blob: 84b000f35d52be1216a09a78b2c4bf9131b970bb [file] [log] [blame]
// Copyright (c) 2020, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include <functional>
#include "vm/compiler/backend/flow_graph.h"
#include "vm/compiler/compiler_pass.h"
#include "vm/compiler/write_barrier_elimination.h"
namespace dart {
#if defined(DEBUG)
DEFINE_FLAG(bool,
trace_write_barrier_elimination,
false,
"Trace WriteBarrierElimination pass.");
#endif
class DefinitionIndexPairTrait {
public:
typedef Definition* Key;
typedef intptr_t Value;
struct Pair {
Definition* definition = nullptr;
intptr_t index = -1;
Pair() {}
Pair(Definition* definition, intptr_t index)
: definition(definition), index(index) {}
};
static Key KeyOf(Pair kv) { return kv.definition; }
static Value ValueOf(Pair kv) { return kv.index; }
static inline intptr_t Hashcode(Key key) { return std::hash<Key>()(key); }
static inline bool IsKeyEqual(Pair kv, Key key) {
return kv.definition == key;
}
};
typedef DirectChainedHashMap<DefinitionIndexPairTrait> DefinitionIndexMap;
// Inter-block write-barrier elimination.
//
// This optimization removes write barriers from some store instructions under
// certain assumptions which the runtime is responsible to sustain.
//
// We can skip a write barrier on a StoreInstanceField to a container object X
// if we know that either:
// - X is in new-space, or
// - X is in old-space, and:
// - X is in the store buffer, and
// - X is in the deferred marking stack (if concurrent marking is enabled)
//
// The result of an Allocation instruction (Instruction::IsAllocation()) will
// satisfy one of these requirements immediately after the instruction
// if WillAllocateNewOrRemembered() is true.
//
// Without runtime support, we would have to assume that any instruction which
// can trigger a new-space scavenge (Instruction::CanTriggerGC()) might promote
// a new-space temporary into old-space, and we could not skip a store barrier
// on a write into it afterward.
//
// However, many instructions can trigger GC in unlikely cases, like
// CheckStackOverflow and Box. To avoid interrupting write barrier elimination
// across these instructions, the runtime ensures that any live temporaries
// (except arrays) promoted during a scavenge caused by a non-Dart-call
// instruction (see Instruction::CanCallDart()) will be added to the store
// buffer. Additionally, if concurrent marking was initiated, the runtime
// ensures that all live temporaries are also in the deferred marking stack.
//
// See also Thread::RememberLiveTemporaries() and
// Thread::DeferredMarkLiveTemporaries().
class WriteBarrierElimination : public ValueObject {
public:
WriteBarrierElimination(Zone* zone, FlowGraph* flow_graph);
void Analyze();
void SaveResults();
private:
void IndexDefinitions(Zone* zone);
bool AnalyzeBlock(BlockEntryInstr* entry);
void MergePredecessors(BlockEntryInstr* entry);
void UpdateVectorForBlock(BlockEntryInstr* entry, bool finalize);
static intptr_t Index(BlockEntryInstr* entry) {
return entry->postorder_number();
}
intptr_t Index(Definition* def) {
ASSERT(IsUsable(def));
return definition_indices_.LookupValue(def);
}
bool IsUsable(Definition* def) {
return def->IsPhi() || (def->IsAllocation() &&
def->AsAllocation()->WillAllocateNewOrRemembered());
}
#if defined(DEBUG)
static bool SlotEligibleForWBE(const Slot& slot);
#endif
FlowGraph* const flow_graph_;
const GrowableArray<BlockEntryInstr*>* const block_order_;
// Number of usable definitions in the graph.
intptr_t definition_count_ = 0;
// Maps each usable definition to its index in the bitvectors.
DefinitionIndexMap definition_indices_;
// Bitvector with all non-Array-allocation instructions set. Used to
// un-mark Array allocations as usable.
BitVector* array_allocations_mask_;
// Bitvectors for each block of which allocations are new or remembered
// at the start (after Phis).
GrowableArray<BitVector*> usable_allocs_in_;
// Bitvectors for each block of which allocations are new or remembered
// at the end of the block.
GrowableArray<BitVector*> usable_allocs_out_;
// Remaining blocks to process.
GrowableArray<BlockEntryInstr*> worklist_;
// Temporary used in many functions to avoid repeated zone allocation.
BitVector* vector_;
// Bitvector of blocks which have been processed, to ensure each block
// is processed at least once.
BitVector* processed_blocks_;
#if defined(DEBUG)
bool tracing_ = false;
#else
static constexpr bool tracing_ = false;
#endif
};
WriteBarrierElimination::WriteBarrierElimination(Zone* zone,
FlowGraph* flow_graph)
: flow_graph_(flow_graph), block_order_(&flow_graph->postorder()) {
#if defined(DEBUG)
if (flow_graph->should_print() && FLAG_trace_write_barrier_elimination) {
tracing_ = true;
}
#endif
IndexDefinitions(zone);
for (intptr_t i = 0; i < block_order_->length(); ++i) {
usable_allocs_in_.Add(new (zone) BitVector(zone, definition_count_));
usable_allocs_in_[i]->CopyFrom(vector_);
usable_allocs_out_.Add(new (zone) BitVector(zone, definition_count_));
usable_allocs_out_[i]->CopyFrom(vector_);
}
processed_blocks_ = new (zone) BitVector(zone, block_order_->length());
}
void WriteBarrierElimination::Analyze() {
for (intptr_t i = 0; i < block_order_->length(); ++i) {
worklist_.Add(block_order_->At(i));
}
while (!worklist_.is_empty()) {
auto* const entry = worklist_.RemoveLast();
if (AnalyzeBlock(entry)) {
for (intptr_t i = 0; i < entry->last_instruction()->SuccessorCount();
++i) {
if (tracing_) {
THR_Print("Enqueueing block %" Pd "\n", entry->block_id());
}
worklist_.Add(entry->last_instruction()->SuccessorAt(i));
}
}
}
}
void WriteBarrierElimination::SaveResults() {
for (intptr_t i = 0; i < block_order_->length(); ++i) {
vector_->CopyFrom(usable_allocs_in_[i]);
UpdateVectorForBlock(block_order_->At(i), /*finalize=*/true);
}
}
void WriteBarrierElimination::IndexDefinitions(Zone* zone) {
BitmapBuilder array_allocations;
GrowableArray<Definition*> create_array_worklist;
for (intptr_t i = 0; i < block_order_->length(); ++i) {
BlockEntryInstr* const block = block_order_->At(i);
if (auto join_block = block->AsJoinEntry()) {
for (PhiIterator it(join_block); !it.Done(); it.Advance()) {
array_allocations.Set(definition_count_, false);
definition_indices_.Insert({it.Current(), definition_count_++});
#if defined(DEBUG)
if (tracing_) {
THR_Print("Definition (%" Pd ") has index %" Pd ".\n",
it.Current()->ssa_temp_index(), definition_count_ - 1);
}
#endif
}
}
for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) {
if (Definition* current = it.Current()->AsDefinition()) {
if (IsUsable(current)) {
const bool is_create_array = current->IsCreateArray();
array_allocations.Set(definition_count_, is_create_array);
definition_indices_.Insert({current, definition_count_++});
if (is_create_array) {
create_array_worklist.Add(current);
}
#if defined(DEBUG)
if (tracing_) {
THR_Print("Definition (%" Pd ") has index %" Pd ".\n",
current->ssa_temp_index(), definition_count_ - 1);
}
#endif
}
}
}
}
while (!create_array_worklist.is_empty()) {
auto instr = create_array_worklist.RemoveLast();
for (Value::Iterator it(instr->input_use_list()); !it.Done();
it.Advance()) {
if (auto phi_use = it.Current()->instruction()->AsPhi()) {
const intptr_t index = Index(phi_use);
if (!array_allocations.Get(index)) {
array_allocations.Set(index, /*can_be_create_array=*/true);
create_array_worklist.Add(phi_use);
}
}
}
}
vector_ = new (zone) BitVector(zone, definition_count_);
vector_->SetAll();
array_allocations_mask_ = new (zone) BitVector(zone, definition_count_);
for (intptr_t i = 0; i < definition_count_; ++i) {
if (!array_allocations.Get(i)) array_allocations_mask_->Add(i);
}
}
void WriteBarrierElimination::MergePredecessors(BlockEntryInstr* entry) {
vector_->Clear();
for (intptr_t i = 0; i < entry->PredecessorCount(); ++i) {
BitVector* predecessor_set =
usable_allocs_out_[Index(entry->PredecessorAt(i))];
if (i == 0) {
vector_->AddAll(predecessor_set);
} else {
vector_->Intersect(predecessor_set);
}
}
if (JoinEntryInstr* join = entry->AsJoinEntry()) {
// A Phi is usable if and only if all its inputs are usable.
for (PhiIterator it(join); !it.Done(); it.Advance()) {
PhiInstr* phi = it.Current();
ASSERT(phi->InputCount() == entry->PredecessorCount());
bool is_usable = true;
for (intptr_t i = 0; i < phi->InputCount(); ++i) {
BitVector* const predecessor_set =
usable_allocs_out_[Index(entry->PredecessorAt(i))];
Definition* const origin = phi->InputAt(i)->definition();
if (!IsUsable(origin) || !predecessor_set->Contains(Index(origin))) {
is_usable = false;
break;
}
}
vector_->Set(Index(phi), is_usable);
}
#if defined(DEBUG)
if (tracing_) {
THR_Print("Merge predecessors for %" Pd ".\n", entry->block_id());
for (PhiIterator it(join); !it.Done(); it.Advance()) {
PhiInstr* phi = it.Current();
THR_Print("%" Pd ": %s\n", phi->ssa_temp_index(),
vector_->Contains(Index(phi)) ? "true" : "false");
}
}
#endif
}
}
bool WriteBarrierElimination::AnalyzeBlock(BlockEntryInstr* entry) {
// Recompute the usable allocs in-set.
MergePredecessors(entry);
// If the in-set has not changed, there's no work to do.
BitVector* const in_set = usable_allocs_in_[Index(entry)];
ASSERT(vector_->SubsetOf(*in_set)); // convergence
if (vector_->Equals(*in_set) && processed_blocks_->Contains(Index(entry))) {
if (tracing_) {
THR_Print("Bailout of block %" Pd ": inputs didn't change.\n",
entry->block_id());
}
return false;
} else if (tracing_) {
THR_Print("Inputs of block %" Pd " changed: ", entry->block_id());
in_set->Print();
THR_Print(" -> ");
vector_->Print();
THR_Print("\n");
}
usable_allocs_in_[Index(entry)]->CopyFrom(vector_);
UpdateVectorForBlock(entry, /*finalize=*/false);
processed_blocks_->Add(Index(entry));
// Successors only need to be updated if the out-set changes.
if (vector_->Equals(*usable_allocs_out_[Index(entry)])) {
if (tracing_) {
THR_Print("Bailout of block %" Pd ": out-set didn't change.\n",
entry->block_id());
}
return false;
}
BitVector* const out_set = usable_allocs_out_[Index(entry)];
ASSERT(vector_->SubsetOf(*out_set)); // convergence
out_set->CopyFrom(vector_);
if (tracing_) {
THR_Print("Block %" Pd " changed.\n", entry->block_id());
}
return true;
}
#if defined(DEBUG)
bool WriteBarrierElimination::SlotEligibleForWBE(const Slot& slot) {
// We assume that Dart code only stores into Instances, Contexts, and
// UnhandledExceptions. This assumption is used in
// RestoreWriteBarrierInvariantVisitor::VisitPointers.
switch (slot.kind()) {
case Slot::Kind::kCapturedVariable: // Context
return true;
case Slot::Kind::kDartField: // Instance
return true;
#define FOR_EACH_NATIVE_SLOT(class, underlying_type, field, __, ___) \
case Slot::Kind::k##class##_##field: \
return std::is_base_of<UntaggedInstance, underlying_type>::value || \
std::is_base_of<UntaggedContext, underlying_type>::value || \
std::is_base_of<UntaggedUnhandledException, \
underlying_type>::value;
NATIVE_SLOTS_LIST(FOR_EACH_NATIVE_SLOT)
#undef FOR_EACH_NATIVE_SLOT
default:
return false;
}
}
#endif
void WriteBarrierElimination::UpdateVectorForBlock(BlockEntryInstr* entry,
bool finalize) {
for (ForwardInstructionIterator it(entry); !it.Done(); it.Advance()) {
Instruction* const current = it.Current();
if (finalize) {
if (StoreInstanceFieldInstr* instr = current->AsStoreInstanceField()) {
Definition* const container = instr->instance()->definition();
if (IsUsable(container) && vector_->Contains(Index(container))) {
DEBUG_ASSERT(SlotEligibleForWBE(instr->slot()));
instr->set_emit_store_barrier(kNoStoreBarrier);
}
} else if (StoreIndexedInstr* instr = current->AsStoreIndexed()) {
Definition* const array = instr->array()->definition();
if (IsUsable(array) && vector_->Contains(Index(array))) {
instr->set_emit_store_barrier(StoreBarrierType::kNoStoreBarrier);
}
}
}
if (current->CanCallDart()) {
vector_->Clear();
} else if (current->CanTriggerGC()) {
// Clear array allocations. These are not added to the remembered set
// by Thread::RememberLiveTemporaries() after a scavenge.
vector_->Intersect(array_allocations_mask_);
}
if (AllocationInstr* const alloc = current->AsAllocation()) {
if (alloc->WillAllocateNewOrRemembered()) {
vector_->Add(Index(alloc));
}
}
}
}
void EliminateWriteBarriers(FlowGraph* flow_graph) {
WriteBarrierElimination elimination(Thread::Current()->zone(), flow_graph);
elimination.Analyze();
elimination.SaveResults();
}
} // namespace dart