| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_X64) |
| |
| #include "vm/assembler.h" |
| #include "vm/compiler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/heap.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/resolver.h" |
| #include "vm/scavenger.h" |
| #include "vm/stub_code.h" |
| |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| |
| DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects."); |
| DEFINE_FLAG(bool, use_slow_path, false, |
| "Set to true for debugging & verifying the slow paths."); |
| DECLARE_FLAG(int, optimization_counter_threshold); |
| DECLARE_FLAG(bool, trace_optimized_ic_calls); |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of last argument in argument array. |
| // RSP + 8*R10 : address of first argument in argument array. |
| // RSP + 8*R10 + 8 : address of return value. |
| // RBX : address of the runtime function to call. |
| // R10 : number of arguments to the call. |
| // Must preserve callee saved registers R12 and R13. |
| void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) { |
| ASSERT((R12 != CTX) && (R13 != CTX)); |
| const intptr_t isolate_offset = NativeArguments::isolate_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ EnterFrame(0); |
| |
| // Load current Isolate pointer from Context structure into RAX. |
| __ movq(RAX, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ movq(Address(RAX, Isolate::top_exit_frame_info_offset()), RSP); |
| |
| // Save current Context pointer into Isolate structure. |
| __ movq(Address(RAX, Isolate::top_context_offset()), CTX); |
| |
| // Cache Isolate pointer into CTX while executing runtime code. |
| __ movq(CTX, RAX); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| __ AddImmediate(RSP, Immediate(-sizeof(NativeArguments))); |
| if (OS::ActivationFrameAlignment() > 0) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call runtime. |
| __ movq(Address(RSP, isolate_offset), CTX); // Set isolate in NativeArgs. |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| __ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments. |
| __ leaq(RAX, Address(RBP, R10, TIMES_8, 1 * kWordSize)); // Compute argv. |
| __ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments. |
| __ addq(RAX, Immediate(1 * kWordSize)); // Retval is next to 1st argument. |
| __ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments. |
| __ call(RBX); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(CTX, Isolate::top_exit_frame_info_offset()), Immediate(0)); |
| |
| // Load Context pointer from Isolate structure into RBX. |
| __ movq(RBX, Address(CTX, Isolate::top_context_offset())); |
| |
| // Reset Context pointer in Isolate structure. |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ movq(Address(CTX, Isolate::top_context_offset()), raw_null); |
| |
| // Cache Context pointer into CTX while executing Dart code. |
| __ movq(CTX, RBX); |
| |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| // Print the stop message. |
| DEFINE_LEAF_RUNTIME_ENTRY(void, PrintStopMessage, const char* message) { |
| OS::Print("Stop message: %s\n", message); |
| } |
| END_LEAF_RUNTIME_ENTRY |
| |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RDI : stop message (const char*). |
| // Must preserve all registers. |
| void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) { |
| __ EnterCallRuntimeFrame(0); |
| // Call the runtime leaf function. RDI already contains the parameter. |
| __ CallRuntime(kPrintStopMessageRuntimeEntry); |
| __ LeaveCallRuntimeFrame(); |
| __ ret(); |
| } |
| |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of return value. |
| // RAX : address of first argument in argument array. |
| // RBX : address of the native function to call. |
| // R10 : argc_tag including number of arguments and function kind. |
| void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) { |
| const intptr_t native_args_struct_offset = 0; |
| const intptr_t isolate_offset = |
| NativeArguments::isolate_offset() + native_args_struct_offset; |
| const intptr_t argc_tag_offset = |
| NativeArguments::argc_tag_offset() + native_args_struct_offset; |
| const intptr_t argv_offset = |
| NativeArguments::argv_offset() + native_args_struct_offset; |
| const intptr_t retval_offset = |
| NativeArguments::retval_offset() + native_args_struct_offset; |
| |
| __ EnterFrame(0); |
| |
| // Load current Isolate pointer from Context structure into R8. |
| __ movq(R8, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ movq(Address(R8, Isolate::top_exit_frame_info_offset()), RSP); |
| |
| // Save current Context pointer into Isolate structure. |
| __ movq(Address(R8, Isolate::top_context_offset()), CTX); |
| |
| // Cache Isolate pointer into CTX while executing native code. |
| __ movq(CTX, R8); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // RDI) and align frame before entering the C++ world. |
| __ AddImmediate(RSP, Immediate(-sizeof(NativeArguments))); |
| if (OS::ActivationFrameAlignment() > 0) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call native function. |
| __ movq(Address(RSP, isolate_offset), CTX); // Set isolate in NativeArgs. |
| __ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments. |
| __ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments. |
| __ leaq(RAX, Address(RBP, 2 * kWordSize)); // Compute return value addr. |
| __ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments. |
| __ movq(RDI, RSP); // Pass the pointer to the NativeArguments. |
| __ call(RBX); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(CTX, Isolate::top_exit_frame_info_offset()), Immediate(0)); |
| |
| // Load Context pointer from Isolate structure into R8. |
| __ movq(R8, Address(CTX, Isolate::top_context_offset())); |
| |
| // Reset Context pointer in Isolate structure. |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ movq(Address(CTX, Isolate::top_context_offset()), raw_null); |
| |
| // Cache Context pointer into CTX while executing Dart code. |
| __ movq(CTX, R8); |
| |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| // Input parameters: |
| // R10: arguments descriptor array. |
| void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| __ pushq(raw_null); // Setup space on stack for return value. |
| __ CallRuntime(kPatchStaticCallRuntimeEntry); |
| __ popq(RAX); // Get Code object result. |
| __ popq(R10); // Restore arguments descriptor array. |
| // Remove the stub frame as we are about to jump to the dart function. |
| __ LeaveFrame(); |
| |
| __ movq(RBX, FieldAddress(RAX, Code::instructions_offset())); |
| __ addq(RBX, Immediate(Instructions::HeaderSize() - kHeapObjectTag)); |
| __ jmp(RBX); |
| } |
| |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // R10: arguments descriptor array. |
| void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| __ pushq(raw_null); // Setup space on stack for return value. |
| __ CallRuntime(kFixCallersTargetRuntimeEntry); |
| __ popq(RAX); // Get Code object. |
| __ popq(R10); // Restore arguments descriptor array. |
| __ movq(RAX, FieldAddress(RAX, Code::instructions_offset())); |
| __ addq(RAX, Immediate(Instructions::HeaderSize() - kHeapObjectTag)); |
| __ LeaveFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| |
| // Input parameters: |
| // R10: smi-tagged argument count, may be zero. |
| static void PushArgumentsArray(Assembler* assembler, intptr_t arg_offset) { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| |
| // Allocate array to store arguments of caller. |
| __ movq(RBX, raw_null); // Null element type for raw Array. |
| __ call(&StubCode::AllocateArrayLabel()); |
| __ SmiUntag(R10); |
| // RAX: newly allocated array. |
| // R10: length of the array (was preserved by the stub). |
| __ pushq(RAX); // Array is in RAX and on top of stack. |
| __ leaq(R12, Address(RSP, R10, TIMES_8, arg_offset)); // Addr of first arg. |
| __ leaq(RBX, FieldAddress(RAX, Array::data_offset())); |
| Label loop, loop_condition; |
| __ jmp(&loop_condition, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ movq(RAX, Address(R12, 0)); |
| __ movq(Address(RBX, 0), RAX); |
| __ AddImmediate(RBX, Immediate(kWordSize)); |
| __ AddImmediate(R12, Immediate(-kWordSize)); |
| __ Bind(&loop_condition); |
| __ decq(R10); |
| __ j(POSITIVE, &loop, Assembler::kNearJump); |
| } |
| |
| |
| // Input parameters: |
| // RBX: ic-data. |
| // R10: arguments descriptor array. |
| // Note: The receiver object is the first argument to the function being |
| // called, the stub accesses the receiver from this location directly |
| // when trying to resolve the call. |
| void StubCode::GenerateInstanceFunctionLookupStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ pushq(raw_null); // Space for the return value. |
| |
| // Push the receiver as an argument. Load the smi-tagged argument |
| // count into R13 to index the receiver in the stack. There are |
| // three words (null, stub's pc marker, saved fp) above the return |
| // address. |
| __ movq(R13, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ pushq(Address(RSP, R13, TIMES_4, (3 * kWordSize))); |
| |
| __ pushq(RBX); // Pass IC data object. |
| __ pushq(R10); // Pass arguments descriptor array. |
| |
| // Pass the call's arguments array. |
| __ movq(R10, R13); // Smi-tagged arguments array length. |
| PushArgumentsArray(assembler, (7 * kWordSize)); |
| // Stack layout explaining "(7 * kWordSize)" offset. |
| // TOS + 0: Arguments array. |
| // TOS + 1: Arguments descriptor array. |
| // TOS + 2: IC data object. |
| // TOS + 3: Receiver. |
| // TOS + 4: Space for the result of the runtime call. |
| // TOS + 5: Stub's PC marker (0) |
| // TOS + 6: Saved FP |
| // TOS + 7: Dart code return address |
| // TOS + 8: Last argument of caller. |
| // .... |
| |
| __ CallRuntime(kInstanceFunctionLookupRuntimeEntry); |
| // Remove arguments. |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); // Get result into RAX. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(intptr_t, DeoptimizeCopyFrame, |
| intptr_t deopt_reason, |
| uword saved_registers_address); |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(void, DeoptimizeFillFrame, uword last_fp); |
| |
| |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterFrame(0) below: |
| // +------------------+ |
| // | Saved FP | <- TOS |
| // +------------------+ |
| // | return-address | (deoptimization point) |
| // +------------------+ |
| // | optimized frame | |
| // | ... | |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| bool preserve_rax) { |
| __ EnterFrame(0); |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_rax_offset_from_ebp = -(kNumberOfCpuRegisters - RAX); |
| // Result in EAX is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) { |
| __ pushq(static_cast<Register>(i)); |
| } |
| __ subq(RSP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize)); |
| intptr_t offset = 0; |
| for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { |
| XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); |
| __ movups(Address(RSP, offset), xmm_reg); |
| offset += kFpuRegisterSize; |
| } |
| |
| __ movq(RDI, RSP); // Pass address of saved registers block. |
| __ ReserveAlignedFrameSpace(0); |
| __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry); |
| // Result (RAX) is stack-size (FP - SP) in bytes, incl. the return address. |
| |
| if (preserve_rax) { |
| // Restore result into RBX temporarily. |
| __ movq(RBX, Address(RBP, saved_rax_offset_from_ebp * kWordSize)); |
| } |
| |
| __ LeaveFrame(); |
| __ popq(RCX); // Preserve return address. |
| __ movq(RSP, RBP); |
| __ subq(RSP, RAX); |
| __ movq(Address(RSP, 0), RCX); |
| |
| __ EnterFrame(0); |
| __ movq(RCX, RSP); // Get last FP address. |
| if (preserve_rax) { |
| __ pushq(RBX); // Preserve result. |
| } |
| __ ReserveAlignedFrameSpace(0); |
| __ movq(RDI, RCX); // Set up argument 1 last_fp. |
| __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry); |
| // Result (RAX) is our FP. |
| if (preserve_rax) { |
| // Restore result into RBX. |
| __ movq(RBX, Address(RBP, -1 * kWordSize)); |
| } |
| // Code above cannot cause GC. |
| __ LeaveFrame(); |
| __ movq(RBP, RAX); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| __ EnterStubFrame(); |
| if (preserve_rax) { |
| __ pushq(RBX); // Preserve result, it will be GC-d here. |
| } |
| __ CallRuntime(kDeoptimizeMaterializeDoublesRuntimeEntry); |
| if (preserve_rax) { |
| __ popq(RAX); // Restore result. |
| } |
| __ LeaveFrame(); |
| |
| __ ret(); |
| } |
| |
| |
| // TOS: return address + call-instruction-size (5 bytes). |
| // RAX: result, must be preserved |
| void StubCode::GenerateDeoptimizeLazyStub(Assembler* assembler) { |
| // Correct return address to point just after the call that is being |
| // deoptimized. |
| __ popq(RBX); |
| __ subq(RBX, Immediate(ShortCallPattern::InstructionLength())); |
| __ pushq(RBX); |
| GenerateDeoptimizationSequence(assembler, true); // Preserve RAX. |
| } |
| |
| |
| void StubCode::GenerateDeoptimizeStub(Assembler* assembler) { |
| GenerateDeoptimizationSequence(assembler, false); // Don't preserve RAX. |
| } |
| |
| |
| void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| // Load the receiver into RAX. The argument count in the arguments |
| // descriptor in R10 is a smi. |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| // Two words (saved fp, stub's pc marker) in the stack above the return |
| // address. |
| __ movq(RAX, Address(RSP, RAX, TIMES_4, 2 * kWordSize)); |
| // Preserve IC data and arguments descriptor. |
| __ pushq(RBX); |
| __ pushq(R10); |
| |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Instructions::null())); |
| __ pushq(raw_null); // Space for the result of the runtime call. |
| __ pushq(RAX); // Receiver. |
| __ pushq(RBX); // IC data. |
| __ pushq(R10); // Arguments descriptor. |
| __ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry); |
| // Discard arguments. |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); // Return value from the runtime call (instructions). |
| __ popq(R10); // Restore arguments descriptor. |
| __ popq(RBX); // Restore IC data. |
| __ LeaveFrame(); |
| |
| Label lookup; |
| __ cmpq(RAX, raw_null); |
| __ j(EQUAL, &lookup, Assembler::kNearJump); |
| __ addq(RAX, Immediate(Instructions::HeaderSize() - kHeapObjectTag)); |
| __ jmp(RAX); |
| |
| __ Bind(&lookup); |
| __ jmp(&StubCode::InstanceFunctionLookupLabel()); |
| } |
| |
| |
| // Called for inline allocation of arrays. |
| // Input parameters: |
| // R10 : Array length as Smi. |
| // RBX : array element type (either NULL or an instantiated type). |
| // NOTE: R10 cannot be clobbered here as the caller relies on it being saved. |
| // The newly allocated object is returned in RAX. |
| void StubCode::GenerateAllocateArrayStub(Assembler* assembler) { |
| Label slow_case; |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| |
| if (FLAG_inline_alloc) { |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)). |
| // Assert that length is a Smi. |
| __ testq(R10, Immediate(kSmiTagMask)); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(NOT_ZERO, &slow_case); |
| } |
| __ movq(R13, FieldAddress(CTX, Context::isolate_offset())); |
| __ movq(R13, Address(R13, Isolate::heap_offset())); |
| __ movq(R13, Address(R13, Heap::new_space_offset())); |
| |
| // Calculate and align allocation size. |
| // Load new object start and calculate next object start. |
| // RBX: array element type. |
| // R10: Array length as Smi. |
| // R13: Points to new space object. |
| __ movq(RAX, Address(R13, Scavenger::top_offset())); |
| intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1; |
| __ leaq(R12, Address(R10, TIMES_4, fixed_size)); // R10 is Smi. |
| ASSERT(kSmiTagShift == 1); |
| __ andq(R12, Immediate(-kObjectAlignment)); |
| __ leaq(R12, Address(RAX, R12, TIMES_1, 0)); |
| |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object start. |
| // R12: potential next object start. |
| // RBX: array element type. |
| // R10: Array length as Smi. |
| // R13: Points to new space object. |
| __ cmpq(R12, Address(R13, Scavenger::end_offset())); |
| __ j(ABOVE_EQUAL, &slow_case); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| // RAX: potential new object start. |
| // R12: potential next object start. |
| // R13: Points to new space object. |
| __ movq(Address(R13, Scavenger::top_offset()), R12); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| |
| // RAX: new object start as a tagged pointer. |
| // R12: new object end address. |
| // RBX: array element type. |
| // R10: Array length as Smi. |
| |
| // Store the type argument field. |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, Array::type_arguments_offset()), RBX); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, Array::length_offset()), R10); |
| |
| // Calculate the size tag. |
| // RAX: new object start as a tagged pointer. |
| // R12: new object end address. |
| // R10: Array length as Smi. |
| { |
| Label size_tag_overflow, done; |
| __ leaq(RBX, Address(R10, TIMES_4, fixed_size)); // R10 is Smi. |
| ASSERT(kSmiTagShift == 1); |
| __ andq(RBX, Immediate(-kObjectAlignment)); |
| __ cmpq(RBX, Immediate(RawObject::SizeTag::kMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(RBX, Immediate(RawObject::kSizeTagBit - kObjectAlignmentLog2)); |
| __ jmp(&done); |
| |
| __ Bind(&size_tag_overflow); |
| __ movq(RBX, Immediate(0)); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| __ orq(RBX, Immediate(RawObject::ClassIdTag::encode(kArrayCid))); |
| __ movq(FieldAddress(RAX, Array::tags_offset()), RBX); |
| } |
| |
| // Initialize all array elements to raw_null. |
| // RAX: new object start as a tagged pointer. |
| // R12: new object end address. |
| // R10: Array length as Smi. |
| __ leaq(RBX, FieldAddress(RAX, Array::data_offset())); |
| // RBX: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| Label done; |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ cmpq(RBX, R12); |
| __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); |
| // TODO(cshapiro): StoreIntoObjectNoBarrier |
| __ movq(Address(RBX, 0), raw_null); |
| __ addq(RBX, Immediate(kWordSize)); |
| __ jmp(&init_loop, Assembler::kNearJump); |
| __ Bind(&done); |
| |
| // Done allocating and initializing the array. |
| // RAX: new object. |
| // R10: Array length as Smi (preserved for the caller.) |
| __ ret(); |
| } |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ pushq(raw_null); // Setup space on stack for return value. |
| __ pushq(R10); // Array length as Smi. |
| __ pushq(RBX); // Element type. |
| __ CallRuntime(kAllocateArrayRuntimeEntry); |
| __ popq(RAX); // Pop element type argument. |
| __ popq(R10); // Pop array length argument. |
| __ popq(RAX); // Pop return value from return slot. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| // Input parameters: |
| // R10: Arguments descriptor array. |
| // Note: The closure object is the first argument to the function being |
| // called, the stub accesses the closure from this location directly |
| // when trying to resolve the call. |
| void StubCode::GenerateCallClosureFunctionStub(Assembler* assembler) { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| |
| // Load num_args. |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| // Load closure object in R13. |
| __ movq(R13, Address(RSP, RAX, TIMES_4, 0)); // RAX is a Smi. |
| |
| // Verify that R13 is a closure by checking its class. |
| Label not_closure; |
| __ cmpq(R13, raw_null); |
| // Not a closure, but null object. |
| __ j(EQUAL, ¬_closure); |
| __ testq(R13, Immediate(kSmiTagMask)); |
| __ j(ZERO, ¬_closure); // Not a closure, but a smi. |
| // Verify that the class of the object is a closure class by checking that |
| // class.signature_function() is not null. |
| __ LoadClass(RAX, R13); |
| __ movq(RAX, FieldAddress(RAX, Class::signature_function_offset())); |
| __ cmpq(RAX, raw_null); |
| // Actual class is not a closure class. |
| __ j(EQUAL, ¬_closure, Assembler::kNearJump); |
| |
| // RAX is just the signature function. Load the actual closure function. |
| __ movq(RBX, FieldAddress(R13, Closure::function_offset())); |
| |
| // Load closure context in CTX; note that CTX has already been preserved. |
| __ movq(CTX, FieldAddress(R13, Closure::context_offset())); |
| |
| // Load closure function code in RAX. |
| __ movq(RAX, FieldAddress(RBX, Function::code_offset())); |
| __ cmpq(RAX, raw_null); |
| Label function_compiled; |
| __ j(NOT_EQUAL, &function_compiled, Assembler::kNearJump); |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| |
| __ pushq(R10); // Preserve arguments descriptor array. |
| __ pushq(RBX); // Preserve read-only function object argument. |
| __ CallRuntime(kCompileFunctionRuntimeEntry); |
| __ popq(RBX); // Restore read-only function object argument in RBX. |
| __ popq(R10); // Restore arguments descriptor array. |
| // Restore RAX. |
| __ movq(RAX, FieldAddress(RBX, Function::code_offset())); |
| |
| // Remove the stub frame as we are about to jump to the closure function. |
| __ LeaveFrame(); |
| |
| __ Bind(&function_compiled); |
| // RAX: Code. |
| // RBX: Function. |
| // R10: Arguments descriptor array. |
| |
| __ movq(RBX, FieldAddress(RAX, Code::instructions_offset())); |
| __ addq(RBX, Immediate(Instructions::HeaderSize() - kHeapObjectTag)); |
| __ jmp(RBX); |
| |
| __ Bind(¬_closure); |
| // Call runtime to attempt to resolve and invoke a call method on a |
| // non-closure object, passing the non-closure object and its arguments array, |
| // returning here. |
| // If no call method exists, throw a NoSuchMethodError. |
| // R13: non-closure object. |
| // R10: arguments descriptor array. |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| |
| __ pushq(raw_null); // Setup space on stack for result from call. |
| __ pushq(R10); // Arguments descriptor. |
| // Load smi-tagged arguments array length, including the non-closure. |
| __ movq(R10, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| // See stack layout below explaining "wordSize * 5" offset. |
| PushArgumentsArray(assembler, (kWordSize * 5)); |
| |
| // Stack: |
| // TOS + 0: Argument array. |
| // TOS + 1: Arguments descriptor array. |
| // TOS + 2: Place for result from the call. |
| // TOS + 3: PC marker => RawInstruction object. |
| // TOS + 4: Saved RBP of previous frame. <== RBP |
| // TOS + 5: Dart code return address |
| // TOS + 6: Last argument of caller. |
| // .... |
| __ CallRuntime(kInvokeNonClosureRuntimeEntry); |
| // Remove arguments. |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); // Get result into RAX. |
| |
| // Remove the stub frame as we are about to return. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // RSP : points to return address. |
| // RDI : entrypoint of the Dart function to call. |
| // RSI : arguments descriptor array. |
| // RDX : arguments array. |
| // RCX : new context containing the current isolate pointer. |
| void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| // Save frame pointer coming in. |
| __ EnterFrame(0); |
| |
| // Save arguments descriptor array and new context. |
| const intptr_t kArgumentsDescOffset = -1 * kWordSize; |
| __ pushq(RSI); |
| const intptr_t kNewContextOffset = -2 * kWordSize; |
| __ pushq(RCX); |
| |
| // Save C++ ABI callee-saved registers. |
| __ pushq(RBX); |
| __ pushq(R12); |
| __ pushq(R13); |
| __ pushq(R14); |
| __ pushq(R15); |
| |
| // The new Context structure contains a pointer to the current Isolate |
| // structure. Cache the Context pointer in the CTX register so that it is |
| // available in generated code and calls to Isolate::Current() need not be |
| // done. The assumption is that this register will never be clobbered by |
| // compiled or runtime stub code. |
| |
| // Cache the new Context pointer into CTX while executing Dart code. |
| __ movq(CTX, Address(RCX, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load Isolate pointer from Context structure into R8. |
| __ movq(R8, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Save the top exit frame info. Use RAX as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| // The constant kExitLinkOffsetInEntryFrame must be kept in sync with the |
| // code below: kExitLinkOffsetInEntryFrame = -8 * kWordSize. |
| __ movq(RAX, Address(R8, Isolate::top_exit_frame_info_offset())); |
| __ pushq(RAX); |
| __ movq(Address(R8, Isolate::top_exit_frame_info_offset()), Immediate(0)); |
| |
| // Save the old Context pointer. Use RAX as a temporary register. |
| // Note that VisitObjectPointers will find this saved Context pointer during |
| // GC marking, since it traverses any information between SP and |
| // FP - kExitLinkOffsetInEntryFrame. |
| // EntryFrame::SavedContext reads the context saved in this frame. |
| // The constant kSavedContextOffsetInEntryFrame must be kept in sync with |
| // the code below: kSavedContextOffsetInEntryFrame = -9 * kWordSize. |
| __ movq(RAX, Address(R8, Isolate::top_context_offset())); |
| __ pushq(RAX); |
| |
| // Load arguments descriptor array into R10, which is passed to Dart code. |
| __ movq(R10, Address(RSI, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Load number of arguments into RBX. |
| __ movq(RBX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ SmiUntag(RBX); |
| |
| // Compute address of 'arguments array' data area into RDX. |
| __ movq(RDX, Address(RDX, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ leaq(RDX, FieldAddress(RDX, Array::data_offset())); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ testq(RBX, RBX); // check if there are arguments. |
| __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
| __ movq(RAX, Immediate(0)); |
| __ Bind(&push_arguments); |
| __ movq(RCX, Address(RDX, RAX, TIMES_8, 0)); // RDX is start of arguments. |
| __ pushq(RCX); |
| __ incq(RAX); |
| __ cmpq(RAX, RBX); |
| __ j(LESS, &push_arguments, Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| __ call(RDI); // R10 is the arguments descriptor array. |
| |
| // Read the saved new Context pointer. |
| __ movq(CTX, Address(RBP, kNewContextOffset)); |
| __ movq(CTX, Address(CTX, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Read the saved arguments descriptor array to obtain the number of passed |
| // arguments. |
| __ movq(RSI, Address(RBP, kArgumentsDescOffset)); |
| __ movq(R10, Address(RSI, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ movq(RDX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| // Get rid of arguments pushed on the stack. |
| __ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi. |
| |
| // Load Isolate pointer from Context structure into CTX. Drop Context. |
| __ movq(CTX, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Restore the saved Context pointer into the Isolate structure. |
| // Uses RCX as a temporary register for this. |
| __ popq(RCX); |
| __ movq(Address(CTX, Isolate::top_context_offset()), RCX); |
| |
| // Restore the saved top exit frame info back into the Isolate structure. |
| // Uses RDX as a temporary register for this. |
| __ popq(RDX); |
| __ movq(Address(CTX, Isolate::top_exit_frame_info_offset()), RDX); |
| |
| // Restore C++ ABI callee-saved registers. |
| __ popq(R15); |
| __ popq(R14); |
| __ popq(R13); |
| __ popq(R12); |
| __ popq(RBX); |
| |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| |
| __ ret(); |
| } |
| |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // R10: number of context variables. |
| // Output: |
| // RAX: new allocated RawContext object. |
| void StubCode::GenerateAllocateContextStub(Assembler* assembler) { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| if (FLAG_inline_alloc) { |
| const Class& context_class = Class::ZoneHandle(Object::context_class()); |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| // First compute the rounded instance size. |
| // R10: number of context variables. |
| intptr_t fixed_size = (sizeof(RawContext) + kObjectAlignment - 1); |
| __ leaq(R13, Address(R10, TIMES_8, fixed_size)); |
| __ andq(R13, Immediate(-kObjectAlignment)); |
| |
| // Now allocate the object. |
| // R10: number of context variables. |
| __ movq(RAX, Immediate(heap->TopAddress())); |
| __ movq(RAX, Address(RAX, 0)); |
| __ addq(R13, RAX); |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object. |
| // R13: potential next object start. |
| // R10: number of context variables. |
| __ movq(RDI, Immediate(heap->EndAddress())); |
| __ cmpq(R13, Address(RDI, 0)); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(ABOVE_EQUAL, &slow_case); |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // RAX: new object. |
| // R13: next object start. |
| // R10: number of context variables. |
| __ movq(RDI, Immediate(heap->TopAddress())); |
| __ movq(Address(RDI, 0), R13); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| |
| // Calculate the size tag. |
| // RAX: new object. |
| // R10: number of context variables. |
| { |
| Label size_tag_overflow, done; |
| __ leaq(R13, Address(R10, TIMES_8, fixed_size)); |
| __ andq(R13, Immediate(-kObjectAlignment)); |
| __ cmpq(R13, Immediate(RawObject::SizeTag::kMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(R13, Immediate(RawObject::kSizeTagBit - kObjectAlignmentLog2)); |
| __ jmp(&done); |
| |
| __ Bind(&size_tag_overflow); |
| // Set overflow size tag value. |
| __ movq(R13, Immediate(0)); |
| |
| __ Bind(&done); |
| // RAX: new object. |
| // R10: number of context variables. |
| // R13: size and bit tags. |
| __ orq(R13, |
| Immediate(RawObject::ClassIdTag::encode(context_class.id()))); |
| __ movq(FieldAddress(RAX, Context::tags_offset()), R13); // Tags. |
| } |
| |
| // Setup up number of context variables field. |
| // RAX: new object. |
| // R10: number of context variables as integer value (not object). |
| __ movq(FieldAddress(RAX, Context::num_variables_offset()), R10); |
| |
| // Setup isolate field. |
| // Load Isolate pointer from Context structure into R13. |
| // RAX: new object. |
| // R10: number of context variables. |
| __ movq(R13, FieldAddress(CTX, Context::isolate_offset())); |
| // R13: Isolate, not an object. |
| __ movq(FieldAddress(RAX, Context::isolate_offset()), R13); |
| |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| // Setup the parent field. |
| // RAX: new object. |
| // R10: number of context variables. |
| __ movq(FieldAddress(RAX, Context::parent_offset()), raw_null); |
| |
| // Initialize the context variables. |
| // RAX: new object. |
| // R10: number of context variables. |
| { |
| Label loop, entry; |
| __ leaq(R13, FieldAddress(RAX, Context::variable_offset(0))); |
| |
| __ jmp(&entry, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ decq(R10); |
| __ movq(Address(R13, R10, TIMES_8, 0), raw_null); |
| __ Bind(&entry); |
| __ cmpq(R10, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // RAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame. |
| __ EnterStubFrame(); |
| __ pushq(raw_null); // Setup space on stack for the return value. |
| __ SmiTag(R10); |
| __ pushq(R10); // Push number of context variables. |
| __ CallRuntime(kAllocateContextRuntimeEntry); // Allocate context. |
| __ popq(RAX); // Pop number of context variables argument. |
| __ popq(RAX); // Pop the new context object. |
| // RAX: new object |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(void, StoreBufferBlockProcess, Isolate* isolate); |
| |
| // Helper stub to implement Assembler::StoreIntoObject. |
| // Input parameters: |
| // RAX: Address being stored |
| void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) { |
| // Save registers being destroyed. |
| __ pushq(RDX); |
| __ pushq(RCX); |
| |
| // Load the isolate out of the context. |
| // RAX: Address being stored |
| __ movq(RDX, FieldAddress(CTX, Context::isolate_offset())); |
| |
| // Load top_ out of the StoreBufferBlock and add the address to the pointers_. |
| // RAX: Address being stored |
| // RDX: Isolate |
| intptr_t store_buffer_offset = Isolate::store_buffer_block_offset(); |
| __ movl(RCX, |
| Address(RDX, store_buffer_offset + StoreBufferBlock::top_offset())); |
| __ movq(Address(RDX, |
| RCX, TIMES_8, |
| store_buffer_offset + StoreBufferBlock::pointers_offset()), |
| RAX); |
| |
| // Increment top_ and check for overflow. |
| // RCX: top_ |
| // RDX: Isolate |
| Label L; |
| __ incq(RCX); |
| __ movl(Address(RDX, store_buffer_offset + StoreBufferBlock::top_offset()), |
| RCX); |
| __ cmpl(RCX, Immediate(StoreBufferBlock::kSize)); |
| // Restore values. |
| __ popq(RCX); |
| __ popq(RDX); |
| __ j(EQUAL, &L, Assembler::kNearJump); |
| __ ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&L); |
| // Setup frame, push callee-saved registers. |
| __ EnterCallRuntimeFrame(0); |
| __ movq(RDI, FieldAddress(CTX, Context::isolate_offset())); |
| __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry); |
| __ LeaveCallRuntimeFrame(); |
| __ ret(); |
| } |
| |
| |
| // Called for inline allocation of objects. |
| // Input parameters: |
| // RSP + 16 : type arguments object (only if class is parameterized). |
| // RSP + 8 : type arguments of instantiator (only if class is parameterized). |
| // RSP : points to return address. |
| void StubCode::GenerateAllocationStubForClass(Assembler* assembler, |
| const Class& cls) { |
| const intptr_t kObjectTypeArgumentsOffset = 2 * kWordSize; |
| const intptr_t kInstantiatorTypeArgumentsOffset = 1 * kWordSize; |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = |
| cls.type_arguments_field_offset() != Class::kNoTypeArguments; |
| // kInlineInstanceSize is a constant used as a threshold for determining |
| // when the object initialization should be done as a loop or as |
| // straight line code. |
| const int kInlineInstanceSize = 12; // In words. |
| const intptr_t instance_size = cls.instance_size(); |
| ASSERT(instance_size > 0); |
| const intptr_t type_args_size = InstantiatedTypeArguments::InstanceSize(); |
| if (FLAG_inline_alloc && |
| Heap::IsAllocatableInNewSpace(instance_size + type_args_size)) { |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| __ movq(RAX, Immediate(heap->TopAddress())); |
| __ movq(RAX, Address(RAX, 0)); |
| __ leaq(RBX, Address(RAX, instance_size)); |
| if (is_cls_parameterized) { |
| __ movq(RCX, RBX); |
| // A new InstantiatedTypeArguments object only needs to be allocated if |
| // the instantiator is provided (not kNoInstantiator, but may be null). |
| Label no_instantiator; |
| __ cmpq(Address(RSP, kInstantiatorTypeArgumentsOffset), |
| Immediate(Smi::RawValue(StubCode::kNoInstantiator))); |
| __ j(EQUAL, &no_instantiator, Assembler::kNearJump); |
| __ addq(RBX, Immediate(type_args_size)); |
| __ Bind(&no_instantiator); |
| // RCX: potential new object end and, if RCX != RBX, potential new |
| // InstantiatedTypeArguments object start. |
| } |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object start. |
| // RBX: potential next object start. |
| __ movq(RDI, Immediate(heap->EndAddress())); |
| __ cmpq(RBX, Address(RDI, 0)); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(ABOVE_EQUAL, &slow_case); |
| } |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movq(RDI, Immediate(heap->TopAddress())); |
| __ movq(Address(RDI, 0), RBX); |
| |
| if (is_cls_parameterized) { |
| // Initialize the type arguments field in the object. |
| // RAX: new object start. |
| // RCX: potential new object end and, if RCX != RBX, potential new |
| // InstantiatedTypeArguments object start. |
| // RBX: next object start. |
| Label type_arguments_ready; |
| __ movq(RDI, Address(RSP, kObjectTypeArgumentsOffset)); |
| __ cmpq(RCX, RBX); |
| __ j(EQUAL, &type_arguments_ready, Assembler::kNearJump); |
| // Initialize InstantiatedTypeArguments object at RCX. |
| __ movq(Address(RCX, |
| InstantiatedTypeArguments::uninstantiated_type_arguments_offset()), |
| RDI); |
| __ movq(RDX, Address(RSP, kInstantiatorTypeArgumentsOffset)); |
| __ movq(Address(RCX, |
| InstantiatedTypeArguments::instantiator_type_arguments_offset()), |
| RDX); |
| const Class& ita_cls = |
| Class::ZoneHandle(Object::instantiated_type_arguments_class()); |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(type_args_size, tags); |
| tags = RawObject::ClassIdTag::update(ita_cls.id(), tags); |
| __ movq(Address(RCX, Instance::tags_offset()), Immediate(tags)); |
| // Set the new InstantiatedTypeArguments object (RCX) as the type |
| // arguments (RDI) of the new object (RAX). |
| __ movq(RDI, RCX); |
| __ addq(RDI, Immediate(kHeapObjectTag)); |
| // Set RBX to new object end. |
| __ movq(RBX, RCX); |
| __ Bind(&type_arguments_ready); |
| // RAX: new object. |
| // RDI: new object type arguments. |
| } |
| |
| // RAX: new object start. |
| // RBX: next object start. |
| // RDI: new object type arguments (if is_cls_parameterized). |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(instance_size, tags); |
| ASSERT(cls.id() != kIllegalCid); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ movq(Address(RAX, Instance::tags_offset()), Immediate(tags)); |
| |
| // Initialize the remaining words of the object. |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| |
| // RAX: new object start. |
| // RBX: next object start. |
| // RDI: new object type arguments (if is_cls_parameterized). |
| // First try inlining the initialization without a loop. |
| if (instance_size < (kInlineInstanceSize * kWordSize)) { |
| // Check if the object contains any non-header fields. |
| // Small objects are initialized using a consecutive set of writes. |
| for (intptr_t current_offset = sizeof(RawObject); |
| current_offset < instance_size; |
| current_offset += kWordSize) { |
| __ movq(Address(RAX, current_offset), raw_null); |
| } |
| } else { |
| __ leaq(RCX, Address(RAX, sizeof(RawObject))); |
| // Loop until the whole object is initialized. |
| // RAX: new object. |
| // RBX: next object start. |
| // RCX: next word to be initialized. |
| // RDI: new object type arguments (if is_cls_parameterized). |
| Label init_loop; |
| Label done; |
| __ Bind(&init_loop); |
| __ cmpq(RCX, RBX); |
| __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); |
| __ movq(Address(RCX, 0), raw_null); |
| __ addq(RCX, Immediate(kWordSize)); |
| __ jmp(&init_loop, Assembler::kNearJump); |
| __ Bind(&done); |
| } |
| if (is_cls_parameterized) { |
| // RDI: new object type arguments. |
| // Set the type arguments in the new object. |
| __ movq(Address(RAX, cls.type_arguments_field_offset()), RDI); |
| } |
| // Done allocating and initializing the instance. |
| // RAX: new object. |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| if (is_cls_parameterized) { |
| __ movq(RAX, Address(RSP, kObjectTypeArgumentsOffset)); |
| __ movq(RDX, Address(RSP, kInstantiatorTypeArgumentsOffset)); |
| } |
| // Create a stub frame. |
| __ EnterStubFrame(); |
| __ pushq(raw_null); // Setup space on stack for return value. |
| __ PushObject(cls); // Push class of object to be allocated. |
| if (is_cls_parameterized) { |
| __ pushq(RAX); // Push type arguments of object to be allocated. |
| __ pushq(RDX); // Push type arguments of instantiator. |
| } else { |
| __ pushq(raw_null); // Push null type arguments. |
| __ pushq(Immediate(Smi::RawValue(StubCode::kNoInstantiator))); |
| } |
| __ CallRuntime(kAllocateObjectRuntimeEntry); // Allocate object. |
| __ popq(RAX); // Pop argument (instantiator). |
| __ popq(RAX); // Pop argument (type arguments of object). |
| __ popq(RAX); // Pop argument (class of object). |
| __ popq(RAX); // Pop result (newly allocated object). |
| // RAX: new object |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| // Called for inline allocation of closures. |
| // Input parameters: |
| // RSP + 16 : receiver (null if not an implicit instance closure). |
| // RSP + 8 : type arguments object (null if class is not parameterized). |
| // RSP : points to return address. |
| void StubCode::GenerateAllocationStubForClosure(Assembler* assembler, |
| const Function& func) { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| ASSERT(func.IsClosureFunction()); |
| const bool is_implicit_static_closure = |
| func.IsImplicitStaticClosureFunction(); |
| const bool is_implicit_instance_closure = |
| func.IsImplicitInstanceClosureFunction(); |
| const Class& cls = Class::ZoneHandle(func.signature_class()); |
| const bool has_type_arguments = cls.HasTypeArguments(); |
| const intptr_t kTypeArgumentsOffset = 1 * kWordSize; |
| const intptr_t kReceiverOffset = 2 * kWordSize; |
| const intptr_t closure_size = Closure::InstanceSize(); |
| const intptr_t context_size = Context::InstanceSize(1); // Captured receiver. |
| if (FLAG_inline_alloc && |
| Heap::IsAllocatableInNewSpace(closure_size + context_size)) { |
| Label slow_case; |
| Heap* heap = Isolate::Current()->heap(); |
| __ movq(RAX, Immediate(heap->TopAddress())); |
| __ movq(RAX, Address(RAX, 0)); |
| __ leaq(R13, Address(RAX, closure_size)); |
| if (is_implicit_instance_closure) { |
| __ movq(RBX, R13); // RBX: new context address. |
| __ addq(R13, Immediate(context_size)); |
| } |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new closure object. |
| // RBX: potential new context object (only if is_implicit_closure). |
| // R13: potential next object start. |
| __ movq(RDI, Immediate(heap->EndAddress())); |
| __ cmpq(R13, Address(RDI, 0)); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(ABOVE_EQUAL, &slow_case); |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| __ movq(RDI, Immediate(heap->TopAddress())); |
| __ movq(Address(RDI, 0), R13); |
| |
| // RAX: new closure object. |
| // RBX: new context object (only if is_implicit_closure). |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(closure_size, tags); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ movq(Address(RAX, Instance::tags_offset()), Immediate(tags)); |
| |
| // Initialize the function field in the object. |
| // RAX: new closure object. |
| // RBX: new context object (only if is_implicit_closure). |
| // R13: next object start. |
| __ LoadObject(R10, func); // Load function of closure to be allocated. |
| __ movq(Address(RAX, Closure::function_offset()), R10); |
| |
| // Setup the context for this closure. |
| if (is_implicit_static_closure) { |
| ObjectStore* object_store = Isolate::Current()->object_store(); |
| ASSERT(object_store != NULL); |
| const Context& empty_context = |
| Context::ZoneHandle(object_store->empty_context()); |
| __ LoadObject(R10, empty_context); |
| __ movq(Address(RAX, Closure::context_offset()), R10); |
| } else if (is_implicit_instance_closure) { |
| // Initialize the new context capturing the receiver. |
| |
| const Class& context_class = Class::ZoneHandle(Object::context_class()); |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(context_size, tags); |
| tags = RawObject::ClassIdTag::update(context_class.id(), tags); |
| __ movq(Address(RBX, Context::tags_offset()), Immediate(tags)); |
| |
| // Set number of variables field to 1 (for captured receiver). |
| __ movq(Address(RBX, Context::num_variables_offset()), Immediate(1)); |
| |
| // Set isolate field to isolate of current context. |
| __ movq(R10, FieldAddress(CTX, Context::isolate_offset())); |
| __ movq(Address(RBX, Context::isolate_offset()), R10); |
| |
| // Set the parent to null. |
| __ movq(Address(RBX, Context::parent_offset()), raw_null); |
| |
| // Initialize the context variable to the receiver. |
| __ movq(R10, Address(RSP, kReceiverOffset)); |
| __ movq(Address(RBX, Context::variable_offset(0)), R10); |
| |
| // Set the newly allocated context in the newly allocated closure. |
| __ addq(RBX, Immediate(kHeapObjectTag)); |
| __ movq(Address(RAX, Closure::context_offset()), RBX); |
| } else { |
| __ movq(Address(RAX, Closure::context_offset()), CTX); |
| } |
| |
| // Set the type arguments field in the newly allocated closure. |
| __ movq(R10, Address(RSP, kTypeArgumentsOffset)); |
| __ movq(Address(RAX, Closure::type_arguments_offset()), R10); |
| |
| // Done allocating and initializing the instance. |
| // RAX: new object. |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| if (has_type_arguments) { |
| __ movq(RCX, Address(RSP, kTypeArgumentsOffset)); |
| } |
| if (is_implicit_instance_closure) { |
| __ movq(RAX, Address(RSP, kReceiverOffset)); |
| } |
| // Create the stub frame. |
| __ EnterStubFrame(); |
| __ pushq(raw_null); // Setup space on stack for the return value. |
| __ PushObject(func); |
| if (is_implicit_static_closure) { |
| __ CallRuntime(kAllocateImplicitStaticClosureRuntimeEntry); |
| } else { |
| if (is_implicit_instance_closure) { |
| __ pushq(RAX); // Receiver. |
| } |
| if (has_type_arguments) { |
| __ pushq(RCX); // Push type arguments of closure to be allocated. |
| } else { |
| __ pushq(raw_null); // Push null type arguments. |
| } |
| if (is_implicit_instance_closure) { |
| __ CallRuntime(kAllocateImplicitInstanceClosureRuntimeEntry); |
| __ popq(RAX); // Pop type arguments. |
| __ popq(RAX); // Pop receiver. |
| } else { |
| ASSERT(func.IsNonImplicitClosureFunction()); |
| __ CallRuntime(kAllocateClosureRuntimeEntry); |
| __ popq(RAX); // Pop type arguments. |
| } |
| } |
| __ popq(RAX); // Pop the function object. |
| __ popq(RAX); // Pop the result. |
| // RAX: New closure object. |
| // Restore the calling frame. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| // Called for invoking noSuchMethod function from the entry code of a dart |
| // function after an error in passed named arguments is detected. |
| // Input parameters: |
| // RBP - 8 : PC marker => RawInstruction object. |
| // RBP : points to previous frame pointer. |
| // RBP + 8 : points to return address. |
| // RBP + 16 : address of last argument (arg n-1). |
| // RBP + 16 + 8*(n-1) : address of first argument (arg 0). |
| // RBX : ic-data. |
| // R10 : arguments descriptor array. |
| void StubCode::GenerateCallNoSuchMethodFunctionStub(Assembler* assembler) { |
| // The target function was not found, so invoke method |
| // "dynamic noSuchMethod(Invocation invocation)". |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ movq(R13, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(RAX, Address(RBP, R13, TIMES_4, kWordSize)); // Get receiver. |
| |
| // Create a stub frame. |
| __ EnterStubFrame(); |
| |
| __ pushq(raw_null); // Setup space on stack for result from noSuchMethod. |
| __ pushq(RAX); // Receiver. |
| __ pushq(RBX); // IC data array. |
| __ pushq(R10); // Arguments descriptor array. |
| |
| __ movq(R10, R13); // Smi-tagged arguments array length. |
| // See stack layout below explaining "wordSize * 10" offset. |
| PushArgumentsArray(assembler, (kWordSize * 10)); |
| |
| // Stack: |
| // TOS + 0: Argument array. |
| // TOS + 1: Arguments descriptor array. |
| // TOS + 2: Ic-data array. |
| // TOS + 3: Receiver. |
| // TOS + 4: Place for result from noSuchMethod. |
| // TOS + 5: PC marker => RawInstruction object. |
| // TOS + 6: Saved RBP of previous frame. <== RBP |
| // TOS + 7: Dart callee (or stub) code return address |
| // TOS + 8: PC marker => RawInstruction object of dart caller frame. |
| // TOS + 9: Saved RBP of dart caller frame. |
| // TOS + 10: Dart caller code return address |
| // TOS + 11: Last argument of caller. |
| // .... |
| __ CallRuntime(kInvokeNoSuchMethodFunctionRuntimeEntry); |
| // Remove arguments. |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); // Get result into RAX. |
| |
| // Remove the stub frame as we are about to return. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) { |
| Register argdesc_reg = R10; |
| Register ic_reg = RBX; |
| Register func_reg = RDI; |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ pushq(func_reg); // Preserve |
| __ pushq(argdesc_reg); // Preserve. |
| __ pushq(ic_reg); // Preserve. |
| __ pushq(ic_reg); // Argument. |
| __ pushq(func_reg); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry); |
| __ popq(RAX); // Discard argument; |
| __ popq(RAX); // Discard argument; |
| __ popq(ic_reg); // Restore. |
| __ popq(argdesc_reg); // Restore. |
| __ popq(func_reg); // Restore. |
| __ LeaveFrame(); |
| } |
| Label is_hot; |
| if (FlowGraphCompiler::CanOptimize()) { |
| ASSERT(FLAG_optimization_counter_threshold > 1); |
| __ cmpq(FieldAddress(func_reg, Function::usage_counter_offset()), |
| Immediate(FLAG_optimization_counter_threshold)); |
| __ j(GREATER_EQUAL, &is_hot, Assembler::kNearJump); |
| // As long as VM has no OSR do not optimize in the middle of the function |
| // but only at exit so that we have collected all type feedback before |
| // optimizing. |
| } |
| __ incq(FieldAddress(func_reg, Function::usage_counter_offset())); |
| __ Bind(&is_hot); |
| } |
| |
| |
| // Loads function into 'temp_reg', preserves 'ic_reg'. |
| void StubCode::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register temp_reg) { |
| Register ic_reg = RBX; |
| Register func_reg = temp_reg; |
| ASSERT(ic_reg != func_reg); |
| __ movq(func_reg, FieldAddress(ic_reg, ICData::function_offset())); |
| Label is_hot; |
| if (FlowGraphCompiler::CanOptimize()) { |
| ASSERT(FLAG_optimization_counter_threshold > 1); |
| // The usage_counter is always less than FLAG_optimization_counter_threshold |
| // except when the function gets optimized. |
| __ cmpq(FieldAddress(func_reg, Function::usage_counter_offset()), |
| Immediate(FLAG_optimization_counter_threshold)); |
| __ j(EQUAL, &is_hot, Assembler::kNearJump); |
| // As long as VM has no OSR do not optimize in the middle of the function |
| // but only at exit so that we have collected all type feedback before |
| // optimizing. |
| } |
| __ incq(FieldAddress(func_reg, Function::usage_counter_offset())); |
| __ Bind(&is_hot); |
| } |
| |
| // Generate inline cache check for 'num_args'. |
| // RBX: Inline cache data object. |
| // R10: Arguments descriptor array. |
| // TOS(0): return address |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCode::GenerateNArgsCheckInlineCacheStub(Assembler* assembler, |
| intptr_t num_args) { |
| ASSERT(num_args > 0); |
| #if defined(DEBUG) |
| { Label ok; |
| // Check that the IC data array has NumberOfArgumentsChecked() == num_args. |
| // 'num_args_tested' is stored as an untagged int. |
| __ movq(RCX, FieldAddress(RBX, ICData::num_args_tested_offset())); |
| __ cmpq(RCX, Immediate(num_args)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| // Loop that checks if there is an IC data match. |
| Label loop, update, test, found, get_class_id_as_smi; |
| // RBX: IC data object (preserved). |
| __ movq(R12, FieldAddress(RBX, ICData::ic_data_offset())); |
| // R12: ic_data_array with check entries: classes and target functions. |
| __ leaq(R12, FieldAddress(R12, Array::data_offset())); |
| // R12: points directly to the first ic data array element. |
| |
| // Get the receiver's class ID (first read number of arguments from |
| // arguments descriptor array and then access the receiver from the stack). |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX (argument count) is Smi. |
| __ call(&get_class_id_as_smi); |
| // RAX: receiver's class ID as smi. |
| __ movq(R13, Address(R12, 0)); // First class ID (Smi) to check. |
| __ jmp(&test); |
| |
| __ Bind(&loop); |
| for (int i = 0; i < num_args; i++) { |
| if (i > 0) { |
| // If not the first, load the next argument's class ID. |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(RAX, Address(RSP, RAX, TIMES_4, - i * kWordSize)); |
| __ call(&get_class_id_as_smi); |
| // RAX: next argument class ID (smi). |
| __ movq(R13, Address(R12, i * kWordSize)); |
| // R13: next class ID to check (smi). |
| } |
| __ cmpq(RAX, R13); // Class id match? |
| if (i < (num_args - 1)) { |
| __ j(NOT_EQUAL, &update); // Continue. |
| } else { |
| // Last check, all checks before matched. |
| __ j(EQUAL, &found); // Break. |
| } |
| } |
| __ Bind(&update); |
| // Reload receiver class ID. It has not been destroyed when num_args == 1. |
| if (num_args > 1) { |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(RAX, Address(RSP, RAX, TIMES_4, 0)); |
| __ call(&get_class_id_as_smi); |
| } |
| |
| const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize; |
| __ addq(R12, Immediate(entry_size)); // Next entry. |
| __ movq(R13, Address(R12, 0)); // Next class ID. |
| |
| __ Bind(&test); |
| __ cmpq(R13, Immediate(Smi::RawValue(kIllegalCid))); // Done? |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| |
| // IC miss. |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| // Compute address of arguments (first read number of arguments from |
| // arguments descriptor array and then compute address on the stack). |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ leaq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX is Smi. |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| __ pushq(RBX); // Preserve IC data object. |
| __ pushq(raw_null); // Setup space on stack for result (target code object). |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ movq(RCX, Address(RAX, -kWordSize * i)); |
| __ pushq(RCX); |
| } |
| __ pushq(RBX); // Pass IC data object. |
| __ pushq(R10); // Pass arguments descriptor array. |
| if (num_args == 1) { |
| __ CallRuntime(kInlineCacheMissHandlerOneArgRuntimeEntry); |
| } else if (num_args == 2) { |
| __ CallRuntime(kInlineCacheMissHandlerTwoArgsRuntimeEntry); |
| } else if (num_args == 3) { |
| __ CallRuntime(kInlineCacheMissHandlerThreeArgsRuntimeEntry); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| // Remove the call arguments pushed earlier, including the IC data object |
| // and the arguments descriptor array. |
| for (intptr_t i = 0; i < num_args + 2; i++) { |
| __ popq(RAX); |
| } |
| __ popq(RAX); // Pop returned code object into RAX (null if not found). |
| __ popq(RBX); // Restore IC data array. |
| __ popq(R10); // Restore arguments descriptor array. |
| __ LeaveFrame(); |
| Label call_target_function; |
| __ cmpq(RAX, raw_null); |
| __ j(NOT_EQUAL, &call_target_function, Assembler::kNearJump); |
| // NoSuchMethod or closure. |
| // Mark IC call that it may be a closure call that does not collect |
| // type feedback. |
| __ movb(FieldAddress(RBX, ICData::is_closure_call_offset()), Immediate(1)); |
| __ jmp(&StubCode::InstanceFunctionLookupLabel()); |
| |
| __ Bind(&found); |
| // R12: Pointer to an IC data check group. |
| const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize; |
| const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize; |
| __ movq(RAX, Address(R12, target_offset)); |
| __ addq(Address(R12, count_offset), Immediate(Smi::RawValue(1))); |
| __ j(NO_OVERFLOW, &call_target_function); |
| __ movq(Address(R12, count_offset), |
| Immediate(Smi::RawValue(Smi::kMaxValue))); |
| |
| __ Bind(&call_target_function); |
| // RAX: Target function. |
| __ movq(RAX, FieldAddress(RAX, Function::code_offset())); |
| __ movq(RAX, FieldAddress(RAX, Code::instructions_offset())); |
| __ addq(RAX, Immediate(Instructions::HeaderSize() - kHeapObjectTag)); |
| __ jmp(RAX); |
| |
| __ Bind(&get_class_id_as_smi); |
| Label not_smi; |
| // Test if Smi -> load Smi class for comparison. |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, ¬_smi, Assembler::kNearJump); |
| __ movq(RAX, Immediate(Smi::RawValue(kSmiCid))); |
| __ ret(); |
| |
| __ Bind(¬_smi); |
| __ LoadClassId(RAX, RAX); |
| __ SmiTag(RAX); |
| __ ret(); |
| } |
| |
| |
| // Use inline cache data array to invoke the target or continue in inline |
| // cache miss handler. Stub for 1-argument check (receiver class). |
| // RBX: Inline cache data object. |
| // R10: Arguments descriptor array. |
| // TOS(0): Return address. |
| // Inline cache data object structure: |
| // 0: function-name |
| // 1: N, number of arguments checked. |
| // 2 .. (length - 1): group of checks, each check containing: |
| // - N classes. |
| // - 1 target function. |
| void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2); |
| } |
| |
| |
| void StubCode::GenerateThreeArgsCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 3); |
| } |
| |
| // Use inline cache data array to invoke the target or continue in inline |
| // cache miss handler. Stub for 1-argument check (receiver class). |
| // RDI: function which counter needs to be incremented. |
| // RBX: Inline cache data object. |
| // R10: Arguments descriptor array. |
| // TOS(0): Return address. |
| // Inline cache data object structure: |
| // 0: function-name |
| // 1: N, number of arguments checked. |
| // 2 .. (length - 1): group of checks, each check containing: |
| // - N classes. |
| // - 1 target function. |
| void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2); |
| } |
| |
| |
| void StubCode::GenerateThreeArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 3); |
| } |
| |
| |
| // Do not count as no type feedback is collected. |
| void StubCode::GenerateClosureCallInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| |
| // Megamorphic call is currently implemented as IC call but through a stub |
| // that does not check/count function invocations. |
| void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub(assembler, 1); |
| } |
| |
| // R10: Arguments descriptor array. |
| // TOS(0): return address (Dart code). |
| void StubCode::GenerateBreakpointStaticStub(Assembler* assembler) { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor. |
| __ pushq(raw_null); // Room for result. |
| __ CallRuntime(kBreakpointStaticHandlerRuntimeEntry); |
| __ popq(RAX); // Code object. |
| __ popq(R10); // Restore arguments descriptor. |
| __ LeaveFrame(); |
| |
| // Now call the static function. The breakpoint handler function |
| // ensures that the call target is compiled. |
| __ movq(RBX, FieldAddress(RAX, Code::instructions_offset())); |
| __ addq(RBX, Immediate(Instructions::HeaderSize() - kHeapObjectTag)); |
| __ jmp(RBX); |
| } |
| |
| |
| // TOS(0): return address (Dart code). |
| void StubCode::GenerateBreakpointReturnStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushq(RAX); |
| __ CallRuntime(kBreakpointReturnHandlerRuntimeEntry); |
| __ popq(RAX); |
| __ LeaveFrame(); |
| |
| __ popq(R11); // discard return address of call to this stub. |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| |
| // RBX: Inline cache data array. |
| // R10: Arguments descriptor array. |
| // TOS(0): return address (Dart code). |
| void StubCode::GenerateBreakpointDynamicStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushq(RBX); |
| __ pushq(R10); |
| __ CallRuntime(kBreakpointDynamicHandlerRuntimeEntry); |
| __ popq(R10); |
| __ popq(RBX); |
| __ LeaveFrame(); |
| |
| // Find out which dispatch stub to call. |
| Label test_two, test_three, test_four; |
| __ movq(RCX, FieldAddress(RBX, ICData::num_args_tested_offset())); |
| __ cmpq(RCX, Immediate(1)); |
| __ j(NOT_EQUAL, &test_two, Assembler::kNearJump); |
| __ jmp(&StubCode::OneArgCheckInlineCacheLabel()); |
| __ Bind(&test_two); |
| __ cmpl(RCX, Immediate(2)); |
| __ j(NOT_EQUAL, &test_three, Assembler::kNearJump); |
| __ jmp(&StubCode::TwoArgsCheckInlineCacheLabel()); |
| __ Bind(&test_three); |
| __ cmpl(RCX, Immediate(3)); |
| __ j(NOT_EQUAL, &test_four, Assembler::kNearJump); |
| __ jmp(&StubCode::ThreeArgsCheckInlineCacheLabel()); |
| __ Bind(&test_four); |
| __ Stop("Unsupported number of arguments tested."); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: instantiator type arguments (can be NULL). |
| // TOS + 2: instance. |
| // TOS + 3: SubtypeTestCache. |
| // Result in RCX: null -> not found, otherwise result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| ASSERT((1 <= n) && (n <= 3)); |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| const intptr_t kInstantiatorTypeArgumentsInBytes = 1 * kWordSize; |
| const intptr_t kInstanceOffsetInBytes = 2 * kWordSize; |
| const intptr_t kCacheOffsetInBytes = 3 * kWordSize; |
| __ movq(RAX, Address(RSP, kInstanceOffsetInBytes)); |
| if (n > 1) { |
| __ LoadClass(R10, RAX); |
| // Compute instance type arguments into R13. |
| Label has_no_type_arguments; |
| __ movq(R13, raw_null); |
| __ movq(RDI, FieldAddress(R10, |
| Class::type_arguments_field_offset_in_words_offset())); |
| __ cmpq(RDI, Immediate(Class::kNoTypeArguments)); |
| __ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump); |
| __ movq(R13, FieldAddress(RAX, RDI, TIMES_8, 0)); |
| __ Bind(&has_no_type_arguments); |
| } |
| __ LoadClassId(R10, RAX); |
| // RAX: instance, R10: instance class id. |
| // R13: instance type arguments or null, used only if n > 1. |
| __ movq(RDX, Address(RSP, kCacheOffsetInBytes)); |
| // RDX: SubtypeTestCache. |
| __ movq(RDX, FieldAddress(RDX, SubtypeTestCache::cache_offset())); |
| __ addq(RDX, Immediate(Array::data_offset() - kHeapObjectTag)); |
| // RDX: Entry start. |
| // R10: instance class id. |
| // R13: instance type arguments. |
| Label loop, found, not_found, next_iteration; |
| __ SmiTag(R10); |
| __ Bind(&loop); |
| __ movq(RDI, Address(RDX, kWordSize * SubtypeTestCache::kInstanceClassId)); |
| __ cmpq(RDI, raw_null); |
| __ j(EQUAL, ¬_found, Assembler::kNearJump); |
| __ cmpq(RDI, R10); |
| if (n == 1) { |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } else { |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ movq(RDI, |
| Address(RDX, kWordSize * SubtypeTestCache::kInstanceTypeArguments)); |
| __ cmpq(RDI, R13); |
| if (n == 2) { |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } else { |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ movq(RDI, |
| Address(RDX, |
| kWordSize * SubtypeTestCache::kInstantiatorTypeArguments)); |
| __ cmpq(RDI, Address(RSP, kInstantiatorTypeArgumentsInBytes)); |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } |
| } |
| |
| __ Bind(&next_iteration); |
| __ addq(RDX, Immediate(kWordSize * SubtypeTestCache::kTestEntryLength)); |
| __ jmp(&loop, Assembler::kNearJump); |
| // Fall through to not found. |
| __ Bind(¬_found); |
| __ movq(RCX, raw_null); |
| __ ret(); |
| |
| __ Bind(&found); |
| __ movq(RCX, Address(RDX, kWordSize * SubtypeTestCache::kTestResult)); |
| __ ret(); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: instantiator type arguments or NULL. |
| // TOS + 2: instance. |
| // TOS + 3: cache array. |
| // Result in RCX: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: instantiator type arguments or NULL. |
| // TOS + 2: instance. |
| // TOS + 3: cache array. |
| // Result in RCX: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 2); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: instantiator type arguments. |
| // TOS + 2: instance. |
| // TOS + 3: cache array. |
| // Result in RCX: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 3); |
| } |
| |
| |
| // Return the current stack pointer address, used to stack alignment |
| // checks. |
| // TOS + 0: return address |
| // Result in RAX. |
| void StubCode::GenerateGetStackPointerStub(Assembler* assembler) { |
| __ leaq(RAX, Address(RSP, kWordSize)); |
| __ ret(); |
| } |
| |
| |
| // Jump to the exception or error handler. |
| // TOS + 0: return address |
| // RDI: program counter |
| // RSI: stack pointer |
| // RDX: frame_pointer |
| // RCX: exception object |
| // R8: stacktrace object |
| // No Result. |
| void StubCode::GenerateJumpToExceptionHandlerStub(Assembler* assembler) { |
| ASSERT(kExceptionObjectReg == RAX); |
| ASSERT(kStackTraceObjectReg == RDX); |
| __ movq(RBP, RDX); // target frame pointer. |
| __ movq(kStackTraceObjectReg, R8); // stacktrace object. |
| __ movq(kExceptionObjectReg, RCX); // exception object. |
| __ movq(RSP, RSI); // target stack_pointer. |
| __ jmp(RDI); // Jump to the exception handler code. |
| } |
| |
| |
| // Implements equality operator when one of the arguments is null |
| // (identity check) and updates ICData if necessary. |
| // TOS + 0: return address |
| // TOS + 1: right argument |
| // TOS + 2: left argument |
| // RBX: ICData. |
| // RAX: result. |
| // TODO(srdjan): Move to VM stubs once Boolean objects become VM objects. |
| void StubCode::GenerateEqualityWithNullArgStub(Assembler* assembler) { |
| static const intptr_t kNumArgsTested = 2; |
| #if defined(DEBUG) |
| { Label ok; |
| __ movq(RCX, FieldAddress(RBX, ICData::num_args_tested_offset())); |
| __ cmpq(RCX, Immediate(kNumArgsTested)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect ICData for equality"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| // Check IC data, update if needed. |
| // RBX: IC data object (preserved). |
| __ movq(R12, FieldAddress(RBX, ICData::ic_data_offset())); |
| // R12: ic_data_array with check entries: classes and target functions. |
| __ leaq(R12, FieldAddress(R12, Array::data_offset())); |
| // R12: points directly to the first ic data array element. |
| |
| Label get_class_id_as_smi, no_match, loop, compute_result, found; |
| __ Bind(&loop); |
| // Check left. |
| __ movq(RAX, Address(RSP, 2 * kWordSize)); |
| __ call(&get_class_id_as_smi); |
| __ movq(R13, Address(R12, 0 * kWordSize)); |
| __ cmpq(RAX, R13); // Class id match? |
| __ j(NOT_EQUAL, &no_match, Assembler::kNearJump); |
| // Check right. |
| __ movq(RAX, Address(RSP, 1 * kWordSize)); |
| __ call(&get_class_id_as_smi); |
| __ movq(R13, Address(R12, 1 * kWordSize)); |
| __ cmpq(RAX, R13); // Class id match? |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| __ Bind(&no_match); |
| // Next check group. |
| __ addq(R12, Immediate( |
| kWordSize * ICData::TestEntryLengthFor(kNumArgsTested))); |
| __ cmpq(R13, Immediate(Smi::RawValue(kIllegalCid))); // Done? |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| Label update_ic_data; |
| __ jmp(&update_ic_data); |
| |
| __ Bind(&found); |
| const intptr_t count_offset = |
| ICData::CountIndexFor(kNumArgsTested) * kWordSize; |
| __ addq(Address(R12, count_offset), Immediate(Smi::RawValue(1))); |
| __ j(NO_OVERFLOW, &compute_result); |
| __ movq(Address(R12, count_offset), |
| Immediate(Smi::RawValue(Smi::kMaxValue))); |
| |
| __ Bind(&compute_result); |
| Label true_label; |
| __ movq(RAX, Address(RSP, 1 * kWordSize)); |
| __ cmpq(RAX, Address(RSP, 2 * kWordSize)); |
| __ j(EQUAL, &true_label, Assembler::kNearJump); |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| |
| __ Bind(&get_class_id_as_smi); |
| Label not_smi; |
| // Test if Smi -> load Smi class for comparison. |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, ¬_smi, Assembler::kNearJump); |
| __ movq(RAX, Immediate(Smi::RawValue(kSmiCid))); |
| __ ret(); |
| |
| __ Bind(¬_smi); |
| __ LoadClassId(RAX, RAX); |
| __ SmiTag(RAX); |
| __ ret(); |
| |
| __ Bind(&update_ic_data); |
| |
| // RCX: ICData |
| __ movq(RAX, Address(RSP, 1 * kWordSize)); |
| __ movq(R13, Address(RSP, 2 * kWordSize)); |
| __ EnterStubFrame(); |
| __ pushq(R13); // arg 0 |
| __ pushq(RAX); // arg 1 |
| __ PushObject(Symbols::EqualOperator()); // Target's name. |
| __ pushq(RBX); // ICData |
| __ CallRuntime(kUpdateICDataTwoArgsRuntimeEntry); |
| __ Drop(4); |
| __ LeaveFrame(); |
| |
| __ jmp(&compute_result, Assembler::kNearJump); |
| } |
| |
| // Calls to the runtime to optimize the given function. |
| // RDI: function to be reoptimized. |
| // R10: argument descriptor (preserved). |
| void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) { |
| const Immediate& raw_null = |
| Immediate(reinterpret_cast<intptr_t>(Object::null())); |
| __ EnterStubFrame(); |
| __ pushq(R10); |
| __ pushq(raw_null); // Setup space on stack for return value. |
| __ pushq(RDI); |
| __ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry); |
| __ popq(RAX); // Disard argument. |
| __ popq(RAX); // Get Code object. |
| __ popq(R10); // Restore argument descriptor. |
| __ movq(RAX, FieldAddress(RAX, Code::instructions_offset())); |
| __ addq(RAX, Immediate(Instructions::HeaderSize() - kHeapObjectTag)); |
| __ LeaveFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| |
| DECLARE_LEAF_RUNTIME_ENTRY(intptr_t, |
| BigintCompare, |
| RawBigint* left, |
| RawBigint* right); |
| |
| |
| // Does identical check (object references are equal or not equal) with special |
| // checks for boxed numbers. |
| // Left and right are pushed on stack. |
| // Return ZF set. |
| // Note: A Mint cannot contain a value that would fit in Smi, a Bigint |
| // cannot contain a value that fits in Mint or Smi. |
| void StubCode::GenerateIdenticalWithNumberCheckStub(Assembler* assembler) { |
| const Register left = RAX; |
| const Register right = RDX; |
| // Preserve left, right and temp. |
| __ pushq(left); |
| __ pushq(right); |
| // TOS + 0: saved right |
| // TOS + 1: saved left |
| // TOS + 2: return address |
| // TOS + 3: right argument. |
| // TOS + 4: left argument. |
| __ movq(left, Address(RSP, 4 * kWordSize)); |
| __ movq(right, Address(RSP, 3 * kWordSize)); |
| Label reference_compare, done, check_mint, check_bigint; |
| // If any of the arguments is Smi do reference compare. |
| __ testq(left, Immediate(kSmiTagMask)); |
| __ j(ZERO, &reference_compare); |
| __ testq(right, Immediate(kSmiTagMask)); |
| __ j(ZERO, &reference_compare); |
| |
| // Value compare for two doubles. |
| __ CompareClassId(left, kDoubleCid); |
| __ j(NOT_EQUAL, &check_mint, Assembler::kNearJump); |
| __ CompareClassId(right, kDoubleCid); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| |
| // Double values bitwise compare. |
| __ movq(left, FieldAddress(left, Double::value_offset())); |
| __ cmpq(left, FieldAddress(right, Double::value_offset())); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&check_mint); |
| __ CompareClassId(left, kMintCid); |
| __ j(NOT_EQUAL, &check_bigint, Assembler::kNearJump); |
| __ CompareClassId(right, kMintCid); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| __ movq(left, FieldAddress(left, Mint::value_offset())); |
| __ cmpq(left, FieldAddress(right, Mint::value_offset())); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&check_bigint); |
| __ CompareClassId(left, kBigintCid); |
| __ j(NOT_EQUAL, &reference_compare, Assembler::kNearJump); |
| __ CompareClassId(right, kBigintCid); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| __ movq(RDI, left); |
| __ movq(RSI, right); |
| __ CallRuntime(kBigintCompareRuntimeEntry); |
| // Result in RAX, 0 means equal. |
| __ LeaveFrame(); |
| __ cmpq(RAX, Immediate(0)); |
| __ jmp(&done); |
| |
| __ Bind(&reference_compare); |
| __ cmpq(left, right); |
| __ Bind(&done); |
| __ popq(right); |
| __ popq(left); |
| __ ret(); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_X64 |