blob: 11ed95d56e0dcbde4aaef754e4b6f432129d9759 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // NOLINT
#if defined(TARGET_ARCH_ARM)
#include "vm/assembler.h"
#include "vm/cpu.h"
#include "vm/longjump.h"
#include "vm/runtime_entry.h"
#include "vm/simulator.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
// An extra check since we are assuming the existence of /proc/cpuinfo below.
#if !defined(USING_SIMULATOR) && !defined(__linux__) && !defined(ANDROID) && \
!HOST_OS_IOS
#error ARM cross-compile only supported on Linux
#endif
namespace dart {
DECLARE_FLAG(bool, check_code_pointer);
DECLARE_FLAG(bool, inline_alloc);
uint32_t Address::encoding3() const {
if (kind_ == Immediate) {
uint32_t offset = encoding_ & kOffset12Mask;
ASSERT(offset < 256);
return (encoding_ & ~kOffset12Mask) | B22 | ((offset & 0xf0) << 4) |
(offset & 0xf);
}
ASSERT(kind_ == IndexRegister);
return encoding_;
}
uint32_t Address::vencoding() const {
ASSERT(kind_ == Immediate);
uint32_t offset = encoding_ & kOffset12Mask;
ASSERT(offset < (1 << 10)); // In the range 0 to +1020.
ASSERT(Utils::IsAligned(offset, 4)); // Multiple of 4.
int mode = encoding_ & ((8 | 4 | 1) << 21);
ASSERT((mode == Offset) || (mode == NegOffset));
uint32_t vencoding = (encoding_ & (0xf << kRnShift)) | (offset >> 2);
if (mode == Offset) {
vencoding |= 1 << 23;
}
return vencoding;
}
void Assembler::InitializeMemoryWithBreakpoints(uword data, intptr_t length) {
ASSERT(Utils::IsAligned(data, 4));
ASSERT(Utils::IsAligned(length, 4));
const uword end = data + length;
while (data < end) {
*reinterpret_cast<int32_t*>(data) = Instr::kBreakPointInstruction;
data += 4;
}
}
void Assembler::Emit(int32_t value) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<int32_t>(value);
}
void Assembler::EmitType01(Condition cond,
int type,
Opcode opcode,
int set_cc,
Register rn,
Register rd,
Operand o) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
type << kTypeShift |
static_cast<int32_t>(opcode) << kOpcodeShift |
set_cc << kSShift | static_cast<int32_t>(rn) << kRnShift |
static_cast<int32_t>(rd) << kRdShift | o.encoding();
Emit(encoding);
}
void Assembler::EmitType5(Condition cond, int32_t offset, bool link) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
5 << kTypeShift | (link ? 1 : 0) << kLinkShift;
Emit(Assembler::EncodeBranchOffset(offset, encoding));
}
void Assembler::EmitMemOp(Condition cond,
bool load,
bool byte,
Register rd,
Address ad) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(!ad.has_writeback() || (ad.rn() != rd)); // Unpredictable.
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B26 |
(ad.kind() == Address::Immediate ? 0 : B25) |
(load ? L : 0) | (byte ? B : 0) |
(static_cast<int32_t>(rd) << kRdShift) | ad.encoding();
Emit(encoding);
}
void Assembler::EmitMemOpAddressMode3(Condition cond,
int32_t mode,
Register rd,
Address ad) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | mode |
(static_cast<int32_t>(rd) << kRdShift) | ad.encoding3();
Emit(encoding);
}
void Assembler::EmitMultiMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
RegList regs) {
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
am | (load ? L : 0) |
(static_cast<int32_t>(base) << kRnShift) | regs;
Emit(encoding);
}
void Assembler::EmitShiftImmediate(Condition cond,
Shift opcode,
Register rd,
Register rm,
Operand o) {
ASSERT(cond != kNoCondition);
ASSERT(o.type() == 1);
int32_t encoding =
static_cast<int32_t>(cond) << kConditionShift |
static_cast<int32_t>(MOV) << kOpcodeShift |
static_cast<int32_t>(rd) << kRdShift | o.encoding() << kShiftImmShift |
static_cast<int32_t>(opcode) << kShiftShift | static_cast<int32_t>(rm);
Emit(encoding);
}
void Assembler::EmitShiftRegister(Condition cond,
Shift opcode,
Register rd,
Register rm,
Operand o) {
ASSERT(cond != kNoCondition);
ASSERT(o.type() == 0);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
static_cast<int32_t>(MOV) << kOpcodeShift |
static_cast<int32_t>(rd) << kRdShift |
o.encoding() << kShiftRegisterShift |
static_cast<int32_t>(opcode) << kShiftShift | B4 |
static_cast<int32_t>(rm);
Emit(encoding);
}
void Assembler::and_(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), AND, 0, rn, rd, o);
}
void Assembler::eor(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), EOR, 0, rn, rd, o);
}
void Assembler::sub(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SUB, 0, rn, rd, o);
}
void Assembler::rsb(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSB, 0, rn, rd, o);
}
void Assembler::rsbs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSB, 1, rn, rd, o);
}
void Assembler::add(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADD, 0, rn, rd, o);
}
void Assembler::adds(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADD, 1, rn, rd, o);
}
void Assembler::subs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SUB, 1, rn, rd, o);
}
void Assembler::adc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADC, 0, rn, rd, o);
}
void Assembler::adcs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADC, 1, rn, rd, o);
}
void Assembler::sbc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SBC, 0, rn, rd, o);
}
void Assembler::sbcs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SBC, 1, rn, rd, o);
}
void Assembler::rsc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSC, 0, rn, rd, o);
}
void Assembler::tst(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), TST, 1, rn, R0, o);
}
void Assembler::teq(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), TEQ, 1, rn, R0, o);
}
void Assembler::cmp(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), CMP, 1, rn, R0, o);
}
void Assembler::cmn(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), CMN, 1, rn, R0, o);
}
void Assembler::orr(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ORR, 0, rn, rd, o);
}
void Assembler::orrs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ORR, 1, rn, rd, o);
}
void Assembler::mov(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MOV, 0, R0, rd, o);
}
void Assembler::movs(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MOV, 1, R0, rd, o);
}
void Assembler::bic(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), BIC, 0, rn, rd, o);
}
void Assembler::bics(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), BIC, 1, rn, rd, o);
}
void Assembler::mvn(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MVN, 0, R0, rd, o);
}
void Assembler::mvns(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MVN, 1, R0, rd, o);
}
void Assembler::clz(Register rd, Register rm, Condition cond) {
ASSERT(rd != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(rd != PC);
ASSERT(rm != PC);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B22 | B21 | (0xf << 16) |
(static_cast<int32_t>(rd) << kRdShift) | (0xf << 8) | B4 |
static_cast<int32_t>(rm);
Emit(encoding);
}
void Assembler::movw(Register rd, uint16_t imm16, Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | B25 | B24 |
((imm16 >> 12) << 16) |
static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
Emit(encoding);
}
void Assembler::movt(Register rd, uint16_t imm16, Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | B25 | B24 |
B22 | ((imm16 >> 12) << 16) |
static_cast<int32_t>(rd) << kRdShift | (imm16 & 0xfff);
Emit(encoding);
}
void Assembler::EmitMulOp(Condition cond,
int32_t opcode,
Register rd,
Register rn,
Register rm,
Register rs) {
ASSERT(rd != kNoRegister);
ASSERT(rn != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(rs != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = opcode | (static_cast<int32_t>(cond) << kConditionShift) |
(static_cast<int32_t>(rn) << kRnShift) |
(static_cast<int32_t>(rd) << kRdShift) |
(static_cast<int32_t>(rs) << kRsShift) | B7 | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
void Assembler::mul(Register rd, Register rn, Register rm, Condition cond) {
// Assembler registers rd, rn, rm are encoded as rn, rm, rs.
EmitMulOp(cond, 0, R0, rd, rn, rm);
}
// Like mul, but sets condition flags.
void Assembler::muls(Register rd, Register rn, Register rm, Condition cond) {
EmitMulOp(cond, B20, R0, rd, rn, rm);
}
void Assembler::mla(Register rd,
Register rn,
Register rm,
Register ra,
Condition cond) {
// rd <- ra + rn * rm.
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
EmitMulOp(cond, B21, ra, rd, rn, rm);
}
void Assembler::mls(Register rd,
Register rn,
Register rm,
Register ra,
Condition cond) {
// rd <- ra - rn * rm.
if (TargetCPUFeatures::arm_version() == ARMv7) {
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
EmitMulOp(cond, B22 | B21, ra, rd, rn, rm);
} else {
mul(IP, rn, rm, cond);
sub(rd, ra, Operand(IP), cond);
}
}
void Assembler::smull(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23 | B22, rd_lo, rd_hi, rn, rm);
}
void Assembler::umull(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm);
}
void Assembler::umlal(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23 | B21, rd_lo, rd_hi, rn, rm);
}
void Assembler::umaal(Register rd_lo,
Register rd_hi,
Register rn,
Register rm) {
ASSERT(rd_lo != IP);
ASSERT(rd_hi != IP);
ASSERT(rn != IP);
ASSERT(rm != IP);
if (TargetCPUFeatures::arm_version() != ARMv5TE) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(AL, B22, rd_lo, rd_hi, rn, rm);
} else {
mov(IP, Operand(0));
umlal(rd_lo, IP, rn, rm);
adds(rd_lo, rd_lo, Operand(rd_hi));
adc(rd_hi, IP, Operand(0));
}
}
void Assembler::EmitDivOp(Condition cond,
int32_t opcode,
Register rd,
Register rn,
Register rm) {
ASSERT(TargetCPUFeatures::integer_division_supported());
ASSERT(rd != kNoRegister);
ASSERT(rn != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = opcode | (static_cast<int32_t>(cond) << kConditionShift) |
(static_cast<int32_t>(rn) << kDivRnShift) |
(static_cast<int32_t>(rd) << kDivRdShift) | B26 | B25 |
B24 | B20 | B4 | (static_cast<int32_t>(rm) << kDivRmShift);
Emit(encoding);
}
void Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) {
EmitDivOp(cond, 0, rd, rn, rm);
}
void Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) {
EmitDivOp(cond, B21, rd, rn, rm);
}
void Assembler::ldr(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, true, false, rd, ad);
}
void Assembler::str(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, false, false, rd, ad);
}
void Assembler::ldrb(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, true, true, rd, ad);
}
void Assembler::strb(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, false, true, rd, ad);
}
void Assembler::ldrh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad);
}
void Assembler::strh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad);
}
void Assembler::ldrsb(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad);
}
void Assembler::ldrsh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad);
}
void Assembler::ldrd(Register rd,
Register rd2,
Register rn,
int32_t offset,
Condition cond) {
ASSERT((rd % 2) == 0);
ASSERT(rd2 == rd + 1);
if (TargetCPUFeatures::arm_version() == ARMv5TE) {
ldr(rd, Address(rn, offset), cond);
ldr(rd2, Address(rn, offset + kWordSize), cond);
} else {
EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, Address(rn, offset));
}
}
void Assembler::strd(Register rd,
Register rd2,
Register rn,
int32_t offset,
Condition cond) {
ASSERT((rd % 2) == 0);
ASSERT(rd2 == rd + 1);
if (TargetCPUFeatures::arm_version() == ARMv5TE) {
str(rd, Address(rn, offset), cond);
str(rd2, Address(rn, offset + kWordSize), cond);
} else {
EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, Address(rn, offset));
}
}
void Assembler::ldm(BlockAddressMode am,
Register base,
RegList regs,
Condition cond) {
ASSERT(regs != 0);
EmitMultiMemOp(cond, am, true, base, regs);
}
void Assembler::stm(BlockAddressMode am,
Register base,
RegList regs,
Condition cond) {
ASSERT(regs != 0);
EmitMultiMemOp(cond, am, false, base, regs);
}
void Assembler::ldrex(Register rt, Register rn, Condition cond) {
ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
ASSERT(rn != kNoRegister);
ASSERT(rt != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B23 | L | (static_cast<int32_t>(rn) << kLdExRnShift) |
(static_cast<int32_t>(rt) << kLdExRtShift) | B11 | B10 |
B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0;
Emit(encoding);
}
void Assembler::strex(Register rd, Register rt, Register rn, Condition cond) {
ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
ASSERT(rn != kNoRegister);
ASSERT(rd != kNoRegister);
ASSERT(rt != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B23 | (static_cast<int32_t>(rn) << kStrExRnShift) |
(static_cast<int32_t>(rd) << kStrExRdShift) | B11 | B10 |
B9 | B8 | B7 | B4 |
(static_cast<int32_t>(rt) << kStrExRtShift);
Emit(encoding);
}
void Assembler::clrex() {
ASSERT(TargetCPUFeatures::arm_version() != ARMv5TE);
int32_t encoding = (kSpecialCondition << kConditionShift) | B26 | B24 | B22 |
B21 | B20 | (0xff << 12) | B4 | 0xf;
Emit(encoding);
}
void Assembler::nop(Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B25 |
B24 | B21 | (0xf << 12);
Emit(encoding);
}
void Assembler::vmovsr(SRegister sn, Register rt, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sn != kNoSRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B25 | ((static_cast<int32_t>(sn) >> 1) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 |
((static_cast<int32_t>(sn) & 1) * B7) | B4;
Emit(encoding);
}
void Assembler::vmovrs(Register rt, SRegister sn, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sn != kNoSRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B25 | B20 | ((static_cast<int32_t>(sn) >> 1) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 |
((static_cast<int32_t>(sn) & 1) * B7) | B4;
Emit(encoding);
}
void Assembler::vmovsrr(SRegister sm,
Register rt,
Register rt2,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sm != kNoSRegister);
ASSERT(sm != S31);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B22 | (static_cast<int32_t>(rt2) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 |
((static_cast<int32_t>(sm) & 1) * B5) | B4 |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::vmovrrs(Register rt,
Register rt2,
SRegister sm,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sm != kNoSRegister);
ASSERT(sm != S31);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(rt != rt2);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B22 | B20 | (static_cast<int32_t>(rt2) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 |
((static_cast<int32_t>(sm) & 1) * B5) | B4 |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::vmovdr(DRegister dn, int i, Register rt, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT((i == 0) || (i == 1));
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(dn != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B25 | (i * B21) | (static_cast<int32_t>(rt) * B12) |
B11 | B9 | B8 | ((static_cast<int32_t>(dn) >> 4) * B7) |
((static_cast<int32_t>(dn) & 0xf) * B16) | B4;
Emit(encoding);
}
void Assembler::vmovdrr(DRegister dm,
Register rt,
Register rt2,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dm != kNoDRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B22 | (static_cast<int32_t>(rt2) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dm) >> 4) * B5) | B4 |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vmovrrd(Register rt,
Register rt2,
DRegister dm,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dm != kNoDRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(rt != rt2);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B22 | B20 | (static_cast<int32_t>(rt2) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dm) >> 4) * B5) | B4 |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vldrs(SRegister sd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B24 | B20 | ((static_cast<int32_t>(sd) & 1) * B22) |
((static_cast<int32_t>(sd) >> 1) * B12) | B11 | B9 |
ad.vencoding();
Emit(encoding);
}
void Assembler::vstrs(SRegister sd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
ASSERT(sd != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B24 | ((static_cast<int32_t>(sd) & 1) * B22) |
((static_cast<int32_t>(sd) >> 1) * B12) | B11 | B9 |
ad.vencoding();
Emit(encoding);
}
void Assembler::vldrd(DRegister dd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B24 | B20 | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dd) & 0xf) * B12) | B11 | B9 | B8 |
ad.vencoding();
Emit(encoding);
}
void Assembler::vstrd(DRegister dd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
ASSERT(dd != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B24 | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dd) & 0xf) * B12) | B11 | B9 | B8 |
ad.vencoding();
Emit(encoding);
}
void Assembler::EmitMultiVSMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
SRegister start,
uint32_t count) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(start != kNoSRegister);
ASSERT(static_cast<int32_t>(start) + count <= kNumberOfSRegisters);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B11 | B9 | am | (load ? L : 0) |
(static_cast<int32_t>(base) << kRnShift) |
((static_cast<int32_t>(start) & 0x1) ? D : 0) |
((static_cast<int32_t>(start) >> 1) << 12) | count;
Emit(encoding);
}
void Assembler::EmitMultiVDMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
DRegister start,
int32_t count) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(start != kNoDRegister);
ASSERT(static_cast<int32_t>(start) + count <= kNumberOfDRegisters);
const int armv5te = TargetCPUFeatures::arm_version() == ARMv5TE ? 1 : 0;
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B11 | B9 |
B8 | am | (load ? L : 0) | (static_cast<int32_t>(base) << kRnShift) |
((static_cast<int32_t>(start) & 0x10) ? D : 0) |
((static_cast<int32_t>(start) & 0xf) << 12) | (count << 1) | armv5te;
Emit(encoding);
}
void Assembler::vldms(BlockAddressMode am,
Register base,
SRegister first,
SRegister last,
Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(last > first);
EmitMultiVSMemOp(cond, am, true, base, first, last - first + 1);
}
void Assembler::vstms(BlockAddressMode am,
Register base,
SRegister first,
SRegister last,
Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(last > first);
EmitMultiVSMemOp(cond, am, false, base, first, last - first + 1);
}
void Assembler::vldmd(BlockAddressMode am,
Register base,
DRegister first,
intptr_t count,
Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(count <= 16);
ASSERT(first + count <= kNumberOfDRegisters);
EmitMultiVDMemOp(cond, am, true, base, first, count);
}
void Assembler::vstmd(BlockAddressMode am,
Register base,
DRegister first,
intptr_t count,
Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(count <= 16);
ASSERT(first + count <= kNumberOfDRegisters);
EmitMultiVDMemOp(cond, am, false, base, first, count);
}
void Assembler::EmitVFPsss(Condition cond,
int32_t opcode,
SRegister sd,
SRegister sn,
SRegister sm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(sn != kNoSRegister);
ASSERT(sm != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 |
B9 | opcode | ((static_cast<int32_t>(sd) & 1) * B22) |
((static_cast<int32_t>(sn) >> 1) * B16) |
((static_cast<int32_t>(sd) >> 1) * B12) |
((static_cast<int32_t>(sn) & 1) * B7) |
((static_cast<int32_t>(sm) & 1) * B5) | (static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::EmitVFPddd(Condition cond,
int32_t opcode,
DRegister dd,
DRegister dn,
DRegister dm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(dn != kNoDRegister);
ASSERT(dm != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 |
B9 | B8 | opcode | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dn) & 0xf) * B16) |
((static_cast<int32_t>(dd) & 0xf) * B12) |
((static_cast<int32_t>(dn) >> 4) * B7) |
((static_cast<int32_t>(dm) >> 4) * B5) | (static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm);
}
void Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm);
}
bool Assembler::vmovs(SRegister sd, float s_imm, Condition cond) {
if (TargetCPUFeatures::arm_version() != ARMv7) {
return false;
}
uint32_t imm32 = bit_cast<uint32_t, float>(s_imm);
if (((imm32 & ((1 << 19) - 1)) == 0) &&
((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) ||
(((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) - 1)))) {
uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) |
((imm32 >> 19) & ((1 << 6) - 1));
EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4) * B16) | (imm8 & 0xf), sd,
S0, S0);
return true;
}
return false;
}
bool Assembler::vmovd(DRegister dd, double d_imm, Condition cond) {
if (TargetCPUFeatures::arm_version() != ARMv7) {
return false;
}
uint64_t imm64 = bit_cast<uint64_t, double>(d_imm);
if (((imm64 & ((1LL << 48) - 1)) == 0) &&
((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) ||
(((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) - 1)))) {
uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) |
((imm64 >> 48) & ((1 << 6) - 1));
EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4) * B16) | B8 | (imm8 & 0xf),
dd, D0, D0);
return true;
}
return false;
}
void Assembler::vadds(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21 | B20, sd, sn, sm);
}
void Assembler::vaddd(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21 | B20, dd, dn, dm);
}
void Assembler::vsubs(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm);
}
void Assembler::vsubd(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm);
}
void Assembler::vmuls(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21, sd, sn, sm);
}
void Assembler::vmuld(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21, dd, dn, dm);
}
void Assembler::vmlas(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, 0, sd, sn, sm);
}
void Assembler::vmlad(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, 0, dd, dn, dm);
}
void Assembler::vmlss(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B6, sd, sn, sm);
}
void Assembler::vmlsd(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B6, dd, dn, dm);
}
void Assembler::vdivs(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B23, sd, sn, sm);
}
void Assembler::vdivd(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B23, dd, dn, dm);
}
void Assembler::vabss(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm);
}
void Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm);
}
void Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm);
}
void Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm);
}
void Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm);
}
void Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm);
}
void Assembler::EmitVFPsd(Condition cond,
int32_t opcode,
SRegister sd,
DRegister dm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(dm != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 |
B9 | opcode | ((static_cast<int32_t>(sd) & 1) * B22) |
((static_cast<int32_t>(sd) >> 1) * B12) |
((static_cast<int32_t>(dm) >> 4) * B5) | (static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::EmitVFPds(Condition cond,
int32_t opcode,
DRegister dd,
SRegister sm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(sm != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 |
B9 | opcode | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dd) & 0xf) * B12) |
((static_cast<int32_t>(sm) & 1) * B5) | (static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm);
}
void Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm);
}
void Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm);
}
void Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm);
}
void Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm);
}
void Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm);
}
void Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm);
}
void Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm);
}
void Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm);
}
void Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm);
}
void Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm);
}
void Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm);
}
void Assembler::vcmpsz(SRegister sd, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0);
}
void Assembler::vcmpdz(DRegister dd, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0);
}
void Assembler::vmrs(Register rd, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B25 | B23 | B22 | B21 | B20 | B16 |
(static_cast<int32_t>(rd) * B12) | B11 | B9 | B4;
Emit(encoding);
}
void Assembler::vmstat(Condition cond) {
vmrs(APSR, cond);
}
static inline int ShiftOfOperandSize(OperandSize size) {
switch (size) {
case kByte:
case kUnsignedByte:
return 0;
case kHalfword:
case kUnsignedHalfword:
return 1;
case kWord:
case kUnsignedWord:
return 2;
case kWordPair:
return 3;
case kSWord:
case kDWord:
return 0;
default:
UNREACHABLE();
break;
}
UNREACHABLE();
return -1;
}
void Assembler::EmitSIMDqqq(int32_t opcode,
OperandSize size,
QRegister qd,
QRegister qn,
QRegister qm) {
ASSERT(TargetCPUFeatures::neon_supported());
int sz = ShiftOfOperandSize(size);
int32_t encoding =
(static_cast<int32_t>(kSpecialCondition) << kConditionShift) | B25 | B6 |
opcode | ((sz & 0x3) * B20) |
((static_cast<int32_t>(qd * 2) >> 4) * B22) |
((static_cast<int32_t>(qn * 2) & 0xf) * B16) |
((static_cast<int32_t>(qd * 2) & 0xf) * B12) |
((static_cast<int32_t>(qn * 2) >> 4) * B7) |
((static_cast<int32_t>(qm * 2) >> 4) * B5) |
(static_cast<int32_t>(qm * 2) & 0xf);
Emit(encoding);
}
void Assembler::EmitSIMDddd(int32_t opcode,
OperandSize size,
DRegister dd,
DRegister dn,
DRegister dm) {
ASSERT(TargetCPUFeatures::neon_supported());
int sz = ShiftOfOperandSize(size);
int32_t encoding =
(static_cast<int32_t>(kSpecialCondition) << kConditionShift) | B25 |
opcode | ((sz & 0x3) * B20) | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dn) & 0xf) * B16) |
((static_cast<int32_t>(dd) & 0xf) * B12) |
((static_cast<int32_t>(dn) >> 4) * B7) |
((static_cast<int32_t>(dm) >> 4) * B5) | (static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vmovq(QRegister qd, QRegister qm) {
EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qm, qm);
}
void Assembler::vaddqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B11, sz, qd, qn, qm);
}
void Assembler::vaddqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B8, kSWord, qd, qn, qm);
}
void Assembler::vsubqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B24 | B11, sz, qd, qn, qm);
}
void Assembler::vsubqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B8, kSWord, qd, qn, qm);
}
void Assembler::vmulqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B11 | B8 | B4, sz, qd, qn, qm);
}
void Assembler::vmulqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B11 | B10 | B8 | B4, kSWord, qd, qn, qm);
}
void Assembler::vshlqi(OperandSize sz,
QRegister qd,
QRegister qm,
QRegister qn) {
EmitSIMDqqq(B25 | B10, sz, qd, qn, qm);
}
void Assembler::vshlqu(OperandSize sz,
QRegister qd,
QRegister qm,
QRegister qn) {
EmitSIMDqqq(B25 | B24 | B10, sz, qd, qn, qm);
}
void Assembler::veorq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vorrq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vornq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B20 | B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vandq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vmvnq(QRegister qd, QRegister qm) {
EmitSIMDqqq(B25 | B24 | B23 | B10 | B8 | B7, kWordPair, qd, Q0, qm);
}
void Assembler::vminqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
}
void Assembler::vmaxqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
}
void Assembler::vabsqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8, kSWord, qd, Q0,
qm);
}
void Assembler::vnegqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8 | B7, kSWord,
qd, Q0, qm);
}
void Assembler::vrecpeqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8, kSWord, qd,
Q0, qm);
}
void Assembler::vrecpsqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
}
void Assembler::vrsqrteqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8 | B7, kSWord,
qd, Q0, qm);
}
void Assembler::vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
}
void Assembler::vdup(OperandSize sz, QRegister qd, DRegister dm, int idx) {
ASSERT((sz != kDWord) && (sz != kSWord) && (sz != kWordPair));
int code = 0;
switch (sz) {
case kByte:
case kUnsignedByte: {
ASSERT((idx >= 0) && (idx < 8));
code = 1 | (idx << 1);
break;
}
case kHalfword:
case kUnsignedHalfword: {
ASSERT((idx >= 0) && (idx < 4));
code = 2 | (idx << 2);
break;
}
case kWord:
case kUnsignedWord: {
ASSERT((idx >= 0) && (idx < 2));
code = 4 | (idx << 3);
break;
}
default: { break; }
}
EmitSIMDddd(B24 | B23 | B11 | B10 | B6, kWordPair,
static_cast<DRegister>(qd * 2),
static_cast<DRegister>(code & 0xf), dm);
}
void Assembler::vtbl(DRegister dd, DRegister dn, int len, DRegister dm) {
ASSERT((len >= 1) && (len <= 4));
EmitSIMDddd(B24 | B23 | B11 | ((len - 1) * B8), kWordPair, dd, dn, dm);
}
void Assembler::vzipqw(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B8 | B7, kByte, qd, Q0, qm);
}
void Assembler::vceqqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B24 | B11 | B4, sz, qd, qn, qm);
}
void Assembler::vceqqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9, kSWord, qd, qn, qm);
}
void Assembler::vcgeqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B9 | B8 | B4, sz, qd, qn, qm);
}
void Assembler::vcugeqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B24 | B9 | B8 | B4, sz, qd, qn, qm);
}
void Assembler::vcgeqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B11 | B10 | B9, kSWord, qd, qn, qm);
}
void Assembler::vcgtqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B9 | B8, sz, qd, qn, qm);
}
void Assembler::vcugtqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B24 | B9 | B8, sz, qd, qn, qm);
}
void Assembler::vcgtqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B21 | B11 | B10 | B9, kSWord, qd, qn, qm);
}
void Assembler::bkpt(uint16_t imm16) {
Emit(BkptEncoding(imm16));
}
void Assembler::b(Label* label, Condition cond) {
EmitBranch(cond, label, false);
}
void Assembler::bl(Label* label, Condition cond) {
EmitBranch(cond, label, true);
}
void Assembler::bx(Register rm, Condition cond) {
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B21 | (0xfff << 8) | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
void Assembler::blx(Register rm, Condition cond) {
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B21 | (0xfff << 8) | B5 | B4 |
(static_cast<int32_t>(rm) << kRmShift);
Emit(encoding);
}
void Assembler::MarkExceptionHandler(Label* label) {
EmitType01(AL, 1, TST, 1, PC, R0, Operand(0));
Label l;
b(&l);
EmitBranch(AL, label, false);
Bind(&l);
}
void Assembler::Drop(intptr_t stack_elements) {
ASSERT(stack_elements >= 0);
if (stack_elements > 0) {
AddImmediate(SP, SP, stack_elements * kWordSize);
}
}
intptr_t Assembler::FindImmediate(int32_t imm) {
return object_pool_wrapper_.FindImmediate(imm);
}
// Uses a code sequence that can easily be decoded.
void Assembler::LoadWordFromPoolOffset(Register rd,
int32_t offset,
Register pp,
Condition cond) {
ASSERT((pp != PP) || constant_pool_allowed());
ASSERT(rd != pp);
int32_t offset_mask = 0;
if (Address::CanHoldLoadOffset(kWord, offset, &offset_mask)) {
ldr(rd, Address(pp, offset), cond);
} else {
int32_t offset_hi = offset & ~offset_mask; // signed
uint32_t offset_lo = offset & offset_mask; // unsigned
// Inline a simplified version of AddImmediate(rd, pp, offset_hi).
Operand o;
if (Operand::CanHold(offset_hi, &o)) {
add(rd, pp, o, cond);
} else {
LoadImmediate(rd, offset_hi, cond);
add(rd, pp, Operand(rd), cond);
}
ldr(rd, Address(rd, offset_lo), cond);
}
}
void Assembler::CheckCodePointer() {
#ifdef DEBUG
if (!FLAG_check_code_pointer) {
return;
}
Comment("CheckCodePointer");
Label cid_ok, instructions_ok;
Push(R0);
Push(IP);
CompareClassId(CODE_REG, kCodeCid, R0);
b(&cid_ok, EQ);
bkpt(0);
Bind(&cid_ok);
const intptr_t offset = CodeSize() + Instr::kPCReadOffset +
Instructions::HeaderSize() - kHeapObjectTag;
mov(R0, Operand(PC));
AddImmediate(R0, R0, -offset);
ldr(IP, FieldAddress(CODE_REG, Code::saved_instructions_offset()));
cmp(R0, Operand(IP));
b(&instructions_ok, EQ);
bkpt(1);
Bind(&instructions_ok);
Pop(IP);
Pop(R0);
#endif
}
void Assembler::RestoreCodePointer() {
ldr(CODE_REG, Address(FP, kPcMarkerSlotFromFp * kWordSize));
CheckCodePointer();
}
void Assembler::LoadPoolPointer(Register reg) {
// Load new pool pointer.
CheckCodePointer();
ldr(reg, FieldAddress(CODE_REG, Code::object_pool_offset()));
set_constant_pool_allowed(reg == PP);
}
void Assembler::LoadIsolate(Register rd) {
ldr(rd, Address(THR, Thread::isolate_offset()));
}
bool Assembler::CanLoadFromObjectPool(const Object& object) const {
ASSERT(!object.IsICData() || ICData::Cast(object).IsOriginal());
ASSERT(!object.IsField() || Field::Cast(object).IsOriginal());
ASSERT(!Thread::CanLoadFromThread(object));
if (!constant_pool_allowed()) {
return false;
}
ASSERT(object.IsNotTemporaryScopedHandle());
ASSERT(object.IsOld());
return true;
}
void Assembler::LoadObjectHelper(Register rd,
const Object& object,
Condition cond,
bool is_unique,
Register pp) {
ASSERT(!object.IsICData() || ICData::Cast(object).IsOriginal());
ASSERT(!object.IsField() || Field::Cast(object).IsOriginal());
if (Thread::CanLoadFromThread(object)) {
// Load common VM constants from the thread. This works also in places where
// no constant pool is set up (e.g. intrinsic code).
ldr(rd, Address(THR, Thread::OffsetFromThread(object)), cond);
} else if (object.IsSmi()) {
// Relocation doesn't apply to Smis.
LoadImmediate(rd, reinterpret_cast<int32_t>(object.raw()), cond);
} else if (CanLoadFromObjectPool(object)) {
// Make sure that class CallPattern is able to decode this load from the
// object pool.
const int32_t offset = ObjectPool::element_offset(
is_unique ? object_pool_wrapper_.AddObject(object)
: object_pool_wrapper_.FindObject(object));
LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, pp, cond);
} else {
UNREACHABLE();
}
}
void Assembler::LoadObject(Register rd, const Object& object, Condition cond) {
LoadObjectHelper(rd, object, cond, /* is_unique = */ false, PP);
}
void Assembler::LoadUniqueObject(Register rd,
const Object& object,
Condition cond) {
LoadObjectHelper(rd, object, cond, /* is_unique = */ true, PP);
}
void Assembler::LoadFunctionFromCalleePool(Register dst,
const Function& function,
Register new_pp) {
const int32_t offset =
ObjectPool::element_offset(object_pool_wrapper_.FindObject(function));
LoadWordFromPoolOffset(dst, offset - kHeapObjectTag, new_pp, AL);
}
void Assembler::LoadNativeEntry(Register rd,
const ExternalLabel* label,
Patchability patchable,
Condition cond) {
const int32_t offset = ObjectPool::element_offset(
object_pool_wrapper_.FindNativeEntry(label, patchable));
LoadWordFromPoolOffset(rd, offset - kHeapObjectTag, PP, cond);
}
void Assembler::PushObject(const Object& object) {
ASSERT(!object.IsICData() || ICData::Cast(object).IsOriginal());
ASSERT(!object.IsField() || Field::Cast(object).IsOriginal());
LoadObject(IP, object);
Push(IP);
}
void Assembler::CompareObject(Register rn, const Object& object) {
ASSERT(!object.IsICData() || ICData::Cast(object).IsOriginal());
ASSERT(!object.IsField() || Field::Cast(object).IsOriginal());
ASSERT(rn != IP);
if (object.IsSmi()) {
CompareImmediate(rn, reinterpret_cast<int32_t>(object.raw()));
} else {
LoadObject(IP, object);
cmp(rn, Operand(IP));
}
}
// Preserves object and value registers.
void Assembler::StoreIntoObjectFilterNoSmi(Register object,
Register value,
Label* no_update) {
COMPILE_ASSERT((kNewObjectAlignmentOffset == kWordSize) &&
(kOldObjectAlignmentOffset == 0));
// Write-barrier triggers if the value is in the new space (has bit set) and
// the object is in the old space (has bit cleared).
// To check that, we compute value & ~object and skip the write barrier
// if the bit is not set. We can't destroy the object.
bic(IP, value, Operand(object));
tst(IP, Operand(kNewObjectAlignmentOffset));
b(no_update, EQ);
}
// Preserves object and value registers.
void Assembler::StoreIntoObjectFilter(Register object,
Register value,
Label* no_update) {
// For the value we are only interested in the new/old bit and the tag bit.
// And the new bit with the tag bit. The resulting bit will be 0 for a Smi.
and_(IP, value, Operand(value, LSL, kObjectAlignmentLog2 - 1));
// And the result with the negated space bit of the object.
bic(IP, IP, Operand(object));
tst(IP, Operand(kNewObjectAlignmentOffset));
b(no_update, EQ);
}
Register UseRegister(Register reg, RegList* used) {
ASSERT(reg != THR);
ASSERT(reg != SP);
ASSERT(reg != FP);
ASSERT(reg != PC);
ASSERT((*used & (1 << reg)) == 0);
*used |= (1 << reg);
return reg;
}
Register AllocateRegister(RegList* used) {
const RegList free = ~*used;
return (free == 0)
? kNoRegister
: UseRegister(
static_cast<Register>(Utils::CountTrailingZeros(free)),
used);
}
void Assembler::StoreIntoObject(Register object,
const Address& dest,
Register value,
bool can_value_be_smi) {
ASSERT(object != value);
str(value, dest);
Label done;
if (can_value_be_smi) {
StoreIntoObjectFilter(object, value, &done);
} else {
StoreIntoObjectFilterNoSmi(object, value, &done);
}
// A store buffer update is required.
RegList regs = (1 << CODE_REG) | (1 << LR);
if (value != R0) {
regs |= (1 << R0); // Preserve R0.
}
PushList(regs);
if (object != R0) {
mov(R0, Operand(object));
}
ldr(LR, Address(THR, Thread::update_store_buffer_entry_point_offset()));
ldr(CODE_REG, Address(THR, Thread::update_store_buffer_code_offset()));
blx(LR);
PopList(regs);
Bind(&done);
}
void Assembler::StoreIntoObjectOffset(Register object,
int32_t offset,
Register value,
bool can_value_be_smi) {
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
StoreIntoObject(object, FieldAddress(object, offset), value,
can_value_be_smi);
} else {
AddImmediate(IP, object, offset - kHeapObjectTag);
StoreIntoObject(object, Address(IP), value, can_value_be_smi);
}
}
void Assembler::StoreIntoObjectNoBarrier(Register object,
const Address& dest,
Register value) {
str(value, dest);
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value, &done);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::StoreIntoObjectNoBarrier(Register object,
const Address& dest,
const Object& value) {
ASSERT(!value.IsICData() || ICData::Cast(value).IsOriginal());
ASSERT(!value.IsField() || Field::Cast(value).IsOriginal());
ASSERT(value.IsSmi() || value.InVMHeap() ||
(value.IsOld() && value.IsNotTemporaryScopedHandle()));
// No store buffer update.
LoadObject(IP, value);
str(IP, dest);
}
void Assembler::StoreIntoObjectNoBarrierOffset(Register object,
int32_t offset,
Register value) {
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value);
} else {
Register base = object == R9 ? R8 : R9;
Push(base);
AddImmediate(base, object, offset - kHeapObjectTag);
StoreIntoObjectNoBarrier(object, Address(base), value);
Pop(base);
}
}
void Assembler::StoreIntoObjectNoBarrierOffset(Register object,
int32_t offset,
const Object& value) {
ASSERT(!value.IsICData() || ICData::Cast(value).IsOriginal());
ASSERT(!value.IsField() || Field::Cast(value).IsOriginal());
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kWord, offset - kHeapObjectTag, &ignored)) {
StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value);
} else {
Register base = object == R9 ? R8 : R9;
Push(base);
AddImmediate(base, object, offset - kHeapObjectTag);
StoreIntoObjectNoBarrier(object, Address(base), value);
Pop(base);
}
}
void Assembler::InitializeFieldsNoBarrier(Register object,
Register begin,
Register end,
Register value_even,
Register value_odd) {
ASSERT(value_odd == value_even + 1);
Label init_loop;
Bind(&init_loop);
AddImmediate(begin, 2 * kWordSize);
cmp(begin, Operand(end));
strd(value_even, value_odd, begin, -2 * kWordSize, LS);
b(&init_loop, CC);
str(value_even, Address(begin, -2 * kWordSize), HI);
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value_even, &done);
StoreIntoObjectFilter(object, value_odd, &done);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::InitializeFieldsNoBarrierUnrolled(Register object,
Register base,
intptr_t begin_offset,
intptr_t end_offset,
Register value_even,
Register value_odd) {
ASSERT(value_odd == value_even + 1);
intptr_t current_offset = begin_offset;
while (current_offset + kWordSize < end_offset) {
strd(value_even, value_odd, base, current_offset);
current_offset += 2 * kWordSize;
}
while (current_offset < end_offset) {
str(value_even, Address(base, current_offset));
current_offset += kWordSize;
}
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value_even, &done);
StoreIntoObjectFilter(object, value_odd, &done);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::StoreIntoSmiField(const Address& dest, Register value) {
#if defined(DEBUG)
Label done;
tst(value, Operand(kHeapObjectTag));
b(&done, EQ);
Stop("New value must be Smi.");
Bind(&done);
#endif // defined(DEBUG)
str(value, dest);
}
void Assembler::LoadClassId(Register result, Register object, Condition cond) {
ASSERT(RawObject::kClassIdTagPos == 16);
ASSERT(RawObject::kClassIdTagSize == 16);
const intptr_t class_id_offset =
Object::tags_offset() + RawObject::kClassIdTagPos / kBitsPerByte;
ldrh(result, FieldAddress(object, class_id_offset), cond);
}
void Assembler::LoadClassById(Register result, Register class_id) {
ASSERT(result != class_id);
LoadIsolate(result);
const intptr_t offset =
Isolate::class_table_offset() + ClassTable::table_offset();
LoadFromOffset(kWord, result, result, offset);
ldr(result, Address(result, class_id, LSL, 2));
}
void Assembler::LoadClass(Register result, Register object, Register scratch) {
ASSERT(scratch != result);
LoadClassId(scratch, object);
LoadClassById(result, scratch);
}
void Assembler::CompareClassId(Register object,
intptr_t class_id,
Register scratch) {
LoadClassId(scratch, object);
CompareImmediate(scratch, class_id);
}
void Assembler::LoadClassIdMayBeSmi(Register result, Register object) {
tst(object, Operand(kSmiTagMask));
LoadClassId(result, object, NE);
LoadImmediate(result, kSmiCid, EQ);
}
void Assembler::LoadTaggedClassIdMayBeSmi(Register result, Register object) {
LoadClassIdMayBeSmi(result, object);
SmiTag(result);
}
static bool CanEncodeBranchOffset(int32_t offset) {
ASSERT(Utils::IsAligned(offset, 4));
return Utils::IsInt(Utils::CountOneBits(kBranchOffsetMask), offset);
}
int32_t Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) {
// The offset is off by 8 due to the way the ARM CPUs read PC.
offset -= Instr::kPCReadOffset;
if (!CanEncodeBranchOffset(offset)) {
ASSERT(!use_far_branches());
Thread::Current()->long_jump_base()->Jump(1, Object::branch_offset_error());
}
// Properly preserve only the bits supported in the instruction.
offset >>= 2;
offset &= kBranchOffsetMask;
return (inst & ~kBranchOffsetMask) | offset;
}
int Assembler::DecodeBranchOffset(int32_t inst) {
// Sign-extend, left-shift by 2, then add 8.
return ((((inst & kBranchOffsetMask) << 8) >> 6) + Instr::kPCReadOffset);
}
static int32_t DecodeARMv7LoadImmediate(int32_t movt, int32_t movw) {
int32_t offset = 0;
offset |= (movt & 0xf0000) << 12;
offset |= (movt & 0xfff) << 16;
offset |= (movw & 0xf0000) >> 4;
offset |= movw & 0xfff;
return offset;
}
static int32_t DecodeARMv6LoadImmediate(int32_t mov,
int32_t or1,
int32_t or2,
int32_t or3) {
int32_t offset = 0;
offset |= (mov & 0xff) << 24;
offset |= (or1 & 0xff) << 16;
offset |= (or2 & 0xff) << 8;
offset |= (or3 & 0xff);
return offset;
}
class PatchFarBranch : public AssemblerFixup {
public:
PatchFarBranch() {}
void Process(const MemoryRegion& region, intptr_t position) {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
ProcessARMv6(region, position);
} else {
ASSERT(version == ARMv7);
ProcessARMv7(region, position);
}
}
private:
void ProcessARMv6(const MemoryRegion& region, intptr_t position) {
const int32_t mov = region.Load<int32_t>(position);
const int32_t or1 = region.Load<int32_t>(position + 1 * Instr::kInstrSize);
const int32_t or2 = region.Load<int32_t>(position + 2 * Instr::kInstrSize);
const int32_t or3 = region.Load<int32_t>(position + 3 * Instr::kInstrSize);
const int32_t bx = region.Load<int32_t>(position + 4 * Instr::kInstrSize);
if (((mov & 0xffffff00) == 0xe3a0c400) && // mov IP, (byte3 rot 4)
((or1 & 0xffffff00) == 0xe38cc800) && // orr IP, IP, (byte2 rot 8)
((or2 & 0xffffff00) == 0xe38ccc00) && // orr IP, IP, (byte1 rot 12)
((or3 & 0xffffff00) == 0xe38cc000)) { // orr IP, IP, byte0
const int32_t offset = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
const int32_t dest = region.start() + offset;
const int32_t dest0 = (dest & 0x000000ff);
const int32_t dest1 = (dest & 0x0000ff00) >> 8;
const int32_t dest2 = (dest & 0x00ff0000) >> 16;
const int32_t dest3 = (dest & 0xff000000) >> 24;
const int32_t patched_mov = 0xe3a0c400 | dest3;
const int32_t patched_or1 = 0xe38cc800 | dest2;
const int32_t patched_or2 = 0xe38ccc00 | dest1;
const int32_t patched_or3 = 0xe38cc000 | dest0;
region.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov);
region.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1);
region.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2);
region.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3);
return;
}
// If the offset loading instructions aren't there, we must have replaced
// the far branch with a near one, and so these instructions
// should be NOPs.
ASSERT((or1 == Instr::kNopInstruction) && (or2 == Instr::kNopInstruction) &&
(or3 == Instr::kNopInstruction) && (bx == Instr::kNopInstruction));
}
void ProcessARMv7(const MemoryRegion& region, intptr_t position) {
const int32_t movw = region.Load<int32_t>(position);
const int32_t movt = region.Load<int32_t>(position + Instr::kInstrSize);
const int32_t bx = region.Load<int32_t>(position + 2 * Instr::kInstrSize);
if (((movt & 0xfff0f000) == 0xe340c000) && // movt IP, high
((movw & 0xfff0f000) == 0xe300c000)) { // movw IP, low
const int32_t offset = DecodeARMv7LoadImmediate(movt, movw);
const int32_t dest = region.start() + offset;
const uint16_t dest_high = Utils::High16Bits(dest);
const uint16_t dest_low = Utils::Low16Bits(dest);
const int32_t patched_movt =
0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
const int32_t patched_movw =
0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
region.Store<int32_t>(position, patched_movw);
region.Store<int32_t>(position + Instr::kInstrSize, patched_movt);
return;
}
// If the offset loading instructions aren't there, we must have replaced
// the far branch with a near one, and so these instructions
// should be NOPs.
ASSERT((movt == Instr::kNopInstruction) && (bx == Instr::kNopInstruction));
}
virtual bool IsPointerOffset() const { return false; }
};
void Assembler::EmitFarBranch(Condition cond, int32_t offset, bool link) {
buffer_.EmitFixup(new PatchFarBranch());
LoadPatchableImmediate(IP, offset);
if (link) {
blx(IP, cond);
} else {
bx(IP, cond);
}
}
void Assembler::EmitBranch(Condition cond, Label* label, bool link) {
if (label->IsBound()) {
const int32_t dest = label->Position() - buffer_.Size();
if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
EmitFarBranch(cond, label->Position(), link);
} else {
EmitType5(cond, dest, link);
}
} else {
const intptr_t position = buffer_.Size();
if (use_far_branches()) {
const int32_t dest = label->position_;
EmitFarBranch(cond, dest, link);
} else {
// Use the offset field of the branch instruction for linking the sites.
EmitType5(cond, label->position_, link);
}
label->LinkTo(position);
}
}
void Assembler::BindARMv6(Label* label) {
ASSERT(!label->IsBound());
intptr_t bound_pc = buffer_.Size();
while (label->IsLinked()) {
const int32_t position = label->Position();
int32_t dest = bound_pc - position;
if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
// Far branches are enabled and we can't encode the branch offset.
// Grab instructions that load the offset.
const int32_t mov = buffer_.Load<int32_t>(position);
const int32_t or1 =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
const int32_t or2 =
buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
const int32_t or3 =
buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize);
// Change from relative to the branch to relative to the assembler
// buffer.
dest = buffer_.Size();
const int32_t dest0 = (dest & 0x000000ff);
const int32_t dest1 = (dest & 0x0000ff00) >> 8;
const int32_t dest2 = (dest & 0x00ff0000) >> 16;
const int32_t dest3 = (dest & 0xff000000) >> 24;
const int32_t patched_mov = 0xe3a0c400 | dest3;
const int32_t patched_or1 = 0xe38cc800 | dest2;
const int32_t patched_or2 = 0xe38ccc00 | dest1;
const int32_t patched_or3 = 0xe38cc000 | dest0;
// Rewrite the instructions.
buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_mov);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_or1);
buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize, patched_or2);
buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize, patched_or3);
label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
} else if (use_far_branches() && CanEncodeBranchOffset(dest)) {
// Grab instructions that load the offset, and the branch.
const int32_t mov = buffer_.Load<int32_t>(position);
const int32_t or1 =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
const int32_t or2 =
buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
const int32_t or3 =
buffer_.Load<int32_t>(position + 3 * Instr::kInstrSize);
const int32_t branch =
buffer_.Load<int32_t>(position + 4 * Instr::kInstrSize);
// Grab the branch condition, and encode the link bit.
const int32_t cond = branch & 0xf0000000;
const int32_t link = (branch & 0x20) << 19;
// Encode the branch and the offset.
const int32_t new_branch = cond | link | 0x0a000000;
const int32_t encoded = EncodeBranchOffset(dest, new_branch);
// Write the encoded branch instruction followed by two nops.
buffer_.Store<int32_t>(position, encoded);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 3 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 4 * Instr::kInstrSize,
Instr::kNopInstruction);
label->position_ = DecodeARMv6LoadImmediate(mov, or1, or2, or3);
} else {
int32_t next = buffer_.Load<int32_t>(position);
int32_t encoded = Assembler::EncodeBranchOffset(dest, next);
buffer_.Store<int32_t>(position, encoded);
label->position_ = Assembler::DecodeBranchOffset(next);
}
}
label->BindTo(bound_pc);
}
void Assembler::BindARMv7(Label* label) {
ASSERT(!label->IsBound());
intptr_t bound_pc = buffer_.Size();
while (label->IsLinked()) {
const int32_t position = label->Position();
int32_t dest = bound_pc - position;
if (use_far_branches() && !CanEncodeBranchOffset(dest)) {
// Far branches are enabled and we can't encode the branch offset.
// Grab instructions that load the offset.
const int32_t movw =
buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize);
const int32_t movt =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
// Change from relative to the branch to relative to the assembler
// buffer.
dest = buffer_.Size();
const uint16_t dest_high = Utils::High16Bits(dest);
const uint16_t dest_low = Utils::Low16Bits(dest);
const int32_t patched_movt =
0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
const int32_t patched_movw =
0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
// Rewrite the instructions.
buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_movw);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_movt);
label->position_ = DecodeARMv7LoadImmediate(movt, movw);
} else if (use_far_branches() && CanEncodeBranchOffset(dest)) {
// Far branches are enabled, but we can encode the branch offset.
// Grab instructions that load the offset, and the branch.
const int32_t movw =
buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize);
const int32_t movt =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
const int32_t branch =
buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
// Grab the branch condition, and encode the link bit.
const int32_t cond = branch & 0xf0000000;
const int32_t link = (branch & 0x20) << 19;
// Encode the branch and the offset.
const int32_t new_branch = cond | link | 0x0a000000;
const int32_t encoded = EncodeBranchOffset(dest, new_branch);
// Write the encoded branch instruction followed by two nops.
buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, encoded);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize,
Instr::kNopInstruction);
label->position_ = DecodeARMv7LoadImmediate(movt, movw);
} else {
int32_t next = buffer_.Load<int32_t>(position);
int32_t encoded = Assembler::EncodeBranchOffset(dest, next);
buffer_.Store<int32_t>(position, encoded);
label->position_ = Assembler::DecodeBranchOffset(next);
}
}
label->BindTo(bound_pc);
}
void Assembler::Bind(Label* label) {
const ARMVersion version = TargetCPUFeatures::arm_version();
if ((version == ARMv5TE) || (version == ARMv6)) {
BindARMv6(label);
} else {
ASSERT(version == ARMv7);
BindARMv7(label);
}
}
OperandSize Address::OperandSizeFor(intptr_t cid) {
switch (cid) {
case kArrayCid:
case kImmutableArrayCid:
return kWord;
case kOneByteStringCid:
case kExternalOneByteStringCid:
return kByte;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
return kHalfword;
case kTypedDataInt8ArrayCid:
return kByte;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
return kUnsignedByte;
case kTypedDataInt16ArrayCid:
return kHalfword;
case kTypedDataUint16ArrayCid:
return kUnsignedHalfword;
case kTypedDataInt32ArrayCid:
return kWord;
case kTypedDataUint32ArrayCid:
return kUnsignedWord;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
UNREACHABLE();
return kByte;
case kTypedDataFloat32ArrayCid:
return kSWord;
case kTypedDataFloat64ArrayCid:
return kDWord;
case kTypedDataFloat32x4ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
return kRegList;
case kTypedDataInt8ArrayViewCid:
UNREACHABLE();
return kByte;
default:
UNREACHABLE();
return kByte;
}
}
bool Address::CanHoldLoadOffset(OperandSize size,
int32_t offset,
int32_t* offset_mask) {
switch (size) {
case kByte:
case kHalfword:
case kUnsignedHalfword:
case kWordPair: {
*offset_mask = 0xff;
return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
}
case kUnsignedByte:
case kWord:
case kUnsignedWord: {
*offset_mask = 0xfff;
return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
}
case kSWord:
case kDWord: {
*offset_mask = 0x3fc; // Multiple of 4.
// VFP addressing mode.
return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
}
case kRegList: {
*offset_mask = 0x0;
return offset == 0;
}
default: {
UNREACHABLE();
return false;
}
}
}
bool Address::CanHoldStoreOffset(OperandSize size,
int32_t offset,
int32_t* offset_mask) {
switch (size) {
case kHalfword:
case kUnsignedHalfword:
case kWordPair: {
*offset_mask = 0xff;
return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
}
case kByte:
case kUnsignedByte:
case kWord:
case kUnsignedWord: {
*offset_mask = 0xfff;
return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
}
case kSWord:
case kDWord: {
*offset_mask = 0x3fc; // Multiple of 4.
// VFP addressing mode.
return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
}
case kRegList: {
*offset_mask = 0x0;
return offset == 0;
}
default: {
UNREACHABLE();
return false;
}
}
}
bool Address::CanHoldImmediateOffset(bool is_load,
intptr_t cid,
int64_t offset) {
int32_t offset_mask = 0;
if (is_load) {
return CanHoldLoadOffset(OperandSizeFor(cid), offset, &offset_mask);
} else {
return CanHoldStoreOffset(OperandSizeFor(cid), offset, &offset_mask);
}
}
void Assembler::Push(Register rd, Condition cond) {
str(rd, Address(SP, -kWordSize, Address::PreIndex), cond);
}
void Assembler::Pop(Register rd, Condition cond) {
ldr(rd, Address(SP, kWordSize, Address::PostIndex), cond);
}
void Assembler::PushList(RegList regs, Condition cond) {
stm(DB_W, SP, regs, cond);
}
void Assembler::PopList(RegList regs, Condition cond) {
ldm(IA_W, SP, regs, cond);
}
void Assembler::MoveRegister(Register rd, Register rm, Condition cond) {
if (rd != rm) {
mov(rd, Operand(rm), cond);
}
}
void Assembler::Lsl(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
ASSERT(shift_imm.encoding() != 0); // Do not use Lsl if no shift is wanted.
mov(rd, Operand(rm, LSL, shift_imm.encoding()), cond);
}
void Assembler::Lsl(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, LSL, rs), cond);
}
void Assembler::Lsr(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Lsr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
mov(rd, Operand(rm, LSR, shift), cond);
}
void Assembler::Lsr(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, LSR, rs), cond);
}
void Assembler::Asr(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Asr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
mov(rd, Operand(rm, ASR, shift), cond);
}
void Assembler::Asrs(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Asr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
movs(rd, Operand(rm, ASR, shift), cond);
}
void Assembler::Asr(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, ASR, rs), cond);
}
void Assembler::Ror(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
ASSERT(shift_imm.encoding() != 0); // Use Rrx instruction.
mov(rd, Operand(rm, ROR, shift_imm.encoding()), cond);
}
void Assembler::Ror(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, ROR, rs), cond);
}
void Assembler::Rrx(Register rd, Register rm, Condition cond) {
mov(rd, Operand(rm, ROR, 0), cond);
}
void Assembler::SignFill(Register rd, Register rm, Condition cond) {
Asr(rd, rm, Operand(31), cond);
}
void Assembler::Vreciprocalqs(QRegister qd, QRegister qm) {
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
// Reciprocal estimate.
vrecpeqs(qd, qm);
// 2 Newton-Raphson steps.
vrecpsqs(QTMP, qm, qd);
vmulqs(qd, qd, QTMP);
vrecpsqs(QTMP, qm, qd);
vmulqs(qd, qd, QTMP);
}
void Assembler::VreciprocalSqrtqs(QRegister qd, QRegister qm) {
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
// Reciprocal square root estimate.
vrsqrteqs(qd, qm);
// 2 Newton-Raphson steps. xn+1 = xn * (3 - Q1*xn^2) / 2.
// First step.
vmulqs(QTMP, qd, qd); // QTMP <- xn^2
vrsqrtsqs(QTMP, qm, QTMP); // QTMP <- (3 - Q1*QTMP) / 2.
vmulqs(qd, qd, QTMP); // xn+1 <- xn * QTMP
// Second step.
vmulqs(QTMP, qd, qd);
vrsqrtsqs(QTMP, qm, QTMP);
vmulqs(qd, qd, QTMP);
}
void Assembler::Vsqrtqs(QRegister qd, QRegister qm, QRegister temp) {
ASSERT(temp != QTMP);
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
if (temp != kNoQRegister) {
vmovq(temp, qm);
qm = temp;
}
VreciprocalSqrtqs(qd, qm);
vmovq(qm, qd);
Vreciprocalqs(qd, qm);
}
void Assembler::Vdivqs(QRegister qd, QRegister qn, QRegister qm) {
ASSERT(qd != QTMP);
ASSERT(qn != QTMP);
ASSERT(qm != QTMP);
Vreciprocalqs(qd, qm);
vmulqs(qd,