blob: 6e731c8d4d79182ecf10a32cd83d024ffc04f19f [file] [log] [blame]
// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/exceptions.h"
#include "platform/address_sanitizer.h"
#include "lib/stacktrace.h"
#include "vm/dart_api_impl.h"
#include "vm/dart_entry.h"
#include "vm/datastream.h"
#include "vm/debugger.h"
#include "vm/deopt_instructions.h"
#include "vm/flags.h"
#include "vm/log.h"
#include "vm/longjump.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#include "vm/tags.h"
namespace dart {
DECLARE_FLAG(bool, trace_deoptimization);
DEFINE_FLAG(bool,
print_stacktrace_at_throw,
false,
"Prints a stack trace everytime a throw occurs.");
class StackTraceBuilder : public ValueObject {
public:
StackTraceBuilder() {}
virtual ~StackTraceBuilder() {}
virtual void AddFrame(const Code& code, const Smi& offset) = 0;
};
class RegularStackTraceBuilder : public StackTraceBuilder {
public:
explicit RegularStackTraceBuilder(Zone* zone)
: code_list_(
GrowableObjectArray::Handle(zone, GrowableObjectArray::New())),
pc_offset_list_(
GrowableObjectArray::Handle(zone, GrowableObjectArray::New())) {}
~RegularStackTraceBuilder() {}
const GrowableObjectArray& code_list() const { return code_list_; }
const GrowableObjectArray& pc_offset_list() const { return pc_offset_list_; }
virtual void AddFrame(const Code& code, const Smi& offset) {
code_list_.Add(code);
pc_offset_list_.Add(offset);
}
private:
const GrowableObjectArray& code_list_;
const GrowableObjectArray& pc_offset_list_;
DISALLOW_COPY_AND_ASSIGN(RegularStackTraceBuilder);
};
class PreallocatedStackTraceBuilder : public StackTraceBuilder {
public:
explicit PreallocatedStackTraceBuilder(const Instance& stacktrace)
: stacktrace_(StackTrace::Cast(stacktrace)),
cur_index_(0),
dropped_frames_(0) {
ASSERT(stacktrace_.raw() ==
Isolate::Current()->object_store()->preallocated_stack_trace());
}
~PreallocatedStackTraceBuilder() {}
virtual void AddFrame(const Code& code, const Smi& offset);
private:
static const int kNumTopframes = StackTrace::kPreallocatedStackdepth / 2;
const StackTrace& stacktrace_;
intptr_t cur_index_;
intptr_t dropped_frames_;
DISALLOW_COPY_AND_ASSIGN(PreallocatedStackTraceBuilder);
};
void PreallocatedStackTraceBuilder::AddFrame(const Code& code,
const Smi& offset) {
if (cur_index_ >= StackTrace::kPreallocatedStackdepth) {
// The number of frames is overflowing the preallocated stack trace object.
Code& frame_code = Code::Handle();
Smi& frame_offset = Smi::Handle();
intptr_t start = StackTrace::kPreallocatedStackdepth - (kNumTopframes - 1);
intptr_t null_slot = start - 2;
// We are going to drop one frame.
dropped_frames_++;
// Add an empty slot to indicate the overflow so that the toString
// method can account for the overflow.
if (stacktrace_.CodeAtFrame(null_slot) != Code::null()) {
stacktrace_.SetCodeAtFrame(null_slot, frame_code);
// We drop an extra frame here too.
dropped_frames_++;
}
// Encode the number of dropped frames into the pc offset.
frame_offset ^= Smi::New(dropped_frames_);
stacktrace_.SetPcOffsetAtFrame(null_slot, frame_offset);
// Move frames one slot down so that we can accomodate the new frame.
for (intptr_t i = start; i < StackTrace::kPreallocatedStackdepth; i++) {
intptr_t prev = (i - 1);
frame_code = stacktrace_.CodeAtFrame(i);
frame_offset = stacktrace_.PcOffsetAtFrame(i);
stacktrace_.SetCodeAtFrame(prev, frame_code);
stacktrace_.SetPcOffsetAtFrame(prev, frame_offset);
}
cur_index_ = (StackTrace::kPreallocatedStackdepth - 1);
}
stacktrace_.SetCodeAtFrame(cur_index_, code);
stacktrace_.SetPcOffsetAtFrame(cur_index_, offset);
cur_index_ += 1;
}
static void BuildStackTrace(StackTraceBuilder* builder) {
StackFrameIterator frames(StackFrameIterator::kDontValidateFrames);
StackFrame* frame = frames.NextFrame();
ASSERT(frame != NULL); // We expect to find a dart invocation frame.
Code& code = Code::Handle();
Smi& offset = Smi::Handle();
while (frame != NULL) {
if (frame->IsDartFrame()) {
code = frame->LookupDartCode();
ASSERT(code.ContainsInstructionAt(frame->pc()));
offset = Smi::New(frame->pc() - code.PayloadStart());
builder->AddFrame(code, offset);
}
frame = frames.NextFrame();
}
}
static RawObject** VariableAt(uword fp, int stack_slot) {
#if defined(TARGET_ARCH_DBC)
return reinterpret_cast<RawObject**>(fp + stack_slot * kWordSize);
#else
if (stack_slot < 0) {
return reinterpret_cast<RawObject**>(ParamAddress(fp, -stack_slot));
} else {
return reinterpret_cast<RawObject**>(
LocalVarAddress(fp, kFirstLocalSlotFromFp - stack_slot));
}
#endif
}
class ExceptionHandlerFinder : public StackResource {
public:
explicit ExceptionHandlerFinder(Thread* thread)
: StackResource(thread), thread_(thread), cache_(NULL), metadata_(NULL) {}
// Iterate through the stack frames and try to find a frame with an
// exception handler. Once found, set the pc, sp and fp so that execution
// can continue in that frame. Sets 'needs_stacktrace' if there is no
// cath-all handler or if a stack-trace is specified in the catch.
bool Find() {
StackFrameIterator frames(StackFrameIterator::kDontValidateFrames);
StackFrame* frame = frames.NextFrame();
if (frame == NULL) return false; // No Dart frame.
handler_pc_set_ = false;
needs_stacktrace = false;
bool is_catch_all = false;
uword temp_handler_pc = kUwordMax;
bool is_optimized = false;
code_ = NULL;
cache_ = thread_->isolate()->catch_entry_state_cache();
while (!frame->IsEntryFrame()) {
if (frame->IsDartFrame()) {
if (frame->FindExceptionHandler(thread_, &temp_handler_pc,
&needs_stacktrace, &is_catch_all,
&is_optimized)) {
if (!handler_pc_set_) {
handler_pc_set_ = true;
handler_pc = temp_handler_pc;
handler_sp = frame->sp();
handler_fp = frame->fp();
if (is_optimized) {
pc_ = frame->pc();
code_ = &Code::Handle(frame->LookupDartCode());
CatchEntryState* state = cache_->Lookup(pc_);
if (state != NULL) cached_ = *state;
#if !defined(DART_PRECOMPILED_RUNTIME) && !defined(DART_PRECOMPILER)
intptr_t num_vars = Smi::Value(code_->variables());
if (cached_.Empty()) GetMetaDataFromDeopt(num_vars, frame);
#else
if (cached_.Empty()) ReadCompressedMetaData();
#endif // !defined(DART_PRECOMPILED_RUNTIME) && !defined(DART_PRECOMPILER)
}
}
if (needs_stacktrace || is_catch_all) {
return true;
}
}
} // if frame->IsDartFrame
frame = frames.NextFrame();
ASSERT(frame != NULL);
} // while !frame->IsEntryFrame
ASSERT(frame->IsEntryFrame());
if (!handler_pc_set_) {
handler_pc = frame->pc();
handler_sp = frame->sp();
handler_fp = frame->fp();
}
// No catch-all encountered, needs stacktrace.
needs_stacktrace = true;
return handler_pc_set_;
}
void TrySync() {
if (code_ == NULL || !code_->is_optimized()) {
return;
}
if (!cached_.Empty()) {
// Cache hit.
TrySyncCached(&cached_);
} else {
// New cache entry.
CatchEntryState m(metadata_);
TrySyncCached(&m);
cache_->Insert(pc_, m);
}
}
void TrySyncCached(CatchEntryState* md) {
uword fp = handler_fp;
ObjectPool* pool = NULL;
intptr_t pairs = md->Pairs();
for (int j = 0; j < pairs; j++) {
intptr_t src = md->Src(j);
intptr_t dest = md->Dest(j);
if (md->isMove(j)) {
*VariableAt(fp, dest) = *VariableAt(fp, src);
} else {
if (pool == NULL) {
pool = &ObjectPool::Handle(code_->object_pool());
}
RawObject* obj = pool->ObjectAt(src);
*VariableAt(fp, dest) = obj;
}
}
}
#if defined(DART_PRECOMPILED_RUNTIME) || defined(DART_PRECOMPILER)
void ReadCompressedMetaData() {
intptr_t pc_offset = pc_ - code_->PayloadStart();
const TypedData& td = TypedData::Handle(code_->catch_entry_state_maps());
NoSafepointScope no_safepoint;
ReadStream stream(static_cast<uint8_t*>(td.DataAddr(0)), td.Length());
bool found_metadata = false;
while (stream.PendingBytes() > 0) {
intptr_t target_pc_offset = Reader::Read(&stream);
intptr_t variables = Reader::Read(&stream);
intptr_t suffix_length = Reader::Read(&stream);
intptr_t suffix_offset = Reader::Read(&stream);
if (pc_offset == target_pc_offset) {
metadata_ = new intptr_t[2 * (variables + suffix_length) + 1];
metadata_[0] = variables + suffix_length;
for (int j = 0; j < variables; j++) {
intptr_t src = Reader::Read(&stream);
intptr_t dest = Reader::Read(&stream);
metadata_[1 + 2 * j] = src;
metadata_[2 + 2 * j] = dest;
}
ReadCompressedSuffix(&stream, suffix_offset, suffix_length, metadata_,
2 * variables + 1);
found_metadata = true;
break;
} else {
for (intptr_t j = 0; j < 2 * variables; j++) {
Reader::Read(&stream);
}
}
}
ASSERT(found_metadata);
}
void ReadCompressedSuffix(ReadStream* stream,
intptr_t offset,
intptr_t length,
intptr_t* target,
intptr_t target_offset) {
stream->SetPosition(offset);
Reader::Read(stream); // skip pc_offset
Reader::Read(stream); // skip variables
intptr_t suffix_length = Reader::Read(stream);
intptr_t suffix_offset = Reader::Read(stream);
intptr_t to_read = length - suffix_length;
for (int j = 0; j < to_read; j++) {
target[target_offset + 2 * j] = Reader::Read(stream);
target[target_offset + 2 * j + 1] = Reader::Read(stream);
}
if (suffix_length > 0) {
ReadCompressedSuffix(stream, suffix_offset, suffix_length, target,
target_offset + to_read * 2);
}
}
#else
void GetMetaDataFromDeopt(intptr_t num_vars, StackFrame* frame) {
Isolate* isolate = thread_->isolate();
DeoptContext* deopt_context =
new DeoptContext(frame, *code_, DeoptContext::kDestIsAllocated, NULL,
NULL, true, false /* deoptimizing_code */);
isolate->set_deopt_context(deopt_context);
metadata_ = deopt_context->CatchEntryState(num_vars);
isolate->set_deopt_context(NULL);
delete deopt_context;
}
#endif // defined(DART_PRECOMPILED_RUNTIME) || defined(DART_PRECOMPILER)
bool needs_stacktrace;
uword handler_pc;
uword handler_sp;
uword handler_fp;
private:
typedef ReadStream::Raw<sizeof(intptr_t), intptr_t> Reader;
Thread* thread_;
CatchEntryStateCache* cache_;
Code* code_;
bool handler_pc_set_;
intptr_t* metadata_; // MetaData generated from deopt.
CatchEntryState cached_; // Value of per PC MetaData cache.
intptr_t pc_; // Current pc in the handler frame.
};
static void FindErrorHandler(uword* handler_pc,
uword* handler_sp,
uword* handler_fp) {
StackFrameIterator frames(StackFrameIterator::kDontValidateFrames);
StackFrame* frame = frames.NextFrame();
ASSERT(frame != NULL);
while (!frame->IsEntryFrame()) {
frame = frames.NextFrame();
ASSERT(frame != NULL);
}
ASSERT(frame->IsEntryFrame());
*handler_pc = frame->pc();
*handler_sp = frame->sp();
*handler_fp = frame->fp();
}
static uword RemapExceptionPCForDeopt(Thread* thread,
uword program_counter,
uword frame_pointer) {
#if !defined(TARGET_ARCH_DBC)
MallocGrowableArray<PendingLazyDeopt>* pending_deopts =
thread->isolate()->pending_deopts();
if (pending_deopts->length() > 0) {
// Check if the target frame is scheduled for lazy deopt.
for (intptr_t i = 0; i < pending_deopts->length(); i++) {
if ((*pending_deopts)[i].fp() == frame_pointer) {
// Deopt should now resume in the catch handler instead of after the
// call.
(*pending_deopts)[i].set_pc(program_counter);
// Jump to the deopt stub instead of the catch handler.
program_counter =
StubCode::DeoptimizeLazyFromThrow_entry()->EntryPoint();
if (FLAG_trace_deoptimization) {
THR_Print("Throwing to frame scheduled for lazy deopt fp=%" Pp "\n",
frame_pointer);
}
break;
}
}
}
#endif // !DBC
return program_counter;
}
static void ClearLazyDeopts(Thread* thread, uword frame_pointer) {
#if !defined(TARGET_ARCH_DBC)
MallocGrowableArray<PendingLazyDeopt>* pending_deopts =
thread->isolate()->pending_deopts();
if (pending_deopts->length() > 0) {
// We may be jumping over frames scheduled for lazy deopt. Remove these
// frames from the pending deopt table, but only after unmarking them so
// any stack walk that happens before the stack is unwound will still work.
{
DartFrameIterator frames(thread);
StackFrame* frame = frames.NextFrame();
while ((frame != NULL) && (frame->fp() < frame_pointer)) {
if (frame->IsMarkedForLazyDeopt()) {
frame->UnmarkForLazyDeopt();
}
frame = frames.NextFrame();
}
}
#if defined(DEBUG)
ValidateFrames();
#endif
for (intptr_t i = 0; i < pending_deopts->length(); i++) {
if ((*pending_deopts)[i].fp() < frame_pointer) {
if (FLAG_trace_deoptimization) {
THR_Print(
"Lazy deopt skipped due to throw for "
"fp=%" Pp ", pc=%" Pp "\n",
(*pending_deopts)[i].fp(), (*pending_deopts)[i].pc());
}
pending_deopts->RemoveAt(i);
}
}
#if defined(DEBUG)
ValidateFrames();
#endif
}
#endif // !DBC
}
static void JumpToExceptionHandler(Thread* thread,
uword program_counter,
uword stack_pointer,
uword frame_pointer,
const Object& exception_object,
const Object& stacktrace_object) {
uword remapped_pc =
RemapExceptionPCForDeopt(thread, program_counter, frame_pointer);
thread->set_active_exception(exception_object);
thread->set_active_stacktrace(stacktrace_object);
thread->set_resume_pc(remapped_pc);
uword run_exception_pc = StubCode::RunExceptionHandler_entry()->EntryPoint();
Exceptions::JumpToFrame(thread, run_exception_pc, stack_pointer,
frame_pointer, false /* do not clear deopt */);
}
void Exceptions::JumpToFrame(Thread* thread,
uword program_counter,
uword stack_pointer,
uword frame_pointer,
bool clear_deopt_at_target) {
uword fp_for_clearing =
(clear_deopt_at_target ? frame_pointer + 1 : frame_pointer);
ClearLazyDeopts(thread, fp_for_clearing);
#if defined(USING_SIMULATOR)
// Unwinding of the C++ frames and destroying of their stack resources is done
// by the simulator, because the target stack_pointer is a simulated stack
// pointer and not the C++ stack pointer.
// Continue simulating at the given pc in the given frame after setting up the
// exception object in the kExceptionObjectReg register and the stacktrace
// object (may be raw null) in the kStackTraceObjectReg register.
Simulator::Current()->JumpToFrame(program_counter, stack_pointer,
frame_pointer, thread);
#else
// Prepare for unwinding frames by destroying all the stack resources
// in the previous frames.
StackResource::Unwind(thread);
// Call a stub to set up the exception object in kExceptionObjectReg,
// to set up the stacktrace object in kStackTraceObjectReg, and to
// continue execution at the given pc in the given frame.
typedef void (*ExcpHandler)(uword, uword, uword, Thread*);
ExcpHandler func = reinterpret_cast<ExcpHandler>(
StubCode::JumpToFrame_entry()->EntryPoint());
// Unpoison the stack before we tear it down in the generated stub code.
uword current_sp = Thread::GetCurrentStackPointer() - 1024;
ASAN_UNPOISON(reinterpret_cast<void*>(current_sp),
stack_pointer - current_sp);
func(program_counter, stack_pointer, frame_pointer, thread);
#endif
UNREACHABLE();
}
static RawField* LookupStackTraceField(const Instance& instance) {
if (instance.GetClassId() < kNumPredefinedCids) {
// 'class Error' is not a predefined class.
return Field::null();
}
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
Isolate* isolate = thread->isolate();
Class& error_class =
Class::Handle(zone, isolate->object_store()->error_class());
if (error_class.IsNull()) {
const Library& core_lib = Library::Handle(zone, Library::CoreLibrary());
error_class = core_lib.LookupClass(Symbols::Error());
ASSERT(!error_class.IsNull());
isolate->object_store()->set_error_class(error_class);
}
// If instance class extends 'class Error' return '_stackTrace' field.
Class& test_class = Class::Handle(zone, instance.clazz());
AbstractType& type = AbstractType::Handle(zone, AbstractType::null());
while (true) {
if (test_class.raw() == error_class.raw()) {
return error_class.LookupInstanceFieldAllowPrivate(
Symbols::_stackTrace());
}
type = test_class.super_type();
if (type.IsNull()) return Field::null();
test_class = type.type_class();
}
UNREACHABLE();
return Field::null();
}
RawStackTrace* Exceptions::CurrentStackTrace() {
return GetStackTraceForException();
}
static void ThrowExceptionHelper(Thread* thread,
const Instance& incoming_exception,
const Instance& existing_stacktrace,
const bool is_rethrow) {
Zone* zone = thread->zone();
Isolate* isolate = thread->isolate();
bool use_preallocated_stacktrace = false;
Instance& exception = Instance::Handle(zone, incoming_exception.raw());
if (exception.IsNull()) {
exception ^=
Exceptions::Create(Exceptions::kNullThrown, Object::empty_array());
} else if (exception.raw() == isolate->object_store()->out_of_memory() ||
exception.raw() == isolate->object_store()->stack_overflow()) {
use_preallocated_stacktrace = true;
}
// Find the exception handler and determine if the handler needs a
// stacktrace.
ExceptionHandlerFinder finder(thread);
bool handler_exists = finder.Find();
uword handler_pc = finder.handler_pc;
uword handler_sp = finder.handler_sp;
uword handler_fp = finder.handler_fp;
bool handler_needs_stacktrace = finder.needs_stacktrace;
Instance& stacktrace = Instance::Handle(zone);
if (use_preallocated_stacktrace) {
if (handler_pc == 0) {
// No Dart frame.
ASSERT(incoming_exception.raw() ==
isolate->object_store()->out_of_memory());
const UnhandledException& error = UnhandledException::Handle(
zone, isolate->object_store()->preallocated_unhandled_exception());
thread->long_jump_base()->Jump(1, error);
UNREACHABLE();
}
stacktrace ^= isolate->object_store()->preallocated_stack_trace();
PreallocatedStackTraceBuilder frame_builder(stacktrace);
ASSERT(existing_stacktrace.IsNull() ||
(existing_stacktrace.raw() == stacktrace.raw()));
ASSERT(existing_stacktrace.IsNull() || is_rethrow);
if (handler_needs_stacktrace && existing_stacktrace.IsNull()) {
BuildStackTrace(&frame_builder);
}
} else {
if (!existing_stacktrace.IsNull()) {
// If we have an existing stack trace then this better be a rethrow. The
// reverse is not necessarily true (e.g. Dart_PropagateError can cause
// a rethrow being called without an existing stacktrace.)
ASSERT(is_rethrow);
stacktrace = existing_stacktrace.raw();
} else {
// Get stacktrace field of class Error to determine whether we have a
// subclass of Error which carries around its stack trace.
const Field& stacktrace_field =
Field::Handle(zone, LookupStackTraceField(exception));
if (!stacktrace_field.IsNull() || handler_needs_stacktrace) {
// Collect the stacktrace if needed.
ASSERT(existing_stacktrace.IsNull());
stacktrace = Exceptions::CurrentStackTrace();
// If we have an Error object, then set its stackTrace field only if it
// not yet initialized.
if (!stacktrace_field.IsNull() &&
(exception.GetField(stacktrace_field) == Object::null())) {
exception.SetField(stacktrace_field, stacktrace);
}
}
}
}
// We expect to find a handler_pc, if the exception is unhandled
// then we expect to at least have the dart entry frame on the
// stack as Exceptions::Throw should happen only after a dart
// invocation has been done.
ASSERT(handler_pc != 0);
if (FLAG_print_stacktrace_at_throw) {
THR_Print("Exception '%s' thrown:\n", exception.ToCString());
THR_Print("%s\n", stacktrace.ToCString());
}
if (handler_exists) {
finder.TrySync();
// Found a dart handler for the exception, jump to it.
JumpToExceptionHandler(thread, handler_pc, handler_sp, handler_fp,
exception, stacktrace);
} else {
// No dart exception handler found in this invocation sequence,
// so we create an unhandled exception object and return to the
// invocation stub so that it returns this unhandled exception
// object. The C++ code which invoked this dart sequence can check
// and do the appropriate thing (rethrow the exception to the
// dart invocation sequence above it, print diagnostics and terminate
// the isolate etc.).
const UnhandledException& unhandled_exception = UnhandledException::Handle(
zone, UnhandledException::New(exception, stacktrace));
stacktrace = StackTrace::null();
JumpToExceptionHandler(thread, handler_pc, handler_sp, handler_fp,
unhandled_exception, stacktrace);
}
UNREACHABLE();
}
// Static helpers for allocating, initializing, and throwing an error instance.
// Return the script of the Dart function that called the native entry or the
// runtime entry. The frame iterator points to the callee.
RawScript* Exceptions::GetCallerScript(DartFrameIterator* iterator) {
StackFrame* caller_frame = iterator->NextFrame();
ASSERT(caller_frame != NULL && caller_frame->IsDartFrame());
const Function& caller = Function::Handle(caller_frame->LookupDartFunction());
ASSERT(!caller.IsNull());
return caller.script();
}
// Allocate a new instance of the given class name.
// TODO(hausner): Rename this NewCoreInstance to call out the fact that
// the class name is resolved in the core library implicitly?
RawInstance* Exceptions::NewInstance(const char* class_name) {
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
const String& cls_name =
String::Handle(zone, Symbols::New(thread, class_name));
const Library& core_lib = Library::Handle(Library::CoreLibrary());
// No ambiguity error expected: passing NULL.
Class& cls = Class::Handle(core_lib.LookupClass(cls_name));
ASSERT(!cls.IsNull());
// There are no parameterized error types, so no need to set type arguments.
return Instance::New(cls);
}
// Allocate, initialize, and throw a TypeError or CastError.
// If error_msg is not null, throw a TypeError, even for a type cast.
void Exceptions::CreateAndThrowTypeError(TokenPosition location,
const AbstractType& src_type,
const AbstractType& dst_type,
const String& dst_name,
const String& bound_error_msg) {
ASSERT(!dst_name.IsNull()); // Pass Symbols::Empty() instead.
Zone* zone = Thread::Current()->zone();
const Array& args = Array::Handle(zone, Array::New(4));
ExceptionType exception_type =
(bound_error_msg.IsNull() &&
(dst_name.raw() == Symbols::InTypeCast().raw()))
? kCast
: kType;
DartFrameIterator iterator;
const Script& script = Script::Handle(zone, GetCallerScript(&iterator));
intptr_t line = -1;
intptr_t column = -1;
ASSERT(!script.IsNull());
if (location.IsReal()) {
if (script.HasSource() || script.kind() == RawScript::kKernelTag) {
script.GetTokenLocation(location, &line, &column);
} else {
script.GetTokenLocation(location, &line, NULL);
}
}
// Initialize '_url', '_line', and '_column' arguments.
args.SetAt(0, String::Handle(zone, script.url()));
args.SetAt(1, Smi::Handle(zone, Smi::New(line)));
args.SetAt(2, Smi::Handle(zone, Smi::New(column)));
// Construct '_errorMsg'.
const GrowableObjectArray& pieces =
GrowableObjectArray::Handle(zone, GrowableObjectArray::New(20));
// Print bound error first, if any.
if (!bound_error_msg.IsNull() && (bound_error_msg.Length() > 0)) {
pieces.Add(bound_error_msg);
pieces.Add(Symbols::NewLine());
}
// If dst_type is malformed or malbounded, only print the embedded error.
if (!dst_type.IsNull()) {
const LanguageError& error = LanguageError::Handle(zone, dst_type.error());
if (!error.IsNull()) {
// Print the embedded error only.
pieces.Add(String::Handle(zone, String::New(error.ToErrorCString())));
pieces.Add(Symbols::NewLine());
} else {
// Describe the type error.
if (!src_type.IsNull()) {
pieces.Add(Symbols::TypeQuote());
pieces.Add(String::Handle(zone, src_type.UserVisibleName()));
pieces.Add(Symbols::QuoteIsNotASubtypeOf());
}
pieces.Add(Symbols::TypeQuote());
pieces.Add(String::Handle(zone, dst_type.UserVisibleName()));
pieces.Add(Symbols::SingleQuote());
if (exception_type == kCast) {
pieces.Add(dst_name);
} else if (dst_name.Length() > 0) {
pieces.Add(Symbols::SpaceOfSpace());
pieces.Add(Symbols::SingleQuote());
pieces.Add(dst_name);
pieces.Add(Symbols::SingleQuote());
}
// Print URIs of src and dst types.
// Do not print "where" when no URIs get printed.
bool printed_where = false;
if (!src_type.IsNull()) {
const String& uris = String::Handle(zone, src_type.EnumerateURIs());
if (uris.Length() > Symbols::SpaceIsFromSpace().Length()) {
printed_where = true;
pieces.Add(Symbols::SpaceWhereNewLine());
pieces.Add(uris);
}
}
if (!dst_type.IsDynamicType() && !dst_type.IsVoidType()) {
const String& uris = String::Handle(zone, dst_type.EnumerateURIs());
if (uris.Length() > Symbols::SpaceIsFromSpace().Length()) {
if (!printed_where) {
pieces.Add(Symbols::SpaceWhereNewLine());
}
pieces.Add(uris);
}
}
}
}
const Array& arr = Array::Handle(zone, Array::MakeArray(pieces));
const String& error_msg = String::Handle(zone, String::ConcatAll(arr));
args.SetAt(3, error_msg);
// Type errors in the core library may be difficult to diagnose.
// Print type error information before throwing the error when debugging.
if (FLAG_print_stacktrace_at_throw) {
THR_Print("'%s': Failed type check: line %" Pd " pos %" Pd ": ",
String::Handle(zone, script.url()).ToCString(), line, column);
THR_Print("%s\n", error_msg.ToCString());
}
// Throw TypeError or CastError instance.
Exceptions::ThrowByType(exception_type, args);
UNREACHABLE();
}
void Exceptions::Throw(Thread* thread, const Instance& exception) {
// Do not notify debugger on stack overflow and out of memory exceptions.
// The VM would crash when the debugger calls back into the VM to
// get values of variables.
if (FLAG_support_debugger) {
Isolate* isolate = thread->isolate();
if (exception.raw() != isolate->object_store()->out_of_memory() &&
exception.raw() != isolate->object_store()->stack_overflow()) {
isolate->debugger()->PauseException(exception);
}
}
// Null object is a valid exception object.
ThrowExceptionHelper(thread, exception, StackTrace::Handle(thread->zone()),
false);
}
void Exceptions::ReThrow(Thread* thread,
const Instance& exception,
const Instance& stacktrace) {
// Null object is a valid exception object.
ThrowExceptionHelper(thread, exception, stacktrace, true);
}
void Exceptions::PropagateError(const Error& error) {
Thread* thread = Thread::Current();
Zone* zone = thread->zone();
ASSERT(thread->top_exit_frame_info() != 0);
if (error.IsUnhandledException()) {
// If the error object represents an unhandled exception, then
// rethrow the exception in the normal fashion.
const UnhandledException& uhe = UnhandledException::Cast(error);
const Instance& exc = Instance::Handle(zone, uhe.exception());
const Instance& stk = Instance::Handle(zone, uhe.stacktrace());
Exceptions::ReThrow(thread, exc, stk);
} else {
// Return to the invocation stub and return this error object. The
// C++ code which invoked this dart sequence can check and do the
// appropriate thing.
uword handler_pc = 0;
uword handler_sp = 0;
uword handler_fp = 0;
FindErrorHandler(&handler_pc, &handler_sp, &handler_fp);
JumpToExceptionHandler(thread, handler_pc, handler_sp, handler_fp, error,
StackTrace::Handle(zone)); // Null stacktrace.
}
UNREACHABLE();
}
void Exceptions::ThrowByType(ExceptionType type, const Array& arguments) {
Thread* thread = Thread::Current();
const Object& result =
Object::Handle(thread->zone(), Create(type, arguments));
if (result.IsError()) {
// We got an error while constructing the exception object.
// Propagate the error instead of throwing the exception.
PropagateError(Error::Cast(result));
} else {
ASSERT(result.IsInstance());
Throw(thread, Instance::Cast(result));
}
}
void Exceptions::ThrowOOM() {
Thread* thread = Thread::Current();
Isolate* isolate = thread->isolate();
const Instance& oom = Instance::Handle(
thread->zone(), isolate->object_store()->out_of_memory());
Throw(thread, oom);
}
void Exceptions::ThrowStackOverflow() {
Thread* thread = Thread::Current();
Isolate* isolate = thread->isolate();
const Instance& stack_overflow = Instance::Handle(
thread->zone(), isolate->object_store()->stack_overflow());
Throw(thread, stack_overflow);
}
void Exceptions::ThrowArgumentError(const Instance& arg) {
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, arg);
Exceptions::ThrowByType(Exceptions::kArgument, args);
}
void Exceptions::ThrowRangeError(const char* argument_name,
const Integer& argument_value,
intptr_t expected_from,
intptr_t expected_to) {
const Array& args = Array::Handle(Array::New(4));
args.SetAt(0, argument_value);
args.SetAt(1, Integer::Handle(Integer::New(expected_from)));
args.SetAt(2, Integer::Handle(Integer::New(expected_to)));
args.SetAt(3, String::Handle(String::New(argument_name)));
Exceptions::ThrowByType(Exceptions::kRange, args);
}
void Exceptions::ThrowRangeErrorMsg(const char* msg) {
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, String::Handle(String::New(msg)));
Exceptions::ThrowByType(Exceptions::kRangeMsg, args);
}
void Exceptions::ThrowCompileTimeError(const LanguageError& error) {
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, String::Handle(error.FormatMessage()));
Exceptions::ThrowByType(Exceptions::kCompileTimeError, args);
}
RawObject* Exceptions::Create(ExceptionType type, const Array& arguments) {
Library& library = Library::Handle();
const String* class_name = NULL;
const String* constructor_name = &Symbols::Dot();
switch (type) {
case kNone:
case kStackOverflow:
case kOutOfMemory:
UNREACHABLE();
break;
case kRange:
library = Library::CoreLibrary();
class_name = &Symbols::RangeError();
constructor_name = &Symbols::DotRange();
break;
case kRangeMsg:
library = Library::CoreLibrary();
class_name = &Symbols::RangeError();
constructor_name = &Symbols::Dot();
break;
case kArgument:
library = Library::CoreLibrary();
class_name = &Symbols::ArgumentError();
break;
case kArgumentValue:
library = Library::CoreLibrary();
class_name = &Symbols::ArgumentError();
constructor_name = &Symbols::DotValue();
break;
case kNoSuchMethod:
library = Library::CoreLibrary();
class_name = &Symbols::NoSuchMethodError();
constructor_name = &Symbols::DotWithType();
break;
case kFormat:
library = Library::CoreLibrary();
class_name = &Symbols::FormatException();
break;
case kUnsupported:
library = Library::CoreLibrary();
class_name = &Symbols::UnsupportedError();
break;
case kNullThrown:
library = Library::CoreLibrary();
class_name = &Symbols::NullThrownError();
break;
case kIsolateSpawn:
library = Library::IsolateLibrary();
class_name = &Symbols::IsolateSpawnException();
break;
case kAssertion:
library = Library::CoreLibrary();
class_name = &Symbols::AssertionError();
constructor_name = &Symbols::DotCreate();
break;
case kCast:
library = Library::CoreLibrary();
class_name = &Symbols::CastError();
constructor_name = &Symbols::DotCreate();
break;
case kType:
library = Library::CoreLibrary();
class_name = &Symbols::TypeError();
constructor_name = &Symbols::DotCreate();
break;
case kFallThrough:
library = Library::CoreLibrary();
class_name = &Symbols::FallThroughError();
constructor_name = &Symbols::DotCreate();
break;
case kAbstractClassInstantiation:
library = Library::CoreLibrary();
class_name = &Symbols::AbstractClassInstantiationError();
constructor_name = &Symbols::DotCreate();
break;
case kCyclicInitializationError:
library = Library::CoreLibrary();
class_name = &Symbols::CyclicInitializationError();
break;
case kCompileTimeError:
library = Library::CoreLibrary();
class_name = &Symbols::_CompileTimeError();
break;
}
return DartLibraryCalls::InstanceCreate(library, *class_name,
*constructor_name, arguments);
}
} // namespace dart