blob: 44f256de00f8e350597b1298eff700c3ae87f6c4 [file] [log] [blame]
// Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'package:_fe_analyzer_shared/src/flow_analysis/flow_analysis.dart';
import 'package:analyzer/dart/ast/ast.dart';
import 'package:analyzer/dart/ast/token.dart';
import 'package:analyzer/dart/ast/visitor.dart';
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/dart/element/type_provider.dart';
import 'package:analyzer/dart/element/type_system.dart';
import 'package:analyzer/src/dart/element/inheritance_manager3.dart';
import 'package:analyzer/src/dart/element/type.dart';
import 'package:analyzer/src/dart/element/type_system.dart' show TypeSystemImpl;
import 'package:analyzer/src/dart/resolver/flow_analysis_visitor.dart';
import 'package:analyzer/src/error/best_practices_verifier.dart';
import 'package:analyzer/src/generated/source.dart';
import 'package:meta/meta.dart';
import 'package:nnbd_migration/fix_reason_target.dart';
import 'package:nnbd_migration/instrumentation.dart';
import 'package:nnbd_migration/nnbd_migration.dart';
import 'package:nnbd_migration/src/conditional_discard.dart';
import 'package:nnbd_migration/src/decorated_class_hierarchy.dart';
import 'package:nnbd_migration/src/decorated_type.dart';
import 'package:nnbd_migration/src/edge_origin.dart';
import 'package:nnbd_migration/src/expression_checks.dart';
import 'package:nnbd_migration/src/nullability_node.dart';
import 'package:nnbd_migration/src/nullability_node_target.dart';
import 'package:nnbd_migration/src/utilities/completeness_tracker.dart';
import 'package:nnbd_migration/src/utilities/hint_utils.dart';
import 'package:nnbd_migration/src/utilities/permissive_mode.dart';
import 'package:nnbd_migration/src/utilities/resolution_utils.dart';
import 'package:nnbd_migration/src/utilities/scoped_set.dart';
import 'package:nnbd_migration/src/variables.dart';
import 'decorated_type_operations.dart';
/// A potentially reversible decision is that downcasts and sidecasts should
/// assume non-nullability. This could be changed such that we assume the
/// widest type, or the narrowest type. For now we assume non-nullability, but
/// have a flag to isolate that work.
const _assumeNonNullabilityInCasts = true;
/// Test class mixing in _AssignmentChecker, to allow [checkAssignment] to be
/// more easily unit tested.
@visibleForTesting
class AssignmentCheckerForTesting extends Object with _AssignmentChecker {
@override
final TypeSystem _typeSystem;
@override
final TypeProvider typeProvider;
final NullabilityGraph _graph;
/// Tests should fill in this map with the bounds of any type parameters being
/// tested.
final Map<TypeParameterElement, DecoratedType> bounds = {};
@override
final DecoratedClassHierarchy _decoratedClassHierarchy;
AssignmentCheckerForTesting(this._typeSystem, this.typeProvider, this._graph,
this._decoratedClassHierarchy);
void checkAssignment(EdgeOrigin origin,
{@required DecoratedType source,
@required DecoratedType destination,
@required bool hard}) {
super._checkAssignment(origin, FixReasonTarget.root,
source: source, destination: destination, hard: hard);
}
@override
void _connect(NullabilityNode source, NullabilityNode destination,
EdgeOrigin origin, FixReasonTarget edgeTarget,
{bool hard = false, bool checkable = true}) {
_graph.connect(source, destination, origin,
hard: hard, checkable: checkable);
}
@override
DecoratedType _getTypeParameterTypeBound(DecoratedType type) {
return bounds[(type.type as TypeParameterType).element] ??
(throw StateError('Unknown bound for $type'));
}
}
/// Visitor that builds nullability graph edges by examining code to be
/// migrated.
///
/// The return type of each `visit...` method is a [DecoratedType] indicating
/// the static type of the visited expression, along with the constraint
/// variables that will determine its nullability. For `visit...` methods that
/// don't visit expressions, `null` will be returned.
class EdgeBuilder extends GeneralizingAstVisitor<DecoratedType>
with
_AssignmentChecker,
PermissiveModeVisitor<DecoratedType>,
CompletenessTracker<DecoratedType>,
ResolutionUtils {
final TypeSystem _typeSystem;
final InheritanceManager3 _inheritanceManager;
/// The repository of constraint variables and decorated types (from a
/// previous pass over the source code).
final Variables _variables;
final NullabilityMigrationListener /*?*/ listener;
final NullabilityMigrationInstrumentation /*?*/ instrumentation;
final NullabilityGraph _graph;
TypeProvider typeProvider;
@override
final Source source;
@override
final DecoratedClassHierarchy _decoratedClassHierarchy;
/// If we are visiting a function body or initializer, instance of flow
/// analysis. Otherwise `null`.
FlowAnalysis<AstNode, Statement, Expression, PromotableElement, DecoratedType>
_flowAnalysis;
/// If we are visiting a function body or initializer, assigned variable
/// information used in flow analysis. Otherwise `null`.
AssignedVariables<AstNode, PromotableElement> _assignedVariables;
/// The [DecoratedType] of the innermost function or method being visited, or
/// `null` if the visitor is not inside any function or method.
///
/// This is needed to construct the appropriate nullability constraints for
/// return statements.
DecoratedType _currentFunctionType;
FunctionExpression _currentFunctionExpression;
/// The [ClassElement] or [ExtensionElement] of the current class or extension
/// being visited, or null.
Element _currentClassOrExtension;
/// The [DecoratedType] of the innermost list or set literal being visited, or
/// `null` if the visitor is not inside any list or set.
///
/// This is needed to construct the appropriate nullability constraints for
/// ui as code elements.
DecoratedType _currentLiteralElementType;
/// The key [DecoratedType] of the innermost map literal being visited, or
/// `null` if the visitor is not inside any map.
///
/// This is needed to construct the appropriate nullability constraints for
/// ui as code elements.
DecoratedType _currentMapKeyType;
/// The value [DecoratedType] of the innermost map literal being visited, or
/// `null` if the visitor is not inside any map.
///
/// This is needed to construct the appropriate nullability constraints for
/// ui as code elements.
DecoratedType _currentMapValueType;
/// Information about the most recently visited binary expression whose
/// boolean value could possibly affect nullability analysis.
_ConditionInfo _conditionInfo;
/// The set of nullability nodes that would have to be `nullable` for the code
/// currently being visited to be reachable.
///
/// Guard variables are attached to the left hand side of any generated
/// constraints, so that constraints do not take effect if they come from
/// code that can be proven unreachable by the migration tool.
final _guards = <NullabilityNode>[];
/// The scope of locals (parameters, variables) that are post-dominated by the
/// current node as we walk the AST. We use a [_ScopedLocalSet] so that outer
/// scopes may track their post-dominators separately from inner scopes.
///
/// Note that this is not guaranteed to be complete. It is used to make hard
/// edges on a best-effort basis.
final _postDominatedLocals = _ScopedLocalSet();
/// Map whose keys are expressions of the form `a?.b` on the LHS of
/// assignments, and whose values are the nullability nodes corresponding to
/// the expression preceding `?.`. These are needed in order to properly
/// analyze expressions like `a?.b += c`, since the type of the compound
/// assignment is nullable if the type of the expression preceding `?.` is
/// nullable.
final Map<Expression, NullabilityNode> _conditionalNodes = {};
/// If we are visiting a cascade expression, the decorated type of the target
/// of the cascade. Otherwise `null`.
DecoratedType _currentCascadeTargetType;
/// While visiting a class declaration, set of class fields that lack
/// initializers at their declaration sites.
Set<FieldElement> _fieldsNotInitializedAtDeclaration;
/// While visiting a constructor, set of class fields that lack initializers
/// at their declaration sites *and* for which we haven't yet found an
/// initializer in the constructor declaration.
Set<FieldElement> _fieldsNotInitializedByConstructor;
/// Current nesting depth of [visitTypeName]
int _typeNameNesting = 0;
final Set<PromotableElement> _lateHintedLocals = {};
final Map<Token, HintComment> _nullCheckHints = {};
EdgeBuilder(this.typeProvider, this._typeSystem, this._variables, this._graph,
this.source, this.listener, this._decoratedClassHierarchy,
{this.instrumentation})
: _inheritanceManager = InheritanceManager3();
/// Gets the decorated type of [element] from [_variables], performing any
/// necessary substitutions.
DecoratedType getOrComputeElementType(Element element,
{DecoratedType targetType}) {
Map<TypeParameterElement, DecoratedType> substitution;
Element baseElement = element.declaration;
if (targetType != null) {
var enclosingElement = baseElement.enclosingElement;
if (enclosingElement is ClassElement) {
if (targetType.type.resolveToBound(typeProvider.dynamicType)
is InterfaceType &&
enclosingElement.typeParameters.isNotEmpty) {
substitution = _decoratedClassHierarchy
.asInstanceOf(targetType, enclosingElement)
.asSubstitution;
}
} else {
assert(enclosingElement is ExtensionElement);
final extensionElement = enclosingElement as ExtensionElement;
final extendedType =
_typeSystem.resolveToBound(extensionElement.extendedType);
if (extendedType is InterfaceType) {
if (extensionElement.typeParameters.isNotEmpty) {
substitution = _decoratedClassHierarchy
.asInstanceOf(targetType, extendedType.element)
.asSubstitution;
}
} else {
// TODO(srawlins): Handle generic typedef. Others?
_unimplemented(
null, 'Extension on $extendedType (${extendedType.runtimeType}');
}
}
}
DecoratedType decoratedBaseType;
if (baseElement is PropertyAccessorElement &&
baseElement.isSynthetic &&
!baseElement.variable.isSynthetic) {
var variable = baseElement.variable;
var decoratedElementType = _variables.decoratedElementType(variable);
if (baseElement.isGetter) {
var target = NullabilityNodeTarget.text('getter function');
decoratedBaseType = DecoratedType(
baseElement.type, NullabilityNode.forInferredType(target),
returnType: decoratedElementType);
} else {
assert(baseElement.isSetter);
var target = NullabilityNodeTarget.text('setter function');
decoratedBaseType = DecoratedType(
baseElement.type, NullabilityNode.forInferredType(target),
positionalParameters: [decoratedElementType],
returnType: DecoratedType(VoidTypeImpl.instance,
NullabilityNode.forInferredType(target.returnType())));
}
} else {
decoratedBaseType = _variables.decoratedElementType(baseElement);
}
if (substitution != null) {
return decoratedBaseType.substitute(substitution);
} else {
return decoratedBaseType;
}
}
@override
// TODO(srawlins): Theoretically, edges should be connected between arguments
// and parameters, as in an instance creation. It is quite rare though, to
// declare a class and use it as an annotation in the same package.
DecoratedType visitAnnotation(Annotation node) {
var previousFlowAnalysis = _flowAnalysis;
var previousAssignedVariables = _assignedVariables;
if (_flowAnalysis == null) {
_assignedVariables = AssignedVariables();
_flowAnalysis = FlowAnalysis<AstNode, Statement, Expression,
PromotableElement, DecoratedType>(
DecoratedTypeOperations(_typeSystem, _variables, _graph),
_assignedVariables);
}
try {
_dispatch(node.name);
_dispatch(node.constructorName);
_dispatchList(node.arguments?.arguments);
} finally {
_flowAnalysis = previousFlowAnalysis;
_assignedVariables = previousAssignedVariables;
}
annotationVisited(node);
return null;
}
@override
DecoratedType visitAsExpression(AsExpression node) {
if (BestPracticesVerifier.isUnnecessaryCast(
node, _typeSystem as TypeSystemImpl)) {
_variables.recordUnnecessaryCast(source, node);
}
_dispatch(node.type);
final typeNode = _variables.decoratedTypeAnnotation(source, node.type);
_handleAssignment(node.expression, destinationType: typeNode);
_flowAnalysis.asExpression_end(node.expression, typeNode);
return typeNode;
}
@override
DecoratedType visitAssertInitializer(AssertInitializer node) {
_flowAnalysis.assert_begin();
_checkExpressionNotNull(node.condition);
if (identical(_conditionInfo?.condition, node.condition)) {
var intentNode = _conditionInfo.trueDemonstratesNonNullIntent;
if (intentNode != null && _conditionInfo.postDominatingIntent) {
_graph.makeNonNullable(_conditionInfo.trueDemonstratesNonNullIntent,
NonNullAssertionOrigin(source, node));
}
}
_flowAnalysis.assert_afterCondition(node.condition);
_dispatch(node.message);
_flowAnalysis.assert_end();
return null;
}
@override
DecoratedType visitAssertStatement(AssertStatement node) {
_flowAnalysis.assert_begin();
_checkExpressionNotNull(node.condition);
if (identical(_conditionInfo?.condition, node.condition)) {
var intentNode = _conditionInfo.trueDemonstratesNonNullIntent;
if (intentNode != null && _conditionInfo.postDominatingIntent) {
_graph.makeNonNullable(_conditionInfo.trueDemonstratesNonNullIntent,
NonNullAssertionOrigin(source, node));
}
}
_flowAnalysis.assert_afterCondition(node.condition);
_dispatch(node.message);
_flowAnalysis.assert_end();
return null;
}
@override
DecoratedType visitAssignmentExpression(AssignmentExpression node) {
bool isQuestionAssign = false;
bool isCompound = false;
if (node.operator.type == TokenType.QUESTION_QUESTION_EQ) {
isQuestionAssign = true;
} else if (node.operator.type != TokenType.EQ) {
isCompound = true;
}
var sourceIsSetupCall = false;
if (node.leftHandSide is SimpleIdentifier &&
_isCurrentFunctionExpressionFoundInTestSetUpCall()) {
var assignee = (node.leftHandSide as SimpleIdentifier).staticElement;
var enclosingElementOfCurrentFunction =
_currentFunctionExpression.declaredElement.enclosingElement;
if (enclosingElementOfCurrentFunction == assignee.enclosingElement) {
// [node]'s enclosing function is a function expression passed directly
// to a call to the test package's `setUp` function, and [node] is an
// assignment to a variable declared in the same scope as the call to
// `setUp`.
sourceIsSetupCall = true;
}
}
var expressionType = _handleAssignment(node.rightHandSide,
destinationExpression: node.leftHandSide,
compoundOperatorInfo: isCompound ? node : null,
questionAssignNode: isQuestionAssign ? node : null,
sourceIsSetupCall: sourceIsSetupCall);
var conditionalNode = _conditionalNodes[node.leftHandSide];
if (conditionalNode != null) {
expressionType = expressionType.withNode(
NullabilityNode.forLUB(conditionalNode, expressionType.node));
_variables.recordDecoratedExpressionType(node, expressionType);
}
return expressionType;
}
@override
DecoratedType visitAwaitExpression(AwaitExpression node) {
var expressionType = _dispatch(node.expression);
// TODO(paulberry) Handle subclasses of Future.
if (expressionType.type.isDartAsyncFuture ||
expressionType.type.isDartAsyncFutureOr) {
expressionType = expressionType.typeArguments[0];
}
return expressionType;
}
@override
DecoratedType visitBinaryExpression(BinaryExpression node) {
var operatorType = node.operator.type;
var leftOperand = node.leftOperand;
var rightOperand = node.rightOperand;
if (operatorType == TokenType.EQ_EQ || operatorType == TokenType.BANG_EQ) {
var leftType = _dispatch(leftOperand);
_graph.connectDummy(leftType.node, DummyOrigin(source, node));
_flowAnalysis.equalityOp_rightBegin(leftOperand, leftType);
var rightType = _dispatch(rightOperand);
_graph.connectDummy(rightType.node, DummyOrigin(source, node));
bool notEqual = operatorType == TokenType.BANG_EQ;
_flowAnalysis.equalityOp_end(node, rightOperand, rightType,
notEqual: notEqual);
void buildNullConditionInfo(NullLiteral nullLiteral,
Expression otherOperand, NullabilityNode otherNode) {
assert(nullLiteral != otherOperand);
// TODO(paulberry): only set falseChecksNonNull in unconditional
// control flow
// TODO(paulberry): figure out what the rules for isPure should be.
bool isPure = otherOperand is SimpleIdentifier;
var conditionInfo = _ConditionInfo(node,
isPure: isPure,
postDominatingIntent:
_postDominatedLocals.isReferenceInScope(otherOperand),
trueGuard: otherNode,
falseDemonstratesNonNullIntent: otherNode);
_conditionInfo = notEqual ? conditionInfo.not(node) : conditionInfo;
}
if (rightOperand is NullLiteral) {
buildNullConditionInfo(rightOperand, leftOperand, leftType.node);
} else if (leftOperand is NullLiteral) {
buildNullConditionInfo(leftOperand, rightOperand, rightType.node);
}
return _makeNonNullableBoolType(node);
} else if (operatorType == TokenType.AMPERSAND_AMPERSAND ||
operatorType == TokenType.BAR_BAR) {
bool isAnd = operatorType == TokenType.AMPERSAND_AMPERSAND;
_flowAnalysis.logicalBinaryOp_begin();
_checkExpressionNotNull(leftOperand);
_flowAnalysis.logicalBinaryOp_rightBegin(node.leftOperand, isAnd: isAnd);
_postDominatedLocals.doScoped(
action: () => _checkExpressionNotNull(rightOperand));
_flowAnalysis.logicalBinaryOp_end(node, rightOperand, isAnd: isAnd);
return _makeNonNullableBoolType(node);
} else if (operatorType == TokenType.QUESTION_QUESTION) {
DecoratedType expressionType;
var leftType = _dispatch(leftOperand);
_flowAnalysis.ifNullExpression_rightBegin(node.leftOperand, leftType);
try {
_guards.add(leftType.node);
DecoratedType rightType;
_postDominatedLocals.doScoped(action: () {
rightType = _dispatch(rightOperand);
});
var ifNullNode = NullabilityNode.forIfNotNull(node);
expressionType = _decorateUpperOrLowerBound(
node, node.staticType, leftType, rightType, true,
node: ifNullNode);
_connect(rightType.node, expressionType.node,
IfNullOrigin(source, node), null);
} finally {
_flowAnalysis.ifNullExpression_end();
_guards.removeLast();
}
_variables.recordDecoratedExpressionType(node, expressionType);
return expressionType;
} else if (operatorType.isUserDefinableOperator) {
var targetType = _checkExpressionNotNull(leftOperand);
var callee = node.staticElement;
if (callee == null) {
_dispatch(rightOperand);
return _makeNullableDynamicType(node);
} else {
var calleeType =
getOrComputeElementType(callee, targetType: targetType);
assert(calleeType.positionalParameters.isNotEmpty); // TODO(paulberry)
_handleAssignment(rightOperand,
destinationType: calleeType.positionalParameters[0]);
return _fixNumericTypes(calleeType.returnType, node.staticType);
}
} else {
// TODO(paulberry)
_dispatch(leftOperand);
_dispatch(rightOperand);
_unimplemented(
node, 'Binary expression with operator ${node.operator.lexeme}');
}
}
@override
DecoratedType visitBooleanLiteral(BooleanLiteral node) {
_flowAnalysis.booleanLiteral(node, node.value);
return _makeNonNullLiteralType(node);
}
@override
DecoratedType visitBreakStatement(BreakStatement node) {
_flowAnalysis.handleBreak(FlowAnalysisHelper.getLabelTarget(
node, node.label?.staticElement as LabelElement));
// Later statements no longer post-dominate the declarations because we
// exited (or, in parent scopes, conditionally exited).
// TODO(mfairhurst): don't clear post-dominators beyond the current loop.
_postDominatedLocals.clearEachScope();
return null;
}
@override
DecoratedType visitCascadeExpression(CascadeExpression node) {
var oldCascadeTargetType = _currentCascadeTargetType;
try {
_currentCascadeTargetType = _checkExpressionNotNull(node.target);
_dispatchList(node.cascadeSections);
return _currentCascadeTargetType;
} finally {
_currentCascadeTargetType = oldCascadeTargetType;
}
}
@override
DecoratedType visitCatchClause(CatchClause node) {
_flowAnalysis.tryCatchStatement_catchBegin(
node.exceptionParameter?.staticElement as PromotableElement,
node.stackTraceParameter?.staticElement as PromotableElement);
_dispatch(node.exceptionType);
// The catch clause may not execute, so create a new scope for
// post-dominators.
_postDominatedLocals.doScoped(action: () => _dispatch(node.body));
_flowAnalysis.tryCatchStatement_catchEnd();
return null;
}
@override
DecoratedType visitClassDeclaration(ClassDeclaration node) {
visitClassOrMixinOrExtensionDeclaration(node);
_dispatch(node.extendsClause);
_dispatch(node.implementsClause);
_dispatch(node.withClause);
_dispatch(node.typeParameters);
return null;
}
DecoratedType visitClassOrMixinOrExtensionDeclaration(
CompilationUnitMember node) {
assert(node is ClassOrMixinDeclaration || node is ExtensionDeclaration);
try {
_currentClassOrExtension = node.declaredElement;
var members = node is ClassOrMixinDeclaration
? node.members
: (node as ExtensionDeclaration).members;
_fieldsNotInitializedAtDeclaration = {
for (var member in members)
if (member is FieldDeclaration &&
_variables.getLateHint(source, member.fields) == null)
for (var field in member.fields.variables)
if (!field.declaredElement.isStatic && field.initializer == null)
field.declaredElement as FieldElement
};
if (_currentClassOrExtension is ClassElement &&
(_currentClassOrExtension as ClassElement)
.unnamedConstructor
?.isSynthetic ==
true) {
_handleUninitializedFields(node, _fieldsNotInitializedAtDeclaration);
}
_dispatchList(node.metadata);
_dispatchList(members);
_fieldsNotInitializedAtDeclaration = null;
} finally {
_currentClassOrExtension = null;
}
return null;
}
@override
DecoratedType visitClassTypeAlias(ClassTypeAlias node) {
_dispatch(node.superclass);
_dispatch(node.implementsClause);
_dispatch(node.withClause);
var classElement = node.declaredElement;
var supertype = classElement.supertype;
var superElement = supertype.element;
for (var constructorElement in classElement.constructors) {
assert(constructorElement.isSynthetic);
var superConstructorElement =
superElement.getNamedConstructor(constructorElement.name);
var constructorDecoratedType = _variables
.decoratedElementType(constructorElement)
.substitute(_decoratedClassHierarchy
.getDecoratedSupertype(classElement, superElement)
.asSubstitution);
var superConstructorDecoratedType =
_variables.decoratedElementType(superConstructorElement);
var origin = ImplicitMixinSuperCallOrigin(source, node);
_linkDecoratedTypeParameters(
constructorDecoratedType, superConstructorDecoratedType, origin,
isUnion: true);
}
return null;
}
@override
DecoratedType visitComment(Comment node) {
// Ignore comments.
return null;
}
@override
DecoratedType visitConditionalExpression(ConditionalExpression node) {
_flowAnalysis.conditional_conditionBegin();
_checkExpressionNotNull(node.condition);
NullabilityNode trueGuard;
NullabilityNode falseGuard;
if (identical(_conditionInfo?.condition, node.condition)) {
trueGuard = _conditionInfo.trueGuard;
falseGuard = _conditionInfo.falseGuard;
_variables.recordConditionalDiscard(source, node,
ConditionalDiscard(trueGuard, falseGuard, _conditionInfo.isPure));
}
DecoratedType thenType;
DecoratedType elseType;
// Post-dominators diverge as we branch in the conditional.
// Note: we don't have to create a scope for each branch because they can't
// define variables.
_postDominatedLocals.doScoped(action: () {
_flowAnalysis.conditional_thenBegin(node.condition);
if (trueGuard != null) {
_guards.add(trueGuard);
}
try {
thenType = _dispatch(node.thenExpression);
if (trueGuard != null) {
thenType = thenType
.withNode(_nullabilityNodeForGLB(node, thenType.node, trueGuard));
}
} finally {
if (trueGuard != null) {
_guards.removeLast();
}
}
_flowAnalysis.conditional_elseBegin(node.thenExpression);
if (falseGuard != null) {
_guards.add(falseGuard);
}
try {
elseType = _dispatch(node.elseExpression);
if (falseGuard != null) {
elseType = elseType.withNode(
_nullabilityNodeForGLB(node, elseType.node, falseGuard));
}
} finally {
if (falseGuard != null) {
_guards.removeLast();
}
}
_flowAnalysis.conditional_end(node, node.elseExpression);
});
var overallType = _decorateUpperOrLowerBound(
node, node.staticType, thenType, elseType, true);
_variables.recordDecoratedExpressionType(node, overallType);
return overallType;
}
@override
DecoratedType visitConstructorDeclaration(ConstructorDeclaration node) {
_fieldsNotInitializedByConstructor =
_fieldsNotInitializedAtDeclaration.toSet();
_dispatch(node.redirectedConstructor?.type?.typeArguments);
_handleExecutableDeclaration(
node,
node.declaredElement,
node.metadata,
null,
node.parameters,
node.initializers,
node.body,
node.redirectedConstructor);
_fieldsNotInitializedByConstructor = null;
return null;
}
@override
DecoratedType visitConstructorFieldInitializer(
ConstructorFieldInitializer node) {
_fieldsNotInitializedByConstructor.remove(node.fieldName.staticElement);
_handleAssignment(node.expression,
destinationType: getOrComputeElementType(node.fieldName.staticElement));
return null;
}
@override
DecoratedType visitContinueStatement(ContinueStatement node) {
_flowAnalysis.handleContinue(FlowAnalysisHelper.getLabelTarget(
node, node.label?.staticElement as LabelElement));
// Later statements no longer post-dominate the declarations because we
// exited (or, in parent scopes, conditionally exited).
// TODO(mfairhurst): don't clear post-dominators beyond the current loop.
_postDominatedLocals.clearEachScope();
return null;
}
@override
DecoratedType visitDefaultFormalParameter(DefaultFormalParameter node) {
_dispatch(node.parameter);
var defaultValue = node.defaultValue;
if (defaultValue == null) {
if (node.declaredElement.hasRequired) {
// Nothing to do; the implicit default value of `null` will never be
// reached.
} else {
_graph.makeNullable(getOrComputeElementType(node.declaredElement).node,
OptionalFormalParameterOrigin(source, node));
}
} else {
_handleAssignment(defaultValue,
destinationType: getOrComputeElementType(node.declaredElement),
fromDefaultValue: true);
}
return null;
}
@override
DecoratedType visitDoStatement(DoStatement node) {
_flowAnalysis.doStatement_bodyBegin(node);
_dispatch(node.body);
_flowAnalysis.doStatement_conditionBegin();
_checkExpressionNotNull(node.condition);
_flowAnalysis.doStatement_end(node.condition);
return null;
}
@override
DecoratedType visitDoubleLiteral(DoubleLiteral node) {
return _makeNonNullLiteralType(node);
}
@override
DecoratedType visitExpressionFunctionBody(ExpressionFunctionBody node) {
if (_currentFunctionType == null) {
_unimplemented(
node,
'ExpressionFunctionBody with no current function '
'(parent is ${node.parent.runtimeType})');
}
_handleAssignment(node.expression,
destinationType: _currentFunctionType.returnType,
wrapFuture: node.isAsynchronous);
return null;
}
@override
DecoratedType visitExpressionStatement(ExpressionStatement node) {
var decoratedType = _dispatch(node.expression);
_graph.connectDummy(decoratedType.node, DummyOrigin(source, node));
return decoratedType;
}
DecoratedType visitExtensionDeclaration(ExtensionDeclaration node) {
visitClassOrMixinOrExtensionDeclaration(node);
_dispatch(node.typeParameters);
_dispatch(node.extendedType);
return null;
}
@override
DecoratedType visitExtensionOverride(ExtensionOverride node) {
return _dispatch(node.argumentList.arguments.single);
}
@override
DecoratedType visitFieldFormalParameter(FieldFormalParameter node) {
_dispatchList(node.metadata);
_dispatch(node.parameters);
var parameterElement = node.declaredElement as FieldFormalParameterElement;
var parameterType = _variables.decoratedElementType(parameterElement);
var field = parameterElement.field;
_fieldsNotInitializedByConstructor.remove(field);
var fieldType = _variables.decoratedElementType(field);
var origin = FieldFormalParameterOrigin(source, node);
if (node.type == null) {
_linkDecoratedTypes(parameterType, fieldType, origin, isUnion: false);
_checkAssignment(origin, FixReasonTarget.root,
source: fieldType, destination: parameterType, hard: false);
} else {
_dispatch(node.type);
_checkAssignment(origin, FixReasonTarget.root,
source: parameterType, destination: fieldType, hard: true);
}
return null;
}
@override
DecoratedType visitForElement(ForElement node) {
_handleForLoopParts(node, node.forLoopParts, node.body,
(body) => _handleCollectionElement(body as CollectionElement));
return null;
}
@override
DecoratedType visitForStatement(ForStatement node) {
_handleForLoopParts(
node, node.forLoopParts, node.body, (body) => _dispatch(body));
return null;
}
@override
DecoratedType visitFunctionDeclaration(FunctionDeclaration node) {
_dispatchList(node.metadata);
_dispatch(node.returnType);
if (_flowAnalysis != null) {
// This is a local function.
_flowAnalysis.functionExpression_begin(node);
_dispatch(node.functionExpression);
_flowAnalysis.functionExpression_end();
} else {
_createFlowAnalysis(node, node.functionExpression.parameters);
// Initialize a new postDominator scope that contains only the parameters.
try {
_dispatch(node.functionExpression);
_flowAnalysis.finish();
} finally {
_flowAnalysis = null;
_assignedVariables = null;
}
var declaredElement = node.declaredElement;
if (declaredElement is PropertyAccessorElement) {
if (declaredElement.isGetter) {
var setter = declaredElement.correspondingSetter;
if (setter != null) {
_handleGetterSetterCorrespondence(
node, null, declaredElement, setter.declaration);
}
} else {
assert(declaredElement.isSetter);
var getter = declaredElement.correspondingGetter;
if (getter != null) {
_handleGetterSetterCorrespondence(
node, null, getter.declaration, declaredElement);
}
}
}
}
return null;
}
@override
DecoratedType visitFunctionExpression(FunctionExpression node) {
// TODO(mfairhurst): enable edge builder "_insideFunction" hard edge tests.
_dispatch(node.parameters);
_dispatch(node.typeParameters);
if (node.parent is! FunctionDeclaration) {
_flowAnalysis.functionExpression_begin(node);
}
_addParametersToFlowAnalysis(node.parameters);
var previousFunction = _currentFunctionExpression;
var previousFunctionType = _currentFunctionType;
_currentFunctionExpression = node;
_currentFunctionType =
_variables.decoratedElementType(node.declaredElement);
try {
_postDominatedLocals.doScoped(
elements: node.declaredElement.parameters,
action: () => _dispatch(node.body));
return _currentFunctionType;
} finally {
if (node.parent is! FunctionDeclaration) {
_flowAnalysis.functionExpression_end();
}
_currentFunctionType = previousFunctionType;
_currentFunctionExpression = previousFunction;
}
}
@override
DecoratedType visitFunctionExpressionInvocation(
FunctionExpressionInvocation node) {
final argumentList = node.argumentList;
final typeArguments = node.typeArguments;
_dispatch(typeArguments);
DecoratedType calleeType = _checkExpressionNotNull(node.function);
DecoratedType result;
if (calleeType.type is FunctionType) {
result = _handleInvocationArguments(node, argumentList.arguments,
typeArguments, node.typeArgumentTypes, calleeType, null,
invokeType: node.staticInvokeType);
} else {
// Invocation of type `dynamic` or `Function`.
_dispatch(argumentList);
result = _makeNullableDynamicType(node);
}
return result;
}
@override
DecoratedType visitIfElement(IfElement node) {
_checkExpressionNotNull(node.condition);
NullabilityNode trueGuard;
NullabilityNode falseGuard;
if (identical(_conditionInfo?.condition, node.condition)) {
trueGuard = _conditionInfo.trueGuard;
falseGuard = _conditionInfo.falseGuard;
_variables.recordConditionalDiscard(source, node,
ConditionalDiscard(trueGuard, falseGuard, _conditionInfo.isPure));
}
if (trueGuard != null) {
_guards.add(trueGuard);
}
try {
_postDominatedLocals.doScoped(
action: () => _handleCollectionElement(node.thenElement));
} finally {
if (trueGuard != null) {
_guards.removeLast();
}
}
if (node.elseElement != null) {
if (falseGuard != null) {
_guards.add(falseGuard);
}
try {
_postDominatedLocals.doScoped(
action: () => _handleCollectionElement(node.elseElement));
} finally {
if (falseGuard != null) {
_guards.removeLast();
}
}
}
return null;
}
@override
DecoratedType visitIfStatement(IfStatement node) {
_flowAnalysis.ifStatement_conditionBegin();
_checkExpressionNotNull(node.condition);
NullabilityNode trueGuard;
NullabilityNode falseGuard;
if (identical(_conditionInfo?.condition, node.condition)) {
trueGuard = _conditionInfo.trueGuard;
falseGuard = _conditionInfo.falseGuard;
_variables.recordConditionalDiscard(source, node,
ConditionalDiscard(trueGuard, falseGuard, _conditionInfo.isPure));
}
if (trueGuard != null) {
_guards.add(trueGuard);
}
try {
_flowAnalysis.ifStatement_thenBegin(node.condition);
// We branched, so create a new scope for post-dominators.
_postDominatedLocals.doScoped(
action: () => _dispatch(node.thenStatement));
} finally {
if (trueGuard != null) {
_guards.removeLast();
}
}
if (falseGuard != null) {
_guards.add(falseGuard);
}
var elseStatement = node.elseStatement;
try {
if (elseStatement != null) {
_flowAnalysis.ifStatement_elseBegin();
// We branched, so create a new scope for post-dominators.
_postDominatedLocals.doScoped(
action: () => _dispatch(node.elseStatement));
}
} finally {
_flowAnalysis.ifStatement_end(elseStatement != null);
if (falseGuard != null) {
_guards.removeLast();
}
}
return null;
}
@override
DecoratedType visitIndexExpression(IndexExpression node) {
DecoratedType targetType;
var target = node.target;
if (node.isCascaded) {
targetType = _currentCascadeTargetType;
} else if (target != null) {
targetType = _checkExpressionNotNull(target);
}
var callee = node.staticElement;
DecoratedType result;
if (callee == null) {
// Dynamic dispatch. The return type is `dynamic`.
// TODO(paulberry): would it be better to assume a return type of `Never`
// so that we don't unnecessarily propagate nullabilities everywhere?
result = _makeNullableDynamicType(node);
} else {
var calleeType = getOrComputeElementType(callee, targetType: targetType);
// TODO(paulberry): substitute if necessary
_handleAssignment(node.index,
destinationType: calleeType.positionalParameters[0]);
if (node.inSetterContext()) {
result = calleeType.positionalParameters[1];
} else {
result = calleeType.returnType;
}
}
return result;
}
@override
DecoratedType visitInstanceCreationExpression(
InstanceCreationExpression node) {
var callee = node.constructorName.staticElement;
var typeParameters = callee.enclosingElement.typeParameters;
Iterable<DartType> typeArgumentTypes;
List<DecoratedType> decoratedTypeArguments;
var typeArguments = node.constructorName.type.typeArguments;
List<EdgeOrigin> parameterEdgeOrigins;
var target =
NullabilityNodeTarget.text('constructed type').withCodeRef(node);
if (typeArguments != null) {
_dispatch(typeArguments);
typeArgumentTypes = typeArguments.arguments.map((t) => t.type);
decoratedTypeArguments = typeArguments.arguments
.map((t) => _variables.decoratedTypeAnnotation(source, t))
.toList();
parameterEdgeOrigins = typeArguments.arguments
.map((typeAnn) => TypeParameterInstantiationOrigin(source, typeAnn))
.toList();
} else {
var staticType = node.staticType;
if (staticType is InterfaceType) {
typeArgumentTypes = staticType.typeArguments;
int index = 0;
decoratedTypeArguments = typeArgumentTypes.map((t) {
return DecoratedType.forImplicitType(
typeProvider, t, _graph, target.typeArgument(index++));
}).toList();
instrumentation?.implicitTypeArguments(
source, node, decoratedTypeArguments);
parameterEdgeOrigins = List.filled(typeArgumentTypes.length,
InferredTypeParameterInstantiationOrigin(source, node));
} else {
// Note: this could happen if the code being migrated has errors.
typeArgumentTypes = const [];
decoratedTypeArguments = const [];
}
}
if (node.staticType.isDartCoreList &&
callee.name == '' &&
node.argumentList.arguments.length == 1) {
_graph.connect(_graph.always, decoratedTypeArguments[0].node,
ListLengthConstructorOrigin(source, node));
}
var nullabilityNode = NullabilityNode.forInferredType(target);
_graph.makeNonNullable(
nullabilityNode, InstanceCreationOrigin(source, node));
var createdType = DecoratedType(node.staticType, nullabilityNode,
typeArguments: decoratedTypeArguments);
var calleeType = getOrComputeElementType(callee, targetType: createdType);
for (var i = 0; i < decoratedTypeArguments.length; ++i) {
_checkAssignment(parameterEdgeOrigins?.elementAt(i),
FixReasonTarget.root.typeArgument(i),
source: decoratedTypeArguments[i],
destination:
_variables.decoratedTypeParameterBound(typeParameters[i]),
hard: true);
}
_handleInvocationArguments(node, node.argumentList.arguments, typeArguments,
typeArgumentTypes, calleeType, typeParameters);
return createdType;
}
@override
DecoratedType visitIntegerLiteral(IntegerLiteral node) {
return _makeNonNullLiteralType(node);
}
@override
DecoratedType visitIsExpression(IsExpression node) {
var expression = node.expression;
var expressionNode = _dispatch(expression).node;
var type = node.type;
_dispatch(type);
var decoratedType = _variables.decoratedTypeAnnotation(source, type);
if (type is NamedType) {
// The main type of the is check historically could not be nullable.
// Making it nullable could change runtime behavior.
_graph.makeNonNullable(
decoratedType.node, IsCheckMainTypeOrigin(source, type));
_conditionInfo = _ConditionInfo(node,
isPure: expression is SimpleIdentifier,
postDominatingIntent:
_postDominatedLocals.isReferenceInScope(expression),
trueDemonstratesNonNullIntent: expressionNode);
if (node.notOperator != null) {
_conditionInfo = _conditionInfo.not(node);
}
if (!_assumeNonNullabilityInCasts) {
// TODO(mfairhurst): wire this to handleDowncast if we do not assume
// nullability.
assert(false);
}
} else if (type is GenericFunctionType) {
// TODO(brianwilkerson)
_unimplemented(node, 'Is expression with GenericFunctionType');
}
_flowAnalysis.isExpression_end(
node, expression, node.notOperator != null, decoratedType);
return _makeNonNullableBoolType(node);
}
@override
DecoratedType visitLabel(Label node) {
// Labels are identifiers but they don't have types so we don't need to
// visit them directly.
return null;
}
@override
DecoratedType visitLibraryDirective(LibraryDirective node) {
// skip directives, but not their metadata
_dispatchList(node.metadata);
return null;
}
@override
DecoratedType visitListLiteral(ListLiteral node) {
final previousLiteralType = _currentLiteralElementType;
try {
var listType = node.staticType as InterfaceType;
if (node.typeArguments == null) {
var target =
NullabilityNodeTarget.text('list element type').withCodeRef(node);
var elementType = DecoratedType.forImplicitType(
typeProvider, listType.typeArguments[0], _graph, target);
instrumentation?.implicitTypeArguments(source, node, [elementType]);
_currentLiteralElementType = elementType;
} else {
_dispatch(node.typeArguments);
_currentLiteralElementType = _variables.decoratedTypeAnnotation(
source, node.typeArguments.arguments[0]);
}
node.elements.forEach(_handleCollectionElement);
return _makeNonNullLiteralType(node,
typeArguments: [_currentLiteralElementType]);
} finally {
_currentLiteralElementType = previousLiteralType;
}
}
@override
DecoratedType visitMapLiteralEntry(MapLiteralEntry node) {
assert(_currentMapKeyType != null);
assert(_currentMapValueType != null);
_handleAssignment(node.key, destinationType: _currentMapKeyType);
_handleAssignment(node.value, destinationType: _currentMapValueType);
return null;
}
@override
DecoratedType visitMethodDeclaration(MethodDeclaration node) {
_handleExecutableDeclaration(node, node.declaredElement, node.metadata,
node.returnType, node.parameters, null, node.body, null);
_dispatch(node.typeParameters);
return null;
}
@override
DecoratedType visitMethodInvocation(MethodInvocation node) {
DecoratedType targetType;
var target = node.target;
bool isNullAware = node.isNullAware;
var callee = node.methodName.staticElement;
bool calleeIsStatic = callee is ExecutableElement && callee.isStatic;
_dispatch(node.typeArguments);
if (node.isCascaded) {
targetType = _currentCascadeTargetType;
} else if (target != null) {
if (_isPrefix(target)) {
// Nothing to do.
} else if (calleeIsStatic) {
_dispatch(target);
} else if (isNullAware) {
targetType = _dispatch(target);
} else {
targetType = _handleTarget(target, node.methodName.name, callee);
}
} else if (target == null && callee.enclosingElement is ClassElement) {
targetType = _thisOrSuper(node);
}
DecoratedType expressionType;
if (callee == null) {
// Dynamic dispatch. The return type is `dynamic`.
// TODO(paulberry): would it be better to assume a return type of `Never`
// so that we don't unnecessarily propagate nullabilities everywhere?
_dispatch(node.argumentList);
expressionType = _makeNullableDynamicType(node);
} else {
var calleeType = getOrComputeElementType(callee, targetType: targetType);
if (callee is PropertyAccessorElement) {
calleeType = calleeType.returnType;
}
expressionType = _handleInvocationArguments(
node,
node.argumentList.arguments,
node.typeArguments,
node.typeArgumentTypes,
calleeType,
null,
invokeType: node.staticInvokeType);
if (isNullAware) {
expressionType = expressionType.withNode(
NullabilityNode.forLUB(targetType.node, expressionType.node));
_variables.recordDecoratedExpressionType(node, expressionType);
}
}
_handleArgumentErrorCheckNotNull(node);
_handleQuiverCheckNotNull(node);
return expressionType;
}
@override
DecoratedType visitMixinDeclaration(MixinDeclaration node) {
visitClassOrMixinOrExtensionDeclaration(node);
_dispatch(node.implementsClause);
_dispatch(node.onClause);
_dispatch(node.typeParameters);
return null;
}
@override
DecoratedType visitNamespaceDirective(NamespaceDirective node) {
// skip directives, but not their metadata
_dispatchList(node.metadata);
return null;
}
@override
DecoratedType visitNode(AstNode node) {
for (var child in node.childEntities) {
if (child is AstNode) {
_dispatch(child);
}
}
return null;
}
@override
DecoratedType visitNullLiteral(NullLiteral node) {
_flowAnalysis.nullLiteral(node);
var target = NullabilityNodeTarget.text('null literal').withCodeRef(node);
var decoratedType = DecoratedType.forImplicitType(
typeProvider, node.staticType, _graph, target);
_graph.makeNullable(decoratedType.node, LiteralOrigin(source, node));
return decoratedType;
}
@override
DecoratedType visitParenthesizedExpression(ParenthesizedExpression node) {
var result = _dispatch(node.expression);
_flowAnalysis.parenthesizedExpression(node, node.expression);
return result;
}
@override
DecoratedType visitPartOfDirective(PartOfDirective node) {
// skip directives, but not their metadata
_dispatchList(node.metadata);
return null;
}
@override
DecoratedType visitPostfixExpression(PostfixExpression node) {
if (node.operator.type.isIncrementOperator) {
var operand = node.operand;
var targetType = _checkExpressionNotNull(operand);
var callee = node.staticElement;
DecoratedType writeType;
if (callee == null) {
// Dynamic dispatch. The return type is `dynamic`.
// TODO(paulberry): would it be better to assume a return type of `Never`
// so that we don't unnecessarily propagate nullabilities everywhere?
writeType = _makeNullableDynamicType(node);
} else {
var calleeType =
getOrComputeElementType(callee, targetType: targetType);
writeType = _fixNumericTypes(calleeType.returnType, node.staticType);
}
if (operand is SimpleIdentifier) {
var element = operand.staticElement;
if (element is PromotableElement) {
_flowAnalysis.write(element, writeType);
}
}
return targetType;
}
_unimplemented(
node, 'Postfix expression with operator ${node.operator.lexeme}');
}
@override
DecoratedType visitPrefixedIdentifier(PrefixedIdentifier node) {
if (node.prefix.staticElement is ImportElement) {
// TODO(paulberry)
_unimplemented(node, 'PrefixedIdentifier with a prefix');
} else {
return _handlePropertyAccess(
node, node.prefix, node.identifier, false, false);
}
}
@override
DecoratedType visitPrefixExpression(PrefixExpression node) {
var operand = node.operand;
var targetType = _checkExpressionNotNull(operand);
var operatorType = node.operator.type;
if (operatorType == TokenType.BANG) {
_flowAnalysis.logicalNot_end(node, operand);
return _makeNonNullableBoolType(node);
} else {
var callee = node.staticElement;
var isIncrementOrDecrement = operatorType.isIncrementOperator;
DecoratedType staticType;
if (callee == null) {
// Dynamic dispatch. The return type is `dynamic`.
// TODO(paulberry): would it be better to assume a return type of `Never`
// so that we don't unnecessarily propagate nullabilities everywhere?
staticType = _makeNullableDynamicType(node);
} else {
var calleeType =
getOrComputeElementType(callee, targetType: targetType);
if (isIncrementOrDecrement) {
staticType = _fixNumericTypes(calleeType.returnType, node.staticType);
} else {
staticType = _handleInvocationArguments(
node, [], null, null, calleeType, null);
}
}
if (isIncrementOrDecrement) {
if (operand is SimpleIdentifier) {
var element = operand.staticElement;
if (element is PromotableElement) {
_flowAnalysis.write(element, staticType);
}
}
}
return staticType;
}
}
@override
DecoratedType visitPropertyAccess(PropertyAccess node) {
return _handlePropertyAccess(node, node.target, node.propertyName,
node.isNullAware, node.isCascaded);
}
@override
DecoratedType visitRedirectingConstructorInvocation(
RedirectingConstructorInvocation node) {
var callee = node.staticElement;
var calleeType = _variables.decoratedElementType(callee);
_handleInvocationArguments(
node, node.argumentList.arguments, null, null, calleeType, null);
return null;
}
@override
DecoratedType visitRethrowExpression(RethrowExpression node) {
_flowAnalysis.handleExit();
var target =
NullabilityNodeTarget.text('rethrow expression').withCodeRef(node);
var nullabilityNode = NullabilityNode.forInferredType(target);
_graph.makeNonNullable(nullabilityNode, ThrowOrigin(source, node));
return DecoratedType(node.staticType, nullabilityNode);
}
@override
DecoratedType visitReturnStatement(ReturnStatement node) {
DecoratedType returnType = _currentFunctionType.returnType;
Expression returnValue = node.expression;
var functionBody = node.thisOrAncestorOfType<FunctionBody>();
if (functionBody.isGenerator) {
// Do not connect the return value to the return type.
return _dispatch(returnValue);
}
final isAsync = functionBody.isAsynchronous;
if (returnValue == null) {
var target =
NullabilityNodeTarget.text('implicit null return').withCodeRef(node);
var implicitNullType = DecoratedType.forImplicitType(
typeProvider, typeProvider.nullType, _graph, target);
var origin = ImplicitNullReturnOrigin(source, node);
_graph.makeNullable(implicitNullType.node, origin);
_checkAssignment(origin, FixReasonTarget.root,
source:
isAsync ? _futureOf(implicitNullType, node) : implicitNullType,
destination: returnType,
hard: false);
} else {
_handleAssignment(returnValue,
destinationType: returnType, wrapFuture: isAsync);
}
_flowAnalysis.handleExit();
// Later statements no longer post-dominate the declarations because we
// exited (or, in parent scopes, conditionally exited).
// TODO(mfairhurst): don't clear post-dominators beyond the current function.
_postDominatedLocals.clearEachScope();
return null;
}
@override
DecoratedType visitSetOrMapLiteral(SetOrMapLiteral node) {
var setOrMapType = node.staticType as InterfaceType;
var typeArguments = node.typeArguments?.arguments;
if (node.isSet) {
final previousLiteralType = _currentLiteralElementType;
try {
if (typeArguments == null) {
assert(setOrMapType.typeArguments.length == 1);
var target =
NullabilityNodeTarget.text('set element type').withCodeRef(node);
var elementType = DecoratedType.forImplicitType(
typeProvider, setOrMapType.typeArguments[0], _graph, target);
instrumentation?.implicitTypeArguments(source, node, [elementType]);
_currentLiteralElementType = elementType;
} else {
assert(typeArguments.length == 1);
_dispatch(node.typeArguments);
_currentLiteralElementType =
_variables.decoratedTypeAnnotation(source, typeArguments[0]);
}
node.elements.forEach(_handleCollectionElement);
return _makeNonNullLiteralType(node,
typeArguments: [_currentLiteralElementType]);
} finally {
_currentLiteralElementType = previousLiteralType;
}
} else {
assert(node.isMap);
final previousKeyType = _currentMapKeyType;
final previousValueType = _currentMapValueType;
try {
if (typeArguments == null) {
assert(setOrMapType.typeArguments.length == 2);
var targetKey =
NullabilityNodeTarget.text('map key type').withCodeRef(node);
var keyType = DecoratedType.forImplicitType(
typeProvider, setOrMapType.typeArguments[0], _graph, targetKey);
_currentMapKeyType = keyType;
var targetValue =
NullabilityNodeTarget.text('map value type').withCodeRef(node);
var valueType = DecoratedType.forImplicitType(
typeProvider, setOrMapType.typeArguments[1], _graph, targetValue);
_currentMapValueType = valueType;
instrumentation
?.implicitTypeArguments(source, node, [keyType, valueType]);
} else {
assert(typeArguments.length == 2);
_dispatch(node.typeArguments);
_currentMapKeyType =
_variables.decoratedTypeAnnotation(source, typeArguments[0]);
_currentMapValueType =
_variables.decoratedTypeAnnotation(source, typeArguments[1]);
}
node.elements.forEach(_handleCollectionElement);
return _makeNonNullLiteralType(node,
typeArguments: [_currentMapKeyType, _currentMapValueType]);
} finally {
_currentMapKeyType = previousKeyType;
_currentMapValueType = previousValueType;
}
}
}
@override
DecoratedType visitSimpleIdentifier(SimpleIdentifier node) {
DecoratedType result;
var staticElement = node.staticElement;
if (staticElement is PromotableElement) {
if (!node.inDeclarationContext()) {
var promotedType = _flowAnalysis.variableRead(node, staticElement);
if (promotedType != null) return promotedType;
}
var type = getOrComputeElementType(staticElement);
if (!node.inDeclarationContext() &&
node.inGetterContext() &&
!_lateHintedLocals.contains(staticElement) &&
!_flowAnalysis.isAssigned(staticElement)) {
_graph.makeNullable(type.node, UninitializedReadOrigin(source, node));
}
result = type;
} else if (staticElement is FunctionElement ||
staticElement is MethodElement ||
staticElement is ConstructorElement) {
result = getOrComputeElementType(staticElement,
targetType: staticElement.enclosingElement is ClassElement
? _thisOrSuper(node)
: null);
} else if (staticElement is PropertyAccessorElement) {
var elementType = getOrComputeElementType(staticElement,
targetType: staticElement.enclosingElement is ClassElement
? _thisOrSuper(node)
: null);
result = staticElement.isGetter
? elementType.returnType
: elementType.positionalParameters[0];
} else if (staticElement is TypeDefiningElement) {
result = _makeNonNullLiteralType(node);
} else if (staticElement is ExtensionElement) {
result = _makeNonNullLiteralType(node);
} else if (staticElement == null) {
assert(node.toString() == 'void', "${node.toString()} != 'void'");
result = _makeNullableVoidType(node);
} else if (staticElement.enclosingElement is ClassElement &&
(staticElement.enclosingElement as ClassElement).isEnum) {
result = getOrComputeElementType(staticElement);
} else {
// TODO(paulberry)
_unimplemented(node,
'Simple identifier with a static element of type ${staticElement.runtimeType}');
}
return result;
}
@override
DecoratedType visitSpreadElement(SpreadElement node) {
final spreadType = node.expression.staticType;
DecoratedType spreadTypeDecorated;
var target =
NullabilityNodeTarget.text('spread element type').withCodeRef(node);
if (_typeSystem.isSubtypeOf(spreadType, typeProvider.mapObjectObjectType)) {
assert(_currentMapKeyType != null && _currentMapValueType != null);
final expectedType = typeProvider.mapType2(
_currentMapKeyType.type, _currentMapValueType.type);
final expectedDecoratedType = DecoratedType.forImplicitType(
typeProvider, expectedType, _graph, target,
typeArguments: [_currentMapKeyType, _currentMapValueType]);
spreadTypeDecorated = _handleAssignment(node.expression,
destinationType: expectedDecoratedType);
} else if (_typeSystem.isSubtypeOf(
spreadType, typeProvider.iterableDynamicType)) {
assert(_currentLiteralElementType != null);
final expectedType =
typeProvider.iterableType2(_currentLiteralElementType.type);
final expectedDecoratedType = DecoratedType.forImplicitType(
typeProvider, expectedType, _graph, target,
typeArguments: [_currentLiteralElementType]);
spreadTypeDecorated = _handleAssignment(node.expression,
destinationType: expectedDecoratedType);
} else {
// Downcast. We can't assume nullability here, so do nothing.
}
if (!node.isNullAware) {
_checkExpressionNotNull(node.expression, sourceType: spreadTypeDecorated);
}
return null;
}
@override
DecoratedType visitStringLiteral(StringLiteral node) {
node.visitChildren(this);
return _makeNonNullLiteralType(node);
}
@override
DecoratedType visitSuperConstructorInvocation(
SuperConstructorInvocation node) {
var callee = node.staticElement;
var target = NullabilityNodeTarget.text('super constructor invocation')
.withCodeRef(node);
var nullabilityNode = NullabilityNode.forInferredType(target);
var class_ = node.thisOrAncestorOfType<ClassDeclaration>();
var decoratedSupertype = _decoratedClassHierarchy.getDecoratedSupertype(
class_.declaredElement, callee.enclosingElement);
var typeArguments = decoratedSupertype.typeArguments;
Iterable<DartType> typeArgumentTypes;
if (typeArguments != null) {
typeArgumentTypes = typeArguments.map((t) => t.type);
} else {
typeArgumentTypes = [];
}
var createdType = DecoratedType(callee.returnType, nullabilityNode,
typeArguments: typeArguments);
var calleeType = getOrComputeElementType(callee, targetType: createdType);
var constructorTypeParameters = callee.enclosingElement.typeParameters;
_handleInvocationArguments(
node,
node.argumentList.arguments,
null /*typeArguments*/,
typeArgumentTypes,
calleeType,
constructorTypeParameters);
return null;
}
@override
DecoratedType visitSuperExpression(SuperExpression node) {
return _thisOrSuper(node);
}
@override
DecoratedType visitSwitchStatement(SwitchStatement node) {
_dispatch(node.expression);
_flowAnalysis.switchStatement_expressionEnd(node);
var hasDefault = false;
for (var member in node.members) {
_postDominatedLocals.doScoped(action: () {
var hasLabel = member.labels.isNotEmpty;
_flowAnalysis.switchStatement_beginCase(hasLabel, node);
if (member is SwitchCase) {
_dispatch(member.expression);
} else {
hasDefault = true;
}
_dispatchList(member.statements);
});
}
_flowAnalysis.switchStatement_end(hasDefault);
return null;
}
@override
DecoratedType visitSymbolLiteral(SymbolLiteral node) {
return _makeNonNullLiteralType(node);
}
@override
DecoratedType visitThisExpression(ThisExpression node) {
return _thisOrSuper(node);
}
@override
DecoratedType visitThrowExpression(ThrowExpression node) {
_dispatch(node.expression);
// TODO(paulberry): do we need to check the expression type? I think not.
_flowAnalysis.handleExit();
var target =
NullabilityNodeTarget.text('throw expression').withCodeRef(node);
var nullabilityNode = NullabilityNode.forInferredType(target);
_graph.makeNonNullable(nullabilityNode, ThrowOrigin(source, node));
return DecoratedType(node.staticType, nullabilityNode);
}
@override
DecoratedType visitTryStatement(TryStatement node) {
var finallyBlock = node.finallyBlock;
if (finallyBlock != null) {
_flowAnalysis.tryFinallyStatement_bodyBegin();
}
var catchClauses = node.catchClauses;
if (catchClauses.isNotEmpty) {
_flowAnalysis.tryCatchStatement_bodyBegin();
}
var body = node.body;
_dispatch(body);
if (catchClauses.isNotEmpty) {
_flowAnalysis.tryCatchStatement_bodyEnd(body);
_dispatchList(catchClauses);
_flowAnalysis.tryCatchStatement_end();
}
if (finallyBlock != null) {
_flowAnalysis.tryFinallyStatement_finallyBegin(
catchClauses.isNotEmpty ? node : body);
_dispatch(finallyBlock);
_flowAnalysis.tryFinallyStatement_end(finallyBlock);
}
return null;
}
@override
DecoratedType visitTypeName(TypeName typeName) {
try {
_typeNameNesting++;
var typeArguments = typeName.typeArguments?.arguments;
var element = typeName.name.staticElement;
if (element is GenericTypeAliasElement) {
final typedefType = _variables.decoratedElementType(element.function);
final typeNameType =
_variables.decoratedTypeAnnotation(source, typeName);
Map<TypeParameterElement, DecoratedType> substitutions;
if (typeName.typeArguments == null) {
// TODO(mfairhurst): substitute instantiations to bounds
substitutions = {};
} else {
substitutions =
Map<TypeParameterElement, DecoratedType>.fromIterables(
element.typeParameters,
typeName.typeArguments.arguments.map(
(t) => _variables.decoratedTypeAnnotation(source, t)));
}
final decoratedType = typedefType.substitute(substitutions);
final origin = TypedefReferenceOrigin(source, typeName);
_linkDecoratedTypeParameters(decoratedType, typeNameType, origin,
isUnion: true);
_linkDecoratedTypes(
decoratedType.returnType, typeNameType.returnType, origin,
isUnion: true);
} else if (element is TypeParameterizedElement) {
if (typeArguments == null) {
var instantiatedType =
_variables.decoratedTypeAnnotation(source, typeName);
if (instantiatedType == null) {
throw StateError('No type annotation for type name '
'${typeName.toSource()}, offset=${typeName.offset}');
}
var origin = InstantiateToBoundsOrigin(source, typeName);
for (int i = 0; i < instantiatedType.typeArguments.length; i++) {
_linkDecoratedTypes(
instantiatedType.typeArguments[i],
_variables
.decoratedTypeParameterBound(element.typeParameters[i]),
origin,
isUnion: false);
}
} else {
for (int i = 0; i < typeArguments.length; i++) {
DecoratedType bound;
bound = _variables
.decoratedTypeParameterBound(element.typeParameters[i]);
assert(bound != null);
var argumentType =
_variables.decoratedTypeAnnotation(source, typeArguments[i]);
if (argumentType == null) {
_unimplemented(typeName,
'No decorated type for type argument ${typeArguments[i]} ($i)');
}
_checkAssignment(
TypeParameterInstantiationOrigin(source, typeArguments[i]),
FixReasonTarget.root,
source: argumentType,
destination: bound,
hard: true);
}
}
}
typeName.visitChildren(this);
typeNameVisited(
typeName); // Note this has been visited to TypeNameTracker.
return null;
} finally {
_typeNameNesting--;
}
}
@override
DecoratedType visitVariableDeclarationList(VariableDeclarationList node) {
var parent = node.parent;
bool isTopLevel =
parent is FieldDeclaration || parent is TopLevelVariableDeclaration;
_dispatchList(node.metadata);
_dispatch(node.type);
for (var variable in node.variables) {
_dispatchList(variable.metadata);
var initializer = variable.initializer;
var declaredElement = variable.declaredElement;
if (isTopLevel) {
assert(_flowAnalysis == null);
_createFlowAnalysis(variable, null);
} else {
assert(_flowAnalysis != null);
if (declaredElement is PromotableElement &&
_variables.getLateHint(source, node) != null) {
_lateHintedLocals.add(declaredElement);
}
}
var type = _variables.decoratedElementType(declaredElement);
var enclosingElement = declaredElement.enclosingElement;
if (!declaredElement.isStatic && enclosingElement is ClassElement) {
var overriddenElements = _inheritanceManager.getOverridden2(
enclosingElement,
Name(enclosingElement.library.source.uri, declaredElement.name));
for (var overriddenElement
in overriddenElements ?? <ExecutableElement>[]) {
_handleFieldOverriddenDeclaration(
variable, type, enclosingElement, overriddenElement);
}
if (!declaredElement.isFinal) {
var overriddenElements = _inheritanceManager.getOverridden2(
enclosingElement,
Name(enclosingElement.library.source.uri,
declaredElement.name + '='));
for (var overriddenElement
in overriddenElements ?? <ExecutableElement>[]) {
_handleFieldOverriddenDeclaration(
variable, type, enclosingElement, overriddenElement);
}
}
}
try {
if (declaredElement is PromotableElement) {
_flowAnalysis.declare(declaredElement, initializer != null);
}
if (initializer == null) {
// For top level variables and static fields, we have to generate an
// implicit assignment of `null`. For instance fields, this is done
// when processing constructors. For local variables, this is done
// when processing variable reads (only if flow analysis indicates
// the variable isn't definitely assigned).
if (isTopLevel &&
_variables.getLateHint(source, node) == null &&
!(declaredElement is FieldElement && !declaredElement.isStatic)) {
_graph.makeNullable(
type.node, ImplicitNullInitializerOrigin(source, node));
}
} else {
_handleAssignment(initializer, destinationType: type);
}
if (isTopLevel) {
_flowAnalysis.finish();
}
} finally {
if (isTopLevel) {
_flowAnalysis = null;
_assignedVariables = null;
}
}
}
// Track post-dominators, except we cannot make hard edges to multi
// declarations. Consider:
//
// int? x = null, y = 0;
// y.toDouble();
//
// We cannot make a hard edge from y to never in this case.
if (node.variables.length == 1) {
_postDominatedLocals.add(node.variables.single.declaredElement);
}
return null;
}
@override
DecoratedType visitWhileStatement(WhileStatement node) {
// Note: we do not create guards. A null check here is *very* unlikely to be
// unnecessary after analysis.
_flowAnalysis.whileStatement_conditionBegin(node);
_checkExpressionNotNull(node.condition);
_flowAnalysis.whileStatement_bodyBegin(node, node.condition);
_postDominatedLocals.doScoped(action: () => _dispatch(node.body));
_flowAnalysis.whileStatement_end();
return null;
}
void _addParametersToFlowAnalysis(FormalParameterList parameters) {
if (parameters != null) {
for (var parameter in parameters.parameters) {
_flowAnalysis.declare(parameter.declaredElement, true);
}
}
}
/// Visits [expression] and generates the appropriate edge to assert that its
/// value is non-null.
///
/// Returns the decorated type of [expression].
DecoratedType _checkExpressionNotNull(Expression expression,
{DecoratedType sourceType}) {
if (_isPrefix(expression)) {
throw ArgumentError('cannot check non-nullability of a prefix');
}
sourceType ??= _dispatch(expression);
if (sourceType == null) {
throw StateError('No type computed for ${expression.runtimeType} '
'(${expression.toSource()}) offset=${expression.offset}');
}
var origin = _makeEdgeOrigin(sourceType, expression);
var hard = _postDominatedLocals.isReferenceInScope(expression) ||
expression.unParenthesized is AsExpression;
var edge = _graph.makeNonNullable(sourceType.node, origin,
hard: hard, guards: _guards);
if (origin is ExpressionChecksOrigin) {
origin.checks.edges[FixReasonTarget.root] = edge;
}
return sourceType;
}
@override
void _connect(NullabilityNode source, NullabilityNode destination,
EdgeOrigin origin, FixReasonTarget edgeTarget,
{bool hard = false, bool checkable = true}) {
var edge = _graph.connect(source, destination, origin,
hard: hard, checkable: checkable, guards: _guards);
if (origin is ExpressionChecksOrigin) {
origin.checks.edges[edgeTarget] = edge;
}
}
void _createFlowAnalysis(Declaration node, FormalParameterList parameters) {
assert(_flowAnalysis == null);
assert(_assignedVariables == null);
_assignedVariables =
FlowAnalysisHelper.computeAssignedVariables(node, parameters);
_flowAnalysis = FlowAnalysis<AstNode, Statement, Expression,
PromotableElement, DecoratedType>(
DecoratedTypeOperations(_typeSystem, _variables, _graph),
_assignedVariables);
if (parameters != null) {
for (var parameter in parameters.parameters) {
_flowAnalysis.declare(parameter.declaredElement, true);
}
}
}
/// Creates a type that can be used to check that an expression's value is
/// non-nullable.
DecoratedType _createNonNullableType(Expression expression) {
var target =
NullabilityNodeTarget.text('expression type').withCodeRef(expression);
// Note: it's not necessary for the type to precisely match the type of the
// expression, since all we are going to do is cause a single graph edge to
// be built; it is sufficient to pass in any decorated type whose node is
// non-nullable. So we use `Object`.
var nullabilityNode = NullabilityNode.forInferredType(target);
_graph.makeNonNullableUnion(
nullabilityNode, NonNullableUsageOrigin(source, expression));
return DecoratedType(typeProvider.objectType, nullabilityNode);
}
DecoratedType _decorateUpperOrLowerBound(AstNode astNode, DartType type,
DecoratedType left, DecoratedType right, bool isLUB,
{NullabilityNode node}) {
var leftType = left.type;
var rightType = right.type;
if (leftType is TypeParameterType && leftType != type) {
// We are "unwrapping" a type parameter type to its bound.
final typeParam = leftType.element;
return _decorateUpperOrLowerBound(
astNode,
type,
left.substitute(
{typeParam: _variables.decoratedTypeParameterBound(typeParam)}),
right,
isLUB,
node: node);
}
if (rightType is TypeParameterType && rightType != type) {
// We are "unwrapping" a type parameter type to its bound.
final typeParam = rightType.element;
return _decorateUpperOrLowerBound(
astNode,
type,
left,
right.substitute(
{typeParam: _variables.decoratedTypeParameterBound(typeParam)}),
isLUB,
node: node);
}
node ??= isLUB
? NullabilityNode.forLUB(left.node, right.node)
: _nullabilityNodeForGLB(astNode, left.node, right.node);
if (type.isDynamic || type.isVoid) {
return DecoratedType(type, node);
} else if (leftType.isBottom) {
return right.withNode(node);
} else if (rightType.isBottom) {
return left.withNode(node);
} else if (type is InterfaceType) {
if (type.typeArguments.isEmpty) {
return DecoratedType(type, node);
} else {
if (leftType.isDartCoreNull) {
assert(isLUB, "shouldn't be possible to get C<T> from GLB(null, S)");
return DecoratedType(type, node, typeArguments: right.typeArguments);
} else if (rightType.isDartCoreNull) {
assert(isLUB, "shouldn't be possible to get C<T> from GLB(S, null)");
return DecoratedType(type, node, typeArguments: left.typeArguments);
} else if (leftType is InterfaceType && rightType is InterfaceType) {
List<DecoratedType> leftTypeArguments;
List<DecoratedType> rightTypeArguments;
if (isLUB) {
leftTypeArguments = _decoratedClassHierarchy
.asInstanceOf(left, type.element)
.typeArguments;
rightTypeArguments = _decoratedClassHierarchy
.asInstanceOf(right, type.element)
.typeArguments;
} else {
if (leftType.element != type.element ||
rightType.element != type.element) {
_unimplemented(astNode, 'GLB with substitution');
}
leftTypeArguments = left.typeArguments;
rightTypeArguments = right.typeArguments;
}
List<DecoratedType> newTypeArguments = [];
for (int i = 0; i < type.typeArguments.length; i++) {
newTypeArguments.add(_decorateUpperOrLowerBound(
astNode,
type.typeArguments[i],
leftTypeArguments[i],
rightTypeArguments[i],
isLUB));
}
return DecoratedType(type, node, typeArguments: newTypeArguments);
} else {
_unimplemented(
astNode,
'LUB/GLB with unexpected types: ${leftType.runtimeType}/'
'${rightType.runtimeType}');
}
}
} else if (type is FunctionType) {
var leftType = left.type;
var rightType = right.type;
if (leftType.isDartCoreNull) {
assert(
isLUB, "shouldn't be possible to get a function from GLB(null, S)");
return DecoratedType(type, node,
returnType: right.returnType,
positionalParameters: right.positionalParameters,
namedParameters: right.namedParameters);
} else if (rightType.isDartCoreNull) {
assert(
isLUB, "shouldn't be possible to get a function from GLB(S, null)");
return DecoratedType(type, node,
returnType: left.returnType,
positionalParameters: left.positionalParameters,
namedParameters: left.namedParameters);
}
if (leftType is FunctionType && rightType is FunctionType) {
var returnType = _decorateUpperOrLowerBound(
astNode, type.returnType, left.returnType, right.returnType, isLUB);
List<DecoratedType> positionalParameters = [];
Map<String, DecoratedType> namedParameters = {};
int positionalParameterCount = 0;
for (var parameter in type.parameters) {
DecoratedType leftParameterType;
DecoratedType rightParameterType;
if (parameter.isNamed) {
leftParameterType = left.namedParameters[parameter.name];
rightParameterType = right.namedParameters[parameter.name];
} else {
leftParameterType =
left.positionalParameters[positionalParameterCount];
rightParameterType =
right.positionalParameters[positionalParameterCount];
positionalParameterCount++;
}
var decoratedParameterType = _decorateUpperOrLowerBound(astNode,
parameter.type, leftParameterType, rightParameterType, !isLUB);
if (parameter.isNamed) {
namedParameters[parameter.name] = decoratedParameterType;
} else {
positionalParameters.add(decoratedParameterType);
}
}
return DecoratedType(type, node,
returnType: returnType,
positionalParameters: positionalParameters,
namedParameters: namedParameters);
} else {
_unimplemented(
astNode,
'LUB/GLB with unexpected types: ${leftType.runtimeType}/'
'${rightType.runtimeType}');
}
} else if (type is TypeParameterType) {
var leftType = left.type;
var rightType = right.type;
if (leftType.isDartCoreNull || rightType.isDartCoreNull) {
assert(isLUB, "shouldn't be possible to get T from GLB(null, S)");
return DecoratedType(type, node);
}
assert(leftType.element == type.element &&
rightType.element == type.element);
return DecoratedType(type, node);
}
_unimplemented(astNode, '_decorateUpperOrLowerBound');
}
DecoratedType _dispatch(AstNode node, {bool skipNullCheckHint = false}) {
var type = node?.accept(this);
if (!skipNullCheckHint &&
node is Expression &&
// A /*!*/ hint following an AsExpression should be interpreted as a
// nullability hint for the type, not a null-check hint.
node is! AsExpression) {
type = _handleNullCheckHint(node, type);
}
return type;
}
void _dispatchList(NodeList nodeList) {
if (nodeList == null) return;
for (var node in nodeList) {
_dispatch(node);
}
}
DecoratedType _fixNumericTypes(
DecoratedType decoratedType, DartType undecoratedType) {
if (decoratedType.type.isDartCoreNum && undecoratedType.isDartCoreInt) {
// In a few cases the type computed by normal method lookup is `num`,
// but special rules kick in to cause the type to be `int` instead. If
// that is the case, we need to fix up the decorated type.
return DecoratedType(undecoratedType, decoratedType.node);
} else {
return decoratedType;
}
}
DecoratedType _futureOf(DecoratedType type, AstNode node) =>
DecoratedType.forImplicitType(
typeProvider,
typeProvider.futureType2(type.type),
_graph,
NullabilityNodeTarget.text('implicit future').withCodeRef(node),
typeArguments: [type]);
@override
DecoratedType _getTypeParameterTypeBound(DecoratedType type) {
// TODO(paulberry): once we've wired up flow analysis, return promoted
// bounds if applicable.
return _variables
.decoratedTypeParameterBound((type.type as TypeParameterType).element);
}
void _handleArgumentErrorCheckNotNull(MethodInvocation node) {
var callee = node.methodName.staticElement;
var calleeIsStatic = callee is ExecutableElement && callee.isStatic;
var target = node.realTarget;
bool targetIsArgumentError =
(target is SimpleIdentifier && target.name == 'ArgumentError') ||
(target is PrefixedIdentifier &&
target.identifier.name == 'ArgumentError');
if (calleeIsStatic &&
targetIsArgumentError &&
callee.name == 'checkNotNull' &&
node.argumentList.arguments.isNotEmpty) {
var argument = node.argumentList.arguments.first;
if (argument is SimpleIdentifier &&
_postDominatedLocals.isReferenceInScope(argument)) {
var argumentType =
_variables.decoratedElementType(argument.staticElement);
_graph.makeNonNullable(argumentType.node,
ArgumentErrorCheckNotNullOrigin(source, argument));
}
}
}
/// Creates the necessary constraint(s) for an assignment of the given
/// [expression] to a destination whose type is [destinationType].
///
/// Optionally, the caller may supply a [destinationExpression] instead of
/// [destinationType]. In this case, then the type comes from visiting the
/// destination expression. If the destination expression refers to a local
/// variable, we mark it as assigned in flow analysis at the proper time.
///
/// Set [wrapFuture] to true to handle assigning Future<flatten(T)> to R.
DecoratedType _handleAssignment(Expression expression,
{DecoratedType destinationType,
Expression destinationExpression,
AssignmentExpression compoundOperatorInfo,
AssignmentExpression questionAssignNode,
bool fromDefaultValue = false,
bool wrapFuture = false,
bool sourceIsSetupCall = false}) {
assert(
(destinationExpression == null) != (destinationType == null),
'Either destinationExpression or destinationType should be supplied, '
'but not both');
PromotableElement destinationLocalVariable;
if (destinationType == null) {
if (destinationExpression is SimpleIdentifier) {
var element = destinationExpression.staticElement;
if (element is PromotableElement) {
destinationLocalVariable = element;
}
}
if (destinationLocalVariable != null) {
_dispatch(destinationExpression);
destinationType = getOrComputeElementType(destinationLocalVariable);
} else {
destinationType = _dispatch(destinationExpression);
}
}
if (questionAssignNode != null) {
_guards.add(destinationType.node);
_flowAnalysis.ifNullExpression_rightBegin(
questionAssignNode.leftHandSide, destinationType);
}
DecoratedType sourceType;
try {
sourceType = _dispatch(expression);
if (wrapFuture) {
sourceType = _wrapFuture(sourceType, expression);
}
if (sourceType == null) {
throw StateError('No type computed for ${expression.runtimeType} '
'(${expression.toSource()}) offset=${expression.offset}');
}
EdgeOrigin edgeOrigin = _makeEdgeOrigin(sourceType, expression,
isSetupAssignment: sourceIsSetupCall);
if (compoundOperatorInfo != null) {
var compoundOperatorMethod = compoundOperatorInfo.staticElement;
if (compoundOperatorMethod != null) {
_checkAssignment(
CompoundAssignmentOrigin(source, compoundOperatorInfo),
FixReasonTarget.root,
source: destinationType,
destination: _createNonNullableType(compoundOperatorInfo),
hard: _postDominatedLocals
.isReferenceInScope(destinationExpression));
DecoratedType compoundOperatorType = getOrComputeElementType(
compoundOperatorMethod,
targetType: destinationType);
assert(compoundOperatorType.positionalParameters.isNotEmpty);
_checkAssignment(edgeOrigin, FixReasonTarget.root,
source: sourceType,
destination: compoundOperatorType.positionalParameters[0],
hard: _postDominatedLocals.isReferenceInScope(expression),
sourceIsFunctionLiteral: expression is FunctionExpression);
sourceType = _fixNumericTypes(
compoundOperatorType.returnType, compoundOperatorInfo.staticType);
_checkAssignment(
CompoundAssignmentOrigin(source, compoundOperatorInfo),
FixReasonTarget.root,
source: sourceType,
destination: destinationType,
hard: false);
} else {
sourceType = _makeNullableDynamicType(compoundOperatorInfo);
}
} else {
var unwrappedExpression = expression.unParenthesized;
var hard = (questionAssignNode == null &&
_postDominatedLocals.isReferenceInScope(expression)) ||
// An edge from a cast should be hard, so that the cast type
// annotation is appropriately made nullable according to the
// destination type.
unwrappedExpression is AsExpression;
_checkAssignment(edgeOrigin, FixReasonTarget.root,
source: sourceType,
destination: destinationType,
hard: hard,
sourceIsFunctionLiteral: expression is FunctionExpression);
}
if (destinationLocalVariable != null) {
_flowAnalysis.write(destinationLocalVariable, sourceType);
}
if (questionAssignNode != null) {
_flowAnalysis.ifNullExpression_end();
// a ??= b is only nullable if both a and b are nullable.
sourceType = destinationType.withNode(_nullabilityNodeForGLB(
questionAssignNode, sourceType.node, destinationType.node));
_variables.recordDecoratedExpressionType(
questionAssignNode, sourceType);
}
} finally {
if (questionAssignNode != null) {
_guards.removeLast();
}
}
if (destinationExpression != null) {
_postDominatedLocals.removeReferenceFromAllScopes(destinationExpression);
}
return sourceType;
}
DecoratedType _handleCollectionElement(CollectionElement element) {
if (element is Expression) {
assert(_currentLiteralElementType != null);
return _handleAssignment(element,
destinationType: _currentLiteralElementType);
} else {
return _dispatch(element);
}
}
void _handleConstructorRedirection(
FormalParameterList parameters, ConstructorName redirectedConstructor) {
var callee = redirectedConstructor.staticElement.declaration;
var redirectedClass = callee.enclosingElement;
var calleeType = _variables.decoratedElementType(callee);
var typeArguments = redirectedConstructor.type.typeArguments;
var typeArgumentTypes =
typeArguments?.arguments?.map((t) => t.type)?.toList();
_handleInvocationArguments(
redirectedConstructor,
parameters.parameters,
typeArguments,
typeArgumentTypes,
calleeType,
redirectedClass.typeParameters);
}
void _handleExecutableDeclaration(
Declaration node,
ExecutableElement declaredElement,
NodeList<Annotation> metadata,
TypeAnnotation returnType,
FormalParameterList parameters,
NodeList<ConstructorInitializer> initializers,
FunctionBody body,
ConstructorName redirectedConstructor) {
assert(_currentFunctionType == null);
_dispatchList(metadata);
_dispatch(returnType);
_createFlowAnalysis(node, parameters);
_dispatch(parameters);
_currentFunctionType = _variables.decoratedElementType(declaredElement);
_addParametersToFlowAnalysis(parameters);
// Push a scope of post-dominated declarations on the stack.
_postDominatedLocals.pushScope(elements: declaredElement.parameters);
try {
_dispatchList(initializers);
if (declaredElement is ConstructorElement &&
!declaredElement.isFactory &&
declaredElement.redirectedConstructor == null) {
_handleUninitializedFields(node, _fieldsNotInitializedByConstructor);
}
_dispatch(body);
if (redirectedConstructor != null) {
_handleConstructorRedirection(parameters, redirectedConstructor);
}
if (declaredElement is! ConstructorElement) {
var enclosingElement = declaredElement.enclosingElement;
if (enclosingElement is ClassElement) {
var overriddenElements = _inheritanceManager.getOverridden2(
enclosingElement,
Name(enclosingElement.library.source.uri, declaredElement.name));
for (var overriddenElement
in overriddenElements ?? <ExecutableElement>[]) {
_handleExecutableOverriddenDeclaration(node, returnType, parameters,
enclosingElement, overriddenElement);
}
if (declaredElement is PropertyAccessorElement) {
if (declaredElement.isGetter) {
var setters = [declaredElement.correspondingSetter];
if (setters[0] == null && !declaredElement.isStatic) {
// No corresponding setter in this class; look for inherited
// setters.
var getterName = declaredElement.name;
var setterName = '$getterName=';
var inheritedMembers = _inheritanceManager.getOverridden2(
enclosingElement,
Name(enclosingElement.library.source.uri, setterName));
if (inheritedMembers != null) {
setters = [
for (var setter in inheritedMembers)
if (setter is PropertyAccessorElement) setter
];
}
}
for (var setter in setters) {
if (setter != null) {
_handleGetterSetterCorrespondence(
node,
declaredElement.isStatic ? null : enclosingElement,
declaredElement,
setter.declaration);
}
}
} else {
assert(declaredElement.isSetter);
assert(declaredElement.name.endsWith('='));
var getters = [declaredElement.correspondingGetter];
if (getters[0] == null && !declaredElement.isStatic) {
// No corresponding getter in this class; look for inherited
// getters.
var setterName = declaredElement.name;
var getterName = setterName.substring(0, setterName.length - 1);
var inheritedMembers = _inheritanceManager.getOverridden2(
enclosingElement,
Name(enclosingElement.library.source.uri, getterName));
if (inheritedMembers != null) {
getters = [
for (var getter in inheritedMembers)
if (getter is PropertyAccessorElement) getter
];
}
}
for (var getter in getters) {
if (getter != null) {
_handleGetterSetterCorrespondence(
node,
declaredElement.isStatic ? null : enclosingElement,
getter.declaration,
declaredElement);
}
}
}
}
}
}
_flowAnalysis.finish();
} finally {
_flowAnalysis = null;
_assignedVariables = null;
_currentFunctionType = null;
_postDominatedLocals.popScope();
}
}
void _handleExecutableOverriddenDeclaration(
Declaration node,
TypeAnnotation returnType,
FormalParameterList parameters,
ClassElement classElement,
Element overriddenElement) {
overriddenElement = overriddenElement.declaration;
var overriddenClass = overriddenElement.enclosingElement as ClassElement;
var decoratedSupertype = _decoratedClassHierarchy.getDecoratedSupertype(
classElement, overriddenClass);
var substitution = decoratedSupertype.asSubstitution;
if (overriddenElement is PropertyAccessorElement &&
overriddenElement.isSynthetic) {
assert(node is MethodDeclaration);
var method = node as MethodDeclaration;
var decoratedOverriddenField =
_variables.decoratedElementType(overriddenElement.variable);
var overriddenFieldType =
decoratedOverriddenField.substitute(substitution);
if (method.isGetter) {
_checkAssignment(
ReturnTypeInheritanceOrigin(source, node), FixReasonTarget.root,
source: _currentFunctionType.returnType,
destination: overriddenFieldType,
hard: true);
} else {
assert(method.isSetter);
DecoratedType currentParameterType =
_currentFunctionType.positionalParameters.single;
DecoratedType overriddenParameterType = overriddenFieldType;
_checkAssignment(
ParameterInheritanceOrigin(source, node), FixReasonTarget.root,
source: overriddenParameterType,
destination: currentParameterType,
hard: true);
}
} else {
var decoratedOverriddenFunctionType =
_variables.decoratedElementType(overriddenElement);
var overriddenFunctionType =
decoratedOverriddenFunctionType.substitute(substitution);
if (returnType == null) {
_linkDecoratedTypes(
_currentFunctionType.returnType,
overriddenFunctionType.returnType,
ReturnTypeInheritanceOrigin(source, node),
isUnion: false);
} else {
_checkAssignment(
ReturnTypeInheritanceOrigin(source, node), FixReasonTarget.root,
source: _currentFunctionType.returnType,
destination: overriddenFunctionType.returnType,
hard: true);
}
if (parameters != null) {
int positionalParameterCount = 0;
for (var parameter in parameters.parameters) {
NormalFormalParameter normalParameter;
if (parameter is NormalFormalParameter) {
normalParameter = parameter;
} else {
normalParameter = (parameter as DefaultFormalParameter).parameter;
}
DecoratedType currentParameterType;
DecoratedType overriddenParameterType;
if (parameter.isNamed) {
var name = normalParameter.identifier.name;
currentParameterType = _currentFunctionType.namedParameters[name];
overriddenParameterType =
overriddenFunctionType.namedParameters[name];
} else {
if (positionalParameterCount <
_currentFunctionType.positionalParameters.length) {
currentParameterType = _currentFunctionType
.positionalParameters[positionalParameterCount];
}
if (positionalParameterCount <
overriddenFunctionType.positionalParameters.length) {
overriddenParameterType = overriddenFunctionType
.positionalParameters[positionalParameterCount];
}
positionalParameterCount++;
}
if (overriddenParameterType != null) {
var origin = ParameterInheritanceOrigin(source, node);
if (_isUntypedParameter(normalParameter)) {
_linkDecoratedTypes(
overriddenParameterType, currentParameterType, origin,
isUnion: false);
} else {
_checkAssignment(origin, FixReasonTarget.root,
source: overriddenParameterType,
destination: currentParameterType,
hard: false,
checkable: false);
}
}
}
}
}
}
void _handleFieldOverriddenDeclaration(
VariableDeclaration node,
DecoratedType type,
ClassElement classElement,
Element overriddenElement) {
overriddenElement = overriddenElement.declaration;
var overriddenClass = overriddenElement.enclosingElement as ClassElement;
var decoratedSupertype = _decoratedClassHierarchy.getDecoratedSupertype(
classElement, overriddenClass);
var substitution = decoratedSupertype.asSubstitution;
if (overriddenElement is PropertyAccessorElement) {
DecoratedType unsubstitutedOverriddenType;
if (overriddenElement.isSynthetic) {
unsubstitutedOverriddenType =
_variables.decoratedElementType(overriddenElement.variable);
} else {
if (overriddenElement.isGetter) {
unsubstitutedOverriddenType =
_variables.decoratedElementType(overriddenElement).returnType;
} else {
unsubstitutedOverriddenType = _variables
.decoratedElementType(overriddenElement)
.positionalParameters[0];
}
}
var overriddenType = unsubstitutedOverriddenType.substitute(substitution);
if (overriddenElement.isGetter) {
_checkAssignment(
ReturnTypeInheritanceOrigin(source, node), FixReasonTarget.root,
source: type, destination: overriddenType, hard: true);
} else {
assert(overriddenElement.isSetter);
_checkAssignment(
ParameterInheritanceOrigin(source, node), FixReasonTarget.root,
source: overriddenType, destination: type, hard: true);
}
} else {
assert(false, 'Field overrides non-property-accessor');
}
}
void _handleForLoopParts(AstNode node, ForLoopParts parts, AstNode body,
DecoratedType Function(AstNode) bodyHandler) {
if (parts is ForParts) {
if (parts is ForPartsWithDeclarations) {
_dispatch(parts.variables);
} else if (parts is ForPartsWithExpression) {
var initializationType = _dispatch(parts.initialization);
if (initializationType != null) {
_graph.connectDummy(
initializationType.node, DummyOrigin(source, parts));
}
}
_flowAnalysis.for_conditionBegin(node);
if (parts.condition != null) {
_checkExpressionNotNull(parts.condition);
}
_flowAnalysis.for_bodyBegin(
node is Statement ? node : null, parts.condition);
} else if (parts is ForEachParts) {
Element lhsElement;
if (parts is ForEachPartsWithDeclaration) {
var variableElement = parts.loopVariable.declaredElement;
_flowAnalysis.declare(variableElement, true);
lhsElement = variableElement;
_dispatch(parts.loopVariable?.type);
} else if (parts is ForEachPartsWithIdentifier) {
lhsElement = parts.identifier.staticElement;
} else {
throw StateError(
'Unexpected ForEachParts subtype: ${parts.runtimeType}');
}
var iterableType = _checkExpressionNotNull(parts.iterable);
DecoratedType elementType;
if (lhsElement != null) {
DecoratedType lhsType = _variables.decoratedElementType(lhsElement);
var iterableTypeType = iterableType.type;
if (_typeSystem.isSubtypeOf(
iterableTypeType, typeProvider.iterableDynamicType)) {
elementType = _decoratedClassHierarchy
.asInstanceOf(
iterableType, typeProvider.iterableDynamicType.element)
.typeArguments[0];
_checkAssignment(
ForEachVariableOrigin(source, parts), FixReasonTarget.root,
source: elementType, destination: lhsType, hard: false);
}
}
_flowAnalysis.forEach_bodyBegin(
node,
lhsElement is PromotableElement ? lhsElement : null,
elementType ?? _makeNullableDynamicType(node));
}
// The condition may fail/iterable may be empty, so the body gets a new
// post-dominator scope.
_postDominatedLocals.doScoped(action: () {
bodyHandler(body);
if (parts is ForParts) {
_flowAnalysis.for_updaterBegin();
for (var updater in parts.updaters ?? <Expression>[]) {
var updaterType = _dispatch(updater);
_graph.connectDummy(updaterType.node, DummyOrigin(source, updater));
}
_flowAnalysis.for_end();
} else {
_flowAnalysis.forEach_end();
}
});
}
void _handleGetterSetterCorrespondence(Declaration node, ClassElement class_,
PropertyAccessorElement getter, PropertyAccessorElement setter) {
DecoratedType getType;
if (getter.isSynthetic) {
var field = getter.variable;
if (field == null || field.isSynthetic) return;
getType = _variables.decoratedElementType(field);
} else {
getType = _variables.decoratedElementType(getter).returnType;
}
DecoratedType setType;
if (setter.isSynthetic) {
var field = setter.variable;
if (field == null || field.isSynthetic) return;
setType = _variables.decoratedElementType(field);
} else {
setType =
_variables.decoratedElementType(setter).positionalParameters.single;
}
Map<TypeParameterElement, DecoratedType> getterSubstitution = const {};
Map<TypeParameterElement, DecoratedType> setterSubstitution = const {};
if (class_ != null) {
var getterClass = getter.enclosingElement as ClassElement;
if (!identical(class_, getterClass)) {
getterSubstitution = _decoratedClassHierarchy
.getDecoratedSupertype(class_, getterClass)
.asSubstitution;
}
var setterClass = setter.enclosingElement as ClassElement;
if (!identical(class_, setterClass)) {
setterSubstitution = _decoratedClassHierarchy
.getDecoratedSupertype(class_, setterClass)
.asSubstitution;
}
}
_checkAssignment(
GetterSetterCorrespondenceOrigin(source, node), FixReasonTarget.root,
source: getType.substitute(getterSubstitution),
destination: setType.substitute(setterSubstitution),
hard: true);
}
/// Instantiate [type] with [argumentTypes], assigning [argumentTypes] to
/// [bounds].
DecoratedType _handleInstantiation(DecoratedType type,
List<DecoratedType> argumentTypes, List<EdgeOrigin> edgeOrigins) {
for (var i = 0; i < argumentTypes.length; ++i) {
_checkAssignment(
edgeOrigins?.elementAt(i), FixReasonTarget.root.typeArgument(i),
source: argumentTypes[i],
destination: DecoratedTypeParameterBounds.current
.get((type.type as FunctionType).typeFormals[i]),
hard: true);
}
return type.instantiate(argumentTypes);
}
/// Creates the necessary constraint(s) for an [ArgumentList] when invoking an
/// executable element whose type is [calleeType].
///
/// Only pass [typeArguments] or [typeArgumentTypes] depending on the use
/// case; only one will be used.
///
/// Returns the decorated return type of the invocation, after any necessary
/// substitutions.
DecoratedType _handleInvocationArguments(
AstNode node,
Iterable<AstNode> arguments,
TypeArgumentList typeArguments,
Iterable<DartType> typeArgumentTypes,
DecoratedType calleeType,
List<TypeParameterElement> constructorTypeParameters,
{DartType invokeType}) {
var typeFormals = constructorTypeParameters ?? calleeType.typeFormals;
var target = NullabilityNodeTarget.text('invocation').withCodeRef(node);
if (typeFormals.isNotEmpty) {
if (typeArguments != null) {
var argumentTypes = typeArguments.arguments
.map((t) => _variables.decoratedTypeAnnotation(source, t))
.toList();
var origins = typeArguments.arguments
.map((typeAnnotation) =>
TypeParameterInstantiationOrigin(source, typeAnnotation))
.toList();
if (constructorTypeParameters != null) {
calleeType = calleeType.substitute(
Map<TypeParameterElement, DecoratedType>.fromIterables(
constructorTypeParameters, argumentTypes));
} else {
calleeType = _handleInstantiation(calleeType, argumentTypes, origins);
}
} else {
if (invokeType is FunctionType) {
var argumentTypes = typeArgumentTypes
.map((argType) => DecoratedType.forImplicitType(
typeProvider, argType, _graph, target))
.toList();
instrumentation?.implicitTypeArguments(source, node, argumentTypes);
calleeType = _handleInstantiation(
calleeType,
argumentTypes,
List.filled(argumentTypes.length,
InferredTypeParameterInstantiationOrigin(source, node)));
} else if (constructorTypeParameters != null) {
// No need to instantiate; caller has already substituted in the
// correct type arguments.
} else {
assert(
false,
'invoke type should be a non-null function type, or '
'dynamic/Function, which have no type arguments. '
'(got $invokeType)');
}
}
}
int i = 0;
var suppliedNamedParameters = <String>{};
for (var argument in arguments) {
String name;
Expression expression;
if (argument is NamedExpression) {
name = argument.name.label.name;
expression = argument.expression;
} else if (argument is FormalParameter) {
if (argument.isNamed) {
name = argument.identifier.name;
}
expression = argument.identifier;
} else {
expression = argument as Expression;
}
DecoratedType parameterType;
if (name != null) {
parameterType = calleeType.namedParameters[name];
if (parameterType == null) {
// TODO(paulberry)
_unimplemented(expression, 'Missing type for named parameter');
}
suppliedNamedParameters.add(name);
} else {
if (calleeType.positionalParameters.length <= i) {
// TODO(paulberry)
_unimplemented(node, 'Missing positional parameter at $i');
}
parameterType = calleeType.positionalParameters[i++];
}
_handleAssignment(expression, destinationType: parameterType);
}
// Any parameters not supplied must be optional.
for (var entry in calleeType.namedParameters.entries) {
if (suppliedNamedParameters.contains(entry.key)) continue;
entry.value.node.recordNamedParameterNotSupplied(
_guards, _graph, NamedParameterNotSuppliedOrigin(source, node));
}
return calleeType.returnType;
}
DecoratedType _handleNullCheckHint(
Expression expression, DecoratedType type) {
// Sometimes we think we're looking at an expression but we're really not
// because we're inside a type name. If this happens, ignore trailing
// `/*!*/`s because they're not expression null check hints, they're type
// non-nullability hints (which are handled by NodeBuilder).
if (_typeNameNesting > 0) return type;
var token = expression.endToken;
if (_nullCheckHints.containsKey(token)) {
// Already visited this location.
return type;
}
var hint = _nullCheckHints[token] = getPostfixHint(token);
if (hint != null && hint.kind == HintCommentKind.bang) {
_variables.recordNullCheckHint(source, expression, hint);
return type.withNode(_graph.never);
} else {
return type;
}
}
DecoratedType _handlePropertyAccess(Expression node, Expression target,
SimpleIdentifier propertyName, bool isNullAware, bool isCascaded) {
DecoratedType targetType;
var callee = propertyName.staticElement;
bool calleeIsStatic = callee is ExecutableElement && callee.isStatic;
if (isCascaded) {
targetType = _currentCascadeTargetType;
} else if (_isPrefix(target)) {
return _dispatch(propertyName, skipNullCheckHint: true);
} else if (calleeIsStatic) {
_dispatch(target);
} else if (isNullAware) {
targetType = _dispatch(target);
} else {
targetType = _handleTarget(target, propertyName.name, callee);
}
if (callee == null) {
// Dynamic dispatch.
return _makeNullableDynamicType(node);
}
var calleeType = getOrComputeElementType(callee, targetType: targetType);
// TODO(paulberry): substitute if necessary
if (propertyName.inSetterContext()) {
if (isNullAware) {
_conditionalNodes[node] = targetType.node;
}
return calleeType.positionalParameters[0];
} else {
var expressionType = callee is PropertyAccessorElement
? calleeType.returnType
: calleeType;
if (isNullAware) {
expressionType = expressionType.withNode(
NullabilityNode.forLUB(targetType.node, expressionType.node));
_variables.recordDecoratedExpressionType(node, expressionType);
}
return expressionType;
}
}
/// Check whether [node] is a call to the quiver package's [`checkNotNull`],
/// and if so, potentially mark the first argument as non-nullable.
///
/// [`checkNotNull`]: https://pub.dev/documentation/quiver/latest/quiver.check/checkNotNull.html
void _handleQuiverCheckNotNull(MethodInvocation node) {
var callee = node.methodName.staticElement;
var calleeUri = callee?.library?.source?.uri;
var isQuiverCheckNull = callee?.name == 'checkNotNull' &&
calleeUri != null &&
calleeUri.scheme == 'package' &&
calleeUri.path.startsWith('quiver/');
if (isQuiverCheckNull && node.argumentList.arguments.isNotEmpty) {
var argument = node.argumentList.arguments.first;
if (argument is SimpleIdentifier &&
_postDominatedLocals.isReferenceInScope(argument)) {
var argumentType =
_variables.decoratedElementType(argument.staticElement);
_graph.makeNonNullable(
argumentType.node, QuiverCheckNotNullOrigin(source, argument));
}
}
}
DecoratedType _handleTarget(Expression target, String name, Element method) {
if (isDeclaredOnObject(name)) {
return _dispatch(target);
} else if (method is MethodElement &&
method.enclosingElement is ExtensionElement) {
// Extension methods can be called on a `null` target, when the `on` type
// of the extension is nullable.
return _handleAssignment(target,
destinationType:
_variables.decoratedElementType(method.enclosingElement));
} else {
return _checkExpressionNotNull(target);
}
}
void _handleUninitializedFields(AstNode node, Set<FieldElement> fields) {
for (var field in fields) {
_graph.makeNullable(_variables.decoratedElementType(field).node,
FieldNotInitializedOrigin(source, node));
}
}
/// Returns whether [_currentFunctionExpression] is an argument to the test
/// package's `setUp` function.
bool _isCurrentFunctionExpressionFoundInTestSetUpCall() {
var parent = _currentFunctionExpression?.parent;
if (parent is ArgumentList) {
var grandParent = parent.parent;
if (grandParent is MethodInvocation) {
var enclosingInvocation = grandParent.methodName;
if (enclosingInvocation.name == 'setUp') {
var uri = enclosingInvocation.staticElement.library?.source?.uri;
if (uri != null &&
uri.scheme == 'package' &&
uri.path.startsWith('test_core/')) {
return true;
}
}
}
}
return false;
}
bool _isPrefix(Expression e) =>
e is SimpleIdentifier && e.staticElement is PrefixElement;
bool _isUntypedParameter(NormalFormalParameter parameter) {
if (parameter is SimpleFormalParameter) {
return parameter.type == null;
} else if (parameter is FieldFormalParameter) {
return parameter.type == null;
} else {
return false;
}
}
void _linkDecoratedTypeParameters(
DecoratedType x, DecoratedType y, EdgeOrigin origin,
{bool isUnion = true}) {
for (int i = 0;
i < x.positionalParameters.length && i < y.positionalParameters.length;
i++) {
_linkDecoratedTypes(
x.positionalParameters[i], y.positionalParameters[i], origin,
isUnion: isUnion);
}
for (var entry in x.namedParameters.entries) {
var superParameterType = y.namedParameters[entry.key];
if (superParameterType != null) {
_linkDecoratedTypes(entry.value, y.namedParameters[entry.key], origin,
isUnion: isUnion);
}
}
}
void _linkDecoratedTypes(DecoratedType x, DecoratedType y, EdgeOrigin origin,
{bool isUnion = true}) {
if (isUnion) {
_graph.union(x.node, y.node, origin);
} else {
_graph.connect(x.node, y.node, origin, hard: true);
}
_linkDecoratedTypeParameters(x, y, origin, isUnion: isUnion);
for (int i = 0;
i < x.typeArguments.length && i < y.typeArguments.length;
i++) {
_linkDecoratedTypes(x.typeArguments[i], y.typeArguments[i], origin,
isUnion: isUnion);
}
if (x.returnType != null && y.returnType != null) {
_linkDecoratedTypes(x.returnType, y.returnType, origin, isUnion: isUnion);
}
}
EdgeOrigin _makeEdgeOrigin(DecoratedType sourceType, Expression expression,
{bool isSetupAssignment = false}) {
if (sourceType.type.isDynamic) {
return DynamicAssignmentOrigin(source, expression);
} else {
ExpressionChecksOrigin expressionChecksOrigin = ExpressionChecksOrigin(
source, expression, ExpressionChecks(),
isSetupAssignment: isSetupAssignment);
_variables.recordExpressionChecks(
source, expression, expressionChecksOrigin);
return expressionChecksOrigin;
}
}
DecoratedType _makeNonNullableBoolType(Expression expression) {
assert(expression.staticType.isDartCoreBool);
var target =
NullabilityNodeTarget.text('expression').withCodeRef(expression);
var nullabilityNode = NullabilityNode.forInferredType(target);
_graph.makeNonNullableUnion(
nullabilityNode, NonNullableBoolTypeOrigin(source, expression));
return DecoratedType(typeProvider.boolType, nullabilityNode);
}
DecoratedType _makeNonNullLiteralType(Expression expression,
{List<DecoratedType> typeArguments = const []}) {
var target =
NullabilityNodeTarget.text('expression').withCodeRef(expression);
var nullabilityNode = NullabilityNode.forInferredType(target);
_graph.makeNonNullableUnion(
nullabilityNode, LiteralOrigin(source, expression));
return DecoratedType(expression.staticType, nullabilityNode,
typeArguments: typeArguments);
}
DecoratedType _makeNullableDynamicType(AstNode astNode) {
var target =
NullabilityNodeTarget.text('dynamic type').withCodeRef(astNode);
var decoratedType = DecoratedType.forImplicitType(
typeProvider, typeProvider.dynamicType, _graph, target);
_graph.makeNullable(
decoratedType.node, AlwaysNullableTypeOrigin(source, astNode, false));
return decoratedType;
}
DecoratedType _makeNullableVoidType(SimpleIdentifier astNode) {
var target = NullabilityNodeTarget.text('void type').withCodeRef(astNode);
var decoratedType = DecoratedType.forImplicitType(
typeProvider, typeProvider.voidType, _graph, target);
_graph.makeNullable(
decoratedType.node, AlwaysNullableTypeOrigin(source, astNode, true));
return decoratedType;
}
NullabilityNode _nullabilityNodeForGLB(
AstNode astNode, NullabilityNode leftNode, NullabilityNode rightNode) {
var node = NullabilityNode.forGLB();
var origin = GreatestLowerBoundOrigin(source, astNode);
_graph.connect(leftNode, node, origin, guards: [rightNode]);
_graph.connect(node, leftNode, origin);
_graph.connect(node, rightNode, origin);
return node;
}
DecoratedType _thisOrSuper(Expression node) {
if (_currentClassOrExtension == null) {
return null;
}
NullabilityNode makeNonNullableNode(NullabilityNodeTarget target) {
var nullabilityNode = NullabilityNode.forInferredType(target);
_graph.makeNonNullableUnion(nullabilityNode,
ThisOrSuperOrigin(source, node, node is ThisExpression));
return nullabilityNode;
}
var token = node.beginToken.lexeme;
var target =
NullabilityNodeTarget.text('$token expression').withCodeRef(node);
if (_currentClassOrExtension is ClassElement) {
final type = (_currentClassOrExtension as ClassElement).thisType;
// Instantiate the type, and any type arguments, with non-nullable types,
// because the type of `this` is always `ClassName<Param, Param, ...>`
// with no `?`s. (Even if some of the type parameters are allowed to be
// instantiated with nullable types at runtime, a reference to `this`
// can't be migrated in such a way that forces them to be nullable.)
var index = 0;
return DecoratedType(type, makeNonNullableNode(target),
typeArguments: type.typeArguments
.map((t) => DecoratedType(
t, makeNonNullableNode(target.typeArgument(index++))))
.toList());
} else {
assert(_currentClassOrExtension is ExtensionElement);
final type = (_currentClassOrExtension as ExtensionElement).extendedType;
if (type is InterfaceType) {
var index = 0;
return DecoratedType(type, NullabilityNode.forInferredType(target),
typeArguments: type.typeArguments
.map((t) => DecoratedType(
t,
NullabilityNode.forInferredType(
target.typeArgument(index++))))
.toList());
} else if (type is TypeParameterType) {
return DecoratedType(type, NullabilityNode.forInferredType(target));
} else {
_unimplemented(node, 'extension of $type (${type.runtimeType}');
}
}
}
@alwaysThrows
void _unimplemented(AstNode node, String message) {
StringBuffer buffer = StringBuffer();
buffer.write(message);
if (node != null) {
CompilationUnit unit = node.root as CompilationUnit;
buffer.write(' in "');
buffer.write(node.toSource());
buffer.write('" on line ');
buffer.write(unit.lineInfo.getLocation(node.offset).lineNumber);
buffer.write(' of "');
buffer.write(unit.declaredElement.source.fullName);
buffer.write('"');
}
throw UnimplementedError(buffer.toString());
}
/// Produce Future<flatten(T)> for some T, however, we would like to merely
/// upcast T to that type if possible, skipping the flatten when not
/// necessary.
DecoratedType _wrapFuture(DecoratedType type, AstNode node) {
var dartType = type.type;
if (dartType.isDartCoreNull || dartType.isBottom) {
return _futureOf(type, node);
}
if (dartType is InterfaceType &&
dartType.element == typeProvider.futureOrElement) {
var typeArguments = type.typeArguments;
if (typeArguments.length == 1) {
// Wrapping FutureOr<T?1>?2 should produce Future<T?3>, where either 1
// or 2 being nullable causes 3 to become nullable.
var typeArgument = typeArguments[0];
return _futureOf(
typeArgument
.withNode(NullabilityNode.forLUB(typeArgument.node, type.node)),
node);
}
}
if (_typeSystem.isSubtypeOf(dartType, typeProvider.futureDynamicType)) {
return _decoratedClassHierarchy.asInstanceOf(
type, typeProvider.futureDynamicType.element);
}
return _futureOf(type, node);
}
}
/// Implementation of [_checkAssignment] for [EdgeBuilder].
///
/// This has been moved to its own mixin to allow it to be more easily unit
/// tested.
mixin _AssignmentChecker {
TypeProvider get typeProvider;
DecoratedClassHierarchy get _decoratedClassHierarchy;
TypeSystem get _typeSystem;
/// Creates the necessary constraint(s) for an assignment from [source] to
/// [destination]. [origin] should be used as the origin for any edges
/// created. [hard] indicates whether a hard edge should be created.
/// [sourceIsFunctionLiteral] indicates whether the source of the assignment
/// is a function literal expression.
void _checkAssignment(EdgeOrigin origin, FixReasonTarget edgeTarget,
{@required DecoratedType source,
@required DecoratedType destination,
@required bool hard,
bool checkable = true,
bool sourceIsFunctionLiteral = false}) {
assert(origin != null);
var sourceType = source.type;
var destinationType = destination.type;
if (!_typeSystem.isSubtypeOf(sourceType, destinationType)) {
// Not a proper upcast assignment.
if (_typeSystem.isSubtypeOf(destinationType, sourceType)) {
// But rather a downcast.
_checkDowncast(origin,
source: source, destination: destination, hard: hard);
return;
}
// A side cast. This may be an explicit side cast, or illegal code. There
// is no nullability we can infer here.
assert(
_assumeNonNullabilityInCasts,
'side cast not supported without assuming non-nullability:'
' $sourceType to $destinationType');
_connect(source.node, destination.node, origin, edgeTarget, hard: hard);
return;
}
_connect(source.node, destination.node, origin, edgeTarget,
hard: hard, checkable: checkable);
_checkAssignment_recursion(origin, edgeTarget,
source: source,
destination: destination,
sourceIsFunctionLiteral: sourceIsFunctionLiteral);
}
/// Does the recursive part of [_checkAssignment], visiting all of the types
/// constituting [source] and [destination], and creating the appropriate
/// edges between them. [sourceIsFunctionLiteral] indicates whether the
/// source of the assignment is a function literal expression.
void _checkAssignment_recursion(EdgeOrigin origin, FixReasonTarget edgeTarget,
{@required DecoratedType source,
@required DecoratedType destination,
bool sourceIsFunctionLiteral = false}) {
var sourceType = source.type;
var destinationType = destination.type;
assert(_typeSystem.isSubtypeOf(sourceType, destinationType));
if (destinationType.isDartAsyncFutureOr) {
var s1 = destination.typeArguments[0];
if (sourceType.isDartAsyncFutureOr) {
// This is a special case not in the subtyping spec. The subtyping spec
// covers this case by expanding the LHS first, which is fine but
// leads to redundant edges (which might be confusing for users)
// if T0 is FutureOr<S0> then:
// - T0 <: T1 iff Future<S0> <: T1 and S0 <: T1
// Since T1 is FutureOr<S1>, this is equivalent to:
// - T0 <: T1 iff (Future<S0> <: Future<S1> or Future<S0> <: S1) and
// (S0 <: Future<S1> or S0 <: S1)
// Which is equivalent to:
// - T0 <: T1 iff (S0 <: S1 or Future<S0> <: S1) and
// (S0 <: Future<S1> or S0 <: S1)
// Which is equivalent to (distributing the "and"):
// - T0 <: T1 iff (S0 <: S1 and (S0 <: Future<S1> or S0 <: S1)) or
// (Future<S0> <: S1 and (S0 <: Future<S1> or S0 <: S1))
// Which is equivalent to (distributing the "and"s):
// - T0 <: T1 iff (S0 <: S1 and S0 <: Future<S1>) or
// (S0 <: S1 and S0 <: S1) or
// (Future<S0> <: S1 and S0 <: Future<S1>) or
// (Future<S0> <: S1 and S0 <: S1)
// If S0 <: S1, the relation is satisfied. Otherwise the only term that
// matters is (Future<S0> <: S1 and S0 <: Future<S1>), so this is
// equivalent to:
// - T0 <: T1 iff S0 <: S1 or (Future<S0> <: S1 and S0 <: Future<S1>)
// Let's consider whether there are any cases where the RHS of this "or"
// can be satisfied but not the LHS. That is, assume that
// Future<S0> <: S1 and S0 <: Future<S1> hold, but not S0 <: S1. S1
// must not be a top type (otherwise S0 <: S1 would hold), so the only
// way Future<S0> <: S1 can hold is if S1 is Future<A> or FutureOr<A>
// for some A. In either case, Future<S1> simplifies to Future<A>, so
// we know that S0 <: Future<A>. Also, in either case, Future<A> <: S1.
// Combining these, we have that S0 <: S1, contradicting our assumption.
// So the RHS of the "or" is redundant, and we can simplify to:
// - S0 <: S1.
var s0 = source.typeArguments[0];
_checkAssignment(origin, edgeTarget.yieldedType,
source: s0, destination: s1, hard: false);
return;
}
// (From the subtyping spec):
// if T1 is FutureOr<S1> then T0 <: T1 iff any of the following hold:
// - either T0 <: Future<S1>
if (_typeSystem.isSubtypeOf(
sourceType, typeProvider.futureType2(s1.type))) {
// E.g. FutureOr<int> = (... as Future<int>)
// This is handled by the InterfaceType logic below, since we treat
// FutureOr as a supertype of Future.
}
// - or T0 <: S1
else if (_typeSystem.isSubtypeOf(sourceType, s1.type)) {
// E.g. FutureOr<int> = (... as int)
_checkAssignment_recursion(origin, edgeTarget.yieldedType,
source: source, destination: s1);
return;
}
// - or T0 is X0 and X0 has bound S0 and S0 <: T1
// - or T0 is X0 & S0 and S0 <: T1
else if (sourceType is TypeParameterType) {
throw UnimplementedError('TODO(paulberry)');
} else {
// Not a subtype. This should never happen, since we handle the
// implicit downcast case above.
assert(false, 'not a subtype');
}
}
if (sourceType.isBottom || sourceType.isDartCoreNull) {
// No further edges need to be created, since all types are trivially
// supertypes of bottom (and of Null, in the pre-migration world).
} else if (sourceType is TypeParameterType) {
// Handle this before handling dynamic/object/void, to correctly infer
// nullabilities in `Object o = T`.
if (destinationType is TypeParameterType) {
// No further edges need to be created, since type parameter types
// aren't made up of other types.
} else {
// Effectively this is an assignment from the type parameter's bound to
// the destination type.
_checkAssignment(origin, edgeTarget,
source: _getTypeParameterTypeBound(source),
destination: destination,
hard: false);
return;
}
} else if (destinationType.isDynamic ||
destinationType.isVoid ||
destinationType.isDartCoreObject) {
// No further edges need to be created, since all types are trivially
// subtypes of dynamic, Object, and void, since all are treated as
// equivalent to dynamic for subtyping purposes.
} else if (sourceType is InterfaceType &&
destinationType is InterfaceType) {
var rewrittenSource = _decoratedClassHierarchy.asInstanceOf(
source, destinationType.element);
assert(rewrittenSource.typeArguments.length ==
destination.typeArguments.length);
for (int i = 0; i < rewrittenSource.typeArguments.length; i++) {
_checkAssignment(origin, edgeTarget.typeArgument(i),
source: rewrittenSource.typeArguments[i],
destination: destination.typeArguments[i],
hard: false,
checkable: false);
}
} else if (sourceType is FunctionType && destinationType is FunctionType) {
// If the source is a function literal, we want a hard edge, so that if a
// function returning non-null is required, we will insure that the
// function literal has a non-nullable return type (e.g. by inserting null
// checks into the function literal).
_checkAssignment(origin, edgeTarget.returnType,
source: source.returnType,
destination: destination.returnType,
hard: sourceIsFunctionLiteral,
checkable: false);
if (source.typeArguments.isNotEmpty ||
destination.typeArguments.isNotEmpty) {
throw UnimplementedError('TODO(paulberry)');
}
for (int i = 0;
i < source.positionalParameters.length &&
i < destination.positionalParameters.length;
i++) {
// Note: source and destination are swapped due to contravariance.
_checkAssignment(origin, edgeTarget.positionalParameter(i),
source: destination.positionalParameters[i],
destination: source.positionalParameters[i],
hard: false,
checkable: false);
}
for (var entry in destination.namedParameters.entries) {
// Note: source and destination are swapped due to contravariance.
_checkAssignment(origin, edgeTarget.namedParameter(entry.key),
source: entry.value,
destination: source.namedParameters[entry.key],
hard: false,
checkable: false);
}
} else if (destinationType.isDynamic || sourceType.isDynamic) {
// ok; nothing further to do.
} else if (destinationType is InterfaceType && sourceType is FunctionType) {
// Either this is an upcast to Function or Object, or it is erroneous
// code. In either case we don't need to create any additional edges.
} else {
throw '$destination <= $source'; // TODO(paulberry)
}
}
void _checkDowncast(EdgeOrigin origin,
{@required DecoratedType source,
@required DecoratedType destination,
@required bool hard}) {
var destinationType = destination.type;
assert(_typeSystem.isSubtypeOf(destinationType, source.type));
// Nullability should narrow to maintain subtype relationship.
_connect(source.node, destination.node, origin, FixReasonTarget.root,
hard: hard);
if (source.type.isDynamic ||
source.type.isDartCoreObject ||
source.type.isVoid) {
if (destinationType is InterfaceType) {
for (final param in destinationType.element.typeParameters) {
assert(param.bound == null,
'downcast to type parameters with bounds not supported');
}
}
if (destinationType is FunctionType) {
// Nothing else to do.
return;
}
} else if (destinationType.isDartCoreNull) {
// There's not really much we can infer from trying to assign a type to
// Null. We could say that the source of the assignment must be nullable,
// but that's not really useful because the nullability won't propagate
// anywhere. Besides, the code is probably erroneous (e.g. the user is
// trying to store a value into a `List<Null>`). So do nothing.
return;
} else if (destinationType is TypeParameterType) {
if (source.type is! TypeParameterType) {
// Assume an assignment to the type parameter's bound.
_checkAssignment(origin, FixReasonTarget.root,
source: source,
destination: _getTypeParameterTypeBound(destination),
hard: false);
} else if (destinationType == source.type) {
// Nothing to do.
return;
}
} else if (source.type.isDartAsyncFutureOr) {
if (destination.type.isDartAsyncFuture) {
// FutureOr<T?> is nullable, so the Future<T> should be nullable too.
_connect(source.typeArguments[0].node, destination.node, origin,
FixReasonTarget.root.yieldedType,
hard: hard);
_checkDowncast(origin,
source: source.typeArguments[0],
destination: destination.typeArguments[0],
hard: false);
} else if (destination.type.isDartAsyncFutureOr) {
_checkDowncast(origin,
source: source.typeArguments[0],
destination: destination.typeArguments[0],
hard: false);
} else {
_checkDowncast(origin,
source: source.typeArguments[0],
destination: destination,
hard: false);
}
} else if (destinationType is InterfaceType) {
if (source.type is InterfaceType) {
final target = _decoratedClassHierarchy.asInstanceOf(
destination, source.type.element as ClassElement);
for (var i = 0; i < source.typeArguments.length; ++i) {
_checkDowncast(origin,
source: source.typeArguments[i],
destination: target.typeArguments[i],
hard: false);
}
} else {
assert(false,
'downcasting from ${source.type.runtimeType} to interface type');
}
} else if (destinationType is FunctionType) {
if (source.type.isDartCoreFunction) {
// Nothing else to do.
return;
}
} else {
assert(
false,
'downcasting from ${source.type.runtimeType} to '
'${destinationType.runtimeType} not supported. (${source.type} $destinationType)');
}
}
void _connect(NullabilityNode source, NullabilityNode destination,
EdgeOrigin origin, FixReasonTarget edgeTarget,
{bool hard = false, bool checkable = true});
/// Given a [type] representing a type parameter, retrieves the type's bound.
DecoratedType _getTypeParameterTypeBound(DecoratedType type);
}
/// Information about a binary expression whose boolean value could possibly
/// affect nullability analysis.
class _ConditionInfo {
/// The [expression] of interest.
final Expression condition;
/// Indicates whether [condition] is pure (free from side effects).
///
/// For example, a condition like `x == null` is pure (assuming `x` is a local
/// variable or static variable), because evaluating it has no user-visible
/// effect other than returning a boolean value.
final bool isPure;
/// Indicates whether the intents postdominate the intent node declarations.
final bool postDominatingIntent;
/// If not `null`, the [NullabilityNode] that would need to be nullable in
/// order for [condition] to evaluate to `true`.
final NullabilityNode trueGuard;
/// If not `null`, the [NullabilityNode] that would need to be nullable in
/// order for [condition] to evaluate to `false`.
final NullabilityNode falseGuard;
/// If not `null`, the [NullabilityNode] that should be asserted to have
/// non-null intent if [condition] is asserted to be `true`.
final NullabilityNode trueDemonstratesNonNullIntent;
/// If not `null`, the [NullabilityNode] that should be asserted to have
/// non-null intent if [condition] is asserted to be `false`.
final NullabilityNode falseDemonstratesNonNullIntent;
_ConditionInfo(this.condition,
{@required this.isPure,
this.postDominatingIntent,
this.trueGuard,
this.falseGuard,
this.trueDemonstratesNonNullIntent,
this.falseDemonstratesNonNullIntent});
/// Returns a new [_ConditionInfo] describing the boolean "not" of `this`.
_ConditionInfo not(Expression condition) => _ConditionInfo(condition,
isPure: isPure,
postDominatingIntent: postDominatingIntent,
trueGuard: falseGuard,
falseGuard: trueGuard,
trueDemonstratesNonNullIntent: falseDemonstratesNonNullIntent,
falseDemonstratesNonNullIntent: trueDemonstratesNonNullIntent);
}
/// A [ScopedSet] specific to the [Element]s of locals/parameters.
///
/// Contains helpers for dealing with expressions as if they were elements.
class _ScopedLocalSet extends ScopedSet<Element> {
bool isReferenceInScope(Expression expression) {
expression = expression.unParenthesized;
if (expression is SimpleIdentifier) {
var element = expression.staticElement;
return isInScope(element);
}
return false;
}
void removeReferenceFromAllScopes(Expression expression) {
expression = expression.unParenthesized;
if (expression is SimpleIdentifier) {
var element = expression.staticElement;
removeFromAllScopes(element);
}
}
}