cid)); \ |
| __ str(R1, Address(R3, Heap::TopOffset(space))); \ |
| __ AddImmediate(R0, kHeapObjectTag); \ |
| /* Initialize the tags. */ \ |
| /* R0: new object start as a tagged pointer. */ \ |
| /* R1: new object end address. */ \ |
| /* R2: allocation size. */ \ |
| /* R4: allocation stats address */ \ |
| { \ |
| __ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag); \ |
| __ mov(R3, \ |
| Operand(R2, LSL, RawObject::kSizeTagPos - kObjectAlignmentLog2), \ |
| LS); \ |
| __ mov(R3, Operand(0), HI); \ |
| \ |
| /* Get the class index and insert it into the tags. */ \ |
| __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); \ |
| __ orr(R3, R3, Operand(TMP)); \ |
| __ str(R3, FieldAddress(R0, type_name::tags_offset())); /* Tags. */ \ |
| } \ |
| /* Set the length field. */ \ |
| /* R0: new object start as a tagged pointer. */ \ |
| /* R1: new object end address. */ \ |
| /* R2: allocation size. */ \ |
| /* R4: allocation stats address. */ \ |
| __ ldr(R3, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
| __ StoreIntoObjectNoBarrier( \ |
| R0, FieldAddress(R0, type_name::length_offset()), R3); \ |
| /* Initialize all array elements to 0. */ \ |
| /* R0: new object start as a tagged pointer. */ \ |
| /* R1: new object end address. */ \ |
| /* R2: allocation size. */ \ |
| /* R3: iterator which initially points to the start of the variable */ \ |
| /* R4: allocation stats address */ \ |
| /* R8, R9: zero. */ \ |
| /* data area to be initialized. */ \ |
| __ LoadImmediate(R8, 0); \ |
| __ mov(R9, Operand(R8)); \ |
| __ AddImmediate(R3, R0, sizeof(Raw##type_name) - 1); \ |
| Label init_loop; \ |
| __ Bind(&init_loop); \ |
| __ AddImmediate(R3, 2 * kWordSize); \ |
| __ cmp(R3, Operand(R1)); \ |
| __ strd(R8, R9, R3, -2 * kWordSize, LS); \ |
| __ b(&init_loop, CC); \ |
| __ str(R8, Address(R3, -2 * kWordSize), HI); \ |
| \ |
| NOT_IN_PRODUCT(__ IncrementAllocationStatsWithSize(R4, R2, space)); \ |
| __ Ret(); \ |
| __ Bind(&fall_through); |
| |
| |
| static int GetScaleFactor(intptr_t size) { |
| switch (size) { |
| case 1: |
| return 0; |
| case 2: |
| return 1; |
| case 4: |
| return 2; |
| case 8: |
| return 3; |
| case 16: |
| return 4; |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| |
| #define TYPED_DATA_ALLOCATOR(clazz) \ |
| void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \ |
| intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
| intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
| int shift = GetScaleFactor(size); \ |
| TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \ |
| } |
| CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
| #undef TYPED_DATA_ALLOCATOR |
| |
| |
| // Loads args from stack into R0 and R1 |
| // Tests if they are smis, jumps to label not_smi if not. |
| static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| __ ldr(R0, Address(SP, +0 * kWordSize)); |
| __ ldr(R1, Address(SP, +1 * kWordSize)); |
| __ orr(TMP, R0, Operand(R1)); |
| __ tst(TMP, Operand(kSmiTagMask)); |
| __ b(not_smi, NE); |
| return; |
| } |
| |
| |
| void Intrinsifier::Integer_addFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis. |
| __ adds(R0, R0, Operand(R1)); // Adds. |
| __ bx(LR, VC); // Return if no overflow. |
| // Otherwise fall through. |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_add(Assembler* assembler) { |
| Integer_addFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_subFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ subs(R0, R0, Operand(R1)); // Subtract. |
| __ bx(LR, VC); // Return if no overflow. |
| // Otherwise fall through. |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_sub(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ subs(R0, R1, Operand(R0)); // Subtract. |
| __ bx(LR, VC); // Return if no overflow. |
| // Otherwise fall through. |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); // checks two smis |
| __ SmiUntag(R0); // Untags R0. We only want result shifted by one. |
| __ smull(R0, IP, R0, R1); // IP:R0 <- R0 * R1. |
| __ cmp(IP, Operand(R0, ASR, 31)); |
| __ bx(LR, EQ); |
| __ Bind(&fall_through); // Fall through on overflow. |
| } |
| |
| |
| void Intrinsifier::Integer_mul(Assembler* assembler) { |
| Integer_mulFromInteger(assembler); |
| } |
| |
| |
| // Optimizations: |
| // - result is 0 if: |
| // - left is 0 |
| // - left equals right |
| // - result is left if |
| // - left > 0 && left < right |
| // R1: Tagged left (dividend). |
| // R0: Tagged right (divisor). |
| // Returns: |
| // R1: Untagged fallthrough result (remainder to be adjusted), or |
| // R0: Tagged return result (remainder). |
| static void EmitRemainderOperation(Assembler* assembler) { |
| Label modulo; |
| const Register left = R1; |
| const Register right = R0; |
| const Register result = R1; |
| const Register tmp = R2; |
| ASSERT(left == result); |
| |
| // Check for quick zero results. |
| __ cmp(left, Operand(0)); |
| __ mov(R0, Operand(0), EQ); |
| __ bx(LR, EQ); // left is 0? Return 0. |
| __ cmp(left, Operand(right)); |
| __ mov(R0, Operand(0), EQ); |
| __ bx(LR, EQ); // left == right? Return 0. |
| |
| // Check if result should be left. |
| __ cmp(left, Operand(0)); |
| __ b(&modulo, LT); |
| // left is positive. |
| __ cmp(left, Operand(right)); |
| // left is less than right, result is left. |
| __ mov(R0, Operand(left), LT); |
| __ bx(LR, LT); |
| |
| __ Bind(&modulo); |
| // result <- left - right * (left / right) |
| __ SmiUntag(left); |
| __ SmiUntag(right); |
| |
| __ IntegerDivide(tmp, left, right, D1, D0); |
| |
| __ mls(result, right, tmp, left); // result <- left - right * TMP |
| return; |
| } |
| |
| |
| // Implementation: |
| // res = left % right; |
| // if (res < 0) { |
| // if (right < 0) { |
| // res = res - right; |
| // } else { |
| // res = res + right; |
| // } |
| // } |
| void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) { |
| if (!TargetCPUFeatures::can_divide()) { |
| return; |
| } |
| // Check to see if we have integer division |
| Label fall_through; |
| __ ldr(R1, Address(SP, +0 * kWordSize)); |
| __ ldr(R0, Address(SP, +1 * kWordSize)); |
| __ orr(TMP, R0, Operand(R1)); |
| __ tst(TMP, Operand(kSmiTagMask)); |
| __ b(&fall_through, NE); |
| // R1: Tagged left (dividend). |
| // R0: Tagged right (divisor). |
| // Check if modulo by zero -> exception thrown in main function. |
| __ cmp(R0, Operand(0)); |
| __ b(&fall_through, EQ); |
| EmitRemainderOperation(assembler); |
| // Untagged right in R0. Untagged remainder result in R1. |
| |
| __ cmp(R1, Operand(0)); |
| __ mov(R0, Operand(R1, LSL, 1), GE); // Tag and move result to R0. |
| __ bx(LR, GE); |
| |
| // Result is negative, adjust it. |
| __ cmp(R0, Operand(0)); |
| __ sub(R0, R1, Operand(R0), LT); |
| __ add(R0, R1, Operand(R0), GE); |
| __ SmiTag(R0); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_truncDivide(Assembler* assembler) { |
| if (!TargetCPUFeatures::can_divide()) { |
| return; |
| } |
| // Check to see if we have integer division |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ cmp(R0, Operand(0)); |
| __ b(&fall_through, EQ); // If b is 0, fall through. |
| |
| __ SmiUntag(R0); |
| __ SmiUntag(R1); |
| |
| __ IntegerDivide(R0, R1, R0, D1, D0); |
| |
| // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
| // cannot tag the result. |
| __ CompareImmediate(R0, 0x40000000); |
| __ SmiTag(R0, NE); // Not equal. Okay to tag and return. |
| __ bx(LR, NE); // Return. |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_negate(Assembler* assembler) { |
| Label fall_through; |
| __ ldr(R0, Address(SP, +0 * kWordSize)); // Grab first argument. |
| __ tst(R0, Operand(kSmiTagMask)); // Test for Smi. |
| __ b(&fall_through, NE); |
| __ rsbs(R0, R0, Operand(0)); // R0 is a Smi. R0 <- 0 - R0. |
| __ bx(LR, VC); // Return if there wasn't overflow, fall through otherwise. |
| // R0 is not a Smi. Fall through. |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); // checks two smis |
| __ and_(R0, R0, Operand(R1)); |
| |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitAnd(Assembler* assembler) { |
| Integer_bitAndFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); // checks two smis |
| __ orr(R0, R0, Operand(R1)); |
| |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitOr(Assembler* assembler) { |
| Integer_bitOrFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); // checks two smis |
| __ eor(R0, R0, Operand(R1)); |
| |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitXor(Assembler* assembler) { |
| Integer_bitXorFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_shl(Assembler* assembler) { |
| ASSERT(kSmiTagShift == 1); |
| ASSERT(kSmiTag == 0); |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ CompareImmediate(R0, Smi::RawValue(Smi::kBits)); |
| __ b(&fall_through, HI); |
| |
| __ SmiUntag(R0); |
| |
| // Check for overflow by shifting left and shifting back arithmetically. |
| // If the result is different from the original, there was overflow. |
| __ mov(IP, Operand(R1, LSL, R0)); |
| __ cmp(R1, Operand(IP, ASR, R0)); |
| |
| // No overflow, result in R0. |
| __ mov(R0, Operand(R1, LSL, R0), EQ); |
| __ bx(LR, EQ); |
| |
| // Arguments are Smi but the shift produced an overflow to Mint. |
| __ CompareImmediate(R1, 0); |
| __ b(&fall_through, LT); |
| __ SmiUntag(R1); |
| |
| // Pull off high bits that will be shifted off of R1 by making a mask |
| // ((1 << R0) - 1), shifting it to the left, masking R1, then shifting back. |
| // high bits = (((1 << R0) - 1) << (32 - R0)) & R1) >> (32 - R0) |
| // lo bits = R1 << R0 |
| __ LoadImmediate(NOTFP, 1); |
| __ mov(NOTFP, Operand(NOTFP, LSL, R0)); // NOTFP <- 1 << R0 |
| __ sub(NOTFP, NOTFP, Operand(1)); // NOTFP <- NOTFP - 1 |
| __ rsb(R3, R0, Operand(32)); // R3 <- 32 - R0 |
| __ mov(NOTFP, Operand(NOTFP, LSL, R3)); // NOTFP <- NOTFP << R3 |
| __ and_(NOTFP, R1, Operand(NOTFP)); // NOTFP <- NOTFP & R1 |
| __ mov(NOTFP, Operand(NOTFP, LSR, R3)); // NOTFP <- NOTFP >> R3 |
| // Now NOTFP has the bits that fall off of R1 on a left shift. |
| __ mov(R1, Operand(R1, LSL, R0)); // R1 gets the low bits. |
| |
| const Class& mint_class = |
| Class::Handle(Isolate::Current()->object_store()->mint_class()); |
| __ TryAllocate(mint_class, &fall_through, R0, R2); |
| |
| |
| __ str(R1, FieldAddress(R0, Mint::value_offset())); |
| __ str(NOTFP, FieldAddress(R0, Mint::value_offset() + kWordSize)); |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| static void Get64SmiOrMint(Assembler* assembler, |
| Register res_hi, |
| Register res_lo, |
| Register reg, |
| Label* not_smi_or_mint) { |
| Label not_smi, done; |
| __ tst(reg, Operand(kSmiTagMask)); |
| __ b(¬_smi, NE); |
| __ SmiUntag(reg); |
| |
| // Sign extend to 64 bit |
| __ mov(res_lo, Operand(reg)); |
| __ mov(res_hi, Operand(res_lo, ASR, 31)); |
| __ b(&done); |
| |
| __ Bind(¬_smi); |
| __ CompareClassId(reg, kMintCid, res_lo); |
| __ b(not_smi_or_mint, NE); |
| |
| // Mint. |
| __ ldr(res_lo, FieldAddress(reg, Mint::value_offset())); |
| __ ldr(res_hi, FieldAddress(reg, Mint::value_offset() + kWordSize)); |
| __ Bind(&done); |
| return; |
| } |
| |
| |
| static void CompareIntegers(Assembler* assembler, Condition true_condition) { |
| Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; |
| TestBothArgumentsSmis(assembler, &try_mint_smi); |
| // R0 contains the right argument. R1 contains left argument |
| |
| __ cmp(R1, Operand(R0)); |
| __ b(&is_true, true_condition); |
| __ Bind(&is_false); |
| __ LoadObject(R0, Bool::False()); |
| __ Ret(); |
| __ Bind(&is_true); |
| __ LoadObject(R0, Bool::True()); |
| __ Ret(); |
| |
| // 64-bit comparison |
| Condition hi_true_cond, hi_false_cond, lo_false_cond; |
| switch (true_condition) { |
| case LT: |
| case LE: |
| hi_true_cond = LT; |
| hi_false_cond = GT; |
| lo_false_cond = (true_condition == LT) ? CS : HI; |
| break; |
| case GT: |
| case GE: |
| hi_true_cond = GT; |
| hi_false_cond = LT; |
| lo_false_cond = (true_condition == GT) ? LS : CC; |
| break; |
| default: |
| UNREACHABLE(); |
| hi_true_cond = hi_false_cond = lo_false_cond = VS; |
| } |
| |
| __ Bind(&try_mint_smi); |
| // Get left as 64 bit integer. |
| Get64SmiOrMint(assembler, R3, R2, R1, &fall_through); |
| // Get right as 64 bit integer. |
| Get64SmiOrMint(assembler, NOTFP, R8, R0, &fall_through); |
| // R3: left high. |
| // R2: left low. |
| // NOTFP: right high. |
| // R8: right low. |
| |
| __ cmp(R3, Operand(NOTFP)); // Compare left hi, right high. |
| __ b(&is_false, hi_false_cond); |
| __ b(&is_true, hi_true_cond); |
| __ cmp(R2, Operand(R8)); // Compare left lo, right lo. |
| __ b(&is_false, lo_false_cond); |
| // Else is true. |
| __ b(&is_true); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) { |
| CompareIntegers(assembler, LT); |
| } |
| |
| |
| void Intrinsifier::Integer_lessThan(Assembler* assembler) { |
| Integer_greaterThanFromInt(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterThan(Assembler* assembler) { |
| CompareIntegers(assembler, GT); |
| } |
| |
| |
| void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) { |
| CompareIntegers(assembler, LE); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) { |
| CompareIntegers(assembler, GE); |
| } |
| |
| |
| // This is called for Smi, Mint and Bigint receivers. The right argument |
| // can be Smi, Mint, Bigint or double. |
| void Intrinsifier::Integer_equalToInteger(Assembler* assembler) { |
| Label fall_through, true_label, check_for_mint; |
| // For integer receiver '===' check first. |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ ldr(R1, Address(SP, 1 * kWordSize)); |
| __ cmp(R0, Operand(R1)); |
| __ b(&true_label, EQ); |
| |
| __ orr(R2, R0, Operand(R1)); |
| __ tst(R2, Operand(kSmiTagMask)); |
| __ b(&check_for_mint, NE); // If R0 or R1 is not a smi do Mint checks. |
| |
| // Both arguments are smi, '===' is good enough. |
| __ LoadObject(R0, Bool::False()); |
| __ Ret(); |
| __ Bind(&true_label); |
| __ LoadObject(R0, Bool::True()); |
| __ Ret(); |
| |
| // At least one of the arguments was not Smi. |
| Label receiver_not_smi; |
| __ Bind(&check_for_mint); |
| |
| __ tst(R1, Operand(kSmiTagMask)); // Check receiver. |
| __ b(&receiver_not_smi, NE); |
| |
| // Left (receiver) is Smi, return false if right is not Double. |
| // Note that an instance of Mint or Bigint never contains a value that can be |
| // represented by Smi. |
| |
| __ CompareClassId(R0, kDoubleCid, R2); |
| __ b(&fall_through, EQ); |
| __ LoadObject(R0, Bool::False()); // Smi == Mint -> false. |
| __ Ret(); |
| |
| __ Bind(&receiver_not_smi); |
| // R1:: receiver. |
| |
| __ CompareClassId(R1, kMintCid, R2); |
| __ b(&fall_through, NE); |
| // Receiver is Mint, return false if right is Smi. |
| __ tst(R0, Operand(kSmiTagMask)); |
| __ LoadObject(R0, Bool::False(), EQ); |
| __ bx(LR, EQ); |
| // TODO(srdjan): Implement Mint == Mint comparison. |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_equal(Assembler* assembler) { |
| Integer_equalToInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_sar(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // Shift amount in R0. Value to shift in R1. |
| |
| // Fall through if shift amount is negative. |
| __ SmiUntag(R0); |
| __ CompareImmediate(R0, 0); |
| __ b(&fall_through, LT); |
| |
| // If shift amount is bigger than 31, set to 31. |
| __ CompareImmediate(R0, 0x1F); |
| __ LoadImmediate(R0, 0x1F, GT); |
| __ SmiUntag(R1); |
| __ mov(R0, Operand(R1, ASR, R0)); |
| __ SmiTag(R0); |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Smi_bitNegate(Assembler* assembler) { |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ mvn(R0, Operand(R0)); |
| __ bic(R0, R0, Operand(kSmiTagMask)); // Remove inverted smi-tag. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Smi_bitLength(Assembler* assembler) { |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ SmiUntag(R0); |
| // XOR with sign bit to complement bits if value is negative. |
| __ eor(R0, R0, Operand(R0, ASR, 31)); |
| __ clz(R0, R0); |
| __ rsb(R0, R0, Operand(32)); |
| __ SmiTag(R0); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Smi_bitAndFromSmi(Assembler* assembler) { |
| Integer_bitAndFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Bigint_lsh(Assembler* assembler) { |
| // static void _lsh(Uint32List x_digits, int x_used, int n, |
| // Uint32List r_digits) |
| |
| // R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi. |
| __ ldrd(R0, R1, SP, 2 * kWordSize); |
| // R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0. |
| __ ldrd(R2, R3, SP, 0 * kWordSize); |
| __ SmiUntag(R3); |
| // R4 = n ~/ _DIGIT_BITS |
| __ Asr(R4, R3, Operand(5)); |
| // R8 = &x_digits[0] |
| __ add(R8, R1, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| // NOTFP = &x_digits[x_used] |
| __ add(NOTFP, R8, Operand(R0, LSL, 1)); |
| // R6 = &r_digits[1] |
| __ add(R6, R2, Operand(TypedData::data_offset() - kHeapObjectTag + |
| Bigint::kBytesPerDigit)); |
| // R6 = &r_digits[x_used + n ~/ _DIGIT_BITS + 1] |
| __ add(R4, R4, Operand(R0, ASR, 1)); |
| __ add(R6, R6, Operand(R4, LSL, 2)); |
| // R1 = n % _DIGIT_BITS |
| __ and_(R1, R3, Operand(31)); |
| // R0 = 32 - R1 |
| __ rsb(R0, R1, Operand(32)); |
| __ mov(R9, Operand(0)); |
| Label loop; |
| __ Bind(&loop); |
| __ ldr(R4, Address(NOTFP, -Bigint::kBytesPerDigit, Address::PreIndex)); |
| __ orr(R9, R9, Operand(R4, LSR, R0)); |
| __ str(R9, Address(R6, -Bigint::kBytesPerDigit, Address::PreIndex)); |
| __ mov(R9, Operand(R4, LSL, R1)); |
| __ teq(NOTFP, Operand(R8)); |
| __ b(&loop, NE); |
| __ str(R9, Address(R6, -Bigint::kBytesPerDigit, Address::PreIndex)); |
| // Returning Object::null() is not required, since this method is private. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_rsh(Assembler* assembler) { |
| // static void _lsh(Uint32List x_digits, int x_used, int n, |
| // Uint32List r_digits) |
| |
| // R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi. |
| __ ldrd(R0, R1, SP, 2 * kWordSize); |
| // R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0. |
| __ ldrd(R2, R3, SP, 0 * kWordSize); |
| __ SmiUntag(R3); |
| // R4 = n ~/ _DIGIT_BITS |
| __ Asr(R4, R3, Operand(5)); |
| // R6 = &r_digits[0] |
| __ add(R6, R2, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| // NOTFP = &x_digits[n ~/ _DIGIT_BITS] |
| __ add(NOTFP, R1, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| __ add(NOTFP, NOTFP, Operand(R4, LSL, 2)); |
| // R8 = &r_digits[x_used - n ~/ _DIGIT_BITS - 1] |
| __ add(R4, R4, Operand(1)); |
| __ rsb(R4, R4, Operand(R0, ASR, 1)); |
| __ add(R8, R6, Operand(R4, LSL, 2)); |
| // R1 = n % _DIGIT_BITS |
| __ and_(R1, R3, Operand(31)); |
| // R0 = 32 - R1 |
| __ rsb(R0, R1, Operand(32)); |
| // R9 = x_digits[n ~/ _DIGIT_BITS] >> (n % _DIGIT_BITS) |
| __ ldr(R9, Address(NOTFP, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ mov(R9, Operand(R9, LSR, R1)); |
| Label loop_entry; |
| __ b(&loop_entry); |
| Label loop; |
| __ Bind(&loop); |
| __ ldr(R4, Address(NOTFP, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ orr(R9, R9, Operand(R4, LSL, R0)); |
| __ str(R9, Address(R6, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ mov(R9, Operand(R4, LSR, R1)); |
| __ Bind(&loop_entry); |
| __ teq(R6, Operand(R8)); |
| __ b(&loop, NE); |
| __ str(R9, Address(R6, 0)); |
| // Returning Object::null() is not required, since this method is private. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_absAdd(Assembler* assembler) { |
| // static void _absAdd(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| // R0 = used, R1 = digits |
| __ ldrd(R0, R1, SP, 3 * kWordSize); |
| // R1 = &digits[0] |
| __ add(R1, R1, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // R2 = a_used, R3 = a_digits |
| __ ldrd(R2, R3, SP, 1 * kWordSize); |
| // R3 = &a_digits[0] |
| __ add(R3, R3, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // R8 = r_digits |
| __ ldr(R8, Address(SP, 0 * kWordSize)); |
| // R8 = &r_digits[0] |
| __ add(R8, R8, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // NOTFP = &digits[a_used >> 1], a_used is Smi. |
| __ add(NOTFP, R1, Operand(R2, LSL, 1)); |
| |
| // R6 = &digits[used >> 1], used is Smi. |
| __ add(R6, R1, Operand(R0, LSL, 1)); |
| |
| __ adds(R4, R4, Operand(0)); // carry flag = 0 |
| Label add_loop; |
| __ Bind(&add_loop); |
| // Loop a_used times, a_used > 0. |
| __ ldr(R4, Address(R1, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ ldr(R9, Address(R3, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ adcs(R4, R4, Operand(R9)); |
| __ teq(R1, Operand(NOTFP)); // Does not affect carry flag. |
| __ str(R4, Address(R8, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ b(&add_loop, NE); |
| |
| Label last_carry; |
| __ teq(R1, Operand(R6)); // Does not affect carry flag. |
| __ b(&last_carry, EQ); // If used - a_used == 0. |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop used - a_used times, used - a_used > 0. |
| __ ldr(R4, Address(R1, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ adcs(R4, R4, Operand(0)); |
| __ teq(R1, Operand(R6)); // Does not affect carry flag. |
| __ str(R4, Address(R8, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ b(&carry_loop, NE); |
| |
| __ Bind(&last_carry); |
| __ mov(R4, Operand(0)); |
| __ adc(R4, R4, Operand(0)); |
| __ str(R4, Address(R8, 0)); |
| |
| // Returning Object::null() is not required, since this method is private. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_absSub(Assembler* assembler) { |
| // static void _absSub(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| // R0 = used, R1 = digits |
| __ ldrd(R0, R1, SP, 3 * kWordSize); |
| // R1 = &digits[0] |
| __ add(R1, R1, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // R2 = a_used, R3 = a_digits |
| __ ldrd(R2, R3, SP, 1 * kWordSize); |
| // R3 = &a_digits[0] |
| __ add(R3, R3, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // R8 = r_digits |
| __ ldr(R8, Address(SP, 0 * kWordSize)); |
| // R8 = &r_digits[0] |
| __ add(R8, R8, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // NOTFP = &digits[a_used >> 1], a_used is Smi. |
| __ add(NOTFP, R1, Operand(R2, LSL, 1)); |
| |
| // R6 = &digits[used >> 1], used is Smi. |
| __ add(R6, R1, Operand(R0, LSL, 1)); |
| |
| __ subs(R4, R4, Operand(0)); // carry flag = 1 |
| Label sub_loop; |
| __ Bind(&sub_loop); |
| // Loop a_used times, a_used > 0. |
| __ ldr(R4, Address(R1, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ ldr(R9, Address(R3, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ sbcs(R4, R4, Operand(R9)); |
| __ teq(R1, Operand(NOTFP)); // Does not affect carry flag. |
| __ str(R4, Address(R8, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ b(&sub_loop, NE); |
| |
| Label done; |
| __ teq(R1, Operand(R6)); // Does not affect carry flag. |
| __ b(&done, EQ); // If used - a_used == 0. |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop used - a_used times, used - a_used > 0. |
| __ ldr(R4, Address(R1, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ sbcs(R4, R4, Operand(0)); |
| __ teq(R1, Operand(R6)); // Does not affect carry flag. |
| __ str(R4, Address(R8, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ b(&carry_loop, NE); |
| |
| __ Bind(&done); |
| // Returning Object::null() is not required, since this method is private. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_mulAdd(Assembler* assembler) { |
| // Pseudo code: |
| // static int _mulAdd(Uint32List x_digits, int xi, |
| // Uint32List m_digits, int i, |
| // Uint32List a_digits, int j, int n) { |
| // uint32_t x = x_digits[xi >> 1]; // xi is Smi. |
| // if (x == 0 || n == 0) { |
| // return 1; |
| // } |
| // uint32_t* mip = &m_digits[i >> 1]; // i is Smi. |
| // uint32_t* ajp = &a_digits[j >> 1]; // j is Smi. |
| // uint32_t c = 0; |
| // SmiUntag(n); |
| // do { |
| // uint32_t mi = *mip++; |
| // uint32_t aj = *ajp; |
| // uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit. |
| // *ajp++ = low32(t); |
| // c = high32(t); |
| // } while (--n > 0); |
| // while (c != 0) { |
| // uint64_t t = *ajp + c; |
| // *ajp++ = low32(t); |
| // c = high32(t); // c == 0 or 1. |
| // } |
| // return 1; |
| // } |
| |
| Label done; |
| // R3 = x, no_op if x == 0 |
| __ ldrd(R0, R1, SP, 5 * kWordSize); // R0 = xi as Smi, R1 = x_digits. |
| __ add(R1, R1, Operand(R0, LSL, 1)); |
| __ ldr(R3, FieldAddress(R1, TypedData::data_offset())); |
| __ tst(R3, Operand(R3)); |
| __ b(&done, EQ); |
| |
| // R8 = SmiUntag(n), no_op if n == 0 |
| __ ldr(R8, Address(SP, 0 * kWordSize)); |
| __ Asrs(R8, R8, Operand(kSmiTagSize)); |
| __ b(&done, EQ); |
| |
| // R4 = mip = &m_digits[i >> 1] |
| __ ldrd(R0, R1, SP, 3 * kWordSize); // R0 = i as Smi, R1 = m_digits. |
| __ add(R1, R1, Operand(R0, LSL, 1)); |
| __ add(R4, R1, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // R9 = ajp = &a_digits[j >> 1] |
| __ ldrd(R0, R1, SP, 1 * kWordSize); // R0 = j as Smi, R1 = a_digits. |
| __ add(R1, R1, Operand(R0, LSL, 1)); |
| __ add(R9, R1, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // R1 = c = 0 |
| __ mov(R1, Operand(0)); |
| |
| Label muladd_loop; |
| __ Bind(&muladd_loop); |
| // x: R3 |
| // mip: R4 |
| // ajp: R9 |
| // c: R1 |
| // n: R8 |
| |
| // uint32_t mi = *mip++ |
| __ ldr(R2, Address(R4, Bigint::kBytesPerDigit, Address::PostIndex)); |
| |
| // uint32_t aj = *ajp |
| __ ldr(R0, Address(R9, 0)); |
| |
| // uint64_t t = x*mi + aj + c |
| __ umaal(R0, R1, R2, R3); // R1:R0 = R2*R3 + R1 + R0. |
| |
| // *ajp++ = low32(t) = R0 |
| __ str(R0, Address(R9, Bigint::kBytesPerDigit, Address::PostIndex)); |
| |
| // c = high32(t) = R1 |
| |
| // while (--n > 0) |
| __ subs(R8, R8, Operand(1)); // --n |
| __ b(&muladd_loop, NE); |
| |
| __ tst(R1, Operand(R1)); |
| __ b(&done, EQ); |
| |
| // *ajp++ += c |
| __ ldr(R0, Address(R9, 0)); |
| __ adds(R0, R0, Operand(R1)); |
| __ str(R0, Address(R9, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ b(&done, CC); |
| |
| Label propagate_carry_loop; |
| __ Bind(&propagate_carry_loop); |
| __ ldr(R0, Address(R9, 0)); |
| __ adds(R0, R0, Operand(1)); |
| __ str(R0, Address(R9, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ b(&propagate_carry_loop, CS); |
| |
| __ Bind(&done); |
| __ mov(R0, Operand(Smi::RawValue(1))); // One digit processed. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) { |
| // Pseudo code: |
| // static int _sqrAdd(Uint32List x_digits, int i, |
| // Uint32List a_digits, int used) { |
| // uint32_t* xip = &x_digits[i >> 1]; // i is Smi. |
| // uint32_t x = *xip++; |
| // if (x == 0) return 1; |
| // uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| // uint32_t aj = *ajp; |
| // uint64_t t = x*x + aj; |
| // *ajp++ = low32(t); |
| // uint64_t c = high32(t); |
| // int n = ((used - i) >> 1) - 1; // used and i are Smi. |
| // while (--n >= 0) { |
| // uint32_t xi = *xip++; |
| // uint32_t aj = *ajp; |
| // uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit. |
| // *ajp++ = low32(t); |
| // c = high64(t); // 33-bit. |
| // } |
| // uint32_t aj = *ajp; |
| // uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit. |
| // *ajp++ = low32(t); |
| // *ajp = high32(t); |
| // return 1; |
| // } |
| |
| // R4 = xip = &x_digits[i >> 1] |
| __ ldrd(R2, R3, SP, 2 * kWordSize); // R2 = i as Smi, R3 = x_digits |
| __ add(R3, R3, Operand(R2, LSL, 1)); |
| __ add(R4, R3, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // R3 = x = *xip++, return if x == 0 |
| Label x_zero; |
| __ ldr(R3, Address(R4, Bigint::kBytesPerDigit, Address::PostIndex)); |
| __ tst(R3, Operand(R3)); |
| __ b(&x_zero, EQ); |
| |
| // NOTFP = ajp = &a_digits[i] |
| __ ldr(R1, Address(SP, 1 * kWordSize)); // a_digits |
| __ add(R1, R1, Operand(R2, LSL, 2)); // j == 2*i, i is Smi. |
| __ add(NOTFP, R1, Operand(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // R8:R0 = t = x*x + *ajp |
| __ ldr(R0, Address(NOTFP, 0)); |
| __ mov(R8, Operand(0)); |
| __ umaal(R0, R8, R3, R3); // R8:R0 = R3*R3 + R8 + R0. |
| |
| // *ajp++ = low32(t) = R0 |
| __ str(R0, Address(NOTFP, Bigint::kBytesPerDigit, Address::PostIndex)); |
| |
| // R8 = low32(c) = high32(t) |
| // R9 = high32(c) = 0 |
| __ mov(R9, Operand(0)); |
| |
| // int n = used - i - 1; while (--n >= 0) ... |
| __ ldr(R0, Address(SP, 0 * kWordSize)); // used is Smi |
| __ sub(R6, R0, Operand(R2)); |
| __ mov(R0, Operand(2)); // n = used - i - 2; if (n >= 0) ... while (--n >= 0) |
| __ rsbs(R6, R0, Operand(R6, ASR, kSmiTagSize)); |
| |
| Label loop, done; |
| __ b(&done, MI); |
| |
| __ Bind(&loop); |
| // x: R3 |
| // xip: R4 |
| // ajp: NOTFP |
| // c: R9:R8 |
| // t: R2:R1:R0 (not live at loop entry) |
| // n: R6 |
| |
| // uint32_t xi = *xip++ |
| __ ldr(R2, Address(R4, Bigint::kBytesPerDigit, Address::PostIndex)); |
| |
| // uint96_t t = R9:R8:R0 = 2*x*xi + aj + c |
| __ umull(R0, R1, R2, R3); // R1:R0 = R2*R3. |
| __ adds(R0, R0, Operand(R0)); |
| __ adcs(R1, R1, Operand(R1)); |
| __ mov(R2, Operand(0)); |
| __ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi. |
| __ adds(R0, R0, Operand(R8)); |
| __ adcs(R1, R1, Operand(R9)); |
| __ adc(R2, R2, Operand(0)); // R2:R1:R0 = 2*x*xi + c. |
| __ ldr(R8, Address(NOTFP, 0)); // R8 = aj = *ajp. |
| __ adds(R0, R0, Operand(R8)); |
| __ adcs(R8, R1, Operand(0)); |
| __ adc(R9, R2, Operand(0)); // R9:R8:R0 = 2*x*xi + c + aj. |
| |
| // *ajp++ = low32(t) = R0 |
| __ str(R0, Address(NOTFP, Bigint::kBytesPerDigit, Address::PostIndex)); |
| |
| // while (--n >= 0) |
| __ subs(R6, R6, Operand(1)); // --n |
| __ b(&loop, PL); |
| |
| __ Bind(&done); |
| // uint32_t aj = *ajp |
| __ ldr(R0, Address(NOTFP, 0)); |
| |
| // uint64_t t = aj + c |
| __ adds(R8, R8, Operand(R0)); |
| __ adc(R9, R9, Operand(0)); |
| |
| // *ajp = low32(t) = R8 |
| // *(ajp + 1) = high32(t) = R9 |
| __ strd(R8, R9, NOTFP, 0); |
| |
| __ Bind(&x_zero); |
| __ mov(R0, Operand(Smi::RawValue(1))); // One digit processed. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_estQuotientDigit(Assembler* assembler) { |
| // No unsigned 64-bit / 32-bit divide instruction. |
| } |
| |
| |
| void Intrinsifier::Montgomery_mulMod(Assembler* assembler) { |
| // Pseudo code: |
| // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| // uint32_t rho = args[_RHO]; // _RHO == 2. |
| // uint32_t d = digits[i >> 1]; // i is Smi. |
| // uint64_t t = rho*d; |
| // args[_MU] = t mod DIGIT_BASE; // _MU == 4. |
| // return 1; |
| // } |
| |
| // R4 = args |
| __ ldr(R4, Address(SP, 2 * kWordSize)); // args |
| |
| // R3 = rho = args[2] |
| __ ldr(R3, FieldAddress( |
| R4, TypedData::data_offset() + 2 * Bigint::kBytesPerDigit)); |
| |
| // R2 = digits[i >> 1] |
| __ ldrd(R0, R1, SP, 0 * kWordSize); // R0 = i as Smi, R1 = digits |
| __ add(R1, R1, Operand(R0, LSL, 1)); |
| __ ldr(R2, FieldAddress(R1, TypedData::data_offset())); |
| |
| // R1:R0 = t = rho*d |
| __ umull(R0, R1, R2, R3); |
| |
| // args[4] = t mod DIGIT_BASE = low32(t) |
| __ str(R0, FieldAddress( |
| R4, TypedData::data_offset() + 4 * Bigint::kBytesPerDigit)); |
| |
| __ mov(R0, Operand(Smi::RawValue(1))); // One digit processed. |
| __ Ret(); |
| } |
| |
| |
| // Check if the last argument is a double, jump to label 'is_smi' if smi |
| // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| // Returns the last argument in R0. |
| static void TestLastArgumentIsDouble(Assembler* assembler, |
| Label* is_smi, |
| Label* not_double_smi) { |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ tst(R0, Operand(kSmiTagMask)); |
| __ b(is_smi, EQ); |
| __ CompareClassId(R0, kDoubleCid, R1); |
| __ b(not_double_smi, NE); |
| // Fall through with Double in R0. |
| } |
| |
| |
| // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
| // type. Return true or false object in the register R0. Any NaN argument |
| // returns false. Any non-double arg1 causes control flow to fall through to the |
| // slow case (compiled method body). |
| static void CompareDoubles(Assembler* assembler, Condition true_condition) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| Label fall_through, is_smi, double_op; |
| |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Both arguments are double, right operand is in R0. |
| |
| __ LoadDFromOffset(D1, R0, Double::value_offset() - kHeapObjectTag); |
| __ Bind(&double_op); |
| __ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument. |
| __ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| |
| __ vcmpd(D0, D1); |
| __ vmstat(); |
| __ LoadObject(R0, Bool::False()); |
| // Return false if D0 or D1 was NaN before checking true condition. |
| __ bx(LR, VS); |
| __ LoadObject(R0, Bool::True(), true_condition); |
| __ Ret(); |
| |
| __ Bind(&is_smi); // Convert R0 to a double. |
| __ SmiUntag(R0); |
| __ vmovsr(S0, R0); |
| __ vcvtdi(D1, S0); |
| __ b(&double_op); // Then do the comparison. |
| __ Bind(&fall_through); |
| } |
| } |
| |
| |
| void Intrinsifier::Double_greaterThan(Assembler* assembler) { |
| CompareDoubles(assembler, HI); |
| } |
| |
| |
| void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) { |
| CompareDoubles(assembler, CS); |
| } |
| |
| |
| void Intrinsifier::Double_lessThan(Assembler* assembler) { |
| CompareDoubles(assembler, CC); |
| } |
| |
| |
| void Intrinsifier::Double_equal(Assembler* assembler) { |
| CompareDoubles(assembler, EQ); |
| } |
| |
| |
| void Intrinsifier::Double_lessEqualThan(Assembler* assembler) { |
| CompareDoubles(assembler, LS); |
| } |
| |
| |
| // Expects left argument to be double (receiver). Right argument is unknown. |
| // Both arguments are on stack. |
| static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| Label fall_through, is_smi, double_op; |
| |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Both arguments are double, right operand is in R0. |
| __ LoadDFromOffset(D1, R0, Double::value_offset() - kHeapObjectTag); |
| __ Bind(&double_op); |
| __ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument. |
| __ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| switch (kind) { |
| case Token::kADD: |
| __ vaddd(D0, D0, D1); |
| break; |
| case Token::kSUB: |
| __ vsubd(D0, D0, D1); |
| break; |
| case Token::kMUL: |
| __ vmuld(D0, D0, D1); |
| break; |
| case Token::kDIV: |
| __ vdivd(D0, D0, D1); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| const Class& double_class = |
| Class::Handle(Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, R0, R1); // Result register. |
| __ StoreDToOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| __ Ret(); |
| __ Bind(&is_smi); // Convert R0 to a double. |
| __ SmiUntag(R0); |
| __ vmovsr(S0, R0); |
| __ vcvtdi(D1, S0); |
| __ b(&double_op); |
| __ Bind(&fall_through); |
| } |
| } |
| |
| |
| void Intrinsifier::Double_add(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kADD); |
| } |
| |
| |
| void Intrinsifier::Double_mul(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kMUL); |
| } |
| |
| |
| void Intrinsifier::Double_sub(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kSUB); |
| } |
| |
| |
| void Intrinsifier::Double_div(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kDIV); |
| } |
| |
| |
| // Left is double right is integer (Bigint, Mint or Smi) |
| void Intrinsifier::Double_mulFromInteger(Assembler* assembler) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| Label fall_through; |
| // Only smis allowed. |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ tst(R0, Operand(kSmiTagMask)); |
| __ b(&fall_through, NE); |
| // Is Smi. |
| __ SmiUntag(R0); |
| __ vmovsr(S0, R0); |
| __ vcvtdi(D1, S0); |
| __ ldr(R0, Address(SP, 1 * kWordSize)); |
| __ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| __ vmuld(D0, D0, D1); |
| const Class& double_class = |
| Class::Handle(Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, R0, R1); // Result register. |
| __ StoreDToOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| } |
| |
| |
| void Intrinsifier::DoubleFromInteger(Assembler* assembler) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| Label fall_through; |
| |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ tst(R0, Operand(kSmiTagMask)); |
| __ b(&fall_through, NE); |
| // Is Smi. |
| __ SmiUntag(R0); |
| __ vmovsr(S0, R0); |
| __ vcvtdi(D0, S0); |
| const Class& double_class = |
| Class::Handle(Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, R0, R1); // Result register. |
| __ StoreDToOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| } |
| |
| |
| void Intrinsifier::Double_getIsNaN(Assembler* assembler) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| Label is_true; |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| __ vcmpd(D0, D0); |
| __ vmstat(); |
| __ LoadObject(R0, Bool::False(), VC); |
| __ LoadObject(R0, Bool::True(), VS); |
| __ Ret(); |
| } |
| } |
| |
| |
| void Intrinsifier::Double_getIsInfinite(Assembler* assembler) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| // R1 <- value[0:31], R2 <- value[32:63] |
| __ LoadFieldFromOffset(kWord, R1, R0, Double::value_offset()); |
| __ LoadFieldFromOffset(kWord, R2, R0, Double::value_offset() + kWordSize); |
| |
| // If the low word isn't 0, then it isn't infinity. |
| __ cmp(R1, Operand(0)); |
| __ LoadObject(R0, Bool::False(), NE); |
| __ bx(LR, NE); // Return if NE. |
| |
| // Mask off the sign bit. |
| __ AndImmediate(R2, R2, 0x7FFFFFFF); |
| // Compare with +infinity. |
| __ CompareImmediate(R2, 0x7FF00000); |
| __ LoadObject(R0, Bool::False(), NE); |
| __ bx(LR, NE); |
| |
| __ LoadObject(R0, Bool::True()); |
| __ Ret(); |
| } |
| } |
| |
| |
| void Intrinsifier::Double_getIsNegative(Assembler* assembler) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| Label is_false, is_true, is_zero; |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| __ vcmpdz(D0); |
| __ vmstat(); |
| __ b(&is_false, VS); // NaN -> false. |
| __ b(&is_zero, EQ); // Check for negative zero. |
| __ b(&is_false, CS); // >= 0 -> false. |
| |
| __ Bind(&is_true); |
| __ LoadObject(R0, Bool::True()); |
| __ Ret(); |
| |
| __ Bind(&is_false); |
| __ LoadObject(R0, Bool::False()); |
| __ Ret(); |
| |
| __ Bind(&is_zero); |
| // Check for negative zero by looking at the sign bit. |
| __ vmovrrd(R0, R1, D0); // R1:R0 <- D0, so sign bit is in bit 31 of R1. |
| __ mov(R1, Operand(R1, LSR, 31)); |
| __ tst(R1, Operand(1)); |
| __ b(&is_true, NE); // Sign bit set. |
| __ b(&is_false); |
| } |
| } |
| |
| |
| void Intrinsifier::DoubleToInteger(Assembler* assembler) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| Label fall_through; |
| |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ LoadDFromOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| |
| // Explicit NaN check, since ARM gives an FPU exception if you try to |
| // convert NaN to an int. |
| __ vcmpd(D0, D0); |
| __ vmstat(); |
| __ b(&fall_through, VS); |
| |
| __ vcvtid(S0, D0); |
| __ vmovrs(R0, S0); |
| // Overflow is signaled with minint. |
| // Check for overflow and that it fits into Smi. |
| __ CompareImmediate(R0, 0xC0000000); |
| __ SmiTag(R0, PL); |
| __ bx(LR, PL); |
| __ Bind(&fall_through); |
| } |
| } |
| |
| |
| void Intrinsifier::MathSqrt(Assembler* assembler) { |
| if (TargetCPUFeatures::vfp_supported()) { |
| Label fall_through, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Argument is double and is in R0. |
| __ LoadDFromOffset(D1, R0, Double::value_offset() - kHeapObjectTag); |
| __ Bind(&double_op); |
| __ vsqrtd(D0, D1); |
| const Class& double_class = |
| Class::Handle(Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, R0, R1); // Result register. |
| __ StoreDToOffset(D0, R0, Double::value_offset() - kHeapObjectTag); |
| __ Ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(R0); |
| __ vmovsr(S0, R0); |
| __ vcvtdi(D1, S0); |
| __ b(&double_op); |
| __ Bind(&fall_through); |
| } |
| } |
| |
| |
| // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
| // _state[kSTATE_LO] = state & _MASK_32; |
| // _state[kSTATE_HI] = state >> 32; |
| void Intrinsifier::Random_nextState(Assembler* assembler) { |
| const Library& math_lib = Library::Handle(Library::MathLibrary()); |
| ASSERT(!math_lib.IsNull()); |
| const Class& random_class = |
| Class::Handle(math_lib.LookupClassAllowPrivate(Symbols::_Random())); |
| ASSERT(!random_class.IsNull()); |
| const Field& state_field = Field::ZoneHandle( |
| random_class.LookupInstanceFieldAllowPrivate(Symbols::_state())); |
| ASSERT(!state_field.IsNull()); |
| const Field& random_A_field = Field::ZoneHandle( |
| random_class.LookupStaticFieldAllowPrivate(Symbols::_A())); |
| ASSERT(!random_A_field.IsNull()); |
| ASSERT(random_A_field.is_const()); |
| Instance& a_value = Instance::Handle(random_A_field.StaticValue()); |
| if (a_value.raw() == Object::sentinel().raw() || |
| a_value.raw() == Object::transition_sentinel().raw()) { |
| random_A_field.EvaluateInitializer(); |
| a_value = random_A_field.StaticValue(); |
| } |
| const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value(); |
| // 'a_int_value' is a mask. |
| ASSERT(Utils::IsUint(32, a_int_value)); |
| int32_t a_int32_value = static_cast<int32_t>(a_int_value); |
| |
| // Receiver. |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| // Field '_state'. |
| __ ldr(R1, FieldAddress(R0, state_field.Offset())); |
| // Addresses of _state[0] and _state[1]. |
| |
| const int64_t disp_0 = Instance::DataOffsetFor(kTypedDataUint32ArrayCid); |
| const int64_t disp_1 = |
| disp_0 + Instance::ElementSizeFor(kTypedDataUint32ArrayCid); |
| |
| __ LoadImmediate(R0, a_int32_value); |
| __ LoadFromOffset(kWord, R2, R1, disp_0 - kHeapObjectTag); |
| __ LoadFromOffset(kWord, R3, R1, disp_1 - kHeapObjectTag); |
| __ mov(R8, Operand(0)); // Zero extend unsigned _state[kSTATE_HI]. |
| // Unsigned 32-bit multiply and 64-bit accumulate into R8:R3. |
| __ umlal(R3, R8, R0, R2); // R8:R3 <- R8:R3 + R0 * R2. |
| __ StoreToOffset(kWord, R3, R1, disp_0 - kHeapObjectTag); |
| __ StoreToOffset(kWord, R8, R1, disp_1 - kHeapObjectTag); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::ObjectEquals(Assembler* assembler) { |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ ldr(R1, Address(SP, 1 * kWordSize)); |
| __ cmp(R0, Operand(R1)); |
| __ LoadObject(R0, Bool::False(), NE); |
| __ LoadObject(R0, Bool::True(), EQ); |
| __ Ret(); |
| } |
| |
| |
| static void RangeCheck(Assembler* assembler, |
| Register val, |
| Register tmp, |
| intptr_t low, |
| intptr_t high, |
| Condition cc, |
| Label* target) { |
| __ AddImmediate(tmp, val, -low); |
| __ CompareImmediate(tmp, high - low); |
| __ b(target, cc); |
| } |
| |
| |
| const Condition kIfNotInRange = HI; |
| const Condition kIfInRange = LS; |
| |
| |
| static void JumpIfInteger(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| RangeCheck(assembler, cid, tmp, kSmiCid, kBigintCid, kIfInRange, target); |
| } |
| |
| |
| static void JumpIfNotInteger(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| RangeCheck(assembler, cid, tmp, kSmiCid, kBigintCid, kIfNotInRange, target); |
| } |
| |
| |
| static void JumpIfString(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
| kIfInRange, target); |
| } |
| |
| |
| static void JumpIfNotString(Assembler* assembler, |
| Register cid, |
| Register tmp, |
| Label* target) { |
| RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, |
| kIfNotInRange, target); |
| } |
| |
| |
| // Return type quickly for simple types (not parameterized and not signature). |
| void Intrinsifier::ObjectRuntimeType(Assembler* assembler) { |
| Label fall_through, use_canonical_type, not_double, not_integer; |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ LoadClassIdMayBeSmi(R1, R0); |
| |
| __ CompareImmediate(R1, kClosureCid); |
| __ b(&fall_through, EQ); // Instance is a closure. |
| |
| __ CompareImmediate(R1, kNumPredefinedCids); |
| __ b(&use_canonical_type, HI); |
| |
| __ CompareImmediate(R1, kDoubleCid); |
| __ b(¬_double, NE); |
| |
| __ LoadIsolate(R0); |
| __ LoadFromOffset(kWord, R0, R0, Isolate::object_store_offset()); |
| __ LoadFromOffset(kWord, R0, R0, ObjectStore::double_type_offset()); |
| __ Ret(); |
| |
| __ Bind(¬_double); |
| JumpIfNotInteger(assembler, R1, R0, ¬_integer); |
| __ LoadIsolate(R0); |
| __ LoadFromOffset(kWord, R0, R0, Isolate::object_store_offset()); |
| __ LoadFromOffset(kWord, R0, R0, ObjectStore::int_type_offset()); |
| __ Ret(); |
| |
| __ Bind(¬_integer); |
| JumpIfNotString(assembler, R1, R0, &use_canonical_type); |
| __ LoadIsolate(R0); |
| __ LoadFromOffset(kWord, R0, R0, Isolate::object_store_offset()); |
| __ LoadFromOffset(kWord, R0, R0, ObjectStore::string_type_offset()); |
| __ Ret(); |
| |
| __ Bind(&use_canonical_type); |
| __ LoadClassById(R2, R1); |
| __ ldrh(R3, FieldAddress(R2, Class::num_type_arguments_offset())); |
| __ CompareImmediate(R3, 0); |
| __ b(&fall_through, NE); |
| |
| __ ldr(R0, FieldAddress(R2, Class::canonical_type_offset())); |
| __ CompareObject(R0, Object::null_object()); |
| __ b(&fall_through, EQ); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler) { |
| Label fall_through, different_cids, equal, not_equal, not_integer; |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ LoadClassIdMayBeSmi(R1, R0); |
| |
| // Check if left hand size is a closure. Closures are handled in the runtime. |
| __ CompareImmediate(R1, kClosureCid); |
| __ b(&fall_through, EQ); |
| |
| __ ldr(R0, Address(SP, 1 * kWordSize)); |
| __ LoadClassIdMayBeSmi(R2, R0); |
| |
| // Check whether class ids match. If class ids don't match objects can still |
| // have the same runtime type (e.g. multiple string implementation classes |
| // map to a single String type). |
| __ cmp(R1, Operand(R2)); |
| __ b(&different_cids, NE); |
| |
| // Objects have the same class and neither is a closure. |
| // Check if there are no type arguments. In this case we can return true. |
| // Otherwise fall through into the runtime to handle comparison. |
| __ LoadClassById(R3, R1); |
| __ ldrh(R3, FieldAddress(R3, Class::num_type_arguments_offset())); |
| __ CompareImmediate(R3, 0); |
| __ b(&fall_through, NE); |
| |
| __ Bind(&equal); |
| __ LoadObject(R0, Bool::True()); |
| __ Ret(); |
| |
| // Class ids are different. Check if we are comparing runtime types of |
| // two strings (with different representations) or two integers. |
| __ Bind(&different_cids); |
| __ CompareImmediate(R1, kNumPredefinedCids); |
| __ b(¬_equal, HI); |
| |
| // Check if both are integers. |
| JumpIfNotInteger(assembler, R1, R0, ¬_integer); |
| JumpIfInteger(assembler, R2, R0, &equal); |
| __ b(¬_equal); |
| |
| __ Bind(¬_integer); |
| // Check if both are strings. |
| JumpIfNotString(assembler, R1, R0, ¬_equal); |
| JumpIfString(assembler, R2, R0, &equal); |
| |
| // Neither strings nor integers and have different class ids. |
| __ Bind(¬_equal); |
| __ LoadObject(R0, Bool::False()); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::String_getHashCode(Assembler* assembler) { |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ ldr(R0, FieldAddress(R0, String::hash_offset())); |
| __ cmp(R0, Operand(0)); |
| __ bx(LR, NE); // Hash not yet computed. |
| } |
| |
| |
| void GenerateSubstringMatchesSpecialization(Assembler* assembler, |
| intptr_t receiver_cid, |
| intptr_t other_cid, |
| Label* return_true, |
| Label* return_false) { |
| __ SmiUntag(R1); |
| __ ldr(R8, FieldAddress(R0, String::length_offset())); // this.length |
| __ SmiUntag(R8); |
| __ ldr(R9, FieldAddress(R2, String::length_offset())); // other.length |
| __ SmiUntag(R9); |
| |
| // if (other.length == 0) return true; |
| __ cmp(R9, Operand(0)); |
| __ b(return_true, EQ); |
| |
| // if (start < 0) return false; |
| __ cmp(R1, Operand(0)); |
| __ b(return_false, LT); |
| |
| // if (start + other.length > this.length) return false; |
| __ add(R3, R1, Operand(R9)); |
| __ cmp(R3, Operand(R8)); |
| __ b(return_false, GT); |
| |
| if (receiver_cid == kOneByteStringCid) { |
| __ AddImmediate(R0, R0, OneByteString::data_offset() - kHeapObjectTag); |
| __ add(R0, R0, Operand(R1)); |
| } else { |
| ASSERT(receiver_cid == kTwoByteStringCid); |
| __ AddImmediate(R0, R0, TwoByteString::data_offset() - kHeapObjectTag); |
| __ add(R0, R0, Operand(R1)); |
| __ add(R0, R0, Operand(R1)); |
| } |
| if (other_cid == kOneByteStringCid) { |
| __ AddImmediate(R2, R2, OneByteString::data_offset() - kHeapObjectTag); |
| } else { |
| ASSERT(other_cid == kTwoByteStringCid); |
| __ AddImmediate(R2, R2, TwoByteString::data_offset() - kHeapObjectTag); |
| } |
| |
| // i = 0 |
| __ LoadImmediate(R3, 0); |
| |
| // do |
| Label loop; |
| __ Bind(&loop); |
| |
| if (receiver_cid == kOneByteStringCid) { |
| __ ldrb(R4, Address(R0, 0)); // this.codeUnitAt(i + start) |
| } else { |
| __ ldrh(R4, Address(R0, 0)); // this.codeUnitAt(i + start) |
| } |
| if (other_cid == kOneByteStringCid) { |
| __ ldrb(NOTFP, Address(R2, 0)); // other.codeUnitAt(i) |
| } else { |
| __ ldrh(NOTFP, Address(R2, 0)); // other.codeUnitAt(i) |
| } |
| __ cmp(R4, Operand(NOTFP)); |
| __ b(return_false, NE); |
| |
| // i++, while (i < len) |
| __ AddImmediate(R3, R3, 1); |
| __ AddImmediate(R0, R0, receiver_cid == kOneByteStringCid ? 1 : 2); |
| __ AddImmediate(R2, R2, other_cid == kOneByteStringCid ? 1 : 2); |
| __ cmp(R3, Operand(R9)); |
| __ b(&loop, LT); |
| |
| __ b(return_true); |
| } |
| |
| |
| // bool _substringMatches(int start, String other) |
| // This intrinsic handles a OneByteString or TwoByteString receiver with a |
| // OneByteString other. |
| void Intrinsifier::StringBaseSubstringMatches(Assembler* assembler) { |
| Label fall_through, return_true, return_false, try_two_byte; |
| __ ldr(R0, Address(SP, 2 * kWordSize)); // this |
| __ ldr(R1, Address(SP, 1 * kWordSize)); // start |
| __ ldr(R2, Address(SP, 0 * kWordSize)); // other |
| __ Push(R4); // Make ARGS_DESC_REG available. |
| |
| __ tst(R1, Operand(kSmiTagMask)); |
| __ b(&fall_through, NE); // 'start' is not a Smi. |
| |
| __ CompareClassId(R2, kOneByteStringCid, R3); |
| __ b(&fall_through, NE); |
| |
| __ CompareClassId(R0, kOneByteStringCid, R3); |
| __ b(&try_two_byte, NE); |
| |
| GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, |
| kOneByteStringCid, &return_true, |
| &return_false); |
| |
| __ Bind(&try_two_byte); |
| __ CompareClassId(R0, kTwoByteStringCid, R3); |
| __ b(&fall_through, NE); |
| |
| GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, |
| kOneByteStringCid, &return_true, |
| &return_false); |
| |
| __ Bind(&return_true); |
| __ Pop(R4); |
| __ LoadObject(R0, Bool::True()); |
| __ Ret(); |
| |
| __ Bind(&return_false); |
| __ Pop(R4); |
| __ LoadObject(R0, Bool::False()); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| __ Pop(R4); |
| } |
| |
| |
| void Intrinsifier::StringBaseCharAt(Assembler* assembler) { |
| Label fall_through, try_two_byte_string; |
| |
| __ ldr(R1, Address(SP, 0 * kWordSize)); // Index. |
| __ ldr(R0, Address(SP, 1 * kWordSize)); // String. |
| __ tst(R1, Operand(kSmiTagMask)); |
| __ b(&fall_through, NE); // Index is not a Smi. |
| // Range check. |
| __ ldr(R2, FieldAddress(R0, String::length_offset())); |
| __ cmp(R1, Operand(R2)); |
| __ b(&fall_through, CS); // Runtime throws exception. |
| |
| __ CompareClassId(R0, kOneByteStringCid, R3); |
| __ b(&try_two_byte_string, NE); |
| __ SmiUntag(R1); |
| __ AddImmediate(R0, OneByteString::data_offset() - kHeapObjectTag); |
| __ ldrb(R1, Address(R0, R1)); |
| __ CompareImmediate(R1, Symbols::kNumberOfOneCharCodeSymbols); |
| __ b(&fall_through, GE); |
| __ ldr(R0, Address(THR, Thread::predefined_symbols_address_offset())); |
| __ AddImmediate(R0, Symbols::kNullCharCodeSymbolOffset * kWordSize); |
| __ ldr(R0, Address(R0, R1, LSL, 2)); |
| __ Ret(); |
| |
| __ Bind(&try_two_byte_string); |
| __ CompareClassId(R0, kTwoByteStringCid, R3); |
| __ b(&fall_through, NE); |
| ASSERT(kSmiTagShift == 1); |
| __ AddImmediate(R0, TwoByteString::data_offset() - kHeapObjectTag); |
| __ ldrh(R1, Address(R0, R1)); |
| __ CompareImmediate(R1, Symbols::kNumberOfOneCharCodeSymbols); |
| __ b(&fall_through, GE); |
| __ ldr(R0, Address(THR, Thread::predefined_symbols_address_offset())); |
| __ AddImmediate(R0, Symbols::kNullCharCodeSymbolOffset * kWordSize); |
| __ ldr(R0, Address(R0, R1, LSL, 2)); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) { |
| __ ldr(R0, Address(SP, 0 * kWordSize)); |
| __ ldr(R0, FieldAddress(R0, String::length_offset())); |
| __ cmp(R0, Operand(Smi::RawValue(0))); |
| __ LoadObject(R0, Bool::True(), EQ); |
| __ LoadObject(R0, Bool::False(), NE); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) { |
| __ ldr(R1, Address(SP, 0 * kWordSize)); |
| __ ldr(R0, FieldAddress(R1, String::hash_offset())); |
| __ cmp(R0, Operand(0)); |
| __ bx(LR, NE); // Return if already computed. |
| |
| __ ldr(R2, FieldAddress(R1, String::length_offset())); |
| |
| Label done; |
| // If the string is empty, set the hash to 1, and return. |
| __ cmp(R2, Operand(Smi::RawValue(0))); |
| __ b(&done, EQ); |
| |
| __ SmiUntag(R2); |
| __ mov(R3, Operand(0)); |
| __ AddImmediate(R8, R1, OneByteString::data_offset() - kHeapObjectTag); |
| // R1: Instance of OneByteString. |
| // R2: String length, untagged integer. |
| // R3: Loop counter, untagged integer. |
| // R8: String data. |
| // R0: Hash code, untagged integer. |
| |
| Label loop; |
| // Add to hash code: (hash_ is uint32) |
| // hash_ += ch; |
| // hash_ += hash_ << 10; |
| // hash_ ^= hash_ >> 6; |
| // Get one characters (ch). |
| __ Bind(&loop); |
| __ ldrb(NOTFP, Address(R8, 0)); |
| // NOTFP: ch. |
| __ add(R3, R3, Operand(1)); |
| __ add(R8, R8, Operand(1)); |
| __ add(R0, R0, Operand(NOTFP)); |
| __ add(R0, R0, Operand(R0, LSL, 10)); |
| __ eor(R0, R0, Operand(R0, LSR, 6)); |
| __ cmp(R3, Operand(R2)); |
| __ b(&loop, NE); |
| |
| // Finalize. |
| // hash_ += hash_ << 3; |
| // hash_ ^= hash_ >> 11; |
| // hash_ += hash_ << 15; |
| __ add(R0, R0, Operand(R0, LSL, 3)); |
| __ eor(R0, R0, Operand(R0, LSR, 11)); |
| __ add(R0, R0, Operand(R0, LSL, 15)); |
| // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| __ LoadImmediate(R2, (static_cast<intptr_t>(1) << String::kHashBits) - 1); |
| __ and_(R0, R0, Operand(R2)); |
| __ cmp(R0, Operand(0)); |
| // return hash_ == 0 ? 1 : hash_; |
| __ Bind(&done); |
| __ mov(R0, Operand(1), EQ); |
| __ SmiTag(R0); |
| __ StoreIntoSmiField(FieldAddress(R1, String::hash_offset()), R0); |
| __ Ret(); |
| } |
| |
| |
| // Allocates one-byte string of length 'end - start'. The content is not |
| // initialized. |
| // 'length-reg' (R2) contains tagged length. |
| // Returns new string as tagged pointer in R0. |
| static void TryAllocateOnebyteString(Assembler* assembler, |
| Label* ok, |
| Label* failure) { |
| const Register length_reg = R2; |
| Label fail; |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kOneByteStringCid, R0, failure)); |
| __ mov(R8, Operand(length_reg)); // Save the length register. |
| // TODO(koda): Protect against negative length and overflow here. |
| __ SmiUntag(length_reg); |
| const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1; |
| __ AddImmediate(length_reg, fixed_size); |
| __ bic(length_reg, length_reg, Operand(kObjectAlignment - 1)); |
| |
| const intptr_t cid = kOneByteStringCid; |
| Heap::Space space = Heap::kNew; |
| __ ldr(R3, Address(THR, Thread::heap_offset())); |
| __ ldr(R0, Address(R3, Heap::TopOffset(space))); |
| |
| // length_reg: allocation size. |
| __ adds(R1, R0, Operand(length_reg)); |
| __ b(&fail, CS); // Fail on unsigned overflow. |
| |
| // Check if the allocation fits into the remaining space. |
| // R0: potential new object start. |
| // R1: potential next object start. |
| // R2: allocation size. |
| // R3: heap. |
| __ ldr(NOTFP, Address(R3, Heap::EndOffset(space))); |
| __ cmp(R1, Operand(NOTFP)); |
| __ b(&fail, CS); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| NOT_IN_PRODUCT(__ LoadAllocationStatsAddress(R4, cid)); |
| __ str(R1, Address(R3, Heap::TopOffset(space))); |
| __ AddImmediate(R0, kHeapObjectTag); |
| |
| // Initialize the tags. |
| // R0: new object start as a tagged pointer. |
| // R1: new object end address. |
| // R2: allocation size. |
| // R4: allocation stats address. |
| { |
| const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2; |
| |
| __ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag); |
| __ mov(R3, Operand(R2, LSL, shift), LS); |
| __ mov(R3, Operand(0), HI); |
| |
| // Get the class index and insert it into the tags. |
| // R3: size and bit tags. |
| __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); |
| __ orr(R3, R3, Operand(TMP)); |
| __ str(R3, FieldAddress(R0, String::tags_offset())); // Store tags. |
| } |
| |
| // Set the length field using the saved length (R8). |
| __ StoreIntoObjectNoBarrier(R0, FieldAddress(R0, String::length_offset()), |
| R8); |
| // Clear hash. |
| __ LoadImmediate(TMP, 0); |
| __ StoreIntoObjectNoBarrier(R0, FieldAddress(R0, String::hash_offset()), TMP); |
| |
| NOT_IN_PRODUCT(__ IncrementAllocationStatsWithSize(R4, R2, space)); |
| __ b(ok); |
| |
| __ Bind(&fail); |
| __ b(failure); |
| } |
| |
| |
| // Arg0: OneByteString (receiver). |
| // Arg1: Start index as Smi. |
| // Arg2: End index as Smi. |
| // The indexes must be valid. |
| void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) { |
| const intptr_t kStringOffset = 2 * kWordSize; |
| const intptr_t kStartIndexOffset = 1 * kWordSize; |
| const intptr_t kEndIndexOffset = 0 * kWordSize; |
| Label fall_through, ok; |
| |
| __ ldr(R2, Address(SP, kEndIndexOffset)); |
| __ ldr(TMP, Address(SP, kStartIndexOffset)); |
| __ orr(R3, R2, Operand(TMP)); |
| __ tst(R3, Operand(kSmiTagMask)); |
| __ b(&fall_through, NE); // 'start', 'end' not Smi. |
| |
| __ sub(R2, R2, Operand(TMP)); |
| TryAllocateOnebyteString(assembler, &ok, &fall_through); |
| __ Bind(&ok); |
| // R0: new string as tagged pointer. |
| // Copy string. |
| __ ldr(R3, Address(SP, kStringOffset)); |
| __ ldr(R1, Address(SP, kStartIndexOffset)); |
| __ SmiUntag(R1); |
| __ add(R3, R3, Operand(R1)); |
| // Calculate start address and untag (- 1). |
| __ AddImmediate(R3, OneByteString::data_offset() - 1); |
| |
| // R3: Start address to copy from (untagged). |
| // R1: Untagged start index. |
| __ ldr(R2, Address(SP, kEndIndexOffset)); |
| __ SmiUntag(R2); |
| __ sub(R2, R2, Operand(R1)); |
| |
| // R3: Start address to copy from (untagged). |
| // R2: Untagged number of bytes to copy. |
| // R0: Tagged result string. |
| // R8: Pointer into R3. |
| // NOTFP: Pointer into R0. |
| // R1: Scratch register. |
| Label loop, done; |
| __ cmp(R2, Operand(0)); |
| __ b(&done, LE); |
| __ mov(R8, Operand(R3)); |
| __ mov(NOTFP, Operand(R0)); |
| __ Bind(&loop); |
| __ ldrb(R1, Address(R8, 0)); |
| __ AddImmediate(R8, 1); |
| __ sub(R2, R2, Operand(1)); |
| __ cmp(R2, Operand(0)); |
| __ strb(R1, FieldAddress(NOTFP, OneByteString::data_offset())); |
| __ AddImmediate(NOTFP, 1); |
| __ b(&loop, GT); |
| |
| __ Bind(&done); |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::OneByteStringSetAt(Assembler* assembler) { |
| __ ldr(R2, Address(SP, 0 * kWordSize)); // Value. |
| __ ldr(R1, Address(SP, 1 * kWordSize)); // Index. |
| __ ldr(R0, Address(SP, 2 * kWordSize)); // OneByteString. |
| __ SmiUntag(R1); |
| __ SmiUntag(R2); |
| __ AddImmediate(R3, R0, OneByteString::data_offset() - kHeapObjectTag); |
| __ strb(R2, Address(R3, R1)); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::OneByteString_allocate(Assembler* assembler) { |
| __ ldr(R2, Address(SP, 0 * kWordSize)); // Length. |
| Label fall_through, ok; |
| TryAllocateOnebyteString(assembler, &ok, &fall_through); |
| |
| __ Bind(&ok); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
| static void StringEquality(Assembler* assembler, intptr_t string_cid) { |
| Label fall_through, is_true, is_false, loop; |
| __ ldr(R0, Address(SP, 1 * kWordSize)); // This. |
| __ ldr(R1, Address(SP, 0 * kWordSize)); // Other. |
| |
| // Are identical? |
| __ cmp(R0, Operand(R1)); |
| __ b(&is_true, EQ); |
| |
| // Is other OneByteString? |
| __ tst(R1, Operand(kSmiTagMask)); |
| __ b(&fall_through, EQ); |
| __ CompareClassId(R1, string_cid, R2); |
| __ b(&fall_through, NE); |
| |
| // Have same length? |
| __ ldr(R2, FieldAddress(R0, String::length_offset())); |
| __ ldr(R3, FieldAddress(R1, String::length_offset())); |
| __ cmp(R2, Operand(R3)); |
| __ b(&is_false, NE); |
| |
| // Check contents, no fall-through possible. |
| // TODO(zra): try out other sequences. |
| ASSERT((string_cid == kOneByteStringCid) || |
| (string_cid == kTwoByteStringCid)); |
| const intptr_t offset = (string_cid == kOneByteStringCid) |
| ? OneByteString::data_offset() |
| : TwoByteString::data_offset(); |
| __ AddImmediate(R0, offset - kHeapObjectTag); |
| __ AddImmediate(R1, offset - kHeapObjectTag); |
| __ SmiUntag(R2); |
| __ Bind(&loop); |
| __ AddImmediate(R2, -1); |
| __ cmp(R2, Operand(0)); |
| __ b(&is_true, LT); |
| if (string_cid == kOneByteStringCid) { |
| __ ldrb(R3, Address(R0)); |
| __ ldrb(R4, Address(R1)); |
| __ AddImmediate(R0, 1); |
| __ AddImmediate(R1, 1); |
| } else if (string_cid == kTwoByteStringCid) { |
| __ ldrh(R3, Address(R0)); |
| __ ldrh(R4, Address(R1)); |
| __ AddImmediate(R0, 2); |
| __ AddImmediate(R1, 2); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| __ cmp(R3, Operand(R4)); |
| __ b(&is_false, NE); |
| __ b(&loop); |
| |
| __ Bind(&is_true); |
| __ LoadObject(R0, Bool::True()); |
| __ Ret(); |
| |
| __ Bind(&is_false); |
| __ LoadObject(R0, Bool::False()); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::OneByteString_equality(Assembler* assembler) { |
| StringEquality(assembler, kOneByteStringCid); |
| } |
| |
| |
| void Intrinsifier::TwoByteString_equality(Assembler* assembler) { |
| StringEquality(assembler, kTwoByteStringCid); |
| } |
| |
| |
| void Intrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, |
| bool sticky) { |
| if (FLAG_interpret_irregexp) return; |
| |
| static const intptr_t kRegExpParamOffset = 2 * kWordSize; |
| static const intptr_t kStringParamOffset = 1 * kWordSize; |
| // start_index smi is located at offset 0. |
| |
| // Incoming registers: |
| // R0: Function. (Will be reloaded with the specialized matcher function.) |
| // R4: Arguments descriptor. (Will be preserved.) |
| // R9: Unknown. (Must be GC safe on tail call.) |
| |
| // Load the specialized function pointer into R0. Leverage the fact the |
| // string CIDs as well as stored function pointers are in sequence. |
| __ ldr(R2, Address(SP, kRegExpParamOffset)); |
| __ ldr(R1, Address(SP, kStringParamOffset)); |
| __ LoadClassId(R1, R1); |
| __ AddImmediate(R1, R1, -kOneByteStringCid); |
| __ add(R1, R2, Operand(R1, LSL, kWordSizeLog2)); |
| __ ldr(R0, |
| FieldAddress(R1, RegExp::function_offset(kOneByteStringCid, sticky))); |
| |
| // Registers are now set up for the lazy compile stub. It expects the function |
| // in R0, the argument descriptor in R4, and IC-Data in R9. |
| __ eor(R9, R9, Operand(R9)); |
| |
| // Tail-call the function. |
| __ ldr(CODE_REG, FieldAddress(R0, Function::code_offset())); |
| __ ldr(R1, FieldAddress(R0, Function::entry_point_offset())); |
| __ bx(R1); |
| } |
| |
| |
| // On stack: user tag (+0). |
| void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) { |
| // R1: Isolate. |
| __ LoadIsolate(R1); |
| // R0: Current user tag. |
| __ ldr(R0, Address(R1, Isolate::current_tag_offset())); |
| // R2: UserTag. |
| __ ldr(R2, Address(SP, +0 * kWordSize)); |
| // Set Isolate::current_tag_. |
| __ str(R2, Address(R1, Isolate::current_tag_offset())); |
| // R2: UserTag's tag. |
| __ ldr(R2, FieldAddress(R2, UserTag::tag_offset())); |
| // Set Isolate::user_tag_. |
| __ str(R2, Address(R1, Isolate::user_tag_offset())); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::UserTag_defaultTag(Assembler* assembler) { |
| __ LoadIsolate(R0); |
| __ ldr(R0, Address(R0, Isolate::default_tag_offset())); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) { |
| __ LoadIsolate(R0); |
| __ ldr(R0, Address(R0, Isolate::current_tag_offset())); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler) { |
| if (!FLAG_support_timeline) { |
| __ LoadObject(R0, Bool::False()); |
| __ Ret(); |
| return; |
| } |
| // Load TimelineStream*. |
| __ ldr(R0, Address(THR, Thread::dart_stream_offset())); |
| // Load uintptr_t from TimelineStream*. |
| __ ldr(R0, Address(R0, TimelineStream::enabled_offset())); |
| __ cmp(R0, Operand(0)); |
| __ LoadObject(R0, Bool::True(), NE); |
| __ LoadObject(R0, Bool::False(), EQ); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler) { |
| __ LoadObject(R0, Object::null_object()); |
| __ str(R0, Address(THR, Thread::async_stack_trace_offset())); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::SetAsyncThreadStackTrace(Assembler* assembler) { |
| __ ldr(R0, Address(THR, Thread::async_stack_trace_offset())); |
| __ LoadObject(R0, Object::null_object()); |
| __ Ret(); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_ARM |