blob: 6125c83e3bed9d08a8d001653c7bce6794b8407c [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(TARGET_ARCH_X64)
#include "vm/assembler.h"
#include "vm/compiler.h"
#include "vm/dart_entry.h"
#include "vm/flow_graph_compiler.h"
#include "vm/heap.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/resolver.h"
#include "vm/scavenger.h"
#include "vm/stub_code.h"
#define __ assembler->
namespace dart {
DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects.");
DEFINE_FLAG(bool, use_slow_path, false,
"Set to true for debugging & verifying the slow paths.");
DECLARE_FLAG(int, optimization_counter_threshold);
DECLARE_FLAG(bool, trace_optimized_ic_calls);
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of last argument in argument array.
// RSP + 8*R10 : address of first argument in argument array.
// RSP + 8*R10 + 8 : address of return value.
// RBX : address of the runtime function to call.
// R10 : number of arguments to the call.
// Must preserve callee saved registers R12 and R13.
void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) {
ASSERT((R12 != CTX) && (R13 != CTX));
const intptr_t isolate_offset = NativeArguments::isolate_offset();
const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset();
const intptr_t argv_offset = NativeArguments::argv_offset();
const intptr_t retval_offset = NativeArguments::retval_offset();
__ EnterFrame(0);
// Load current Isolate pointer from Context structure into RAX.
__ movq(RAX, FieldAddress(CTX, Context::isolate_offset()));
// Save exit frame information to enable stack walking as we are about
// to transition to Dart VM C++ code.
__ movq(Address(RAX, Isolate::top_exit_frame_info_offset()), RSP);
// Save current Context pointer into Isolate structure.
__ movq(Address(RAX, Isolate::top_context_offset()), CTX);
// Cache Isolate pointer into CTX while executing runtime code.
__ movq(CTX, RAX);
// Reserve space for arguments and align frame before entering C++ world.
__ AddImmediate(RSP, Immediate(-sizeof(NativeArguments)));
if (OS::ActivationFrameAlignment() > 0) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass NativeArguments structure by value and call runtime.
__ movq(Address(RSP, isolate_offset), CTX); // Set isolate in NativeArgs.
// There are no runtime calls to closures, so we do not need to set the tag
// bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_.
__ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments.
__ leaq(RAX, Address(RBP, R10, TIMES_8, 1 * kWordSize)); // Compute argv.
__ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments.
__ addq(RAX, Immediate(1 * kWordSize)); // Retval is next to 1st argument.
__ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments.
__ call(RBX);
// Reset exit frame information in Isolate structure.
__ movq(Address(CTX, Isolate::top_exit_frame_info_offset()), Immediate(0));
// Load Context pointer from Isolate structure into RBX.
__ movq(RBX, Address(CTX, Isolate::top_context_offset()));
// Reset Context pointer in Isolate structure.
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ movq(Address(CTX, Isolate::top_context_offset()), raw_null);
// Cache Context pointer into CTX while executing Dart code.
__ movq(CTX, RBX);
__ LeaveFrame();
__ ret();
}
// Print the stop message.
DEFINE_LEAF_RUNTIME_ENTRY(void, PrintStopMessage, const char* message) {
OS::Print("Stop message: %s\n", message);
}
END_LEAF_RUNTIME_ENTRY
// Input parameters:
// RSP : points to return address.
// RDI : stop message (const char*).
// Must preserve all registers.
void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) {
__ EnterCallRuntimeFrame(0);
// Call the runtime leaf function. RDI already contains the parameter.
__ CallRuntime(kPrintStopMessageRuntimeEntry);
__ LeaveCallRuntimeFrame();
__ ret();
}
// Input parameters:
// RSP : points to return address.
// RSP + 8 : address of return value.
// RAX : address of first argument in argument array.
// RBX : address of the native function to call.
// R10 : argc_tag including number of arguments and function kind.
void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) {
const intptr_t native_args_struct_offset = 0;
const intptr_t isolate_offset =
NativeArguments::isolate_offset() + native_args_struct_offset;
const intptr_t argc_tag_offset =
NativeArguments::argc_tag_offset() + native_args_struct_offset;
const intptr_t argv_offset =
NativeArguments::argv_offset() + native_args_struct_offset;
const intptr_t retval_offset =
NativeArguments::retval_offset() + native_args_struct_offset;
__ EnterFrame(0);
// Load current Isolate pointer from Context structure into R8.
__ movq(R8, FieldAddress(CTX, Context::isolate_offset()));
// Save exit frame information to enable stack walking as we are about
// to transition to native code.
__ movq(Address(R8, Isolate::top_exit_frame_info_offset()), RSP);
// Save current Context pointer into Isolate structure.
__ movq(Address(R8, Isolate::top_context_offset()), CTX);
// Cache Isolate pointer into CTX while executing native code.
__ movq(CTX, R8);
// Reserve space for the native arguments structure passed on the stack (the
// outgoing pointer parameter to the native arguments structure is passed in
// RDI) and align frame before entering the C++ world.
__ AddImmediate(RSP, Immediate(-sizeof(NativeArguments)));
if (OS::ActivationFrameAlignment() > 0) {
__ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1)));
}
// Pass NativeArguments structure by value and call native function.
__ movq(Address(RSP, isolate_offset), CTX); // Set isolate in NativeArgs.
__ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments.
__ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments.
__ leaq(RAX, Address(RBP, 2 * kWordSize)); // Compute return value addr.
__ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments.
__ movq(RDI, RSP); // Pass the pointer to the NativeArguments.
__ call(RBX);
// Reset exit frame information in Isolate structure.
__ movq(Address(CTX, Isolate::top_exit_frame_info_offset()), Immediate(0));
// Load Context pointer from Isolate structure into R8.
__ movq(R8, Address(CTX, Isolate::top_context_offset()));
// Reset Context pointer in Isolate structure.
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ movq(Address(CTX, Isolate::top_context_offset()), raw_null);
// Cache Context pointer into CTX while executing Dart code.
__ movq(CTX, R8);
__ LeaveFrame();
__ ret();
}
// Input parameters:
// R10: arguments descriptor array.
void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
__ pushq(raw_null); // Setup space on stack for return value.
__ CallRuntime(kPatchStaticCallRuntimeEntry);
__ popq(RAX); // Get Code object result.
__ popq(R10); // Restore arguments descriptor array.
// Remove the stub frame as we are about to jump to the dart function.
__ LeaveFrame();
__ movq(RBX, FieldAddress(RAX, Code::instructions_offset()));
__ addq(RBX, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ jmp(RBX);
}
// Called from a static call only when an invalid code has been entered
// (invalid because its function was optimized or deoptimized).
// R10: arguments descriptor array.
void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
__ pushq(raw_null); // Setup space on stack for return value.
__ CallRuntime(kFixCallersTargetRuntimeEntry);
__ popq(RAX); // Get Code object.
__ popq(R10); // Restore arguments descriptor array.
__ movq(RAX, FieldAddress(RAX, Code::instructions_offset()));
__ addq(RAX, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ LeaveFrame();
__ jmp(RAX);
__ int3();
}
// Input parameters:
// R10: smi-tagged argument count, may be zero.
static void PushArgumentsArray(Assembler* assembler, intptr_t arg_offset) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
// Allocate array to store arguments of caller.
__ movq(RBX, raw_null); // Null element type for raw Array.
__ call(&StubCode::AllocateArrayLabel());
__ SmiUntag(R10);
// RAX: newly allocated array.
// R10: length of the array (was preserved by the stub).
__ pushq(RAX); // Array is in RAX and on top of stack.
__ leaq(R12, Address(RSP, R10, TIMES_8, arg_offset)); // Addr of first arg.
__ leaq(RBX, FieldAddress(RAX, Array::data_offset()));
Label loop, loop_condition;
__ jmp(&loop_condition, Assembler::kNearJump);
__ Bind(&loop);
__ movq(RAX, Address(R12, 0));
__ movq(Address(RBX, 0), RAX);
__ AddImmediate(RBX, Immediate(kWordSize));
__ AddImmediate(R12, Immediate(-kWordSize));
__ Bind(&loop_condition);
__ decq(R10);
__ j(POSITIVE, &loop, Assembler::kNearJump);
}
// Input parameters:
// RBX: ic-data.
// R10: arguments descriptor array.
// Note: The receiver object is the first argument to the function being
// called, the stub accesses the receiver from this location directly
// when trying to resolve the call.
void StubCode::GenerateInstanceFunctionLookupStub(Assembler* assembler) {
__ EnterStubFrame();
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ pushq(raw_null); // Space for the return value.
// Push the receiver as an argument. Load the smi-tagged argument
// count into R13 to index the receiver in the stack. There are
// three words (null, stub's pc marker, saved fp) above the return
// address.
__ movq(R13, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ pushq(Address(RSP, R13, TIMES_4, (3 * kWordSize)));
__ pushq(RBX); // Pass IC data object.
__ pushq(R10); // Pass arguments descriptor array.
// Pass the call's arguments array.
__ movq(R10, R13); // Smi-tagged arguments array length.
PushArgumentsArray(assembler, (7 * kWordSize));
// Stack layout explaining "(7 * kWordSize)" offset.
// TOS + 0: Arguments array.
// TOS + 1: Arguments descriptor array.
// TOS + 2: IC data object.
// TOS + 3: Receiver.
// TOS + 4: Space for the result of the runtime call.
// TOS + 5: Stub's PC marker (0)
// TOS + 6: Saved FP
// TOS + 7: Dart code return address
// TOS + 8: Last argument of caller.
// ....
__ CallRuntime(kInstanceFunctionLookupRuntimeEntry);
// Remove arguments.
__ popq(RAX);
__ popq(RAX);
__ popq(RAX);
__ popq(RAX);
__ popq(RAX); // Get result into RAX.
__ LeaveFrame();
__ ret();
}
DECLARE_LEAF_RUNTIME_ENTRY(intptr_t, DeoptimizeCopyFrame,
intptr_t deopt_reason,
uword saved_registers_address);
DECLARE_LEAF_RUNTIME_ENTRY(void, DeoptimizeFillFrame, uword last_fp);
// This stub translates optimized frame into unoptimized frame. The optimized
// frame can contain values in registers and on stack, the unoptimized
// frame contains all values on stack.
// Deoptimization occurs in following steps:
// - Push all registers that can contain values.
// - Call C routine to copy the stack and saved registers into temporary buffer.
// - Adjust caller's frame to correct unoptimized frame size.
// - Fill the unoptimized frame.
// - Materialize objects that require allocation (e.g. Double instances).
// GC can occur only after frame is fully rewritten.
// Stack after EnterFrame(0) below:
// +------------------+
// | Saved FP | <- TOS
// +------------------+
// | return-address | (deoptimization point)
// +------------------+
// | optimized frame |
// | ... |
//
// Parts of the code cannot GC, part of the code can GC.
static void GenerateDeoptimizationSequence(Assembler* assembler,
bool preserve_rax) {
__ EnterFrame(0);
// The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry
// and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls.
const intptr_t saved_rax_offset_from_ebp = -(kNumberOfCpuRegisters - RAX);
// Result in EAX is preserved as part of pushing all registers below.
// Push registers in their enumeration order: lowest register number at
// lowest address.
for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) {
__ pushq(static_cast<Register>(i));
}
__ subq(RSP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize));
intptr_t offset = 0;
for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) {
XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx);
__ movups(Address(RSP, offset), xmm_reg);
offset += kFpuRegisterSize;
}
__ movq(RDI, RSP); // Pass address of saved registers block.
__ ReserveAlignedFrameSpace(0);
__ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry);
// Result (RAX) is stack-size (FP - SP) in bytes, incl. the return address.
if (preserve_rax) {
// Restore result into RBX temporarily.
__ movq(RBX, Address(RBP, saved_rax_offset_from_ebp * kWordSize));
}
__ LeaveFrame();
__ popq(RCX); // Preserve return address.
__ movq(RSP, RBP);
__ subq(RSP, RAX);
__ movq(Address(RSP, 0), RCX);
__ EnterFrame(0);
__ movq(RCX, RSP); // Get last FP address.
if (preserve_rax) {
__ pushq(RBX); // Preserve result.
}
__ ReserveAlignedFrameSpace(0);
__ movq(RDI, RCX); // Set up argument 1 last_fp.
__ CallRuntime(kDeoptimizeFillFrameRuntimeEntry);
// Result (RAX) is our FP.
if (preserve_rax) {
// Restore result into RBX.
__ movq(RBX, Address(RBP, -1 * kWordSize));
}
// Code above cannot cause GC.
__ LeaveFrame();
__ movq(RBP, RAX);
// Frame is fully rewritten at this point and it is safe to perform a GC.
// Materialize any objects that were deferred by FillFrame because they
// require allocation.
__ EnterStubFrame();
if (preserve_rax) {
__ pushq(RBX); // Preserve result, it will be GC-d here.
}
__ CallRuntime(kDeoptimizeMaterializeDoublesRuntimeEntry);
if (preserve_rax) {
__ popq(RAX); // Restore result.
}
__ LeaveFrame();
__ ret();
}
// TOS: return address + call-instruction-size (5 bytes).
// RAX: result, must be preserved
void StubCode::GenerateDeoptimizeLazyStub(Assembler* assembler) {
// Correct return address to point just after the call that is being
// deoptimized.
__ popq(RBX);
__ subq(RBX, Immediate(ShortCallPattern::InstructionLength()));
__ pushq(RBX);
GenerateDeoptimizationSequence(assembler, true); // Preserve RAX.
}
void StubCode::GenerateDeoptimizeStub(Assembler* assembler) {
GenerateDeoptimizationSequence(assembler, false); // Don't preserve RAX.
}
void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) {
__ EnterStubFrame();
// Load the receiver into RAX. The argument count in the arguments
// descriptor in R10 is a smi.
__ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
// Two words (saved fp, stub's pc marker) in the stack above the return
// address.
__ movq(RAX, Address(RSP, RAX, TIMES_4, 2 * kWordSize));
// Preserve IC data and arguments descriptor.
__ pushq(RBX);
__ pushq(R10);
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Instructions::null()));
__ pushq(raw_null); // Space for the result of the runtime call.
__ pushq(RAX); // Receiver.
__ pushq(RBX); // IC data.
__ pushq(R10); // Arguments descriptor.
__ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry);
// Discard arguments.
__ popq(RAX);
__ popq(RAX);
__ popq(RAX);
__ popq(RAX); // Return value from the runtime call (instructions).
__ popq(R10); // Restore arguments descriptor.
__ popq(RBX); // Restore IC data.
__ LeaveFrame();
Label lookup;
__ cmpq(RAX, raw_null);
__ j(EQUAL, &lookup, Assembler::kNearJump);
__ addq(RAX, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ jmp(RAX);
__ Bind(&lookup);
__ jmp(&StubCode::InstanceFunctionLookupLabel());
}
// Called for inline allocation of arrays.
// Input parameters:
// R10 : Array length as Smi.
// RBX : array element type (either NULL or an instantiated type).
// NOTE: R10 cannot be clobbered here as the caller relies on it being saved.
// The newly allocated object is returned in RAX.
void StubCode::GenerateAllocateArrayStub(Assembler* assembler) {
Label slow_case;
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
if (FLAG_inline_alloc) {
// Compute the size to be allocated, it is based on the array length
// and is computed as:
// RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)).
// Assert that length is a Smi.
__ testq(R10, Immediate(kSmiTagMask));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(NOT_ZERO, &slow_case);
}
__ movq(R13, FieldAddress(CTX, Context::isolate_offset()));
__ movq(R13, Address(R13, Isolate::heap_offset()));
__ movq(R13, Address(R13, Heap::new_space_offset()));
// Calculate and align allocation size.
// Load new object start and calculate next object start.
// RBX: array element type.
// R10: Array length as Smi.
// R13: Points to new space object.
__ movq(RAX, Address(R13, Scavenger::top_offset()));
intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1;
__ leaq(R12, Address(R10, TIMES_4, fixed_size)); // R10 is Smi.
ASSERT(kSmiTagShift == 1);
__ andq(R12, Immediate(-kObjectAlignment));
__ leaq(R12, Address(RAX, R12, TIMES_1, 0));
// Check if the allocation fits into the remaining space.
// RAX: potential new object start.
// R12: potential next object start.
// RBX: array element type.
// R10: Array length as Smi.
// R13: Points to new space object.
__ cmpq(R12, Address(R13, Scavenger::end_offset()));
__ j(ABOVE_EQUAL, &slow_case);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
// RAX: potential new object start.
// R12: potential next object start.
// R13: Points to new space object.
__ movq(Address(R13, Scavenger::top_offset()), R12);
__ addq(RAX, Immediate(kHeapObjectTag));
// RAX: new object start as a tagged pointer.
// R12: new object end address.
// RBX: array element type.
// R10: Array length as Smi.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, Array::type_arguments_offset()), RBX);
// Set the length field.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, Array::length_offset()), R10);
// Calculate the size tag.
// RAX: new object start as a tagged pointer.
// R12: new object end address.
// R10: Array length as Smi.
{
Label size_tag_overflow, done;
__ leaq(RBX, Address(R10, TIMES_4, fixed_size)); // R10 is Smi.
ASSERT(kSmiTagShift == 1);
__ andq(RBX, Immediate(-kObjectAlignment));
__ cmpq(RBX, Immediate(RawObject::SizeTag::kMaxSizeTag));
__ j(ABOVE, &size_tag_overflow, Assembler::kNearJump);
__ shlq(RBX, Immediate(RawObject::kSizeTagBit - kObjectAlignmentLog2));
__ jmp(&done);
__ Bind(&size_tag_overflow);
__ movq(RBX, Immediate(0));
__ Bind(&done);
// Get the class index and insert it into the tags.
__ orq(RBX, Immediate(RawObject::ClassIdTag::encode(kArrayCid)));
__ movq(FieldAddress(RAX, Array::tags_offset()), RBX);
}
// Initialize all array elements to raw_null.
// RAX: new object start as a tagged pointer.
// R12: new object end address.
// R10: Array length as Smi.
__ leaq(RBX, FieldAddress(RAX, Array::data_offset()));
// RBX: iterator which initially points to the start of the variable
// data area to be initialized.
Label done;
Label init_loop;
__ Bind(&init_loop);
__ cmpq(RBX, R12);
__ j(ABOVE_EQUAL, &done, Assembler::kNearJump);
// TODO(cshapiro): StoreIntoObjectNoBarrier
__ movq(Address(RBX, 0), raw_null);
__ addq(RBX, Immediate(kWordSize));
__ jmp(&init_loop, Assembler::kNearJump);
__ Bind(&done);
// Done allocating and initializing the array.
// RAX: new object.
// R10: Array length as Smi (preserved for the caller.)
__ ret();
}
// Unable to allocate the array using the fast inline code, just call
// into the runtime.
__ Bind(&slow_case);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ pushq(raw_null); // Setup space on stack for return value.
__ pushq(R10); // Array length as Smi.
__ pushq(RBX); // Element type.
__ CallRuntime(kAllocateArrayRuntimeEntry);
__ popq(RAX); // Pop element type argument.
__ popq(R10); // Pop array length argument.
__ popq(RAX); // Pop return value from return slot.
__ LeaveFrame();
__ ret();
}
// Input parameters:
// R10: Arguments descriptor array.
// Note: The closure object is the first argument to the function being
// called, the stub accesses the closure from this location directly
// when trying to resolve the call.
void StubCode::GenerateCallClosureFunctionStub(Assembler* assembler) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
// Load num_args.
__ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
// Load closure object in R13.
__ movq(R13, Address(RSP, RAX, TIMES_4, 0)); // RAX is a Smi.
// Verify that R13 is a closure by checking its class.
Label not_closure;
__ cmpq(R13, raw_null);
// Not a closure, but null object.
__ j(EQUAL, &not_closure);
__ testq(R13, Immediate(kSmiTagMask));
__ j(ZERO, &not_closure); // Not a closure, but a smi.
// Verify that the class of the object is a closure class by checking that
// class.signature_function() is not null.
__ LoadClass(RAX, R13);
__ movq(RAX, FieldAddress(RAX, Class::signature_function_offset()));
__ cmpq(RAX, raw_null);
// Actual class is not a closure class.
__ j(EQUAL, &not_closure, Assembler::kNearJump);
// RAX is just the signature function. Load the actual closure function.
__ movq(RBX, FieldAddress(R13, Closure::function_offset()));
// Load closure context in CTX; note that CTX has already been preserved.
__ movq(CTX, FieldAddress(R13, Closure::context_offset()));
// Load closure function code in RAX.
__ movq(RAX, FieldAddress(RBX, Function::code_offset()));
__ cmpq(RAX, raw_null);
Label function_compiled;
__ j(NOT_EQUAL, &function_compiled, Assembler::kNearJump);
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
__ pushq(RBX); // Preserve read-only function object argument.
__ CallRuntime(kCompileFunctionRuntimeEntry);
__ popq(RBX); // Restore read-only function object argument in RBX.
__ popq(R10); // Restore arguments descriptor array.
// Restore RAX.
__ movq(RAX, FieldAddress(RBX, Function::code_offset()));
// Remove the stub frame as we are about to jump to the closure function.
__ LeaveFrame();
__ Bind(&function_compiled);
// RAX: Code.
// RBX: Function.
// R10: Arguments descriptor array.
__ movq(RBX, FieldAddress(RAX, Code::instructions_offset()));
__ addq(RBX, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ jmp(RBX);
__ Bind(&not_closure);
// Call runtime to attempt to resolve and invoke a call method on a
// non-closure object, passing the non-closure object and its arguments array,
// returning here.
// If no call method exists, throw a NoSuchMethodError.
// R13: non-closure object.
// R10: arguments descriptor array.
// Create a stub frame as we are pushing some objects on the stack before
// calling into the runtime.
__ EnterStubFrame();
__ pushq(raw_null); // Setup space on stack for result from call.
__ pushq(R10); // Arguments descriptor.
// Load smi-tagged arguments array length, including the non-closure.
__ movq(R10, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
// See stack layout below explaining "wordSize * 5" offset.
PushArgumentsArray(assembler, (kWordSize * 5));
// Stack:
// TOS + 0: Argument array.
// TOS + 1: Arguments descriptor array.
// TOS + 2: Place for result from the call.
// TOS + 3: PC marker => RawInstruction object.
// TOS + 4: Saved RBP of previous frame. <== RBP
// TOS + 5: Dart code return address
// TOS + 6: Last argument of caller.
// ....
__ CallRuntime(kInvokeNonClosureRuntimeEntry);
// Remove arguments.
__ popq(RAX);
__ popq(RAX);
__ popq(RAX); // Get result into RAX.
// Remove the stub frame as we are about to return.
__ LeaveFrame();
__ ret();
}
// Called when invoking Dart code from C++ (VM code).
// Input parameters:
// RSP : points to return address.
// RDI : entrypoint of the Dart function to call.
// RSI : arguments descriptor array.
// RDX : arguments array.
// RCX : new context containing the current isolate pointer.
void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) {
// Save frame pointer coming in.
__ EnterFrame(0);
// Save arguments descriptor array and new context.
const intptr_t kArgumentsDescOffset = -1 * kWordSize;
__ pushq(RSI);
const intptr_t kNewContextOffset = -2 * kWordSize;
__ pushq(RCX);
// Save C++ ABI callee-saved registers.
__ pushq(RBX);
__ pushq(R12);
__ pushq(R13);
__ pushq(R14);
__ pushq(R15);
// The new Context structure contains a pointer to the current Isolate
// structure. Cache the Context pointer in the CTX register so that it is
// available in generated code and calls to Isolate::Current() need not be
// done. The assumption is that this register will never be clobbered by
// compiled or runtime stub code.
// Cache the new Context pointer into CTX while executing Dart code.
__ movq(CTX, Address(RCX, VMHandles::kOffsetOfRawPtrInHandle));
// Load Isolate pointer from Context structure into R8.
__ movq(R8, FieldAddress(CTX, Context::isolate_offset()));
// Save the top exit frame info. Use RAX as a temporary register.
// StackFrameIterator reads the top exit frame info saved in this frame.
// The constant kExitLinkOffsetInEntryFrame must be kept in sync with the
// code below: kExitLinkOffsetInEntryFrame = -8 * kWordSize.
__ movq(RAX, Address(R8, Isolate::top_exit_frame_info_offset()));
__ pushq(RAX);
__ movq(Address(R8, Isolate::top_exit_frame_info_offset()), Immediate(0));
// Save the old Context pointer. Use RAX as a temporary register.
// Note that VisitObjectPointers will find this saved Context pointer during
// GC marking, since it traverses any information between SP and
// FP - kExitLinkOffsetInEntryFrame.
// EntryFrame::SavedContext reads the context saved in this frame.
// The constant kSavedContextOffsetInEntryFrame must be kept in sync with
// the code below: kSavedContextOffsetInEntryFrame = -9 * kWordSize.
__ movq(RAX, Address(R8, Isolate::top_context_offset()));
__ pushq(RAX);
// Load arguments descriptor array into R10, which is passed to Dart code.
__ movq(R10, Address(RSI, VMHandles::kOffsetOfRawPtrInHandle));
// Load number of arguments into RBX.
__ movq(RBX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ SmiUntag(RBX);
// Compute address of 'arguments array' data area into RDX.
__ movq(RDX, Address(RDX, VMHandles::kOffsetOfRawPtrInHandle));
__ leaq(RDX, FieldAddress(RDX, Array::data_offset()));
// Set up arguments for the Dart call.
Label push_arguments;
Label done_push_arguments;
__ testq(RBX, RBX); // check if there are arguments.
__ j(ZERO, &done_push_arguments, Assembler::kNearJump);
__ movq(RAX, Immediate(0));
__ Bind(&push_arguments);
__ movq(RCX, Address(RDX, RAX, TIMES_8, 0)); // RDX is start of arguments.
__ pushq(RCX);
__ incq(RAX);
__ cmpq(RAX, RBX);
__ j(LESS, &push_arguments, Assembler::kNearJump);
__ Bind(&done_push_arguments);
// Call the Dart code entrypoint.
__ call(RDI); // R10 is the arguments descriptor array.
// Read the saved new Context pointer.
__ movq(CTX, Address(RBP, kNewContextOffset));
__ movq(CTX, Address(CTX, VMHandles::kOffsetOfRawPtrInHandle));
// Read the saved arguments descriptor array to obtain the number of passed
// arguments.
__ movq(RSI, Address(RBP, kArgumentsDescOffset));
__ movq(R10, Address(RSI, VMHandles::kOffsetOfRawPtrInHandle));
__ movq(RDX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
// Get rid of arguments pushed on the stack.
__ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi.
// Load Isolate pointer from Context structure into CTX. Drop Context.
__ movq(CTX, FieldAddress(CTX, Context::isolate_offset()));
// Restore the saved Context pointer into the Isolate structure.
// Uses RCX as a temporary register for this.
__ popq(RCX);
__ movq(Address(CTX, Isolate::top_context_offset()), RCX);
// Restore the saved top exit frame info back into the Isolate structure.
// Uses RDX as a temporary register for this.
__ popq(RDX);
__ movq(Address(CTX, Isolate::top_exit_frame_info_offset()), RDX);
// Restore C++ ABI callee-saved registers.
__ popq(R15);
__ popq(R14);
__ popq(R13);
__ popq(R12);
__ popq(RBX);
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
}
// Called for inline allocation of contexts.
// Input:
// R10: number of context variables.
// Output:
// RAX: new allocated RawContext object.
void StubCode::GenerateAllocateContextStub(Assembler* assembler) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
if (FLAG_inline_alloc) {
const Class& context_class = Class::ZoneHandle(Object::context_class());
Label slow_case;
Heap* heap = Isolate::Current()->heap();
// First compute the rounded instance size.
// R10: number of context variables.
intptr_t fixed_size = (sizeof(RawContext) + kObjectAlignment - 1);
__ leaq(R13, Address(R10, TIMES_8, fixed_size));
__ andq(R13, Immediate(-kObjectAlignment));
// Now allocate the object.
// R10: number of context variables.
__ movq(RAX, Immediate(heap->TopAddress()));
__ movq(RAX, Address(RAX, 0));
__ addq(R13, RAX);
// Check if the allocation fits into the remaining space.
// RAX: potential new object.
// R13: potential next object start.
// R10: number of context variables.
__ movq(RDI, Immediate(heap->EndAddress()));
__ cmpq(R13, Address(RDI, 0));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(ABOVE_EQUAL, &slow_case);
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
// RAX: new object.
// R13: next object start.
// R10: number of context variables.
__ movq(RDI, Immediate(heap->TopAddress()));
__ movq(Address(RDI, 0), R13);
__ addq(RAX, Immediate(kHeapObjectTag));
// Calculate the size tag.
// RAX: new object.
// R10: number of context variables.
{
Label size_tag_overflow, done;
__ leaq(R13, Address(R10, TIMES_8, fixed_size));
__ andq(R13, Immediate(-kObjectAlignment));
__ cmpq(R13, Immediate(RawObject::SizeTag::kMaxSizeTag));
__ j(ABOVE, &size_tag_overflow, Assembler::kNearJump);
__ shlq(R13, Immediate(RawObject::kSizeTagBit - kObjectAlignmentLog2));
__ jmp(&done);
__ Bind(&size_tag_overflow);
// Set overflow size tag value.
__ movq(R13, Immediate(0));
__ Bind(&done);
// RAX: new object.
// R10: number of context variables.
// R13: size and bit tags.
__ orq(R13,
Immediate(RawObject::ClassIdTag::encode(context_class.id())));
__ movq(FieldAddress(RAX, Context::tags_offset()), R13); // Tags.
}
// Setup up number of context variables field.
// RAX: new object.
// R10: number of context variables as integer value (not object).
__ movq(FieldAddress(RAX, Context::num_variables_offset()), R10);
// Setup isolate field.
// Load Isolate pointer from Context structure into R13.
// RAX: new object.
// R10: number of context variables.
__ movq(R13, FieldAddress(CTX, Context::isolate_offset()));
// R13: Isolate, not an object.
__ movq(FieldAddress(RAX, Context::isolate_offset()), R13);
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
// Setup the parent field.
// RAX: new object.
// R10: number of context variables.
__ movq(FieldAddress(RAX, Context::parent_offset()), raw_null);
// Initialize the context variables.
// RAX: new object.
// R10: number of context variables.
{
Label loop, entry;
__ leaq(R13, FieldAddress(RAX, Context::variable_offset(0)));
__ jmp(&entry, Assembler::kNearJump);
__ Bind(&loop);
__ decq(R10);
__ movq(Address(R13, R10, TIMES_8, 0), raw_null);
__ Bind(&entry);
__ cmpq(R10, Immediate(0));
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
}
// Done allocating and initializing the context.
// RAX: new object.
__ ret();
__ Bind(&slow_case);
}
// Create a stub frame.
__ EnterStubFrame();
__ pushq(raw_null); // Setup space on stack for the return value.
__ SmiTag(R10);
__ pushq(R10); // Push number of context variables.
__ CallRuntime(kAllocateContextRuntimeEntry); // Allocate context.
__ popq(RAX); // Pop number of context variables argument.
__ popq(RAX); // Pop the new context object.
// RAX: new object
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
}
DECLARE_LEAF_RUNTIME_ENTRY(void, StoreBufferBlockProcess, Isolate* isolate);
// Helper stub to implement Assembler::StoreIntoObject.
// Input parameters:
// RAX: Address being stored
void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) {
// Save registers being destroyed.
__ pushq(RDX);
__ pushq(RCX);
// Load the isolate out of the context.
// RAX: Address being stored
__ movq(RDX, FieldAddress(CTX, Context::isolate_offset()));
// Load top_ out of the StoreBufferBlock and add the address to the pointers_.
// RAX: Address being stored
// RDX: Isolate
intptr_t store_buffer_offset = Isolate::store_buffer_block_offset();
__ movl(RCX,
Address(RDX, store_buffer_offset + StoreBufferBlock::top_offset()));
__ movq(Address(RDX,
RCX, TIMES_8,
store_buffer_offset + StoreBufferBlock::pointers_offset()),
RAX);
// Increment top_ and check for overflow.
// RCX: top_
// RDX: Isolate
Label L;
__ incq(RCX);
__ movl(Address(RDX, store_buffer_offset + StoreBufferBlock::top_offset()),
RCX);
__ cmpl(RCX, Immediate(StoreBufferBlock::kSize));
// Restore values.
__ popq(RCX);
__ popq(RDX);
__ j(EQUAL, &L, Assembler::kNearJump);
__ ret();
// Handle overflow: Call the runtime leaf function.
__ Bind(&L);
// Setup frame, push callee-saved registers.
__ EnterCallRuntimeFrame(0);
__ movq(RDI, FieldAddress(CTX, Context::isolate_offset()));
__ CallRuntime(kStoreBufferBlockProcessRuntimeEntry);
__ LeaveCallRuntimeFrame();
__ ret();
}
// Called for inline allocation of objects.
// Input parameters:
// RSP + 16 : type arguments object (only if class is parameterized).
// RSP + 8 : type arguments of instantiator (only if class is parameterized).
// RSP : points to return address.
void StubCode::GenerateAllocationStubForClass(Assembler* assembler,
const Class& cls) {
const intptr_t kObjectTypeArgumentsOffset = 2 * kWordSize;
const intptr_t kInstantiatorTypeArgumentsOffset = 1 * kWordSize;
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
// The generated code is different if the class is parameterized.
const bool is_cls_parameterized =
cls.type_arguments_field_offset() != Class::kNoTypeArguments;
// kInlineInstanceSize is a constant used as a threshold for determining
// when the object initialization should be done as a loop or as
// straight line code.
const int kInlineInstanceSize = 12; // In words.
const intptr_t instance_size = cls.instance_size();
ASSERT(instance_size > 0);
const intptr_t type_args_size = InstantiatedTypeArguments::InstanceSize();
if (FLAG_inline_alloc &&
Heap::IsAllocatableInNewSpace(instance_size + type_args_size)) {
Label slow_case;
Heap* heap = Isolate::Current()->heap();
__ movq(RAX, Immediate(heap->TopAddress()));
__ movq(RAX, Address(RAX, 0));
__ leaq(RBX, Address(RAX, instance_size));
if (is_cls_parameterized) {
__ movq(RCX, RBX);
// A new InstantiatedTypeArguments object only needs to be allocated if
// the instantiator is provided (not kNoInstantiator, but may be null).
Label no_instantiator;
__ cmpq(Address(RSP, kInstantiatorTypeArgumentsOffset),
Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
__ j(EQUAL, &no_instantiator, Assembler::kNearJump);
__ addq(RBX, Immediate(type_args_size));
__ Bind(&no_instantiator);
// RCX: potential new object end and, if RCX != RBX, potential new
// InstantiatedTypeArguments object start.
}
// Check if the allocation fits into the remaining space.
// RAX: potential new object start.
// RBX: potential next object start.
__ movq(RDI, Immediate(heap->EndAddress()));
__ cmpq(RBX, Address(RDI, 0));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(ABOVE_EQUAL, &slow_case);
}
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ movq(RDI, Immediate(heap->TopAddress()));
__ movq(Address(RDI, 0), RBX);
if (is_cls_parameterized) {
// Initialize the type arguments field in the object.
// RAX: new object start.
// RCX: potential new object end and, if RCX != RBX, potential new
// InstantiatedTypeArguments object start.
// RBX: next object start.
Label type_arguments_ready;
__ movq(RDI, Address(RSP, kObjectTypeArgumentsOffset));
__ cmpq(RCX, RBX);
__ j(EQUAL, &type_arguments_ready, Assembler::kNearJump);
// Initialize InstantiatedTypeArguments object at RCX.
__ movq(Address(RCX,
InstantiatedTypeArguments::uninstantiated_type_arguments_offset()),
RDI);
__ movq(RDX, Address(RSP, kInstantiatorTypeArgumentsOffset));
__ movq(Address(RCX,
InstantiatedTypeArguments::instantiator_type_arguments_offset()),
RDX);
const Class& ita_cls =
Class::ZoneHandle(Object::instantiated_type_arguments_class());
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(type_args_size, tags);
tags = RawObject::ClassIdTag::update(ita_cls.id(), tags);
__ movq(Address(RCX, Instance::tags_offset()), Immediate(tags));
// Set the new InstantiatedTypeArguments object (RCX) as the type
// arguments (RDI) of the new object (RAX).
__ movq(RDI, RCX);
__ addq(RDI, Immediate(kHeapObjectTag));
// Set RBX to new object end.
__ movq(RBX, RCX);
__ Bind(&type_arguments_ready);
// RAX: new object.
// RDI: new object type arguments.
}
// RAX: new object start.
// RBX: next object start.
// RDI: new object type arguments (if is_cls_parameterized).
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(instance_size, tags);
ASSERT(cls.id() != kIllegalCid);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ movq(Address(RAX, Instance::tags_offset()), Immediate(tags));
// Initialize the remaining words of the object.
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
// RAX: new object start.
// RBX: next object start.
// RDI: new object type arguments (if is_cls_parameterized).
// First try inlining the initialization without a loop.
if (instance_size < (kInlineInstanceSize * kWordSize)) {
// Check if the object contains any non-header fields.
// Small objects are initialized using a consecutive set of writes.
for (intptr_t current_offset = sizeof(RawObject);
current_offset < instance_size;
current_offset += kWordSize) {
__ movq(Address(RAX, current_offset), raw_null);
}
} else {
__ leaq(RCX, Address(RAX, sizeof(RawObject)));
// Loop until the whole object is initialized.
// RAX: new object.
// RBX: next object start.
// RCX: next word to be initialized.
// RDI: new object type arguments (if is_cls_parameterized).
Label init_loop;
Label done;
__ Bind(&init_loop);
__ cmpq(RCX, RBX);
__ j(ABOVE_EQUAL, &done, Assembler::kNearJump);
__ movq(Address(RCX, 0), raw_null);
__ addq(RCX, Immediate(kWordSize));
__ jmp(&init_loop, Assembler::kNearJump);
__ Bind(&done);
}
if (is_cls_parameterized) {
// RDI: new object type arguments.
// Set the type arguments in the new object.
__ movq(Address(RAX, cls.type_arguments_field_offset()), RDI);
}
// Done allocating and initializing the instance.
// RAX: new object.
__ addq(RAX, Immediate(kHeapObjectTag));
__ ret();
__ Bind(&slow_case);
}
if (is_cls_parameterized) {
__ movq(RAX, Address(RSP, kObjectTypeArgumentsOffset));
__ movq(RDX, Address(RSP, kInstantiatorTypeArgumentsOffset));
}
// Create a stub frame.
__ EnterStubFrame();
__ pushq(raw_null); // Setup space on stack for return value.
__ PushObject(cls); // Push class of object to be allocated.
if (is_cls_parameterized) {
__ pushq(RAX); // Push type arguments of object to be allocated.
__ pushq(RDX); // Push type arguments of instantiator.
} else {
__ pushq(raw_null); // Push null type arguments.
__ pushq(Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
}
__ CallRuntime(kAllocateObjectRuntimeEntry); // Allocate object.
__ popq(RAX); // Pop argument (instantiator).
__ popq(RAX); // Pop argument (type arguments of object).
__ popq(RAX); // Pop argument (class of object).
__ popq(RAX); // Pop result (newly allocated object).
// RAX: new object
// Restore the frame pointer.
__ LeaveFrame();
__ ret();
}
// Called for inline allocation of closures.
// Input parameters:
// RSP + 16 : receiver (null if not an implicit instance closure).
// RSP + 8 : type arguments object (null if class is not parameterized).
// RSP : points to return address.
void StubCode::GenerateAllocationStubForClosure(Assembler* assembler,
const Function& func) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
ASSERT(func.IsClosureFunction());
const bool is_implicit_static_closure =
func.IsImplicitStaticClosureFunction();
const bool is_implicit_instance_closure =
func.IsImplicitInstanceClosureFunction();
const Class& cls = Class::ZoneHandle(func.signature_class());
const bool has_type_arguments = cls.HasTypeArguments();
const intptr_t kTypeArgumentsOffset = 1 * kWordSize;
const intptr_t kReceiverOffset = 2 * kWordSize;
const intptr_t closure_size = Closure::InstanceSize();
const intptr_t context_size = Context::InstanceSize(1); // Captured receiver.
if (FLAG_inline_alloc &&
Heap::IsAllocatableInNewSpace(closure_size + context_size)) {
Label slow_case;
Heap* heap = Isolate::Current()->heap();
__ movq(RAX, Immediate(heap->TopAddress()));
__ movq(RAX, Address(RAX, 0));
__ leaq(R13, Address(RAX, closure_size));
if (is_implicit_instance_closure) {
__ movq(RBX, R13); // RBX: new context address.
__ addq(R13, Immediate(context_size));
}
// Check if the allocation fits into the remaining space.
// RAX: potential new closure object.
// RBX: potential new context object (only if is_implicit_closure).
// R13: potential next object start.
__ movq(RDI, Immediate(heap->EndAddress()));
__ cmpq(R13, Address(RDI, 0));
if (FLAG_use_slow_path) {
__ jmp(&slow_case);
} else {
__ j(ABOVE_EQUAL, &slow_case);
}
// Successfully allocated the object, now update top to point to
// next object start and initialize the object.
__ movq(RDI, Immediate(heap->TopAddress()));
__ movq(Address(RDI, 0), R13);
// RAX: new closure object.
// RBX: new context object (only if is_implicit_closure).
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(closure_size, tags);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ movq(Address(RAX, Instance::tags_offset()), Immediate(tags));
// Initialize the function field in the object.
// RAX: new closure object.
// RBX: new context object (only if is_implicit_closure).
// R13: next object start.
__ LoadObject(R10, func); // Load function of closure to be allocated.
__ movq(Address(RAX, Closure::function_offset()), R10);
// Setup the context for this closure.
if (is_implicit_static_closure) {
ObjectStore* object_store = Isolate::Current()->object_store();
ASSERT(object_store != NULL);
const Context& empty_context =
Context::ZoneHandle(object_store->empty_context());
__ LoadObject(R10, empty_context);
__ movq(Address(RAX, Closure::context_offset()), R10);
} else if (is_implicit_instance_closure) {
// Initialize the new context capturing the receiver.
const Class& context_class = Class::ZoneHandle(Object::context_class());
// Set the tags.
uword tags = 0;
tags = RawObject::SizeTag::update(context_size, tags);
tags = RawObject::ClassIdTag::update(context_class.id(), tags);
__ movq(Address(RBX, Context::tags_offset()), Immediate(tags));
// Set number of variables field to 1 (for captured receiver).
__ movq(Address(RBX, Context::num_variables_offset()), Immediate(1));
// Set isolate field to isolate of current context.
__ movq(R10, FieldAddress(CTX, Context::isolate_offset()));
__ movq(Address(RBX, Context::isolate_offset()), R10);
// Set the parent to null.
__ movq(Address(RBX, Context::parent_offset()), raw_null);
// Initialize the context variable to the receiver.
__ movq(R10, Address(RSP, kReceiverOffset));
__ movq(Address(RBX, Context::variable_offset(0)), R10);
// Set the newly allocated context in the newly allocated closure.
__ addq(RBX, Immediate(kHeapObjectTag));
__ movq(Address(RAX, Closure::context_offset()), RBX);
} else {
__ movq(Address(RAX, Closure::context_offset()), CTX);
}
// Set the type arguments field in the newly allocated closure.
__ movq(R10, Address(RSP, kTypeArgumentsOffset));
__ movq(Address(RAX, Closure::type_arguments_offset()), R10);
// Done allocating and initializing the instance.
// RAX: new object.
__ addq(RAX, Immediate(kHeapObjectTag));
__ ret();
__ Bind(&slow_case);
}
if (has_type_arguments) {
__ movq(RCX, Address(RSP, kTypeArgumentsOffset));
}
if (is_implicit_instance_closure) {
__ movq(RAX, Address(RSP, kReceiverOffset));
}
// Create the stub frame.
__ EnterStubFrame();
__ pushq(raw_null); // Setup space on stack for the return value.
__ PushObject(func);
if (is_implicit_static_closure) {
__ CallRuntime(kAllocateImplicitStaticClosureRuntimeEntry);
} else {
if (is_implicit_instance_closure) {
__ pushq(RAX); // Receiver.
}
if (has_type_arguments) {
__ pushq(RCX); // Push type arguments of closure to be allocated.
} else {
__ pushq(raw_null); // Push null type arguments.
}
if (is_implicit_instance_closure) {
__ CallRuntime(kAllocateImplicitInstanceClosureRuntimeEntry);
__ popq(RAX); // Pop type arguments.
__ popq(RAX); // Pop receiver.
} else {
ASSERT(func.IsNonImplicitClosureFunction());
__ CallRuntime(kAllocateClosureRuntimeEntry);
__ popq(RAX); // Pop type arguments.
}
}
__ popq(RAX); // Pop the function object.
__ popq(RAX); // Pop the result.
// RAX: New closure object.
// Restore the calling frame.
__ LeaveFrame();
__ ret();
}
// Called for invoking noSuchMethod function from the entry code of a dart
// function after an error in passed named arguments is detected.
// Input parameters:
// RBP - 8 : PC marker => RawInstruction object.
// RBP : points to previous frame pointer.
// RBP + 8 : points to return address.
// RBP + 16 : address of last argument (arg n-1).
// RBP + 16 + 8*(n-1) : address of first argument (arg 0).
// RBX : ic-data.
// R10 : arguments descriptor array.
void StubCode::GenerateCallNoSuchMethodFunctionStub(Assembler* assembler) {
// The target function was not found, so invoke method
// "dynamic noSuchMethod(Invocation invocation)".
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ movq(R13, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ movq(RAX, Address(RBP, R13, TIMES_4, kWordSize)); // Get receiver.
// Create a stub frame.
__ EnterStubFrame();
__ pushq(raw_null); // Setup space on stack for result from noSuchMethod.
__ pushq(RAX); // Receiver.
__ pushq(RBX); // IC data array.
__ pushq(R10); // Arguments descriptor array.
__ movq(R10, R13); // Smi-tagged arguments array length.
// See stack layout below explaining "wordSize * 10" offset.
PushArgumentsArray(assembler, (kWordSize * 10));
// Stack:
// TOS + 0: Argument array.
// TOS + 1: Arguments descriptor array.
// TOS + 2: Ic-data array.
// TOS + 3: Receiver.
// TOS + 4: Place for result from noSuchMethod.
// TOS + 5: PC marker => RawInstruction object.
// TOS + 6: Saved RBP of previous frame. <== RBP
// TOS + 7: Dart callee (or stub) code return address
// TOS + 8: PC marker => RawInstruction object of dart caller frame.
// TOS + 9: Saved RBP of dart caller frame.
// TOS + 10: Dart caller code return address
// TOS + 11: Last argument of caller.
// ....
__ CallRuntime(kInvokeNoSuchMethodFunctionRuntimeEntry);
// Remove arguments.
__ popq(RAX);
__ popq(RAX);
__ popq(RAX);
__ popq(RAX);
__ popq(RAX); // Get result into RAX.
// Remove the stub frame as we are about to return.
__ LeaveFrame();
__ ret();
}
void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) {
Register argdesc_reg = R10;
Register ic_reg = RBX;
Register func_reg = RDI;
if (FLAG_trace_optimized_ic_calls) {
__ EnterStubFrame();
__ pushq(func_reg); // Preserve
__ pushq(argdesc_reg); // Preserve.
__ pushq(ic_reg); // Preserve.
__ pushq(ic_reg); // Argument.
__ pushq(func_reg); // Argument.
__ CallRuntime(kTraceICCallRuntimeEntry);
__ popq(RAX); // Discard argument;
__ popq(RAX); // Discard argument;
__ popq(ic_reg); // Restore.
__ popq(argdesc_reg); // Restore.
__ popq(func_reg); // Restore.
__ LeaveFrame();
}
Label is_hot;
if (FlowGraphCompiler::CanOptimize()) {
ASSERT(FLAG_optimization_counter_threshold > 1);
__ cmpq(FieldAddress(func_reg, Function::usage_counter_offset()),
Immediate(FLAG_optimization_counter_threshold));
__ j(GREATER_EQUAL, &is_hot, Assembler::kNearJump);
// As long as VM has no OSR do not optimize in the middle of the function
// but only at exit so that we have collected all type feedback before
// optimizing.
}
__ incq(FieldAddress(func_reg, Function::usage_counter_offset()));
__ Bind(&is_hot);
}
// Loads function into 'temp_reg', preserves 'ic_reg'.
void StubCode::GenerateUsageCounterIncrement(Assembler* assembler,
Register temp_reg) {
Register ic_reg = RBX;
Register func_reg = temp_reg;
ASSERT(ic_reg != func_reg);
__ movq(func_reg, FieldAddress(ic_reg, ICData::function_offset()));
Label is_hot;
if (FlowGraphCompiler::CanOptimize()) {
ASSERT(FLAG_optimization_counter_threshold > 1);
// The usage_counter is always less than FLAG_optimization_counter_threshold
// except when the function gets optimized.
__ cmpq(FieldAddress(func_reg, Function::usage_counter_offset()),
Immediate(FLAG_optimization_counter_threshold));
__ j(EQUAL, &is_hot, Assembler::kNearJump);
// As long as VM has no OSR do not optimize in the middle of the function
// but only at exit so that we have collected all type feedback before
// optimizing.
}
__ incq(FieldAddress(func_reg, Function::usage_counter_offset()));
__ Bind(&is_hot);
}
// Generate inline cache check for 'num_args'.
// RBX: Inline cache data object.
// R10: Arguments descriptor array.
// TOS(0): return address
// Control flow:
// - If receiver is null -> jump to IC miss.
// - If receiver is Smi -> load Smi class.
// - If receiver is not-Smi -> load receiver's class.
// - Check if 'num_args' (including receiver) match any IC data group.
// - Match found -> jump to target.
// - Match not found -> jump to IC miss.
void StubCode::GenerateNArgsCheckInlineCacheStub(Assembler* assembler,
intptr_t num_args) {
ASSERT(num_args > 0);
#if defined(DEBUG)
{ Label ok;
// Check that the IC data array has NumberOfArgumentsChecked() == num_args.
// 'num_args_tested' is stored as an untagged int.
__ movq(RCX, FieldAddress(RBX, ICData::num_args_tested_offset()));
__ cmpq(RCX, Immediate(num_args));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Incorrect stub for IC data");
__ Bind(&ok);
}
#endif // DEBUG
// Loop that checks if there is an IC data match.
Label loop, update, test, found, get_class_id_as_smi;
// RBX: IC data object (preserved).
__ movq(R12, FieldAddress(RBX, ICData::ic_data_offset()));
// R12: ic_data_array with check entries: classes and target functions.
__ leaq(R12, FieldAddress(R12, Array::data_offset()));
// R12: points directly to the first ic data array element.
// Get the receiver's class ID (first read number of arguments from
// arguments descriptor array and then access the receiver from the stack).
__ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ movq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX (argument count) is Smi.
__ call(&get_class_id_as_smi);
// RAX: receiver's class ID as smi.
__ movq(R13, Address(R12, 0)); // First class ID (Smi) to check.
__ jmp(&test);
__ Bind(&loop);
for (int i = 0; i < num_args; i++) {
if (i > 0) {
// If not the first, load the next argument's class ID.
__ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ movq(RAX, Address(RSP, RAX, TIMES_4, - i * kWordSize));
__ call(&get_class_id_as_smi);
// RAX: next argument class ID (smi).
__ movq(R13, Address(R12, i * kWordSize));
// R13: next class ID to check (smi).
}
__ cmpq(RAX, R13); // Class id match?
if (i < (num_args - 1)) {
__ j(NOT_EQUAL, &update); // Continue.
} else {
// Last check, all checks before matched.
__ j(EQUAL, &found); // Break.
}
}
__ Bind(&update);
// Reload receiver class ID. It has not been destroyed when num_args == 1.
if (num_args > 1) {
__ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ movq(RAX, Address(RSP, RAX, TIMES_4, 0));
__ call(&get_class_id_as_smi);
}
const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize;
__ addq(R12, Immediate(entry_size)); // Next entry.
__ movq(R13, Address(R12, 0)); // Next class ID.
__ Bind(&test);
__ cmpq(R13, Immediate(Smi::RawValue(kIllegalCid))); // Done?
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
// IC miss.
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
// Compute address of arguments (first read number of arguments from
// arguments descriptor array and then compute address on the stack).
__ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset()));
__ leaq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX is Smi.
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor array.
__ pushq(RBX); // Preserve IC data object.
__ pushq(raw_null); // Setup space on stack for result (target code object).
// Push call arguments.
for (intptr_t i = 0; i < num_args; i++) {
__ movq(RCX, Address(RAX, -kWordSize * i));
__ pushq(RCX);
}
__ pushq(RBX); // Pass IC data object.
__ pushq(R10); // Pass arguments descriptor array.
if (num_args == 1) {
__ CallRuntime(kInlineCacheMissHandlerOneArgRuntimeEntry);
} else if (num_args == 2) {
__ CallRuntime(kInlineCacheMissHandlerTwoArgsRuntimeEntry);
} else if (num_args == 3) {
__ CallRuntime(kInlineCacheMissHandlerThreeArgsRuntimeEntry);
} else {
UNIMPLEMENTED();
}
// Remove the call arguments pushed earlier, including the IC data object
// and the arguments descriptor array.
for (intptr_t i = 0; i < num_args + 2; i++) {
__ popq(RAX);
}
__ popq(RAX); // Pop returned code object into RAX (null if not found).
__ popq(RBX); // Restore IC data array.
__ popq(R10); // Restore arguments descriptor array.
__ LeaveFrame();
Label call_target_function;
__ cmpq(RAX, raw_null);
__ j(NOT_EQUAL, &call_target_function, Assembler::kNearJump);
// NoSuchMethod or closure.
// Mark IC call that it may be a closure call that does not collect
// type feedback.
__ movb(FieldAddress(RBX, ICData::is_closure_call_offset()), Immediate(1));
__ jmp(&StubCode::InstanceFunctionLookupLabel());
__ Bind(&found);
// R12: Pointer to an IC data check group.
const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize;
const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize;
__ movq(RAX, Address(R12, target_offset));
__ addq(Address(R12, count_offset), Immediate(Smi::RawValue(1)));
__ j(NO_OVERFLOW, &call_target_function);
__ movq(Address(R12, count_offset),
Immediate(Smi::RawValue(Smi::kMaxValue)));
__ Bind(&call_target_function);
// RAX: Target function.
__ movq(RAX, FieldAddress(RAX, Function::code_offset()));
__ movq(RAX, FieldAddress(RAX, Code::instructions_offset()));
__ addq(RAX, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ jmp(RAX);
__ Bind(&get_class_id_as_smi);
Label not_smi;
// Test if Smi -> load Smi class for comparison.
__ testq(RAX, Immediate(kSmiTagMask));
__ j(NOT_ZERO, &not_smi, Assembler::kNearJump);
__ movq(RAX, Immediate(Smi::RawValue(kSmiCid)));
__ ret();
__ Bind(&not_smi);
__ LoadClassId(RAX, RAX);
__ SmiTag(RAX);
__ ret();
}
// Use inline cache data array to invoke the target or continue in inline
// cache miss handler. Stub for 1-argument check (receiver class).
// RBX: Inline cache data object.
// R10: Arguments descriptor array.
// TOS(0): Return address.
// Inline cache data object structure:
// 0: function-name
// 1: N, number of arguments checked.
// 2 .. (length - 1): group of checks, each check containing:
// - N classes.
// - 1 target function.
void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(assembler, 1);
}
void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(assembler, 2);
}
void StubCode::GenerateThreeArgsCheckInlineCacheStub(Assembler* assembler) {
GenerateUsageCounterIncrement(assembler, RCX);
GenerateNArgsCheckInlineCacheStub(assembler, 3);
}
// Use inline cache data array to invoke the target or continue in inline
// cache miss handler. Stub for 1-argument check (receiver class).
// RDI: function which counter needs to be incremented.
// RBX: Inline cache data object.
// R10: Arguments descriptor array.
// TOS(0): Return address.
// Inline cache data object structure:
// 0: function-name
// 1: N, number of arguments checked.
// 2 .. (length - 1): group of checks, each check containing:
// - N classes.
// - 1 target function.
void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(assembler, 1);
}
void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(assembler, 2);
}
void StubCode::GenerateThreeArgsOptimizedCheckInlineCacheStub(
Assembler* assembler) {
GenerateOptimizedUsageCounterIncrement(assembler);
GenerateNArgsCheckInlineCacheStub(assembler, 3);
}
// Do not count as no type feedback is collected.
void StubCode::GenerateClosureCallInlineCacheStub(Assembler* assembler) {
GenerateNArgsCheckInlineCacheStub(assembler, 1);
}
// Megamorphic call is currently implemented as IC call but through a stub
// that does not check/count function invocations.
void StubCode::GenerateMegamorphicCallStub(Assembler* assembler) {
GenerateNArgsCheckInlineCacheStub(assembler, 1);
}
// R10: Arguments descriptor array.
// TOS(0): return address (Dart code).
void StubCode::GenerateBreakpointStaticStub(Assembler* assembler) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ EnterStubFrame();
__ pushq(R10); // Preserve arguments descriptor.
__ pushq(raw_null); // Room for result.
__ CallRuntime(kBreakpointStaticHandlerRuntimeEntry);
__ popq(RAX); // Code object.
__ popq(R10); // Restore arguments descriptor.
__ LeaveFrame();
// Now call the static function. The breakpoint handler function
// ensures that the call target is compiled.
__ movq(RBX, FieldAddress(RAX, Code::instructions_offset()));
__ addq(RBX, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ jmp(RBX);
}
// TOS(0): return address (Dart code).
void StubCode::GenerateBreakpointReturnStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(RAX);
__ CallRuntime(kBreakpointReturnHandlerRuntimeEntry);
__ popq(RAX);
__ LeaveFrame();
__ popq(R11); // discard return address of call to this stub.
__ LeaveFrame();
__ ret();
}
// RBX: Inline cache data array.
// R10: Arguments descriptor array.
// TOS(0): return address (Dart code).
void StubCode::GenerateBreakpointDynamicStub(Assembler* assembler) {
__ EnterStubFrame();
__ pushq(RBX);
__ pushq(R10);
__ CallRuntime(kBreakpointDynamicHandlerRuntimeEntry);
__ popq(R10);
__ popq(RBX);
__ LeaveFrame();
// Find out which dispatch stub to call.
Label test_two, test_three, test_four;
__ movq(RCX, FieldAddress(RBX, ICData::num_args_tested_offset()));
__ cmpq(RCX, Immediate(1));
__ j(NOT_EQUAL, &test_two, Assembler::kNearJump);
__ jmp(&StubCode::OneArgCheckInlineCacheLabel());
__ Bind(&test_two);
__ cmpl(RCX, Immediate(2));
__ j(NOT_EQUAL, &test_three, Assembler::kNearJump);
__ jmp(&StubCode::TwoArgsCheckInlineCacheLabel());
__ Bind(&test_three);
__ cmpl(RCX, Immediate(3));
__ j(NOT_EQUAL, &test_four, Assembler::kNearJump);
__ jmp(&StubCode::ThreeArgsCheckInlineCacheLabel());
__ Bind(&test_four);
__ Stop("Unsupported number of arguments tested.");
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: instantiator type arguments (can be NULL).
// TOS + 2: instance.
// TOS + 3: SubtypeTestCache.
// Result in RCX: null -> not found, otherwise result (true or false).
static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) {
ASSERT((1 <= n) && (n <= 3));
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
const intptr_t kInstantiatorTypeArgumentsInBytes = 1 * kWordSize;
const intptr_t kInstanceOffsetInBytes = 2 * kWordSize;
const intptr_t kCacheOffsetInBytes = 3 * kWordSize;
__ movq(RAX, Address(RSP, kInstanceOffsetInBytes));
if (n > 1) {
__ LoadClass(R10, RAX);
// Compute instance type arguments into R13.
Label has_no_type_arguments;
__ movq(R13, raw_null);
__ movq(RDI, FieldAddress(R10,
Class::type_arguments_field_offset_in_words_offset()));
__ cmpq(RDI, Immediate(Class::kNoTypeArguments));
__ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump);
__ movq(R13, FieldAddress(RAX, RDI, TIMES_8, 0));
__ Bind(&has_no_type_arguments);
}
__ LoadClassId(R10, RAX);
// RAX: instance, R10: instance class id.
// R13: instance type arguments or null, used only if n > 1.
__ movq(RDX, Address(RSP, kCacheOffsetInBytes));
// RDX: SubtypeTestCache.
__ movq(RDX, FieldAddress(RDX, SubtypeTestCache::cache_offset()));
__ addq(RDX, Immediate(Array::data_offset() - kHeapObjectTag));
// RDX: Entry start.
// R10: instance class id.
// R13: instance type arguments.
Label loop, found, not_found, next_iteration;
__ SmiTag(R10);
__ Bind(&loop);
__ movq(RDI, Address(RDX, kWordSize * SubtypeTestCache::kInstanceClassId));
__ cmpq(RDI, raw_null);
__ j(EQUAL, &not_found, Assembler::kNearJump);
__ cmpq(RDI, R10);
if (n == 1) {
__ j(EQUAL, &found, Assembler::kNearJump);
} else {
__ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump);
__ movq(RDI,
Address(RDX, kWordSize * SubtypeTestCache::kInstanceTypeArguments));
__ cmpq(RDI, R13);
if (n == 2) {
__ j(EQUAL, &found, Assembler::kNearJump);
} else {
__ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump);
__ movq(RDI,
Address(RDX,
kWordSize * SubtypeTestCache::kInstantiatorTypeArguments));
__ cmpq(RDI, Address(RSP, kInstantiatorTypeArgumentsInBytes));
__ j(EQUAL, &found, Assembler::kNearJump);
}
}
__ Bind(&next_iteration);
__ addq(RDX, Immediate(kWordSize * SubtypeTestCache::kTestEntryLength));
__ jmp(&loop, Assembler::kNearJump);
// Fall through to not found.
__ Bind(&not_found);
__ movq(RCX, raw_null);
__ ret();
__ Bind(&found);
__ movq(RCX, Address(RDX, kWordSize * SubtypeTestCache::kTestResult));
__ ret();
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: instantiator type arguments or NULL.
// TOS + 2: instance.
// TOS + 3: cache array.
// Result in RCX: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 1);
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: instantiator type arguments or NULL.
// TOS + 2: instance.
// TOS + 3: cache array.
// Result in RCX: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 2);
}
// Used to check class and type arguments. Arguments passed on stack:
// TOS + 0: return address.
// TOS + 1: instantiator type arguments.
// TOS + 2: instance.
// TOS + 3: cache array.
// Result in RCX: null -> not found, otherwise result (true or false).
void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) {
GenerateSubtypeNTestCacheStub(assembler, 3);
}
// Return the current stack pointer address, used to stack alignment
// checks.
// TOS + 0: return address
// Result in RAX.
void StubCode::GenerateGetStackPointerStub(Assembler* assembler) {
__ leaq(RAX, Address(RSP, kWordSize));
__ ret();
}
// Jump to the exception or error handler.
// TOS + 0: return address
// RDI: program counter
// RSI: stack pointer
// RDX: frame_pointer
// RCX: exception object
// R8: stacktrace object
// No Result.
void StubCode::GenerateJumpToExceptionHandlerStub(Assembler* assembler) {
ASSERT(kExceptionObjectReg == RAX);
ASSERT(kStackTraceObjectReg == RDX);
__ movq(RBP, RDX); // target frame pointer.
__ movq(kStackTraceObjectReg, R8); // stacktrace object.
__ movq(kExceptionObjectReg, RCX); // exception object.
__ movq(RSP, RSI); // target stack_pointer.
__ jmp(RDI); // Jump to the exception handler code.
}
// Implements equality operator when one of the arguments is null
// (identity check) and updates ICData if necessary.
// TOS + 0: return address
// TOS + 1: right argument
// TOS + 2: left argument
// RBX: ICData.
// RAX: result.
// TODO(srdjan): Move to VM stubs once Boolean objects become VM objects.
void StubCode::GenerateEqualityWithNullArgStub(Assembler* assembler) {
static const intptr_t kNumArgsTested = 2;
#if defined(DEBUG)
{ Label ok;
__ movq(RCX, FieldAddress(RBX, ICData::num_args_tested_offset()));
__ cmpq(RCX, Immediate(kNumArgsTested));
__ j(EQUAL, &ok, Assembler::kNearJump);
__ Stop("Incorrect ICData for equality");
__ Bind(&ok);
}
#endif // DEBUG
// Check IC data, update if needed.
// RBX: IC data object (preserved).
__ movq(R12, FieldAddress(RBX, ICData::ic_data_offset()));
// R12: ic_data_array with check entries: classes and target functions.
__ leaq(R12, FieldAddress(R12, Array::data_offset()));
// R12: points directly to the first ic data array element.
Label get_class_id_as_smi, no_match, loop, compute_result, found;
__ Bind(&loop);
// Check left.
__ movq(RAX, Address(RSP, 2 * kWordSize));
__ call(&get_class_id_as_smi);
__ movq(R13, Address(R12, 0 * kWordSize));
__ cmpq(RAX, R13); // Class id match?
__ j(NOT_EQUAL, &no_match, Assembler::kNearJump);
// Check right.
__ movq(RAX, Address(RSP, 1 * kWordSize));
__ call(&get_class_id_as_smi);
__ movq(R13, Address(R12, 1 * kWordSize));
__ cmpq(RAX, R13); // Class id match?
__ j(EQUAL, &found, Assembler::kNearJump);
__ Bind(&no_match);
// Next check group.
__ addq(R12, Immediate(
kWordSize * ICData::TestEntryLengthFor(kNumArgsTested)));
__ cmpq(R13, Immediate(Smi::RawValue(kIllegalCid))); // Done?
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
Label update_ic_data;
__ jmp(&update_ic_data);
__ Bind(&found);
const intptr_t count_offset =
ICData::CountIndexFor(kNumArgsTested) * kWordSize;
__ addq(Address(R12, count_offset), Immediate(Smi::RawValue(1)));
__ j(NO_OVERFLOW, &compute_result);
__ movq(Address(R12, count_offset),
Immediate(Smi::RawValue(Smi::kMaxValue)));
__ Bind(&compute_result);
Label true_label;
__ movq(RAX, Address(RSP, 1 * kWordSize));
__ cmpq(RAX, Address(RSP, 2 * kWordSize));
__ j(EQUAL, &true_label, Assembler::kNearJump);
__ LoadObject(RAX, Bool::False());
__ ret();
__ Bind(&true_label);
__ LoadObject(RAX, Bool::True());
__ ret();
__ Bind(&get_class_id_as_smi);
Label not_smi;
// Test if Smi -> load Smi class for comparison.
__ testq(RAX, Immediate(kSmiTagMask));
__ j(NOT_ZERO, &not_smi, Assembler::kNearJump);
__ movq(RAX, Immediate(Smi::RawValue(kSmiCid)));
__ ret();
__ Bind(&not_smi);
__ LoadClassId(RAX, RAX);
__ SmiTag(RAX);
__ ret();
__ Bind(&update_ic_data);
// RCX: ICData
__ movq(RAX, Address(RSP, 1 * kWordSize));
__ movq(R13, Address(RSP, 2 * kWordSize));
__ EnterStubFrame();
__ pushq(R13); // arg 0
__ pushq(RAX); // arg 1
__ PushObject(Symbols::EqualOperator()); // Target's name.
__ pushq(RBX); // ICData
__ CallRuntime(kUpdateICDataTwoArgsRuntimeEntry);
__ Drop(4);
__ LeaveFrame();
__ jmp(&compute_result, Assembler::kNearJump);
}
// Calls to the runtime to optimize the given function.
// RDI: function to be reoptimized.
// R10: argument descriptor (preserved).
void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) {
const Immediate& raw_null =
Immediate(reinterpret_cast<intptr_t>(Object::null()));
__ EnterStubFrame();
__ pushq(R10);
__ pushq(raw_null); // Setup space on stack for return value.
__ pushq(RDI);
__ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry);
__ popq(RAX); // Disard argument.
__ popq(RAX); // Get Code object.
__ popq(R10); // Restore argument descriptor.
__ movq(RAX, FieldAddress(RAX, Code::instructions_offset()));
__ addq(RAX, Immediate(Instructions::HeaderSize() - kHeapObjectTag));
__ LeaveFrame();
__ jmp(RAX);
__ int3();
}
DECLARE_LEAF_RUNTIME_ENTRY(intptr_t,
BigintCompare,
RawBigint* left,
RawBigint* right);
// Does identical check (object references are equal or not equal) with special
// checks for boxed numbers.
// Left and right are pushed on stack.
// Return ZF set.
// Note: A Mint cannot contain a value that would fit in Smi, a Bigint
// cannot contain a value that fits in Mint or Smi.
void StubCode::GenerateIdenticalWithNumberCheckStub(Assembler* assembler) {
const Register left = RAX;
const Register right = RDX;
// Preserve left, right and temp.
__ pushq(left);
__ pushq(right);
// TOS + 0: saved right
// TOS + 1: saved left
// TOS + 2: return address
// TOS + 3: right argument.
// TOS + 4: left argument.
__ movq(left, Address(RSP, 4 * kWordSize));
__ movq(right, Address(RSP, 3 * kWordSize));
Label reference_compare, done, check_mint, check_bigint;
// If any of the arguments is Smi do reference compare.
__ testq(left, Immediate(kSmiTagMask));
__ j(ZERO, &reference_compare);
__ testq(right, Immediate(kSmiTagMask));
__ j(ZERO, &reference_compare);
// Value compare for two doubles.
__ CompareClassId(left, kDoubleCid);
__ j(NOT_EQUAL, &check_mint, Assembler::kNearJump);
__ CompareClassId(right, kDoubleCid);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
// Double values bitwise compare.
__ movq(left, FieldAddress(left, Double::value_offset()));
__ cmpq(left, FieldAddress(right, Double::value_offset()));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&check_mint);
__ CompareClassId(left, kMintCid);
__ j(NOT_EQUAL, &check_bigint, Assembler::kNearJump);
__ CompareClassId(right, kMintCid);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
__ movq(left, FieldAddress(left, Mint::value_offset()));
__ cmpq(left, FieldAddress(right, Mint::value_offset()));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&check_bigint);
__ CompareClassId(left, kBigintCid);
__ j(NOT_EQUAL, &reference_compare, Assembler::kNearJump);
__ CompareClassId(right, kBigintCid);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
__ movq(RDI, left);
__ movq(RSI, right);
__ CallRuntime(kBigintCompareRuntimeEntry);
// Result in RAX, 0 means equal.
__ LeaveFrame();
__ cmpq(RAX, Immediate(0));
__ jmp(&done);
__ Bind(&reference_compare);
__ cmpq(left, right);
__ Bind(&done);
__ popq(right);
__ popq(left);
__ ret();
}
} // namespace dart
#endif // defined TARGET_ARCH_X64