blob: 42d044084c731e38306faff9084784f6a4098fc4 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // NOLINT
#if defined(TARGET_ARCH_ARM)
#define SHOULD_NOT_INCLUDE_RUNTIME
#include "vm/class_id.h"
#include "vm/compiler/assembler/assembler.h"
#include "vm/compiler/backend/locations.h"
#include "vm/cpu.h"
#include "vm/instructions.h"
// An extra check since we are assuming the existence of /proc/cpuinfo below.
#if !defined(USING_SIMULATOR) && !defined(__linux__) && !defined(ANDROID) && \
!defined(HOST_OS_IOS) && !defined(HOST_OS_MACOS)
#error ARM cross-compile only supported on Linux, Android, iOS, and Mac
#endif
// For use by LR related macros (e.g. CLOBBERS_LR).
#define __ this->
namespace dart {
DECLARE_FLAG(bool, check_code_pointer);
DECLARE_FLAG(bool, inline_alloc);
DECLARE_FLAG(bool, precompiled_mode);
DECLARE_FLAG(bool, use_slow_path);
namespace compiler {
Assembler::Assembler(ObjectPoolBuilder* object_pool_builder,
bool use_far_branches)
: AssemblerBase(object_pool_builder),
use_far_branches_(use_far_branches),
constant_pool_allowed_(false) {
generate_invoke_write_barrier_wrapper_ = [&](Condition cond, Register reg) {
Call(
Address(THR, target::Thread::write_barrier_wrappers_thread_offset(reg)),
cond);
};
generate_invoke_array_write_barrier_ = [&](Condition cond) {
Call(Address(THR, target::Thread::array_write_barrier_entry_point_offset()),
cond);
};
}
uint32_t Address::encoding3() const {
if (kind_ == Immediate) {
uint32_t offset = encoding_ & kOffset12Mask;
ASSERT(offset < 256);
return (encoding_ & ~kOffset12Mask) | B22 | ((offset & 0xf0) << 4) |
(offset & 0xf);
}
ASSERT(kind_ == IndexRegister);
return encoding_;
}
uint32_t Address::vencoding() const {
ASSERT(kind_ == Immediate);
uint32_t offset = encoding_ & kOffset12Mask;
ASSERT(offset < (1 << 10)); // In the range 0 to +1020.
ASSERT(Utils::IsAligned(offset, 4)); // Multiple of 4.
int mode = encoding_ & ((8 | 4 | 1) << 21);
ASSERT((mode == Offset) || (mode == NegOffset));
uint32_t vencoding = (encoding_ & (0xf << kRnShift)) | (offset >> 2);
if (mode == Offset) {
vencoding |= 1 << 23;
}
return vencoding;
}
void Assembler::Emit(int32_t value) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
buffer_.Emit<int32_t>(value);
}
void Assembler::EmitType01(Condition cond,
int type,
Opcode opcode,
int set_cc,
Register rn,
Register rd,
Operand o) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
static_cast<int32_t>(cond) << kConditionShift | type << kTypeShift |
static_cast<int32_t>(opcode) << kOpcodeShift | set_cc << kSShift |
ArmEncode::Rn(rn) | ArmEncode::Rd(rd) | o.encoding();
Emit(encoding);
}
void Assembler::EmitType5(Condition cond, int32_t offset, bool link) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
5 << kTypeShift | (link ? 1 : 0) << kLinkShift;
BailoutIfInvalidBranchOffset(offset);
Emit(Assembler::EncodeBranchOffset(offset, encoding));
}
void Assembler::EmitMemOp(Condition cond,
bool load,
bool byte,
Register rd,
Address ad) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
// Unpredictable, illegal on some microarchitectures.
ASSERT(!ad.has_writeback() || (ad.rn() != rd));
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B26 |
(ad.kind() == Address::Immediate ? 0 : B25) |
(load ? L : 0) | (byte ? B : 0) | ArmEncode::Rd(rd) |
ad.encoding();
Emit(encoding);
}
void Assembler::EmitMemOpAddressMode3(Condition cond,
int32_t mode,
Register rd,
Address ad) {
ASSERT(rd != kNoRegister);
ASSERT(cond != kNoCondition);
// Unpredictable, illegal on some microarchitectures.
ASSERT(!ad.has_writeback() || (ad.rn() != rd));
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | mode |
ArmEncode::Rd(rd) | ad.encoding3();
Emit(encoding);
}
void Assembler::EmitMultiMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
RegList regs) {
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
// Unpredictable, illegal on some microarchitectures.
ASSERT(!Address::has_writeback(am) || !(regs & (1 << base)));
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
am | (load ? L : 0) | ArmEncode::Rn(base) | regs;
Emit(encoding);
}
void Assembler::EmitShiftImmediate(Condition cond,
Shift opcode,
Register rd,
Register rm,
Operand o) {
ASSERT(cond != kNoCondition);
ASSERT(o.type() == 1);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
static_cast<int32_t>(MOV) << kOpcodeShift |
ArmEncode::Rd(rd) | o.encoding() << kShiftImmShift |
static_cast<int32_t>(opcode) << kShiftShift |
static_cast<int32_t>(rm);
Emit(encoding);
}
void Assembler::EmitShiftRegister(Condition cond,
Shift opcode,
Register rd,
Register rm,
Operand o) {
ASSERT(cond != kNoCondition);
ASSERT(o.type() == 0);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift |
static_cast<int32_t>(MOV) << kOpcodeShift |
ArmEncode::Rd(rd) | o.encoding() << kShiftRegisterShift |
static_cast<int32_t>(opcode) << kShiftShift | B4 |
static_cast<int32_t>(rm);
Emit(encoding);
}
void Assembler::and_(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), AND, 0, rn, rd, o);
}
void Assembler::ands(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), AND, 1, rn, rd, o);
}
void Assembler::eor(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), EOR, 0, rn, rd, o);
}
void Assembler::sub(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SUB, 0, rn, rd, o);
}
void Assembler::rsb(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSB, 0, rn, rd, o);
}
void Assembler::rsbs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSB, 1, rn, rd, o);
}
void Assembler::add(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADD, 0, rn, rd, o);
}
void Assembler::adds(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADD, 1, rn, rd, o);
}
void Assembler::subs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SUB, 1, rn, rd, o);
}
void Assembler::adc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADC, 0, rn, rd, o);
}
void Assembler::adcs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ADC, 1, rn, rd, o);
}
void Assembler::sbc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SBC, 0, rn, rd, o);
}
void Assembler::sbcs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), SBC, 1, rn, rd, o);
}
void Assembler::rsc(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), RSC, 0, rn, rd, o);
}
void Assembler::tst(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), TST, 1, rn, R0, o);
}
void Assembler::teq(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), TEQ, 1, rn, R0, o);
}
void Assembler::cmp(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), CMP, 1, rn, R0, o);
}
void Assembler::cmn(Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), CMN, 1, rn, R0, o);
}
void Assembler::orr(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ORR, 0, rn, rd, o);
}
void Assembler::orrs(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), ORR, 1, rn, rd, o);
}
void Assembler::mov(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MOV, 0, R0, rd, o);
}
void Assembler::movs(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MOV, 1, R0, rd, o);
}
void Assembler::bic(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), BIC, 0, rn, rd, o);
}
void Assembler::bics(Register rd, Register rn, Operand o, Condition cond) {
EmitType01(cond, o.type(), BIC, 1, rn, rd, o);
}
void Assembler::mvn(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MVN, 0, R0, rd, o);
}
void Assembler::mvns(Register rd, Operand o, Condition cond) {
EmitType01(cond, o.type(), MVN, 1, R0, rd, o);
}
void Assembler::clz(Register rd, Register rm, Condition cond) {
ASSERT(rd != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(rd != PC);
ASSERT(rm != PC);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B22 | B21 | (0xf << 16) | ArmEncode::Rd(rd) | (0xf << 8) |
B4 | static_cast<int32_t>(rm);
Emit(encoding);
}
void Assembler::rbit(Register rd, Register rm, Condition cond) {
ASSERT(rd != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(rd != PC);
ASSERT(rm != PC);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B26 |
B25 | B23 | B22 | B21 | B20 | (0xf << 16) |
ArmEncode::Rd(rd) | (0xf << 8) | B5 | B4 |
static_cast<int32_t>(rm);
Emit(encoding);
}
void Assembler::movw(Register rd, uint16_t imm16, Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | B25 | B24 |
((imm16 >> 12) << 16) | ArmEncode::Rd(rd) |
(imm16 & 0xfff);
Emit(encoding);
}
void Assembler::movt(Register rd, uint16_t imm16, Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = static_cast<int32_t>(cond) << kConditionShift | B25 | B24 |
B22 | ((imm16 >> 12) << 16) | ArmEncode::Rd(rd) |
(imm16 & 0xfff);
Emit(encoding);
}
void Assembler::EmitMulOp(Condition cond,
int32_t opcode,
Register rd,
Register rn,
Register rm,
Register rs) {
ASSERT(rd != kNoRegister);
ASSERT(rn != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(rs != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = opcode | (static_cast<int32_t>(cond) << kConditionShift) |
ArmEncode::Rn(rn) | ArmEncode::Rd(rd) | ArmEncode::Rs(rs) |
B7 | B4 | ArmEncode::Rm(rm);
Emit(encoding);
}
void Assembler::mul(Register rd, Register rn, Register rm, Condition cond) {
// Assembler registers rd, rn, rm are encoded as rn, rm, rs.
EmitMulOp(cond, 0, R0, rd, rn, rm);
}
// Like mul, but sets condition flags.
void Assembler::muls(Register rd, Register rn, Register rm, Condition cond) {
EmitMulOp(cond, B20, R0, rd, rn, rm);
}
void Assembler::mla(Register rd,
Register rn,
Register rm,
Register ra,
Condition cond) {
// rd <- ra + rn * rm.
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
EmitMulOp(cond, B21, ra, rd, rn, rm);
}
void Assembler::mls(Register rd,
Register rn,
Register rm,
Register ra,
Condition cond) {
// rd <- ra - rn * rm.
// Assembler registers rd, rn, rm, ra are encoded as rn, rm, rs, rd.
EmitMulOp(cond, B22 | B21, ra, rd, rn, rm);
}
void Assembler::smull(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23 | B22, rd_lo, rd_hi, rn, rm);
}
void Assembler::umull(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23, rd_lo, rd_hi, rn, rm);
}
void Assembler::umlal(Register rd_lo,
Register rd_hi,
Register rn,
Register rm,
Condition cond) {
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(cond, B23 | B21, rd_lo, rd_hi, rn, rm);
}
void Assembler::umaal(Register rd_lo,
Register rd_hi,
Register rn,
Register rm) {
ASSERT(rd_lo != IP);
ASSERT(rd_hi != IP);
ASSERT(rn != IP);
ASSERT(rm != IP);
// Assembler registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs.
EmitMulOp(AL, B22, rd_lo, rd_hi, rn, rm);
}
void Assembler::EmitDivOp(Condition cond,
int32_t opcode,
Register rd,
Register rn,
Register rm) {
ASSERT(TargetCPUFeatures::integer_division_supported());
ASSERT(rd != kNoRegister);
ASSERT(rn != kNoRegister);
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = opcode | (static_cast<int32_t>(cond) << kConditionShift) |
(static_cast<int32_t>(rn) << kDivRnShift) |
(static_cast<int32_t>(rd) << kDivRdShift) | B26 | B25 |
B24 | B20 | B4 | (static_cast<int32_t>(rm) << kDivRmShift);
Emit(encoding);
}
void Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) {
EmitDivOp(cond, 0, rd, rn, rm);
}
void Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) {
EmitDivOp(cond, B21, rd, rn, rm);
}
void Assembler::ldr(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, true, false, rd, ad);
}
void Assembler::str(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, false, false, rd, ad);
}
void Assembler::ldrb(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, true, true, rd, ad);
}
void Assembler::strb(Register rd, Address ad, Condition cond) {
EmitMemOp(cond, false, true, rd, ad);
}
void Assembler::ldrh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | H | B4, rd, ad);
}
void Assembler::strh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, B7 | H | B4, rd, ad);
}
void Assembler::ldrsb(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | B6 | B4, rd, ad);
}
void Assembler::ldrsh(Register rd, Address ad, Condition cond) {
EmitMemOpAddressMode3(cond, L | B7 | B6 | H | B4, rd, ad);
}
void Assembler::ldrd(Register rd,
Register rd2,
Register rn,
int32_t offset,
Condition cond) {
ASSERT((rd % 2) == 0);
ASSERT(rd2 == rd + 1);
EmitMemOpAddressMode3(cond, B7 | B6 | B4, rd, Address(rn, offset));
}
void Assembler::strd(Register rd,
Register rd2,
Register rn,
int32_t offset,
Condition cond) {
ASSERT((rd % 2) == 0);
ASSERT(rd2 == rd + 1);
EmitMemOpAddressMode3(cond, B7 | B6 | B5 | B4, rd, Address(rn, offset));
}
void Assembler::ldm(BlockAddressMode am,
Register base,
RegList regs,
Condition cond) {
ASSERT(regs != 0);
EmitMultiMemOp(cond, am, true, base, regs);
}
void Assembler::stm(BlockAddressMode am,
Register base,
RegList regs,
Condition cond) {
ASSERT(regs != 0);
EmitMultiMemOp(cond, am, false, base, regs);
}
void Assembler::ldrex(Register rt, Register rn, Condition cond) {
ASSERT(rn != kNoRegister);
ASSERT(rt != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B23 | L | (static_cast<int32_t>(rn) << kLdExRnShift) |
(static_cast<int32_t>(rt) << kLdExRtShift) | B11 | B10 |
B9 | B8 | B7 | B4 | B3 | B2 | B1 | B0;
Emit(encoding);
}
void Assembler::strex(Register rd, Register rt, Register rn, Condition cond) {
ASSERT(rn != kNoRegister);
ASSERT(rd != kNoRegister);
ASSERT(rt != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B23 | (static_cast<int32_t>(rn) << kStrExRnShift) |
(static_cast<int32_t>(rd) << kStrExRdShift) | B11 | B10 |
B9 | B8 | B7 | B4 |
(static_cast<int32_t>(rt) << kStrExRtShift);
Emit(encoding);
}
void Assembler::dmb() {
// Emit a `dmb ish` instruction.
Emit(kDataMemoryBarrier);
}
void Assembler::EnterSafepoint(Register addr, Register state) {
// We generate the same number of instructions whether or not the slow-path is
// forced. This simplifies GenerateJitCallbackTrampolines.
Label slow_path, done, retry;
if (FLAG_use_slow_path) {
b(&slow_path);
}
LoadImmediate(addr, target::Thread::safepoint_state_offset());
add(addr, THR, Operand(addr));
Bind(&retry);
ldrex(state, addr);
cmp(state, Operand(target::Thread::safepoint_state_unacquired()));
b(&slow_path, NE);
mov(state, Operand(target::Thread::safepoint_state_acquired()));
strex(TMP, state, addr);
cmp(TMP, Operand(0)); // 0 means strex was successful.
b(&done, EQ);
if (!FLAG_use_slow_path) {
b(&retry);
}
Bind(&slow_path);
ldr(TMP, Address(THR, target::Thread::enter_safepoint_stub_offset()));
ldr(TMP, FieldAddress(TMP, target::Code::entry_point_offset()));
blx(TMP);
Bind(&done);
}
void Assembler::TransitionGeneratedToNative(Register destination_address,
Register exit_frame_fp,
Register exit_through_ffi,
Register tmp1,
bool enter_safepoint) {
// Save exit frame information to enable stack walking.
StoreToOffset(exit_frame_fp, THR,
target::Thread::top_exit_frame_info_offset());
StoreToOffset(exit_through_ffi, THR,
target::Thread::exit_through_ffi_offset());
Register tmp2 = exit_through_ffi;
// Mark that the thread is executing native code.
StoreToOffset(destination_address, THR, target::Thread::vm_tag_offset());
LoadImmediate(tmp1, target::Thread::native_execution_state());
StoreToOffset(tmp1, THR, target::Thread::execution_state_offset());
if (enter_safepoint) {
EnterSafepoint(tmp1, tmp2);
}
}
void Assembler::ExitSafepoint(Register tmp1, Register tmp2) {
Register addr = tmp1;
Register state = tmp2;
// We generate the same number of instructions whether or not the slow-path is
// forced, for consistency with EnterSafepoint.
Label slow_path, done, retry;
if (FLAG_use_slow_path) {
b(&slow_path);
}
LoadImmediate(addr, target::Thread::safepoint_state_offset());
add(addr, THR, Operand(addr));
Bind(&retry);
ldrex(state, addr);
cmp(state, Operand(target::Thread::safepoint_state_acquired()));
b(&slow_path, NE);
mov(state, Operand(target::Thread::safepoint_state_unacquired()));
strex(TMP, state, addr);
cmp(TMP, Operand(0)); // 0 means strex was successful.
b(&done, EQ);
if (!FLAG_use_slow_path) {
b(&retry);
}
Bind(&slow_path);
ldr(TMP, Address(THR, target::Thread::exit_safepoint_stub_offset()));
ldr(TMP, FieldAddress(TMP, target::Code::entry_point_offset()));
blx(TMP);
Bind(&done);
}
void Assembler::TransitionNativeToGenerated(Register addr,
Register state,
bool exit_safepoint) {
if (exit_safepoint) {
ExitSafepoint(addr, state);
} else {
#if defined(DEBUG)
// Ensure we've already left the safepoint.
LoadImmediate(state, 1 << target::Thread::safepoint_state_inside_bit());
ldr(TMP, Address(THR, target::Thread::safepoint_state_offset()));
ands(TMP, TMP, Operand(state)); // Is-at-safepoint is the LSB.
Label ok;
b(&ok, ZERO);
Breakpoint();
Bind(&ok);
#endif
}
// Mark that the thread is executing Dart code.
LoadImmediate(state, target::Thread::vm_tag_dart_id());
StoreToOffset(state, THR, target::Thread::vm_tag_offset());
LoadImmediate(state, target::Thread::generated_execution_state());
StoreToOffset(state, THR, target::Thread::execution_state_offset());
// Reset exit frame information in Isolate's mutator thread structure.
LoadImmediate(state, 0);
StoreToOffset(state, THR, target::Thread::top_exit_frame_info_offset());
StoreToOffset(state, THR, target::Thread::exit_through_ffi_offset());
}
void Assembler::clrex() {
int32_t encoding = (kSpecialCondition << kConditionShift) | B26 | B24 | B22 |
B21 | B20 | (0xff << 12) | B4 | 0xf;
Emit(encoding);
}
void Assembler::nop(Condition cond) {
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B25 |
B24 | B21 | (0xf << 12);
Emit(encoding);
}
void Assembler::vmovsr(SRegister sn, Register rt, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sn != kNoSRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B25 | ((static_cast<int32_t>(sn) >> 1) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 |
((static_cast<int32_t>(sn) & 1) * B7) | B4;
Emit(encoding);
}
void Assembler::vmovrs(Register rt, SRegister sn, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sn != kNoSRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B25 | B20 | ((static_cast<int32_t>(sn) >> 1) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 |
((static_cast<int32_t>(sn) & 1) * B7) | B4;
Emit(encoding);
}
void Assembler::vmovsrr(SRegister sm,
Register rt,
Register rt2,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sm != kNoSRegister);
ASSERT(sm != S31);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B22 | (static_cast<int32_t>(rt2) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 |
((static_cast<int32_t>(sm) & 1) * B5) | B4 |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::vmovrrs(Register rt,
Register rt2,
SRegister sm,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sm != kNoSRegister);
ASSERT(sm != S31);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(rt != rt2);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B22 | B20 | (static_cast<int32_t>(rt2) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 |
((static_cast<int32_t>(sm) & 1) * B5) | B4 |
(static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::vmovdr(DRegister dn, int i, Register rt, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT((i == 0) || (i == 1));
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(dn != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B25 | (i * B21) | (static_cast<int32_t>(rt) * B12) |
B11 | B9 | B8 | ((static_cast<int32_t>(dn) >> 4) * B7) |
((static_cast<int32_t>(dn) & 0xf) * B16) | B4;
Emit(encoding);
}
void Assembler::vmovdrr(DRegister dm,
Register rt,
Register rt2,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dm != kNoDRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B22 | (static_cast<int32_t>(rt2) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dm) >> 4) * B5) | B4 |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vmovrrd(Register rt,
Register rt2,
DRegister dm,
Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dm != kNoDRegister);
ASSERT(rt != kNoRegister);
ASSERT(rt != SP);
ASSERT(rt != PC);
ASSERT(rt2 != kNoRegister);
ASSERT(rt2 != SP);
ASSERT(rt2 != PC);
ASSERT(rt != rt2);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B22 | B20 | (static_cast<int32_t>(rt2) * B16) |
(static_cast<int32_t>(rt) * B12) | B11 | B9 | B8 |
((static_cast<int32_t>(dm) >> 4) * B5) | B4 |
(static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vldrs(SRegister sd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B24 | B20 | ((static_cast<int32_t>(sd) & 1) * B22) |
((static_cast<int32_t>(sd) >> 1) * B12) | B11 | B9 |
ad.vencoding();
Emit(encoding);
}
void Assembler::vstrs(SRegister sd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
ASSERT(sd != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B24 | ((static_cast<int32_t>(sd) & 1) * B22) |
((static_cast<int32_t>(sd) >> 1) * B12) | B11 | B9 |
ad.vencoding();
Emit(encoding);
}
void Assembler::vldrd(DRegister dd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B24 | B20 | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dd) & 0xf) * B12) | B11 | B9 | B8 |
ad.vencoding();
Emit(encoding);
}
void Assembler::vstrd(DRegister dd, Address ad, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(static_cast<Register>(ad.encoding_ & (0xf << kRnShift)) != PC);
ASSERT(dd != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B24 | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dd) & 0xf) * B12) | B11 | B9 | B8 |
ad.vencoding();
Emit(encoding);
}
void Assembler::EmitMultiVSMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
SRegister start,
uint32_t count) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(start != kNoSRegister);
ASSERT(static_cast<int32_t>(start) + count <= kNumberOfSRegisters);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B11 | B9 | am | (load ? L : 0) |
ArmEncode::Rn(base) |
((static_cast<int32_t>(start) & 0x1) ? D : 0) |
((static_cast<int32_t>(start) >> 1) << 12) | count;
Emit(encoding);
}
void Assembler::EmitMultiVDMemOp(Condition cond,
BlockAddressMode am,
bool load,
Register base,
DRegister start,
int32_t count) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(base != kNoRegister);
ASSERT(cond != kNoCondition);
ASSERT(start != kNoDRegister);
ASSERT(static_cast<int32_t>(start) + count <= kNumberOfDRegisters);
const int notArmv5te = 0;
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B11 | B9 |
B8 | am | (load ? L : 0) | ArmEncode::Rn(base) |
((static_cast<int32_t>(start) & 0x10) ? D : 0) |
((static_cast<int32_t>(start) & 0xf) << 12) | (count << 1) | notArmv5te;
Emit(encoding);
}
void Assembler::vldms(BlockAddressMode am,
Register base,
SRegister first,
SRegister last,
Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(last > first);
EmitMultiVSMemOp(cond, am, true, base, first, last - first + 1);
}
void Assembler::vstms(BlockAddressMode am,
Register base,
SRegister first,
SRegister last,
Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(last > first);
EmitMultiVSMemOp(cond, am, false, base, first, last - first + 1);
}
void Assembler::vldmd(BlockAddressMode am,
Register base,
DRegister first,
intptr_t count,
Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(count <= 16);
ASSERT(first + count <= kNumberOfDRegisters);
EmitMultiVDMemOp(cond, am, true, base, first, count);
}
void Assembler::vstmd(BlockAddressMode am,
Register base,
DRegister first,
intptr_t count,
Condition cond) {
ASSERT((am == IA) || (am == IA_W) || (am == DB_W));
ASSERT(count <= 16);
ASSERT(first + count <= kNumberOfDRegisters);
EmitMultiVDMemOp(cond, am, false, base, first, count);
}
void Assembler::EmitVFPsss(Condition cond,
int32_t opcode,
SRegister sd,
SRegister sn,
SRegister sm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(sn != kNoSRegister);
ASSERT(sm != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 |
B9 | opcode | ((static_cast<int32_t>(sd) & 1) * B22) |
((static_cast<int32_t>(sn) >> 1) * B16) |
((static_cast<int32_t>(sd) >> 1) * B12) |
((static_cast<int32_t>(sn) & 1) * B7) |
((static_cast<int32_t>(sm) & 1) * B5) | (static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::EmitVFPddd(Condition cond,
int32_t opcode,
DRegister dd,
DRegister dn,
DRegister dm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(dn != kNoDRegister);
ASSERT(dm != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 |
B9 | B8 | opcode | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dn) & 0xf) * B16) |
((static_cast<int32_t>(dd) & 0xf) * B12) |
((static_cast<int32_t>(dn) >> 4) * B7) |
((static_cast<int32_t>(dm) >> 4) * B5) | (static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm);
}
void Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm);
}
bool Assembler::vmovs(SRegister sd, float s_imm, Condition cond) {
uint32_t imm32 = bit_cast<uint32_t, float>(s_imm);
if (((imm32 & ((1 << 19) - 1)) == 0) &&
((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) ||
(((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) - 1)))) {
uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) |
((imm32 >> 19) & ((1 << 6) - 1));
EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4) * B16) | (imm8 & 0xf), sd,
S0, S0);
return true;
}
return false;
}
bool Assembler::vmovd(DRegister dd, double d_imm, Condition cond) {
uint64_t imm64 = bit_cast<uint64_t, double>(d_imm);
if (((imm64 & ((1LL << 48) - 1)) == 0) &&
((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) ||
(((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) - 1)))) {
uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) |
((imm64 >> 48) & ((1 << 6) - 1));
EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4) * B16) | B8 | (imm8 & 0xf),
dd, D0, D0);
return true;
}
return false;
}
void Assembler::vadds(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21 | B20, sd, sn, sm);
}
void Assembler::vaddd(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21 | B20, dd, dn, dm);
}
void Assembler::vsubs(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm);
}
void Assembler::vsubd(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm);
}
void Assembler::vmuls(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B21, sd, sn, sm);
}
void Assembler::vmuld(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B21, dd, dn, dm);
}
void Assembler::vmlas(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, 0, sd, sn, sm);
}
void Assembler::vmlad(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, 0, dd, dn, dm);
}
void Assembler::vmlss(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B6, sd, sn, sm);
}
void Assembler::vmlsd(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B6, dd, dn, dm);
}
void Assembler::vdivs(SRegister sd,
SRegister sn,
SRegister sm,
Condition cond) {
EmitVFPsss(cond, B23, sd, sn, sm);
}
void Assembler::vdivd(DRegister dd,
DRegister dn,
DRegister dm,
Condition cond) {
EmitVFPddd(cond, B23, dd, dn, dm);
}
void Assembler::vabss(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm);
}
void Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm);
}
void Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm);
}
void Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm);
}
void Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm);
}
void Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm);
}
void Assembler::EmitVFPsd(Condition cond,
int32_t opcode,
SRegister sd,
DRegister dm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(sd != kNoSRegister);
ASSERT(dm != kNoDRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 |
B9 | opcode | ((static_cast<int32_t>(sd) & 1) * B22) |
((static_cast<int32_t>(sd) >> 1) * B12) |
((static_cast<int32_t>(dm) >> 4) * B5) | (static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::EmitVFPds(Condition cond,
int32_t opcode,
DRegister dd,
SRegister sm) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(dd != kNoDRegister);
ASSERT(sm != kNoSRegister);
ASSERT(cond != kNoCondition);
int32_t encoding =
(static_cast<int32_t>(cond) << kConditionShift) | B27 | B26 | B25 | B11 |
B9 | opcode | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dd) & 0xf) * B12) |
((static_cast<int32_t>(sm) & 1) * B5) | (static_cast<int32_t>(sm) >> 1);
Emit(encoding);
}
void Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm);
}
void Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm);
}
void Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm);
}
void Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm);
}
void Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm);
}
void Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm);
}
void Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm);
}
void Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) {
EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm);
}
void Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm);
}
void Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) {
EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm);
}
void Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm);
}
void Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm);
}
void Assembler::vcmpsz(SRegister sd, Condition cond) {
EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0);
}
void Assembler::vcmpdz(DRegister dd, Condition cond) {
EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0);
}
void Assembler::vmrs(Register rd, Condition cond) {
ASSERT(TargetCPUFeatures::vfp_supported());
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B27 |
B26 | B25 | B23 | B22 | B21 | B20 | B16 |
(static_cast<int32_t>(rd) * B12) | B11 | B9 | B4;
Emit(encoding);
}
void Assembler::vmstat(Condition cond) {
vmrs(APSR, cond);
}
static inline int ShiftOfOperandSize(OperandSize size) {
switch (size) {
case kByte:
case kUnsignedByte:
return 0;
case kTwoBytes:
case kUnsignedTwoBytes:
return 1;
case kFourBytes:
case kUnsignedFourBytes:
return 2;
case kWordPair:
return 3;
case kSWord:
case kDWord:
return 0;
default:
UNREACHABLE();
break;
}
UNREACHABLE();
return -1;
}
void Assembler::EmitSIMDqqq(int32_t opcode,
OperandSize size,
QRegister qd,
QRegister qn,
QRegister qm) {
ASSERT(TargetCPUFeatures::neon_supported());
int sz = ShiftOfOperandSize(size);
int32_t encoding =
(static_cast<int32_t>(kSpecialCondition) << kConditionShift) | B25 | B6 |
opcode | ((sz & 0x3) * B20) |
((static_cast<int32_t>(qd * 2) >> 4) * B22) |
((static_cast<int32_t>(qn * 2) & 0xf) * B16) |
((static_cast<int32_t>(qd * 2) & 0xf) * B12) |
((static_cast<int32_t>(qn * 2) >> 4) * B7) |
((static_cast<int32_t>(qm * 2) >> 4) * B5) |
(static_cast<int32_t>(qm * 2) & 0xf);
Emit(encoding);
}
void Assembler::EmitSIMDddd(int32_t opcode,
OperandSize size,
DRegister dd,
DRegister dn,
DRegister dm) {
ASSERT(TargetCPUFeatures::neon_supported());
int sz = ShiftOfOperandSize(size);
int32_t encoding =
(static_cast<int32_t>(kSpecialCondition) << kConditionShift) | B25 |
opcode | ((sz & 0x3) * B20) | ((static_cast<int32_t>(dd) >> 4) * B22) |
((static_cast<int32_t>(dn) & 0xf) * B16) |
((static_cast<int32_t>(dd) & 0xf) * B12) |
((static_cast<int32_t>(dn) >> 4) * B7) |
((static_cast<int32_t>(dm) >> 4) * B5) | (static_cast<int32_t>(dm) & 0xf);
Emit(encoding);
}
void Assembler::vmovq(QRegister qd, QRegister qm) {
EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qm, qm);
}
void Assembler::vaddqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B11, sz, qd, qn, qm);
}
void Assembler::vaddqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B8, kSWord, qd, qn, qm);
}
void Assembler::vsubqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B24 | B11, sz, qd, qn, qm);
}
void Assembler::vsubqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B8, kSWord, qd, qn, qm);
}
void Assembler::vmulqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B11 | B8 | B4, sz, qd, qn, qm);
}
void Assembler::vmulqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B11 | B10 | B8 | B4, kSWord, qd, qn, qm);
}
void Assembler::vshlqi(OperandSize sz,
QRegister qd,
QRegister qm,
QRegister qn) {
EmitSIMDqqq(B25 | B10, sz, qd, qn, qm);
}
void Assembler::vshlqu(OperandSize sz,
QRegister qd,
QRegister qm,
QRegister qn) {
EmitSIMDqqq(B25 | B24 | B10, sz, qd, qn, qm);
}
void Assembler::veorq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vorrq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vornq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B20 | B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vandq(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B8 | B4, kByte, qd, qn, qm);
}
void Assembler::vmvnq(QRegister qd, QRegister qm) {
EmitSIMDqqq(B25 | B24 | B23 | B10 | B8 | B7, kWordPair, qd, Q0, qm);
}
void Assembler::vminqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
}
void Assembler::vmaxqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9 | B8, kSWord, qd, qn, qm);
}
void Assembler::vabsqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8, kSWord, qd, Q0,
qm);
}
void Assembler::vnegqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B16 | B10 | B9 | B8 | B7, kSWord,
qd, Q0, qm);
}
void Assembler::vrecpeqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8, kSWord, qd,
Q0, qm);
}
void Assembler::vrecpsqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
}
void Assembler::vrsqrteqs(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B16 | B10 | B8 | B7, kSWord,
qd, Q0, qm);
}
void Assembler::vrsqrtsqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B21 | B11 | B10 | B9 | B8 | B4, kSWord, qd, qn, qm);
}
void Assembler::vdup(OperandSize sz, QRegister qd, DRegister dm, int idx) {
ASSERT((sz != kDWord) && (sz != kSWord) && (sz != kWordPair));
int code = 0;
switch (sz) {
case kByte:
case kUnsignedByte: {
ASSERT((idx >= 0) && (idx < 8));
code = 1 | (idx << 1);
break;
}
case kTwoBytes:
case kUnsignedTwoBytes: {
ASSERT((idx >= 0) && (idx < 4));
code = 2 | (idx << 2);
break;
}
case kFourBytes:
case kUnsignedFourBytes: {
ASSERT((idx >= 0) && (idx < 2));
code = 4 | (idx << 3);
break;
}
default: {
break;
}
}
EmitSIMDddd(B24 | B23 | B11 | B10 | B6, kWordPair,
static_cast<DRegister>(qd * 2),
static_cast<DRegister>(code & 0xf), dm);
}
void Assembler::vtbl(DRegister dd, DRegister dn, int len, DRegister dm) {
ASSERT((len >= 1) && (len <= 4));
EmitSIMDddd(B24 | B23 | B11 | ((len - 1) * B8), kWordPair, dd, dn, dm);
}
void Assembler::vzipqw(QRegister qd, QRegister qm) {
EmitSIMDqqq(B24 | B23 | B21 | B20 | B19 | B17 | B8 | B7, kByte, qd, Q0, qm);
}
void Assembler::vceqqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B24 | B11 | B4, sz, qd, qn, qm);
}
void Assembler::vceqqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B11 | B10 | B9, kSWord, qd, qn, qm);
}
void Assembler::vcgeqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B9 | B8 | B4, sz, qd, qn, qm);
}
void Assembler::vcugeqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B24 | B9 | B8 | B4, sz, qd, qn, qm);
}
void Assembler::vcgeqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B11 | B10 | B9, kSWord, qd, qn, qm);
}
void Assembler::vcgtqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B9 | B8, sz, qd, qn, qm);
}
void Assembler::vcugtqi(OperandSize sz,
QRegister qd,
QRegister qn,
QRegister qm) {
EmitSIMDqqq(B24 | B9 | B8, sz, qd, qn, qm);
}
void Assembler::vcgtqs(QRegister qd, QRegister qn, QRegister qm) {
EmitSIMDqqq(B24 | B21 | B11 | B10 | B9, kSWord, qd, qn, qm);
}
void Assembler::bkpt(uint16_t imm16) {
Emit(BkptEncoding(imm16));
}
void Assembler::b(Label* label, Condition cond) {
EmitBranch(cond, label, false);
}
void Assembler::bl(Label* label, Condition cond) {
EmitBranch(cond, label, true);
}
void Assembler::bx(Register rm, Condition cond) {
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B21 | (0xfff << 8) | B4 | ArmEncode::Rm(rm);
Emit(encoding);
}
void Assembler::blx(Register rm, Condition cond) {
ASSERT(rm != kNoRegister);
ASSERT(cond != kNoCondition);
int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) | B24 |
B21 | (0xfff << 8) | B5 | B4 | ArmEncode::Rm(rm);
Emit(encoding);
}
void Assembler::MarkExceptionHandler(Label* label) {
EmitType01(AL, 1, TST, 1, PC, R0, Operand(0));
Label l;
b(&l);
EmitBranch(AL, label, false);
Bind(&l);
}
void Assembler::Drop(intptr_t stack_elements) {
ASSERT(stack_elements >= 0);
if (stack_elements > 0) {
AddImmediate(SP, stack_elements * target::kWordSize);
}
}
intptr_t Assembler::FindImmediate(int32_t imm) {
return object_pool_builder().FindImmediate(imm);
}
// Uses a code sequence that can easily be decoded.
void Assembler::LoadWordFromPoolIndex(Register rd,
intptr_t index,
Register pp,
Condition cond) {
ASSERT((pp != PP) || constant_pool_allowed());
ASSERT(rd != pp);
// PP is tagged on ARM.
const int32_t offset =
target::ObjectPool::element_offset(index) - kHeapObjectTag;
int32_t offset_mask = 0;
if (Address::CanHoldLoadOffset(kFourBytes, offset, &offset_mask)) {
ldr(rd, Address(pp, offset), cond);
} else {
int32_t offset_hi = offset & ~offset_mask; // signed
uint32_t offset_lo = offset & offset_mask; // unsigned
// Inline a simplified version of AddImmediate(rd, pp, offset_hi).
Operand o;
if (Operand::CanHold(offset_hi, &o)) {
add(rd, pp, o, cond);
} else {
LoadImmediate(rd, offset_hi, cond);
add(rd, pp, Operand(rd), cond);
}
ldr(rd, Address(rd, offset_lo), cond);
}
}
void Assembler::CheckCodePointer() {
#ifdef DEBUG
if (!FLAG_check_code_pointer) {
return;
}
Comment("CheckCodePointer");
Label cid_ok, instructions_ok;
Push(R0);
Push(IP);
CompareClassId(CODE_REG, kCodeCid, R0);
b(&cid_ok, EQ);
bkpt(0);
Bind(&cid_ok);
const intptr_t offset = CodeSize() + Instr::kPCReadOffset +
target::Instructions::HeaderSize() - kHeapObjectTag;
mov(R0, Operand(PC));
AddImmediate(R0, -offset);
ldr(IP, FieldAddress(CODE_REG, target::Code::saved_instructions_offset()));
cmp(R0, Operand(IP));
b(&instructions_ok, EQ);
bkpt(1);
Bind(&instructions_ok);
Pop(IP);
Pop(R0);
#endif
}
void Assembler::RestoreCodePointer() {
ldr(CODE_REG,
Address(FP, target::frame_layout.code_from_fp * target::kWordSize));
CheckCodePointer();
}
void Assembler::LoadPoolPointer(Register reg) {
// Load new pool pointer.
CheckCodePointer();
ldr(reg, FieldAddress(CODE_REG, target::Code::object_pool_offset()));
set_constant_pool_allowed(reg == PP);
}
void Assembler::SetupGlobalPoolAndDispatchTable() {
ASSERT(FLAG_precompiled_mode && FLAG_use_bare_instructions);
ldr(PP, Address(THR, target::Thread::global_object_pool_offset()));
if (FLAG_use_table_dispatch) {
ldr(DISPATCH_TABLE_REG,
Address(THR, target::Thread::dispatch_table_array_offset()));
}
}
void Assembler::LoadIsolate(Register rd) {
ldr(rd, Address(THR, target::Thread::isolate_offset()));
}
void Assembler::LoadIsolateGroup(Register rd) {
ldr(rd, Address(THR, target::Thread::isolate_group_offset()));
}
bool Assembler::CanLoadFromObjectPool(const Object& object) const {
ASSERT(IsOriginalObject(object));
if (!constant_pool_allowed()) {
return false;
}
ASSERT(IsNotTemporaryScopedHandle(object));
ASSERT(IsInOldSpace(object));
return true;
}
void Assembler::LoadObjectHelper(Register rd,
const Object& object,
Condition cond,
bool is_unique,
Register pp) {
ASSERT(IsOriginalObject(object));
// `is_unique == true` effectively means object has to be patchable.
if (!is_unique) {
intptr_t offset = 0;
if (target::CanLoadFromThread(object, &offset)) {
// Load common VM constants from the thread. This works also in places
// where no constant pool is set up (e.g. intrinsic code).
ldr(rd, Address(THR, offset), cond);
return;
}
if (target::IsSmi(object)) {
// Relocation doesn't apply to Smis.
LoadImmediate(rd, target::ToRawSmi(object), cond);
return;
}
}
RELEASE_ASSERT(CanLoadFromObjectPool(object));
// Make sure that class CallPattern is able to decode this load from the
// object pool.
const auto index = is_unique ? object_pool_builder().AddObject(object)
: object_pool_builder().FindObject(object);
LoadWordFromPoolIndex(rd, index, pp, cond);
}
void Assembler::LoadObject(Register rd, const Object& object, Condition cond) {
LoadObjectHelper(rd, object, cond, /* is_unique = */ false, PP);
}
void Assembler::LoadUniqueObject(Register rd,
const Object& object,
Condition cond) {
LoadObjectHelper(rd, object, cond, /* is_unique = */ true, PP);
}
void Assembler::LoadNativeEntry(Register rd,
const ExternalLabel* label,
ObjectPoolBuilderEntry::Patchability patchable,
Condition cond) {
const intptr_t index =
object_pool_builder().FindNativeFunction(label, patchable);
LoadWordFromPoolIndex(rd, index, PP, cond);
}
void Assembler::PushObject(const Object& object) {
ASSERT(IsOriginalObject(object));
LoadObject(IP, object);
Push(IP);
}
void Assembler::CompareObject(Register rn, const Object& object) {
ASSERT(IsOriginalObject(object));
ASSERT(rn != IP);
if (target::IsSmi(object)) {
CompareImmediate(rn, target::ToRawSmi(object));
} else {
LoadObject(IP, object);
cmp(rn, Operand(IP));
}
}
// Preserves object and value registers.
void Assembler::StoreIntoObjectFilter(Register object,
Register value,
Label* label,
CanBeSmi value_can_be_smi,
BarrierFilterMode how_to_jump) {
COMPILE_ASSERT((target::ObjectAlignment::kNewObjectAlignmentOffset ==
target::kWordSize) &&
(target::ObjectAlignment::kOldObjectAlignmentOffset == 0));
// For the value we are only interested in the new/old bit and the tag bit.
// And the new bit with the tag bit. The resulting bit will be 0 for a Smi.
if (value_can_be_smi == kValueCanBeSmi) {
and_(
IP, value,
Operand(value, LSL, target::ObjectAlignment::kObjectAlignmentLog2 - 1));
// And the result with the negated space bit of the object.
bic(IP, IP, Operand(object));
} else {
#if defined(DEBUG)
Label okay;
BranchIfNotSmi(value, &okay);
Stop("Unexpected Smi!");
Bind(&okay);
#endif
bic(IP, value, Operand(object));
}
tst(IP, Operand(target::ObjectAlignment::kNewObjectAlignmentOffset));
if (how_to_jump != kNoJump) {
b(label, how_to_jump == kJumpToNoUpdate ? EQ : NE);
}
}
Register UseRegister(Register reg, RegList* used) {
ASSERT(reg != THR);
ASSERT(reg != SP);
ASSERT(reg != FP);
ASSERT(reg != PC);
ASSERT((*used & (1 << reg)) == 0);
*used |= (1 << reg);
return reg;
}
Register AllocateRegister(RegList* used) {
const RegList free = ~*used;
return (free == 0)
? kNoRegister
: UseRegister(
static_cast<Register>(Utils::CountTrailingZerosWord(free)),
used);
}
void Assembler::StoreIntoObject(Register object,
const Address& dest,
Register value,
CanBeSmi can_be_smi) {
// x.slot = x. Barrier should have be removed at the IL level.
ASSERT(object != value);
ASSERT(object != LINK_REGISTER);
ASSERT(value != LINK_REGISTER);
ASSERT(object != TMP);
ASSERT(value != TMP);
str(value, dest);
// In parallel, test whether
// - object is old and not remembered and value is new, or
// - object is old and value is old and not marked and concurrent marking is
// in progress
// If so, call the WriteBarrier stub, which will either add object to the
// store buffer (case 1) or add value to the marking stack (case 2).
// Compare UntaggedObject::StorePointer.
Label done;
if (can_be_smi == kValueCanBeSmi) {
BranchIfSmi(value, &done);
}
const bool preserve_lr = lr_state().LRContainsReturnAddress();
if (preserve_lr) {
SPILLS_LR_TO_FRAME(Push(LR));
}
CLOBBERS_LR({
ldrb(TMP, FieldAddress(object, target::Object::tags_offset()));
ldrb(LR, FieldAddress(value, target::Object::tags_offset()));
and_(TMP, LR,
Operand(TMP, LSR, target::UntaggedObject::kBarrierOverlapShift));
ldr(LR, Address(THR, target::Thread::write_barrier_mask_offset()));
tst(TMP, Operand(LR));
});
if (value != kWriteBarrierValueReg) {
// Unlikely. Only non-graph intrinsics.
// TODO(rmacnak): Shuffle registers in intrinsics.
Label restore_and_done;
b(&restore_and_done, ZERO);
Register objectForCall = object;
if (object != kWriteBarrierValueReg) {
Push(kWriteBarrierValueReg);
} else {
COMPILE_ASSERT(R2 != kWriteBarrierValueReg);
COMPILE_ASSERT(R3 != kWriteBarrierValueReg);
objectForCall = (value == R2) ? R3 : R2;
PushList((1 << kWriteBarrierValueReg) | (1 << objectForCall));
mov(objectForCall, Operand(object));
}
mov(kWriteBarrierValueReg, Operand(value));
generate_invoke_write_barrier_wrapper_(AL, objectForCall);
if (object != kWriteBarrierValueReg) {
Pop(kWriteBarrierValueReg);
} else {
PopList((1 << kWriteBarrierValueReg) | (1 << objectForCall));
}
Bind(&restore_and_done);
} else {
generate_invoke_write_barrier_wrapper_(NE, object);
}
if (preserve_lr) {
RESTORES_LR_FROM_FRAME(Pop(LR));
}
Bind(&done);
}
void Assembler::StoreIntoArray(Register object,
Register slot,
Register value,
CanBeSmi can_be_smi) {
// x.slot = x. Barrier should have be removed at the IL level.
ASSERT(object != value);
ASSERT(object != LINK_REGISTER);
ASSERT(value != LINK_REGISTER);
ASSERT(slot != LINK_REGISTER);
ASSERT(object != TMP);
ASSERT(value != TMP);
ASSERT(slot != TMP);
str(value, Address(slot, 0));
// In parallel, test whether
// - object is old and not remembered and value is new, or
// - object is old and value is old and not marked and concurrent marking is
// in progress
// If so, call the WriteBarrier stub, which will either add object to the
// store buffer (case 1) or add value to the marking stack (case 2).
// Compare UntaggedObject::StorePointer.
Label done;
if (can_be_smi == kValueCanBeSmi) {
BranchIfSmi(value, &done);
}
const bool preserve_lr = lr_state().LRContainsReturnAddress();
if (preserve_lr) {
SPILLS_LR_TO_FRAME(Push(LR));
}
CLOBBERS_LR({
ldrb(TMP, FieldAddress(object, target::Object::tags_offset()));
ldrb(LR, FieldAddress(value, target::Object::tags_offset()));
and_(TMP, LR,
Operand(TMP, LSR, target::UntaggedObject::kBarrierOverlapShift));
ldr(LR, Address(THR, target::Thread::write_barrier_mask_offset()));
tst(TMP, Operand(LR));
});
if ((object != kWriteBarrierObjectReg) || (value != kWriteBarrierValueReg) ||
(slot != kWriteBarrierSlotReg)) {
// Spill and shuffle unimplemented. Currently StoreIntoArray is only used
// from StoreIndexInstr, which gets these exact registers from the register
// allocator.
UNIMPLEMENTED();
}
generate_invoke_array_write_barrier_(NE);
if (preserve_lr) {
RESTORES_LR_FROM_FRAME(Pop(LR));
}
Bind(&done);
}
void Assembler::StoreIntoObjectOffset(Register object,
int32_t offset,
Register value,
CanBeSmi can_value_be_smi) {
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kFourBytes, offset - kHeapObjectTag,
&ignored)) {
StoreIntoObject(object, FieldAddress(object, offset), value,
can_value_be_smi);
} else {
AddImmediate(IP, object, offset - kHeapObjectTag);
StoreIntoObject(object, Address(IP), value, can_value_be_smi);
}
}
void Assembler::StoreIntoObjectNoBarrier(Register object,
const Address& dest,
Register value) {
str(value, dest);
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value, &done, kValueCanBeSmi, kJumpToNoUpdate);
ldrb(TMP, FieldAddress(object, target::Object::tags_offset()));
tst(TMP, Operand(1 << target::UntaggedObject::kOldAndNotRememberedBit));
b(&done, ZERO);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::StoreIntoObjectNoBarrier(Register object,
const Address& dest,
const Object& value) {
ASSERT(IsOriginalObject(value));
ASSERT(IsNotTemporaryScopedHandle(value));
// No store buffer update.
LoadObject(IP, value);
str(IP, dest);
}
void Assembler::StoreIntoObjectNoBarrierOffset(Register object,
int32_t offset,
Register value) {
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kFourBytes, offset - kHeapObjectTag,
&ignored)) {
StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value);
} else {
Register base = object == R9 ? R8 : R9;
Push(base);
AddImmediate(base, object, offset - kHeapObjectTag);
StoreIntoObjectNoBarrier(object, Address(base), value);
Pop(base);
}
}
void Assembler::StoreIntoObjectNoBarrierOffset(Register object,
int32_t offset,
const Object& value) {
ASSERT(IsOriginalObject(value));
int32_t ignored = 0;
if (Address::CanHoldStoreOffset(kFourBytes, offset - kHeapObjectTag,
&ignored)) {
StoreIntoObjectNoBarrier(object, FieldAddress(object, offset), value);
} else {
Register base = object == R9 ? R8 : R9;
Push(base);
AddImmediate(base, object, offset - kHeapObjectTag);
StoreIntoObjectNoBarrier(object, Address(base), value);
Pop(base);
}
}
void Assembler::StoreInternalPointer(Register object,
const Address& dest,
Register value) {
str(value, dest);
}
void Assembler::InitializeFieldsNoBarrier(Register object,
Register begin,
Register end,
Register value_even,
Register value_odd) {
ASSERT(value_odd == value_even + 1);
Label init_loop;
Bind(&init_loop);
AddImmediate(begin, 2 * target::kWordSize);
cmp(begin, Operand(end));
strd(value_even, value_odd, begin, -2 * target::kWordSize, LS);
b(&init_loop, CC);
str(value_even, Address(begin, -2 * target::kWordSize), HI);
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value_even, &done, kValueCanBeSmi,
kJumpToNoUpdate);
StoreIntoObjectFilter(object, value_odd, &done, kValueCanBeSmi,
kJumpToNoUpdate);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::InitializeFieldsNoBarrierUnrolled(Register object,
Register base,
intptr_t begin_offset,
intptr_t end_offset,
Register value_even,
Register value_odd) {
ASSERT(value_odd == value_even + 1);
intptr_t current_offset = begin_offset;
while (current_offset + target::kWordSize < end_offset) {
strd(value_even, value_odd, base, current_offset);
current_offset += 2 * target::kWordSize;
}
while (current_offset < end_offset) {
str(value_even, Address(base, current_offset));
current_offset += target::kWordSize;
}
#if defined(DEBUG)
Label done;
StoreIntoObjectFilter(object, value_even, &done, kValueCanBeSmi,
kJumpToNoUpdate);
StoreIntoObjectFilter(object, value_odd, &done, kValueCanBeSmi,
kJumpToNoUpdate);
Stop("Store buffer update is required");
Bind(&done);
#endif // defined(DEBUG)
// No store buffer update.
}
void Assembler::StoreIntoSmiField(const Address& dest, Register value) {
#if defined(DEBUG)
Label done;
tst(value, Operand(kHeapObjectTag));
b(&done, EQ);
Stop("New value must be Smi.");
Bind(&done);
#endif // defined(DEBUG)
str(value, dest);
}
void Assembler::ExtractClassIdFromTags(Register result, Register tags) {
ASSERT(target::UntaggedObject::kClassIdTagPos == 16);
ASSERT(target::UntaggedObject::kClassIdTagSize == 16);
Lsr(result, tags, Operand(target::UntaggedObject::kClassIdTagPos), AL);
}
void Assembler::ExtractInstanceSizeFromTags(Register result, Register tags) {
ASSERT(target::UntaggedObject::kSizeTagPos == 8);
ASSERT(target::UntaggedObject::kSizeTagSize == 8);
Lsr(result, tags,
Operand(target::UntaggedObject::kSizeTagPos -
target::ObjectAlignment::kObjectAlignmentLog2),
AL);
AndImmediate(result, result,
(Utils::NBitMask(target::UntaggedObject::kSizeTagSize)
<< target::ObjectAlignment::kObjectAlignmentLog2));
}
void Assembler::LoadClassId(Register result, Register object, Condition cond) {
ASSERT(target::UntaggedObject::kClassIdTagPos == 16);
ASSERT(target::UntaggedObject::kClassIdTagSize == 16);
const intptr_t class_id_offset =
target::Object::tags_offset() +
target::UntaggedObject::kClassIdTagPos / kBitsPerByte;
ldrh(result, FieldAddress(object, class_id_offset), cond);
}
void Assembler::LoadClassById(Register result, Register class_id) {
ASSERT(result != class_id);
const intptr_t table_offset =
target::IsolateGroup::cached_class_table_table_offset();
LoadIsolateGroup(result);
LoadFromOffset(result, result, table_offset);
ldr(result, Address(result, class_id, LSL, target::kWordSizeLog2));
}
void Assembler::CompareClassId(Register object,
intptr_t class_id,
Register scratch) {
LoadClassId(scratch, object);
CompareImmediate(scratch, class_id);
}
void Assembler::LoadClassIdMayBeSmi(Register result, Register object) {
tst(object, Operand(kSmiTagMask));
LoadClassId(result, object, NE);
LoadImmediate(result, kSmiCid, EQ);
}
void Assembler::LoadTaggedClassIdMayBeSmi(Register result, Register object) {
LoadClassIdMayBeSmi(result, object);
SmiTag(result);
}
void Assembler::BailoutIfInvalidBranchOffset(int32_t offset) {
if (!CanEncodeBranchDistance(offset)) {
ASSERT(!use_far_branches());
BailoutWithBranchOffsetError();
}
}
int32_t Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) {
// The offset is off by 8 due to the way the ARM CPUs read PC.
offset -= Instr::kPCReadOffset;
// Properly preserve only the bits supported in the instruction.
offset >>= 2;
offset &= kBranchOffsetMask;
return (inst & ~kBranchOffsetMask) | offset;
}
int Assembler::DecodeBranchOffset(int32_t inst) {
// Sign-extend, left-shift by 2, then add 8.
return ((((inst & kBranchOffsetMask) << 8) >> 6) + Instr::kPCReadOffset);
}
static int32_t DecodeARMv7LoadImmediate(int32_t movt, int32_t movw) {
int32_t offset = 0;
offset |= (movt & 0xf0000) << 12;
offset |= (movt & 0xfff) << 16;
offset |= (movw & 0xf0000) >> 4;
offset |= movw & 0xfff;
return offset;
}
class PatchFarBranch : public AssemblerFixup {
public:
PatchFarBranch() {}
void Process(const MemoryRegion& region, intptr_t position) {
ProcessARMv7(region, position);
}
private:
void ProcessARMv7(const MemoryRegion& region, intptr_t position) {
const int32_t movw = region.Load<int32_t>(position);
const int32_t movt = region.Load<int32_t>(position + Instr::kInstrSize);
const int32_t bx = region.Load<int32_t>(position + 2 * Instr::kInstrSize);
if (((movt & 0xfff0f000) == 0xe340c000) && // movt IP, high
((movw & 0xfff0f000) == 0xe300c000)) { // movw IP, low
const int32_t offset = DecodeARMv7LoadImmediate(movt, movw);
const int32_t dest = region.start() + offset;
const uint16_t dest_high = Utils::High16Bits(dest);
const uint16_t dest_low = Utils::Low16Bits(dest);
const int32_t patched_movt =
0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
const int32_t patched_movw =
0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
region.Store<int32_t>(position, patched_movw);
region.Store<int32_t>(position + Instr::kInstrSize, patched_movt);
return;
}
// If the offset loading instructions aren't there, we must have replaced
// the far branch with a near one, and so these instructions
// should be NOPs.
ASSERT((movt == Instr::kNopInstruction) && (bx == Instr::kNopInstruction));
}
virtual bool IsPointerOffset() const { return false; }
};
void Assembler::EmitFarBranch(Condition cond, int32_t offset, bool link) {
buffer_.EmitFixup(new PatchFarBranch());
LoadPatchableImmediate(IP, offset);
if (link) {
blx(IP, cond);
} else {
bx(IP, cond);
}
}
void Assembler::EmitBranch(Condition cond, Label* label, bool link) {
if (label->IsBound()) {
const int32_t dest = label->Position() - buffer_.Size();
if (use_far_branches() && !CanEncodeBranchDistance(dest)) {
EmitFarBranch(cond, label->Position(), link);
} else {
EmitType5(cond, dest, link);
}
label->UpdateLRState(lr_state());
} else {
const intptr_t position = buffer_.Size();
if (use_far_branches()) {
const int32_t dest = label->position_;
EmitFarBranch(cond, dest, link);
} else {
// Use the offset field of the branch instruction for linking the sites.
EmitType5(cond, label->position_, link);
}
label->LinkTo(position, lr_state());
}
}
void Assembler::BindARMv7(Label* label) {
ASSERT(!label->IsBound());
intptr_t bound_pc = buffer_.Size();
while (label->IsLinked()) {
const int32_t position = label->Position();
int32_t dest = bound_pc - position;
if (use_far_branches() && !CanEncodeBranchDistance(dest)) {
// Far branches are enabled and we can't encode the branch offset.
// Grab instructions that load the offset.
const int32_t movw =
buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize);
const int32_t movt =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
// Change from relative to the branch to relative to the assembler
// buffer.
dest = buffer_.Size();
const uint16_t dest_high = Utils::High16Bits(dest);
const uint16_t dest_low = Utils::Low16Bits(dest);
const int32_t patched_movt =
0xe340c000 | ((dest_high >> 12) << 16) | (dest_high & 0xfff);
const int32_t patched_movw =
0xe300c000 | ((dest_low >> 12) << 16) | (dest_low & 0xfff);
// Rewrite the instructions.
buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, patched_movw);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize, patched_movt);
label->position_ = DecodeARMv7LoadImmediate(movt, movw);
} else if (use_far_branches() && CanEncodeBranchDistance(dest)) {
// Far branches are enabled, but we can encode the branch offset.
// Grab instructions that load the offset, and the branch.
const int32_t movw =
buffer_.Load<int32_t>(position + 0 * Instr::kInstrSize);
const int32_t movt =
buffer_.Load<int32_t>(position + 1 * Instr::kInstrSize);
const int32_t branch =
buffer_.Load<int32_t>(position + 2 * Instr::kInstrSize);
// Grab the branch condition, and encode the link bit.
const int32_t cond = branch & 0xf0000000;
const int32_t link = (branch & 0x20) << 19;
// Encode the branch and the offset.
const int32_t new_branch = cond | link | 0x0a000000;
const int32_t encoded = EncodeBranchOffset(dest, new_branch);
// Write the encoded branch instruction followed by two nops.
buffer_.Store<int32_t>(position + 0 * Instr::kInstrSize, encoded);
buffer_.Store<int32_t>(position + 1 * Instr::kInstrSize,
Instr::kNopInstruction);
buffer_.Store<int32_t>(position + 2 * Instr::kInstrSize,
Instr::kNopInstruction);
label->position_ = DecodeARMv7LoadImmediate(movt, movw);
} else {
BailoutIfInvalidBranchOffset(dest);
int32_t next = buffer_.Load<int32_t>(position);
int32_t encoded = Assembler::EncodeBranchOffset(dest, next);
buffer_.Store<int32_t>(position, encoded);
label->position_ = Assembler::DecodeBranchOffset(next);
}
}
label->BindTo(bound_pc, lr_state());
}
void Assembler::Bind(Label* label) {
BindARMv7(label);
}
OperandSize Address::OperandSizeFor(intptr_t cid) {
switch (cid) {
case kArrayCid:
case kImmutableArrayCid:
case kTypeArgumentsCid:
return kFourBytes;
case kOneByteStringCid:
case kExternalOneByteStringCid:
return kByte;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
return kTwoBytes;
case kTypedDataInt8ArrayCid:
return kByte;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
return kUnsignedByte;
case kTypedDataInt16ArrayCid:
return kTwoBytes;
case kTypedDataUint16ArrayCid:
return kUnsignedTwoBytes;
case kTypedDataInt32ArrayCid:
return kFourBytes;
case kTypedDataUint32ArrayCid:
return kUnsignedFourBytes;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return kDWord;
case kTypedDataFloat32ArrayCid:
return kSWord;
case kTypedDataFloat64ArrayCid:
return kDWord;
case kTypedDataFloat32x4ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
return kRegList;
case kTypedDataInt8ArrayViewCid:
UNREACHABLE();
return kByte;
default:
UNREACHABLE();
return kByte;
}
}
bool Address::CanHoldLoadOffset(OperandSize size,
int32_t offset,
int32_t* offset_mask) {
switch (size) {
case kByte:
case kTwoBytes:
case kUnsignedTwoBytes:
case kWordPair: {
*offset_mask = 0xff;
return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
}
case kUnsignedByte:
case kFourBytes:
case kUnsignedFourBytes: {
*offset_mask = 0xfff;
return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
}
case kSWord:
case kDWord: {
*offset_mask = 0x3fc; // Multiple of 4.
// VFP addressing mode.
return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
}
case kRegList: {
*offset_mask = 0x0;
return offset == 0;
}
default: {
UNREACHABLE();
return false;
}
}
}
bool Address::CanHoldStoreOffset(OperandSize size,
int32_t offset,
int32_t* offset_mask) {
switch (size) {
case kTwoBytes:
case kUnsignedTwoBytes:
case kWordPair: {
*offset_mask = 0xff;
return Utils::IsAbsoluteUint(8, offset); // Addressing mode 3.
}
case kByte:
case kUnsignedByte:
case kFourBytes:
case kUnsignedFourBytes: {
*offset_mask = 0xfff;
return Utils::IsAbsoluteUint(12, offset); // Addressing mode 2.
}
case kSWord:
case kDWord: {
*offset_mask = 0x3fc; // Multiple of 4.
// VFP addressing mode.
return (Utils::IsAbsoluteUint(10, offset) && Utils::IsAligned(offset, 4));
}
case kRegList: {
*offset_mask = 0x0;
return offset == 0;
}
default: {
UNREACHABLE();
return false;
}
}
}
bool Address::CanHoldImmediateOffset(bool is_load,
intptr_t cid,
int64_t offset) {
int32_t offset_mask = 0;
if (is_load) {
return CanHoldLoadOffset(OperandSizeFor(cid), offset, &offset_mask);
} else {
return CanHoldStoreOffset(OperandSizeFor(cid), offset, &offset_mask);
}
}
void Assembler::Push(Register rd, Condition cond) {
str(rd, Address(SP, -target::kWordSize, Address::PreIndex), cond);
}
void Assembler::Pop(Register rd, Condition cond) {
ldr(rd, Address(SP, target::kWordSize, Address::PostIndex), cond);
}
void Assembler::PushList(RegList regs, Condition cond) {
stm(DB_W, SP, regs, cond);
}
void Assembler::PopList(RegList regs, Condition cond) {
ldm(IA_W, SP, regs, cond);
}
void Assembler::PushRegisters(const RegisterSet& regs) {
const intptr_t fpu_regs_count = regs.FpuRegisterCount();
if (fpu_regs_count > 0) {
AddImmediate(SP, -(fpu_regs_count * kFpuRegisterSize));
// Store fpu registers with the lowest register number at the lowest
// address.
intptr_t offset = 0;
mov(TMP, Operand(SP));
for (intptr_t i = 0; i < kNumberOfFpuRegisters; ++i) {
QRegister fpu_reg = static_cast<QRegister>(i);
if (regs.ContainsFpuRegister(fpu_reg)) {
DRegister d = EvenDRegisterOf(fpu_reg);
ASSERT(d + 1 == OddDRegisterOf(fpu_reg));
vstmd(IA_W, IP, d, 2);
offset += kFpuRegisterSize;
}
}
ASSERT(offset == (fpu_regs_count * kFpuRegisterSize));
}
// The order in which the registers are pushed must match the order
// in which the registers are encoded in the safe point's stack map.
// NOTE: This matches the order of ARM's multi-register push.
RegList reg_list = 0;
for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) {
Register reg = static_cast<Register>(i);
if (regs.ContainsRegister(reg)) {
reg_list |= (1 << reg);
}
}
if (reg_list != 0) {
PushList(reg_list);
}
}
void Assembler::PopRegisters(const RegisterSet& regs) {
RegList reg_list = 0;
for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; --i) {
Register reg = static_cast<Register>(i);
if (regs.ContainsRegister(reg)) {
reg_list |= (1 << reg);
}
}
if (reg_list != 0) {
PopList(reg_list);
}
const intptr_t fpu_regs_count = regs.FpuRegisterCount();
if (fpu_regs_count > 0) {
// Fpu registers have the lowest register number at the lowest address.
intptr_t offset = 0;
for (intptr_t i = 0; i < kNumberOfFpuRegisters; ++i) {
QRegister fpu_reg = static_cast<QRegister>(i);
if (regs.ContainsFpuRegister(fpu_reg)) {
DRegister d = EvenDRegisterOf(fpu_reg);
ASSERT(d + 1 == OddDRegisterOf(fpu_reg));
vldmd(IA_W, SP, d, 2);
offset += kFpuRegisterSize;
}
}
ASSERT(offset == (fpu_regs_count * kFpuRegisterSize));
}
}
void Assembler::PushNativeCalleeSavedRegisters() {
// Save new context and C++ ABI callee-saved registers.
PushList(kAbiPreservedCpuRegs);
const DRegister firstd = EvenDRegisterOf(kAbiFirstPreservedFpuReg);
if (TargetCPUFeatures::vfp_supported()) {
ASSERT(2 * kAbiPreservedFpuRegCount < 16);
// Save FPU registers. 2 D registers per Q register.
vstmd(DB_W, SP, firstd, 2 * kAbiPreservedFpuRegCount);
} else {
sub(SP, SP, Operand(kAbiPreservedFpuRegCount * kFpuRegisterSize));
}
}
void Assembler::PopNativeCalleeSavedRegisters() {
const DRegister firstd = EvenDRegisterOf(kAbiFirstPreservedFpuReg);
// Restore C++ ABI callee-saved registers.
if (TargetCPUFeatures::vfp_supported()) {
// Restore FPU registers. 2 D registers per Q register.
vldmd(IA_W, SP, firstd, 2 * kAbiPreservedFpuRegCount);
} else {
AddImmediate(SP, kAbiPreservedFpuRegCount * kFpuRegisterSize);
}
// Restore CPU registers.
PopList(kAbiPreservedCpuRegs);
}
void Assembler::MoveRegister(Register rd, Register rm, Condition cond) {
if (rd != rm) {
mov(rd, Operand(rm), cond);
}
}
void Assembler::Lsl(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
ASSERT(shift_imm.encoding() != 0); // Do not use Lsl if no shift is wanted.
mov(rd, Operand(rm, LSL, shift_imm.encoding()), cond);
}
void Assembler::Lsl(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, LSL, rs), cond);
}
void Assembler::Lsr(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Lsr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
mov(rd, Operand(rm, LSR, shift), cond);
}
void Assembler::Lsr(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, LSR, rs), cond);
}
void Assembler::Asr(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Asr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
mov(rd, Operand(rm, ASR, shift), cond);
}
void Assembler::Asrs(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
uint32_t shift = shift_imm.encoding();
ASSERT(shift != 0); // Do not use Asr if no shift is wanted.
if (shift == 32) {
shift = 0; // Comply to UAL syntax.
}
movs(rd, Operand(rm, ASR, shift), cond);
}
void Assembler::Asr(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, ASR, rs), cond);
}
void Assembler::Ror(Register rd,
Register rm,
const Operand& shift_imm,
Condition cond) {
ASSERT(shift_imm.type() == 1);
ASSERT(shift_imm.encoding() != 0); // Use Rrx instruction.
mov(rd, Operand(rm, ROR, shift_imm.encoding()), cond);
}
void Assembler::Ror(Register rd, Register rm, Register rs, Condition cond) {
mov(rd, Operand(rm, ROR, rs), cond);
}
void Assembler::Rrx(Register rd, Register rm, Condition cond) {
mov(rd, Operand(rm, ROR, 0), cond);
}
void Assembler::SignFill(Register rd, Register rm, Condition cond) {
Asr(rd, rm, Operand(31), cond);
}
void Assembler::Vreciprocalqs(QRegister qd, QRegister qm) {
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
// Reciprocal estimate.
vrecpeqs(qd, qm);
// 2 Newton-Raphson steps.
vrecpsqs(QTMP, qm, qd);
vmulqs(qd, qd, QTMP);
vrecpsqs(QTMP, qm, qd);
vmulqs(qd, qd, QTMP);
}
void Assembler::VreciprocalSqrtqs(QRegister qd, QRegister qm) {
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
// Reciprocal square root estimate.
vrsqrteqs(qd, qm);
// 2 Newton-Raphson steps. xn+1 = xn * (3 - Q1*xn^2) / 2.
// First step.
vmulqs(QTMP, qd, qd); // QTMP <- xn^2
vrsqrtsqs(QTMP, qm, QTMP); // QTMP <- (3 - Q1*QTMP) / 2.
vmulqs(qd, qd, QTMP); // xn+1 <- xn * QTMP
// Second step.
vmulqs(QTMP, qd, qd);
vrsqrtsqs(QTMP, qm, QTMP);
vmulqs(qd, qd, QTMP);
}
void Assembler::Vsqrtqs(QRegister qd, QRegister qm, QRegister temp) {
ASSERT(temp != QTMP);
ASSERT(qm != QTMP);
ASSERT(qd != QTMP);
if (temp != kNoQRegister) {
vmovq(temp, qm);
qm = temp;
}
VreciprocalSqrtqs(qd, qm);
vmovq(qm, qd);
Vreciprocalqs(qd, qm);
}
void Assembler::Vdivqs(QRegister qd, QRegister qn, QRegister qm) {
ASSERT(qd != QTMP);
ASSERT(qn != QTMP);
ASSERT(qm != QTMP);
Vreciprocalqs(qd, qm);
vmulqs(qd, qn, qd);
}
void Assembler::Branch(const Code& target,
ObjectPoolBuilderEntry::Patchability patchable,
Register pp,
Condition cond) {
const intptr_t index =
object_pool_builder().FindObject(ToObject(target), patchable);
LoadWordFromPoolIndex(CODE_REG, index, pp, cond);
Branch(FieldAddress(CODE_REG, target::Code::entry_point_offset()), cond);
}
void Assembler::Branch(const Address& address, Condition cond) {
ldr(PC, address, cond);
}
void Assembler::BranchLink(const Code& target,
ObjectPoolBuilderEntry::Patchability patchable,
CodeEntryKind entry_kind) {
// Make sure that class CallPattern is able to patch the label referred
// to by this code sequence.
// For added code robustness, use 'blx lr' in a patchable sequence and
// use 'blx ip' in a non-patchable sequence (see other BranchLink flavors).
const intptr_t index =
object_pool_builder().FindObject(ToObject(target), patchable);
LoadWordFromPoolIndex(CODE_REG, index, PP, AL);
Call(FieldAddress(CODE_REG, target::Code::entry_point_offset(entry_kind)));
}
void Assembler::BranchLinkPatchable(const Code& target,
CodeEntryKind entry_kind) {
BranchLink(target, ObjectPoolBuilderEntry::kPatchable, entry_kind);
}
void Assembler::BranchLinkToRuntime() {
ldr(IP, Address(THR, target::Thread::call_to_runtime_entry_point_offset()));
blx(IP);
}
void Assembler::BranchLinkWithEquivalence(const Code& target,
const Object& equivalence,
CodeEntryKind entry_kind) {
// Make sure that class CallPattern is able to patch the label referred
// to by this code sequence.
// For added code robustness, use 'blx lr' in a patchable sequence and
// use 'blx ip' in a non-patchable sequence (see other BranchLink flavors).
const intptr_t index =
object_pool_builder().FindObject(ToObject(target), equivalence);
LoadWordFromPoolIndex(CODE_REG, index, PP, AL);
Call(FieldAddress(CODE_REG, target::Code::entry_point_offset(entry_kind)));
}
void Assembler::BranchLink(const ExternalLabel* label) {
CLOBBERS_LR({
LoadImmediate(LR, label->address()); // Target address is never patched.
blx(LR); // Use blx instruction so that the return branch prediction works.
});
}
void Assembler::BranchLinkOffset(Register base, int32_t offset) {
ASSERT(base != PC);
ASSERT(base != IP);
LoadFromOffset(IP, base, offset);
blx(IP); // Use blx instruction so that the return branch prediction works.
}
void Assembler::LoadPatchableImmediate(Register rd,
int32_t value,
Condition cond) {
const uint16_t value_low = Utils::Low16Bits(value);
const uint16_t value_high = Utils::High16Bits(value);
movw(rd, value_low, cond);
movt(rd, value_high, cond);
}
void Assembler::LoadDecodableImmediate(Register rd,
int32_t value,
Condition cond) {
movw(rd, Utils::Low16Bits(value), cond);
const uint16_t value_high = Utils::High16Bits(value);
if (value_high != 0) {
movt(rd, value_high, cond);
}
}
void Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) {
Operand o;
if (Operand::CanHold(value, &o)) {
mov(rd, o, cond);
} else if (Operand::CanHold(~value, &o)) {
mvn(rd, o, cond);
} else {
LoadDecodableImmediate(rd, value, cond);
}
}
void Assembler::LoadSImmediate(SRegister sd, float value, Condition cond) {
if (!vmovs(sd, value, cond)) {
const DRegister dd = static_cast<DRegister>(sd >> 1);
const int index = sd & 1;
LoadImmediate(IP, bit_cast<int32_t, float>(value), cond);
vmovdr(dd, index, IP, cond);
}
}
void Assembler::LoadDImmediate(DRegister dd,
double value,
Register scratch,
Condition cond) {
ASSERT(scratch != PC);
ASSERT(scratch != IP);
if (!vmovd(dd, value, cond)) {
// A scratch register and IP are needed to load an arbitrary double.
ASSERT(scratch != kNoRegister);
int64_t imm64 = bit_cast<int64_t, double>(value);
LoadImmediate(IP, Utils::Low32Bits(imm64), cond);
LoadImmediate(scratch, Utils::High32Bits(imm64), cond);
vmovdrr(dd, IP, scratch, cond);
}
}
void Assembler::LoadFromOffset(Register reg,
Register base,
int32_t offset,
OperandSize size,
Condition cond) {
ASSERT(size != kWordPair);
int32_t offset_mask = 0;
if (!Address::CanHoldLoadOffset(size, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
switch (size) {
case kByte:
ldrsb(reg, Address(base, offset), cond);
break;
case kUnsignedByte:
ldrb(reg, Address(base, offset), cond);
break;
case kTwoBytes:
ldrsh(reg, Address(base, offset), cond);
break;
case kUnsignedTwoBytes:
ldrh(reg, Address(base, offset), cond);
break;
case kFourBytes:
ldr(reg, Address(base, offset), cond);
break;
default:
UNREACHABLE();
}
}
void Assembler::LoadFromStack(Register dst, intptr_t depth) {
ASSERT(depth >= 0);
LoadFromOffset(dst, SPREG, depth * target::kWordSize);
}
void Assembler::StoreToStack(Register src, intptr_t depth) {
ASSERT(depth >= 0);
StoreToOffset(src, SPREG, depth * target::kWordSize);
}
void Assembler::CompareToStack(Register src, intptr_t depth) {
LoadFromStack(TMP, depth);
CompareRegisters(src, TMP);
}
void Assembler::StoreToOffset(Register reg,
Register base,
int32_t offset,
OperandSize size,
Condition cond) {
ASSERT(size != kWordPair);
int32_t offset_mask = 0;
if (!Address::CanHoldStoreOffset(size, offset, &offset_mask)) {
ASSERT(reg != IP);
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
switch (size) {
case kByte:
strb(reg, Address(base, offset), cond);
break;
case kTwoBytes:
strh(reg, Address(base, offset), cond);
break;
case kFourBytes:
str(reg, Address(base, offset), cond);
break;
default:
UNREACHABLE();
}
}
void Assembler::LoadSFromOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldLoadOffset(kSWord, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
vldrs(reg, Address(base, offset), cond);
}
void Assembler::StoreSToOffset(SRegister reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldStoreOffset(kSWord, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
vstrs(reg, Address(base, offset), cond);
}
void Assembler::LoadDFromOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldLoadOffset(kDWord, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
vldrd(reg, Address(base, offset), cond);
}
void Assembler::StoreDToOffset(DRegister reg,
Register base,
int32_t offset,
Condition cond) {
int32_t offset_mask = 0;
if (!Address::CanHoldStoreOffset(kDWord, offset, &offset_mask)) {
ASSERT(base != IP);
AddImmediate(IP, base, offset & ~offset_mask, cond);
base = IP;
offset = offset & offset_mask;
}
vstrd(reg, Address(base, offset), cond);
}
void Assembler::LoadMultipleDFromOffset(DRegister first,
intptr_t count,
Register base,
int32_t offset) {
ASSERT(base != IP);
AddImmediate(IP, base, offset);
vldmd(IA, IP, first, count);
}
void Assembler::StoreMultipleDToOffset(DRegister first,
intptr_t count,
Register base,
int32_t offset) {
ASSERT(base != IP);
AddImmediate(IP, base, offset);
vstmd(IA, IP, first, count);
}
void Assembler::CopyDoubleField(Register dst,
Register src,
Register tmp1,
Register tmp2,
DRegister dtmp) {
if (TargetCPUFeatures::vfp_supported()) {
LoadDFromOffset(dtmp, src, target::Double::value_offset() - kHeapObjectTag);
StoreDToOffset(dtmp, dst, target::Double::value_offset() - kHeapObjectTag);
} else {
LoadFieldFromOffset(tmp1, src, target::Double::value_offset());
LoadFieldFromOffset(tmp2, src,
target::Double::value_offset() + target::kWordSize);
StoreFieldToOffset(tmp1, dst, target::Double::value_offset());
StoreFieldToOffset(tmp2, dst,
target::Double::value_offset() + target::kWordSize);
}
}
void Assembler::CopyFloat32x4Field(Register dst,
Register src,
Register tmp1,
Register tmp2,
DRegister dtmp) {
if (TargetCPUFeatures::neon_supported()) {
LoadMultipleDFromOffset(dtmp, 2, src,
target::Float32x4::value_offset() - kHeapObjectTag);
StoreMultipleDToOffset(dtmp, 2, dst,
target::Float32x4::value_offset() - kHeapObjectTag);
} else {
LoadFieldFromOffset(
tmp1, src, target::Float32x4::value_offset() + 0 * target::kWordSize);
LoadFieldFromOffset(
tmp2, src, target::Float32x4::value_offset() + 1 * target::kWordSize);
StoreFieldToOffset(
tmp1, dst, target::Float32x4::value_offset() + 0 * target::kWordSize);
StoreFieldToOffset(
tmp2, dst, target::Float32x4::value_offset() + 1 * target::kWordSize);
LoadFieldFromOffset(
tmp1, src, target::Float32x4::value_offset() + 2 * target::kWordSize);
LoadFieldFromOffset(
tmp2, src, target::Float32x4::value_offset() + 3 * target::kWordSize);
StoreFieldToOffset(
tmp1, dst, target::Float32x4::value_offset() + 2 * target::kWordSize);
StoreFieldToOffset(
tmp2, dst, target::Float32x4::value_offset() + 3 * target::kWordSize);
}
}
void Assembler::CopyFloat64x2Field(Register dst,
Register src,
Register tmp1,
Register tmp2,
DRegister dtmp) {
if (TargetCPUFeatures::neon_supported()) {
LoadMultipleDFromOffset(dtmp, 2, src,
target::Float64x2::value_offset() - kHeapObjectTag);
StoreMultipleDToOffset(dtmp, 2, dst,
target::Float64x2::value_offset() - kHeapObjectTag);
} else {
LoadFieldFromOffset(
tmp1, src, target::Float64x2::value_offset() + 0 * target::kWordSize);
LoadFieldFromOffset(
tmp2, src, target::Float64x2::value_offset() + 1 * target::kWordSize);
StoreFieldToOffset(
tmp1, dst, target::Float64x2::value_offset() + 0 * target::kWordSize);
StoreFieldToOffset(
tmp2, dst, target::Float64x2::value_offset() + 1 * target::kWordSize);
LoadFieldFromOffset(
tmp1, src, target::Float64x2::value_offset() + 2 * target::kWordSize);
LoadFieldFromOffset(
tmp2, src, target::Float64x2::value_offset() + 3 * target::kWordSize);
StoreFieldToOffset(
tmp1, dst, target::Float64x2::value_offset() + 2 * target::kWordSize);
StoreFieldToOffset(
tmp2, dst, target::Float64x2::value_offset() + 3 * target::kWordSize);
}
}
void Assembler::AddImmediate(Register rd,
Register rn,
int32_t value,
Condition cond) {
if (value == 0) {
if (rd != rn) {
mov(rd, Operand(rn), cond);
}
return;
}
// We prefer to select the shorter code sequence rather than selecting add for
// positive values and sub for negatives ones, which would slightly improve
// the readability of generated code for some constants.
Operand o;
if (Operand::CanHold(value, &o)) {
add(rd, rn, o, cond);
} else if (Operand::CanHold(-value, &o)) {
sub(rd, rn, o, cond);
} else {
ASSERT(rn != IP);
if (Operand::CanHold(~value, &o)) {
mvn(IP, o, cond);
add(rd, rn, Operand(IP), cond);
} else if (Operand::CanHold(~(-value), &o)) {
mvn(IP, o, cond);
sub(rd, rn, Operand(IP), cond);
} else if (value > 0) {
LoadDecodableImmediate(IP, value, cond);
add(rd, rn, Operand(IP), cond);
} else {
LoadDecodableImmediate(IP, -value, cond);
sub(rd, rn, Operand(IP), cond);
}
}
}
void Assembler::AddImmediateSetFlags(Register rd,
Register rn,
int32_t value,
Condition cond) {
Operand o;
if (Operand::CanHold(value, &o)) {
// Handles value == kMinInt32.
adds(rd, rn, o, cond);
} else if (Operand::CanHold(-value, &o)) {
ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
subs(rd, rn, o, cond);
} else {
ASSERT(rn != IP);
if (Operand::CanHold(~value, &o)) {
mvn(IP, o, cond);
adds(rd, rn, Operand(IP), cond);
} else if (Operand::CanHold(~(-value), &o)) {
ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
mvn(IP, o, cond);
subs(rd, rn, Operand(IP), cond);
} else {
LoadDecodableImmediate(IP, value, cond);
adds(rd, rn, Operand(IP), cond);
}
}
}
void Assembler::SubImmediate(Register rd,
Register rn,
int32_t value,
Condition cond) {
AddImmediate(rd, rn, -value, cond);
}
void Assembler::SubImmediateSetFlags(Register rd,
Register rn,
int32_t value,
Condition cond) {
Operand o;
if (Operand::CanHold(value, &o)) {
// Handles value == kMinInt32.
subs(rd, rn, o, cond);
} else if (Operand::CanHold(-value, &o)) {
ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
adds(rd, rn, o, cond);
} else {
ASSERT(rn != IP);
if (Operand::CanHold(~value, &o)) {
mvn(IP, o, cond);
subs(rd, rn, Operand(IP), cond);
} else if (Operand::CanHold(~(-value), &o)) {
ASSERT(value != kMinInt32); // Would cause erroneous overflow detection.
mvn(IP, o, cond);
adds(rd, rn, Operand(IP), cond);
} else {
LoadDecodableImmediate(IP, value, cond);
subs(rd, rn, Operand(IP), cond);
}
}
}
void Assembler::AndImmediate(Register rd,
Register rs,
int32_t imm,
Condition cond) {
Operand o;
if (Operand::CanHold(imm, &o)) {
and_(rd, rs, Operand(o), cond);
} else {
LoadImmediate(TMP, imm, cond);
and_(rd, rs, Operand(TMP), cond);
}
}
void Assembler::CompareImmediate(Register rn, int32_t value, Condition cond) {
Operand o;
if (Operand::CanHold(value, &o)) {
cmp(rn, o, cond);
} else {
ASSERT(rn != IP);
LoadImmediate(IP, value, cond);
cmp(rn, Operand(IP), cond);
}
}
void Assembler::TestImmediate(Register rn, int32_t imm, Condition cond) {
Operand o;
if (Operand::CanHold(imm, &o)) {
tst(rn, o, cond);
} else {
LoadImmediate(IP, imm);
tst(rn, Operand(IP), cond);
}
}
void Assembler::IntegerDivide(Register result,
Register left,
Register right,
DRegister tmpl,
DRegister tmpr) {
ASSERT(tmpl != tmpr);
if (TargetCPUFeatures::integer_division_supported()) {
sdiv(result, left, right);
} else {
ASSERT(TargetCPUFeatures::vfp_supported());
SRegister stmpl = EvenSRegisterOf(tmpl);
SRegister stmpr = EvenSRegisterOf(tmpr);
vmovsr(stmpl, left);
vcvtdi(tmpl, stmpl); // left is in tmpl.
vmovsr(stmpr, right);
vcvtdi(tmpr, stmpr); // right is in tmpr.
vdivd(tmpr, tmpl, tmpr);
vcvtid(stmpr, tmpr);
vmovrs(result, stmpr);
}
}
static int NumRegsBelowFP(RegList regs) {
int count = 0;
for (int i = 0; i < FP; i++) {
if ((regs & (1 << i)) != 0) {
count++;
}
}
return count;
}
void Assembler::EnterFrame(RegList regs, intptr_t frame_size) {
if (prologue_offset_ == -1) {
prologue_offset_ = CodeSize();
}
PushList(regs);
if ((regs & (1 << FP)) != 0) {
// Set FP to the saved previous FP.
add(FP, SP, Operand(4 * NumRegsBelowFP(regs)));
}
if (frame_size != 0) {
AddImmediate(SP, -frame_size);
}
}
void Assembler::LeaveFrame(RegList regs, bool allow_pop_pc) {
ASSERT(allow_pop_pc || (regs & (1 << PC)) == 0); // Must not pop PC.
if ((regs & (1 << FP)) != 0) {
// Use FP to set SP.
sub(SP, FP, Operand(4 * NumRegsBelowFP(regs)));
}
PopList(regs);
}
void Assembler::Ret(Condition cond /* = AL */) {
READS_RETURN_ADDRESS_FROM_LR(bx(LR, cond));
}
void Assembler::ReserveAlignedFrameSpace(intptr_t frame_space) {
// Reserve space for arguments and align frame before entering
// the C++ world.
AddImmediate(SP, -frame_space);
if (OS::ActivationFrameAlignment() > 1) {
bic(SP, SP, Operand(OS::ActivationFrameAlignment() - 1));
}
}
void Assembler::EmitEntryFrameVerification(Register scratch) {
#if defined(DEBUG)
Label done;
ASSERT(!constant_pool_allowed());
LoadImmediate(scratch, target::frame_layout.exit_link_slot_from_entry_fp *
target::kWordSize);
add(scratch, scratch, Operand(FPREG));
cmp(scratch, Operand(SPREG));
b(&done, EQ);
Breakpoint();
Bind(&done);
#endif
}
void Assembler::EnterCallRuntimeFrame(intptr_t frame_space) {
Comment("EnterCallRuntimeFrame");
// Preserve volatile CPU registers and PP.
SPILLS_LR_TO_FRAME(
EnterFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP) | (1 << LR), 0));
COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0);
// Preserve all volatile FPU registers.
if (TargetCPUFeatures::vfp_supported()) {
DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg);
DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg);
if ((lastv - firstv + 1) >= 16) {
DRegister mid = static_cast<DRegister>(firstv + 16);
vstmd(DB_W, SP, mid, lastv - mid + 1);
vstmd(DB_W, SP, firstv, 16);
} else {
vstmd(DB_W, SP, firstv, lastv - firstv + 1);
}
}
ReserveAlignedFrameSpace(frame_space);
}
void Assembler::LeaveCallRuntimeFrame() {
// SP might have been modified to reserve space for arguments
// and ensure proper alignment of the stack frame.
// We need to restore it before restoring registers.
const intptr_t kPushedFpuRegisterSize =
TargetCPUFeatures::vfp_supported()
? kDartVolatileFpuRegCount * kFpuRegisterSize
: 0;
COMPILE_ASSERT(PP < FP);
COMPILE_ASSERT((kDartVolatileCpuRegs & (1 << PP)) == 0);
// kVolatileCpuRegCount +1 for PP, -1 because even though LR is volatile,
// it is pushed ahead of FP.
const intptr_t kPushedRegistersSize =
kDartVolatileCpuRegCount * target::kWordSize + kPushedFpuRegisterSize;
AddImmediate(SP, FP, -kPushedRegistersSize);
// Restore all volatile FPU registers.
if (TargetCPUFeatures::vfp_supported()) {
DRegister firstv = EvenDRegisterOf(kDartFirstVolatileFpuReg);
DRegister lastv = OddDRegisterOf(kDartLastVolatileFpuReg);
if ((lastv - firstv + 1) >= 16) {
DRegister mid = static_cast<DRegister>(firstv + 16);
vldmd(IA_W, SP, firstv, 16);
vldmd(IA_W, SP, mid, lastv - mid + 1);
} else {
vldmd(IA_W, SP, firstv, lastv - firstv + 1);
}
}
// Restore volatile CPU registers.
RESTORES_LR_FROM_FRAME(
LeaveFrame(kDartVolatileCpuRegs | (1 << PP) | (1 << FP) | (1 << LR)));
}
void Assembler::CallRuntime(const RuntimeEntry& entry,
intptr_t argument_count) {
entry.Call(this, argument_count);
}
void Assembler::EnterDartFrame(intptr_t frame_size, bool load_pool_pointer) {
ASSERT(!constant_pool_allowed());
// Registers are pushed in descending order: R5 | R6 | R7/R11 | R14.
COMPILE_ASSERT(PP < CODE_REG);
COMPILE_ASSERT(CODE_REG < FP);
COMPILE_ASSERT(FP < LINK_REGISTER.code);
if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) {
SPILLS_LR_TO_FRAME(
EnterFrame((1 << PP) | (1 << CODE_REG) | (1 << FP) | (1 << LR), 0));
// Setup pool pointer for this dart function.
if (load_pool_pointer) LoadPoolPointer();
} else {
SPILLS_LR_TO_FRAME(EnterFrame((1 << FP) | (1 << LR), 0));
}
set_constant_pool_allowed(true);
// Reserve space for locals.
AddImmediate(SP, -frame_size);
}
// On entry to a function compiled for OSR, the caller's frame pointer, the
// stack locals, and any copied parameters are already in place. The frame
// pointer is already set up. The PC marker is not correct for the
// optimized function and there may be extra space for spill slots to
// allocate. We must also set up the pool pointer for the function.
void Assembler::EnterOsrFrame(intptr_t extra_size) {
ASSERT(!constant_pool_allowed());
Comment("EnterOsrFrame");
RestoreCodePointer();
LoadPoolPointer();
AddImmediate(SP, -extra_size);
}
void Assembler::LeaveDartFrame() {
if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) {
ldr(PP, Address(FP, target::frame_layout.saved_caller_pp_from_fp *
target::kWordSize));
}
set_constant_pool_allowed(false);
// This will implicitly drop saved PP, PC marker due to restoring SP from FP
// first.
RESTORES_LR_FROM_FRAME(LeaveFrame((1 << FP) | (1 << LR)));
}
void Assembler::LeaveDartFrameAndReturn() {
if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) {
ldr(PP, Address(FP, target::frame_layout.saved_caller_pp_from_fp *
target::kWordSize));
}
set_constant_pool_allowed(false);
// This will implicitly drop saved PP, PC marker due to restoring SP from FP
// first.
LeaveFrame((1 << FP) | (1 << PC), /*allow_pop_pc=*/true);
}
void Assembler::EnterStubFrame() {
EnterDartFrame(0);
}
void Assembler::LeaveStubFrame() {
LeaveDartFrame();
}
void Assembler::EnterCFrame(intptr_t frame_space) {
EnterFrame(1 << FP, 0);
ReserveAlignedFrameSpace(frame_space);
}
void Assembler::LeaveCFrame() {
LeaveFrame(1 << FP);
}
// R0 receiver, R9 ICData entries array
// Preserve R4 (ARGS_DESC_REG), not required today, but maybe later.
void Assembler::MonomorphicCheckedEntryJIT() {
has_monomorphic_entry_ = true;
#if defined(TESTING) || defined(DEBUG)
bool saved_use_far_branches = use_far_branches();
set_use_far_branches(false);
#endif
intptr_t start = CodeSize();
Comment("MonomorphicCheckedEntry");
ASSERT_EQUAL(CodeSize() - start,
target::Instructions::kMonomorphicEntryOffsetJIT);
const intptr_t cid_offset = target::Array::element_offset(0);
const intptr_t count_offset = target::Array::element_offset(1);
// Sadly this cannot use ldm because ldm takes no offset.
ldr(R1, FieldAddress(R9, cid_offset));
ldr(R2, FieldAddress(R9, count_offset));
LoadClassIdMayBeSmi(IP, R0);
add(R2, R2, Operand(target::ToRawSmi(1)));
cmp(R1, Operand(IP, LSL, 1));
Branch(Address(THR, target::Thread::switchable_call_miss_entry_offset()), NE);
str(R2, FieldAddress(R9, count_offset));
LoadImmediate(R4, 0); // GC-safe for OptimizeInvokedFunction.
// Fall through to unchecked entry.
ASSERT_EQUAL(CodeSize() - start,
target::Instructions::kPolymorphicEntryOffsetJIT);
#if defined(TESTING) || defined(DEBUG)
set_use_far_branches(saved_use_far_branches);
#endif
}
// R0 receiver, R9 guarded cid as Smi.
// Preserve R4 (ARGS_DESC_REG), not required today, but maybe later.
void Assembler::MonomorphicCheckedEntryAOT() {
has_monomorphic_entry_ = true;
#if defined(TESTING) || defined(DEBUG)
bool saved_use_far_branches = use_far_branches();
set_use_far_branches(false);
#endif
intptr_t start = CodeSize();
Comment("MonomorphicCheckedEntry");
ASSERT_EQUAL(CodeSize() - start,
target::Instructions::kMonomorphicEntryOffsetAOT);
LoadClassId(IP, R0);
cmp(R9, Operand(IP, LSL, 1));
Branch(Address(THR, target::Thread::switchable_call_miss_entry_offset()), NE);
// Fall through to unchecked entry.
ASSERT_EQUAL(CodeSize() - start,
target::Instructions::kPolymorphicEntryOffsetAOT);
#if defined(TESTING) || defined(DEBUG)
set_use_far_branches(saved_use_far_branches);
#endif
}
void Assembler::BranchOnMonomorphicCheckedEntryJIT(Label* label) {
has_monomorphic_entry_ = true;
while (CodeSize() < target::Instructions::kMonomorphicEntryOffsetJIT) {
bkpt(0);
}
b(label);
while (CodeSize() < target::Instructions::kPolymorphicEntryOffsetJIT) {
bkpt(0);
}
}
#ifndef PRODUCT
void Assembler::MaybeTraceAllocation(Register stats_addr_reg, Label* trace) {
ASSERT(stats_addr_reg != kNoRegister);
ASSERT(stats_addr_reg != TMP);
ldrb(TMP, Address(stats_addr_reg, 0));
cmp(TMP, Operand(0));
b(trace, NE);
}
void Assembler::LoadAllocationStatsAddress(Register dest, intptr_t cid) {
ASSERT(dest != kNoRegister);
ASSERT(dest != TMP);
ASSERT(cid > 0);
const intptr_t shared_table_offset =
target::IsolateGroup::shared_class_table_offset();
const intptr_t table_offset =
target::SharedClassTable::class_heap_stats_table_offset();
const intptr_t class_offset = target::ClassTable::ClassOffsetFor(cid);
LoadIsolateGroup(dest);
ldr(dest, Address(dest, shared_table_offset));
ldr(dest, Address(dest, table_offset));
AddImmediate(dest, class_offset);
}
#endif // !PRODUCT
void Assembler::TryAllocate(const Class& cls,
Label* failure,
Register instance_reg,
Register temp_reg) {
ASSERT(failure != NULL);
const intptr_t instance_size = target::Class::GetInstanceSize(cls);
if (FLAG_inline_alloc &&
target::Heap::IsAllocatableInNewSpace(instance_size)) {
const classid_t cid = target::Class::GetId(cls);
ASSERT(instance_reg != temp_reg);
ASSERT(temp_reg != IP);
ASSERT(instance_size != 0);
NOT_IN_PRODUCT(LoadAllocationStatsAddress(temp_reg, cid));
ldr(instance_reg, Address(THR, target::Thread::top_offset()));
// TODO(koda): Protect against unsigned overflow here.
AddImmediateSetFlags(instance_reg, instance_reg, instance_size);
// instance_reg: potential next object start.
ldr(IP, Address(THR, target::Thread::end_offset()));
cmp(IP, Operand(instance_reg));
// fail if heap end unsigned less than or equal to instance_reg.
b(failure, LS);
// If this allocation is traced, program will jump to failure path
// (i.e. the allocation stub) which will allocate the object and trace the
// allocation call site.
NOT_IN_PRODUCT(MaybeTraceAllocation(temp_reg, failure));
// Successfully allocated the object, now update top to point to
// next object start and store the class in the class field of object.
str(instance_reg, Address(THR, target::Thread::top_offset()));
ASSERT(instance_size >= kHeapObjectTag);
AddImmediate(instance_reg, -instance_size + kHeapObjectTag);
const uword tags = target::MakeTagWordForNewSpaceObject(cid, instance_size);
LoadImmediate(IP, tags);
str(IP, FieldAddress(instance_reg, target::Object::tags_offset()));
} else {
b(failure);
}
}
void Assembler::TryAllocateArray(intptr_t cid,
intptr_t instance_size,
Label* failure,
Register instance,
Register end_address,
Register temp1,
Register temp2) {
if (FLAG_inline_alloc &&
target::Heap::IsAllocatableInNewSpace(instance_size)) {
NOT_IN_PRODUCT(LoadAllocationStatsAddress(temp1, cid));
// Potential new object start.
ldr(instance, Address(THR, target::Thread::top_offset()));
AddImmediateSetFlags(end_address, instance, instance_size);
b(failure, CS); // Branch if unsigned overflow.
// Check if the allocation fits into the remaining space.
// instance: potential new object start.
// end_address: potential next object start.
ldr(temp2, Address(THR, target::Thread::end_offset()));
cmp(end_address, Operand(temp2));
b(failure, CS);
// If this allocation is traced, program will jump to failure path
// (i.e. the allocation stub) which will allocate the object and trace the
// allocation call site.
NOT_IN_PRODUCT(MaybeTraceAllocation(temp1, failure));
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
str(end_address, Address(THR, target::Thread::top_offset()));
add(instance, instance, Operand(kHeapObjectTag));
// Initialize the tags.
// instance: new object start as a tagged pointer.
const uword tags = target::MakeTagWordForNewSpaceObject(cid, instance_size);
LoadImmediate(temp2, tags);
str(temp2,
FieldAddress(instance, target::Object::tags_offset())); // Store tags.
} else {
b(failure);
}
}
void Assembler::GenerateUnRelocatedPcRelativeCall(Condition cond,
intptr_t offset_into_target) {
// Emit "blr.cond <offset>".
EmitType5(cond, 0x686868, /*link=*/true);
PcRelativeCallPattern pattern(buffer_.contents() + buffer_.Size() -
PcRelativeCallPattern::kLengthInBytes);
pattern.set_distance(offset_into_target);
}
void Assembler::GenerateUnRelocatedPcRelativeTailCall(
Condition cond,
intptr_t offset_into_target) {
// Emit "b <offset>".
EmitType5(cond, 0x686868, /*link=*/false);
PcRelativeTailCallPattern pattern(buffer_.contents() + buffer_.Size() -
PcRelativeTailCallPattern::kLengthInBytes);
pattern.set_distance(offset_into_target);
}
Address Assembler::ElementAddressForIntIndex(bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
intptr_t index,
Register temp) {
const int64_t offset_base =
(is_external ? 0
: (target::Instance::DataOffsetFor(cid) - kHeapObjectTag));
const int64_t offset =
offset_base + static_cast<int64_t>(index) * index_scale;
ASSERT(Utils::IsInt(32, offset));
if (Address::CanHoldImmediateOffset(is_load, cid, offset)) {
return Address(array, static_cast<int32_t>(offset));
} else {
ASSERT(Address::CanHoldImmediateOffset(is_load, cid, offset - offset_base));
AddImmediate(temp, array, static_cast<int32_t>(offset_base));
return Address(temp, static_cast<int32_t>(offset - offset_base));
}
}
void Assembler::LoadElementAddressForIntIndex(Register address,
bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
Register array,
intptr_t index) {
const int64_t offset_base =
(is_external ? 0
: (target::Instance::DataOffsetFor(cid) - kHeapObjectTag));
const int64_t offset =
offset_base + static_cast<int64_t>(index) * index_scale;
ASSERT(Utils::IsInt(32, offset));
AddImmediate(address, array, offset);
}
Address Assembler::ElementAddressForRegIndex(bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
bool index_unboxed,
Register array,
Register index) {
// If unboxed, index is expected smi-tagged, (i.e, LSL 1) for all arrays.
const intptr_t boxing_shift = index_unboxed ? 0 : -kSmiTagShift;
const intptr_t shift = Utils::ShiftForPowerOfTwo(index_scale) + boxing_shift;
int32_t offset =
is_external ? 0 : (target::Instance::DataOffsetFor(cid) - kHeapObjectTag);
const OperandSize size = Address::OperandSizeFor(cid);
ASSERT(array != IP);
ASSERT(index != IP);
const Register base = is_load ? IP : index;
if ((offset != 0) || (is_load && (size == kByte)) || (size == kTwoBytes) ||
(size == kUnsignedTwoBytes) || (size == kSWord) || (size == kDWord) ||
(size == kRegList)) {
if (shift < 0) {
ASSERT(shift == -1);
add(base, array, Operand(index, ASR, 1));
} else {
add(base, array, Operand(index, LSL, shift));
}
} else {
if (shift < 0) {
ASSERT(shift == -1);
return Address(array, index, ASR, 1);
} else {
return Address(array, index, LSL, shift);
}
}
int32_t offset_mask = 0;
if ((is_load && !Address::CanHoldLoadOffset(size, offset, &offset_mask)) ||
(!is_load && !Address::CanHoldStoreOffset(size, offset, &offset_mask))) {
AddImmediate(base, offset & ~offset_mask);
offset = offset & offset_mask;
}
return Address(base, offset);
}
void Assembler::LoadElementAddressForRegIndex(Register address,
bool is_load,
bool is_external,
intptr_t cid,
intptr_t index_scale,
bool index_unboxed,
Register array,
Register index) {
// If unboxed, index is expected smi-tagged, (i.e, LSL 1) for all arrays.
const intptr_t boxing_shift = index_unboxed ? 0 : -kSmiTagShift;
const intptr_t shift = Utils::ShiftForPowerOfTwo(index_scale) + boxing_shift;
int32_t offset =
is_external ? 0 : (target::Instance::DataOffsetFor(cid) - kHeapObjectTag);
if (shift < 0) {
ASSERT(shift == -1);
add(address, array, Operand(index, ASR, 1));
} else {
add(address, array, Operand(index, LSL, shift));
}
if (offset != 0) {
AddImmediate(address, offset);
}
}
void Assembler::LoadFieldAddressForRegOffset(Register address,
Register instance,
Register offset_in_words_as_smi) {
add(address, instance,
Operand(offset_in_words_as_smi, LSL,
target::kWordSizeLog2 - kSmiTagShift));
AddImmediate(address, -kHeapObjectTag);
}
void Assembler::LoadHalfWordUnaligned(Register dst,
Register addr,
Register tmp) {
ASSERT(dst != addr);
ldrb(dst, Address(addr, 0));
ldrsb(tmp, Address(addr, 1));
orr(dst, dst, Operand(tmp, LSL, 8));
}
void Assembler::LoadHalfWordUnsignedUnaligned(Register dst,
Register addr,
Register tmp) {
ASSERT(dst != addr);
ldrb(dst, Address(addr, 0));
ldrb(tmp, Address(addr, 1));
orr(dst, dst, Operand(tmp, LSL, 8));
}
void Assembler::StoreHalfWordUnaligned(Register src,
Register addr,
Register tmp) {
strb(src, Address(addr, 0));
Lsr(tmp, src, Operand(8));
strb(tmp, Address(addr, 1));
}
void Assembler::LoadWordUnaligned(Register dst, Register addr, Register tmp) {
ASSERT(dst != addr);
ldrb(dst, Address(addr, 0));
ldrb(tmp, Address(addr, 1));
orr(dst, dst, Operand(tmp, LSL, 8));
ldrb(tmp, Address(addr, 2));
orr(dst, dst, Operand(tmp, LSL, 16));
ldrb(tmp, Address(addr, 3));
orr(dst, dst, Operand(tmp, LSL, 24));
}
void Assembler::StoreWordUnaligned(Register src, Register addr, Register tmp) {
strb(src, Address(addr, 0));
Lsr(tmp, src, Operand(8));
strb(tmp, Address(addr, 1));
Lsr(tmp, src, Operand(16));
strb(tmp, Address(addr, 2));
Lsr(tmp, src, Operand(24));
strb(tmp, Address(addr, 3));
}
} // namespace compiler
} // namespace dart
#endif // defined(TARGET_ARCH_ARM)