blob: c8110bba0eea5b15d802ac9f1295657fde9d3bed [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef VM_INTERMEDIATE_LANGUAGE_H_
#define VM_INTERMEDIATE_LANGUAGE_H_
#include "vm/allocation.h"
#include "vm/ast.h"
#include "vm/growable_array.h"
#include "vm/handles_impl.h"
#include "vm/locations.h"
#include "vm/object.h"
namespace dart {
class BitVector;
class BlockEntryInstr;
class BufferFormatter;
class CatchBlockEntryInstr;
class ComparisonInstr;
class ControlInstruction;
class Definition;
class Environment;
class FlowGraphCompiler;
class FlowGraphOptimizer;
class FlowGraphVisitor;
class Instruction;
class LocalVariable;
class ParsedFunction;
class Range;
// TODO(srdjan): Unify with INTRINSIC_LIST.
// (class-name, function-name, recognized enum, fingerprint).
// See intrinsifier for fingerprint computation.
#define RECOGNIZED_LIST(V) \
V(_ObjectArray, get:length, ObjectArrayLength, 405297088) \
V(_ImmutableArray, get:length, ImmutableArrayLength, 433698233) \
V(_TypedList, get:length, TypedDataLength, 1004567191) \
V(_TypedList, _getInt8, ByteArrayBaseGetInt8, 728842615) \
V(_TypedList, _getUint8, ByteArrayBaseGetUint8, 728842615) \
V(_TypedList, _getInt16, ByteArrayBaseGetInt16, 728842615) \
V(_TypedList, _getUint16, ByteArrayBaseGetUint16, 728842615) \
V(_TypedList, _getInt32, ByteArrayBaseGetInt32, 728842615) \
V(_TypedList, _getUint32, ByteArrayBaseGetUint32, 728842615) \
V(_TypedList, _getFloat32, ByteArrayBaseGetFloat32, 1067360925) \
V(_TypedList, _getFloat64, ByteArrayBaseGetFloat64, 1067360925) \
V(_TypedList, _getFloat32x4, ByteArrayBaseGetFloat32x4, 279982060) \
V(_TypedList, _setInt8, ByteArrayBaseSetInt8, 427754869) \
V(_TypedList, _setUint8, ByteArrayBaseSetUint8, 427754869) \
V(_TypedList, _setInt16, ByteArrayBaseSetInt16, 427754869) \
V(_TypedList, _setUint16, ByteArrayBaseSetUint16, 427754869) \
V(_TypedList, _setInt32, ByteArrayBaseSetInt32, 427754869) \
V(_TypedList, _setUint32, ByteArrayBaseSetUint32, 427754869) \
V(_TypedList, _setFloat32, ByteArrayBaseSetFloat32, 637235443) \
V(_TypedList, _setFloat64, ByteArrayBaseSetFloat64, 637235443) \
V(_TypedList, _setFloat32x4, ByteArrayBaseSetFloat32x4, 780994886) \
V(_GrowableObjectArray, get:length, GrowableArrayLength, 725548050) \
V(_GrowableObjectArray, get:_capacity, GrowableArrayCapacity, 725548050) \
V(_StringBase, get:length, StringBaseLength, 320803993) \
V(_StringBase, get:isEmpty, StringBaseIsEmpty, 1026765313) \
V(_StringBase, codeUnitAt, StringBaseCodeUnitAt, 984449525) \
V(_StringBase, [], StringBaseCharAt, 1062366987) \
V(_IntegerImplementation, toDouble, IntegerToDouble, 1267108971) \
V(_Double, toInt, DoubleToInteger, 362666636) \
V(_Double, truncateToDouble, DoubleTruncate, 620870996) \
V(_Double, roundToDouble, DoubleRound, 620870996) \
V(_Double, floorToDouble, DoubleFloor, 620870996) \
V(_Double, ceilToDouble, DoubleCeil, 620870996) \
V(_Double, pow, DoublePow, 631903778) \
V(_Double, _modulo, DoubleMod, 437099337) \
V(::, sqrt, MathSqrt, 1662640002) \
V(Float32x4, Float32x4., Float32x4Constructor, 1327837070) \
V(Float32x4, Float32x4.zero, Float32x4Zero, 927169529) \
V(Float32x4, Float32x4.splat, Float32x4Splat, 1778587275) \
V(_Float32x4, get:xxxx, Float32x4ShuffleXXXX, 42621627) \
V(_Float32x4, get:yyyy, Float32x4ShuffleYYYY, 42621627) \
V(_Float32x4, get:zzzz, Float32x4ShuffleZZZZ, 42621627) \
V(_Float32x4, get:wwww, Float32x4ShuffleWWWW, 42621627) \
V(_Float32x4, get:x, Float32x4ShuffleX, 211144022) \
V(_Float32x4, get:y, Float32x4ShuffleY, 211144022) \
V(_Float32x4, get:z, Float32x4ShuffleZ, 211144022) \
V(_Float32x4, get:w, Float32x4ShuffleW, 211144022) \
// Class that recognizes the name and owner of a function and returns the
// corresponding enum. See RECOGNIZED_LIST above for list of recognizable
// functions.
class MethodRecognizer : public AllStatic {
public:
enum Kind {
kUnknown,
#define DEFINE_ENUM_LIST(class_name, function_name, enum_name, fp) k##enum_name,
RECOGNIZED_LIST(DEFINE_ENUM_LIST)
#undef DEFINE_ENUM_LIST
};
static Kind RecognizeKind(const Function& function);
static const char* KindToCString(Kind kind);
};
// CompileType describes type of the value produced by the definition.
//
// It captures the following properties:
// - whether value can potentially be null or it is definitely not null;
// - concrete class id of the value or kDynamicCid if unknown statically;
// - abstract super type of the value, concrete type of the value in runtime
// is guaranteed to be sub type of this type.
//
// Values of CompileType form a lattice with a None type as a bottom and a
// nullable Dynamic type as a top element. Method Union provides a join
// operation for the lattice.
class CompileType : public ValueObject {
public:
static const bool kNullable = true;
static const bool kNonNullable = false;
CompileType(bool is_nullable, intptr_t cid, const AbstractType* type)
: is_nullable_(is_nullable), cid_(cid), type_(type) { }
CompileType(const CompileType& other)
: ValueObject(),
is_nullable_(other.is_nullable_),
cid_(other.cid_),
type_(other.type_) { }
CompileType& operator=(const CompileType& other) {
is_nullable_ = other.is_nullable_;
cid_ = other.cid_;
type_ = other.type_;
return *this;
}
bool is_nullable() const { return is_nullable_; }
// Return type such that concrete value's type in runtime is guaranteed to
// be subtype of it.
const AbstractType* ToAbstractType();
// Return class id such that it is either kDynamicCid or in runtime
// value is guaranteed to have an equal class id.
intptr_t ToCid();
// Return class id such that it is either kDynamicCid or in runtime
// value is guaranteed to be either null or have an equal class id.
intptr_t ToNullableCid();
// Returns true if the value is guaranteed to be not-null or is known to be
// always null.
bool HasDecidableNullability();
// Returns true if the value is known to be always null.
bool IsNull();
// Returns true if this type is more specific than given type.
bool IsMoreSpecificThan(const AbstractType& other);
// Returns true if value of this type is assignable to a location of the
// given type.
bool IsAssignableTo(const AbstractType& type) {
bool is_instance;
return CanComputeIsInstanceOf(type, kNullable, &is_instance) &&
is_instance;
}
// Create a new CompileType representing given combination of class id and
// abstract type. The pair is assumed to be coherent.
static CompileType Create(intptr_t cid, const AbstractType& type);
CompileType CopyNonNullable() const {
return CompileType(kNonNullable, cid_, type_);
}
static CompileType CreateNullable(bool is_nullable, intptr_t cid) {
return CompileType(is_nullable, cid, NULL);
}
// Create a new CompileType representing given abstract type. By default
// values as assumed to be nullable.
static CompileType FromAbstractType(const AbstractType& type,
bool is_nullable = kNullable);
// Create a new CompileType representing an value with the given class id.
// Resulting CompileType is nullable only if cid is kDynamicCid or kNullCid.
static CompileType FromCid(intptr_t cid);
// Create None CompileType. It is the bottom of the lattice and is used to
// represent type of the phi that was not yet inferred.
static CompileType None() {
return CompileType(true, kIllegalCid, NULL);
}
// Create Dynamic CompileType. It is the top of the lattice and is used to
// represent unknown type.
static CompileType Dynamic();
static CompileType Null();
// Create non-nullable Bool type.
static CompileType Bool();
// Create non-nullable Int type.
static CompileType Int();
// Perform a join operation over the type lattice.
void Union(CompileType* other);
// Returns true if this and other types are the same.
bool IsEqualTo(CompileType* other) {
return (is_nullable_ == other->is_nullable_) &&
(ToNullableCid() == other->ToNullableCid()) &&
(ToAbstractType()->Equals(*other->ToAbstractType()));
}
bool IsNone() const {
return (cid_ == kIllegalCid) && (type_ == NULL);
}
void PrintTo(BufferFormatter* f) const;
const char* ToCString() const;
private:
bool CanComputeIsInstanceOf(const AbstractType& type,
bool is_nullable,
bool* is_instance);
bool is_nullable_;
intptr_t cid_;
const AbstractType* type_;
};
// Zone allocated wrapper for the CompileType value.
class ZoneCompileType : public ZoneAllocated {
public:
static CompileType* Wrap(const CompileType& type) {
ZoneCompileType* zone_type = new ZoneCompileType(type);
return zone_type->ToCompileType();
}
CompileType* ToCompileType() {
return &type_;
}
protected:
explicit ZoneCompileType(const CompileType& type) : type_(type) { }
CompileType type_;
};
// ConstrainedCompileType represents a compile type that is computed from
// another compile type.
class ConstrainedCompileType : public ZoneCompileType {
public:
// Recompute compile type.
virtual void Update() = 0;
protected:
explicit ConstrainedCompileType(const CompileType& type)
: ZoneCompileType(type) { }
};
// NotNullConstrainedCompileType represents not-null constraint applied to
// the source compile type. Result is non-nullable version of the incomming
// compile type. It is used to represent compile type propagated downwards
// from strict comparison with the null constant.
class NotNullConstrainedCompileType : public ConstrainedCompileType {
public:
explicit NotNullConstrainedCompileType(CompileType* source)
: ConstrainedCompileType(source->CopyNonNullable()), source_(source) { }
virtual void Update() {
type_ = source_->CopyNonNullable();
}
private:
CompileType* source_;
};
class Value : public ZoneAllocated {
public:
// A forward iterator that allows removing the current value from the
// underlying use list during iteration.
class Iterator {
public:
explicit Iterator(Value* head) : next_(head) { Advance(); }
Value* Current() const { return current_; }
bool Done() const { return current_ == NULL; }
void Advance() {
// Pre-fetch next on advance and cache it.
current_ = next_;
if (next_ != NULL) next_ = next_->next_use();
}
private:
Value* current_;
Value* next_;
};
explicit Value(Definition* definition)
: definition_(definition),
previous_use_(NULL),
next_use_(NULL),
instruction_(NULL),
use_index_(-1),
reaching_type_(NULL) { }
Definition* definition() const { return definition_; }
void set_definition(Definition* definition) { definition_ = definition; }
Value* previous_use() const { return previous_use_; }
void set_previous_use(Value* previous) { previous_use_ = previous; }
Value* next_use() const { return next_use_; }
void set_next_use(Value* next) { next_use_ = next; }
bool IsSingleUse() const {
return (next_use_ == NULL) && (previous_use_ == NULL);
}
Instruction* instruction() const { return instruction_; }
void set_instruction(Instruction* instruction) { instruction_ = instruction; }
intptr_t use_index() const { return use_index_; }
void set_use_index(intptr_t index) { use_index_ = index; }
static void AddToList(Value* value, Value** list);
void RemoveFromUseList();
// Change the definition after use lists have been computed.
inline void BindTo(Definition* definition);
Value* Copy() { return new Value(definition_); }
// This function must only be used when the new Value is dominated by
// the original Value.
Value* CopyWithType() {
Value* copy = new Value(definition_);
copy->reaching_type_ = reaching_type_;
return copy;
}
CompileType* Type();
void SetReachingType(CompileType* type) {
reaching_type_ = type;
}
void PrintTo(BufferFormatter* f) const;
const char* DebugName() const { return "Value"; }
bool IsSmiValue() { return Type()->ToCid() == kSmiCid; }
// Return true if the value represents a constant.
bool BindsToConstant() const;
// Return true if the value represents the constant null.
bool BindsToConstantNull() const;
// Assert if BindsToConstant() is false, otherwise returns the constant value.
const Object& BoundConstant() const;
// Compile time constants, Bool, Smi and Nulls do not need to update
// the store buffer.
bool NeedsStoreBuffer();
bool Equals(Value* other) const;
private:
Definition* definition_;
Value* previous_use_;
Value* next_use_;
Instruction* instruction_;
intptr_t use_index_;
CompileType* reaching_type_;
DISALLOW_COPY_AND_ASSIGN(Value);
};
// An embedded container with N elements of type T. Used (with partial
// specialization for N=0) because embedded arrays cannot have size 0.
template<typename T, intptr_t N>
class EmbeddedArray {
public:
EmbeddedArray() : elements_() { }
intptr_t length() const { return N; }
const T& operator[](intptr_t i) const {
ASSERT(i < length());
return elements_[i];
}
T& operator[](intptr_t i) {
ASSERT(i < length());
return elements_[i];
}
const T& At(intptr_t i) const {
return (*this)[i];
}
void SetAt(intptr_t i, const T& val) {
(*this)[i] = val;
}
private:
T elements_[N];
};
template<typename T>
class EmbeddedArray<T, 0> {
public:
intptr_t length() const { return 0; }
const T& operator[](intptr_t i) const {
UNREACHABLE();
static T sentinel = 0;
return sentinel;
}
T& operator[](intptr_t i) {
UNREACHABLE();
static T sentinel = 0;
return sentinel;
}
};
// Instructions.
// M is a single argument macro. It is applied to each concrete instruction
// type name. The concrete instruction classes are the name with Instr
// concatenated.
#define FOR_EACH_INSTRUCTION(M) \
M(GraphEntry) \
M(JoinEntry) \
M(TargetEntry) \
M(CatchBlockEntry) \
M(Phi) \
M(Parameter) \
M(ParallelMove) \
M(PushArgument) \
M(Return) \
M(Throw) \
M(ReThrow) \
M(Goto) \
M(Branch) \
M(AssertAssignable) \
M(AssertBoolean) \
M(ArgumentDefinitionTest) \
M(CurrentContext) \
M(StoreContext) \
M(ClosureCall) \
M(InstanceCall) \
M(PolymorphicInstanceCall) \
M(StaticCall) \
M(LoadLocal) \
M(StoreLocal) \
M(StrictCompare) \
M(EqualityCompare) \
M(RelationalOp) \
M(NativeCall) \
M(LoadIndexed) \
M(StoreIndexed) \
M(StoreInstanceField) \
M(LoadStaticField) \
M(StoreStaticField) \
M(BooleanNegate) \
M(InstanceOf) \
M(CreateArray) \
M(CreateClosure) \
M(AllocateObject) \
M(AllocateObjectWithBoundsCheck) \
M(LoadField) \
M(StoreVMField) \
M(LoadUntagged) \
M(InstantiateTypeArguments) \
M(ExtractConstructorTypeArguments) \
M(ExtractConstructorInstantiator) \
M(AllocateContext) \
M(ChainContext) \
M(CloneContext) \
M(CatchEntry) \
M(BinarySmiOp) \
M(UnarySmiOp) \
M(CheckStackOverflow) \
M(SmiToDouble) \
M(DoubleToInteger) \
M(DoubleToSmi) \
M(DoubleToDouble) \
M(CheckClass) \
M(CheckSmi) \
M(Constant) \
M(CheckEitherNonSmi) \
M(BinaryDoubleOp) \
M(MathSqrt) \
M(UnboxDouble) \
M(BoxDouble) \
M(BoxFloat32x4) \
M(UnboxFloat32x4) \
M(UnboxInteger) \
M(BoxInteger) \
M(BinaryMintOp) \
M(ShiftMintOp) \
M(UnaryMintOp) \
M(CheckArrayBound) \
M(Constraint) \
M(StringFromCharCode) \
M(InvokeMathCFunction) \
M(GuardField) \
M(IfThenElse) \
M(BinaryFloat32x4Op) \
M(Float32x4Shuffle) \
M(Float32x4Constructor) \
M(Float32x4Zero) \
M(Float32x4Splat) \
#define FORWARD_DECLARATION(type) class type##Instr;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
#undef FORWARD_DECLARATION
// Functions required in all concrete instruction classes.
#define DECLARE_INSTRUCTION(type) \
virtual Tag tag() const { return k##type; } \
virtual void Accept(FlowGraphVisitor* visitor); \
virtual type##Instr* As##type() { return this; } \
virtual const char* DebugName() const { return #type; } \
virtual LocationSummary* MakeLocationSummary() const; \
virtual void EmitNativeCode(FlowGraphCompiler* compiler); \
class Instruction : public ZoneAllocated {
public:
#define DECLARE_TAG(type) k##type,
enum Tag {
FOR_EACH_INSTRUCTION(DECLARE_TAG)
};
#undef DECLARE_TAG
Instruction()
: deopt_id_(Isolate::Current()->GetNextDeoptId()),
lifetime_position_(-1),
previous_(NULL),
next_(NULL),
env_(NULL),
expr_id_(-1) { }
virtual Tag tag() const = 0;
intptr_t deopt_id() const {
ASSERT(CanDeoptimize() || CanBeDeoptimizationTarget());
return deopt_id_;
}
bool IsBlockEntry() { return (AsBlockEntry() != NULL); }
virtual BlockEntryInstr* AsBlockEntry() { return NULL; }
bool IsDefinition() { return (AsDefinition() != NULL); }
virtual Definition* AsDefinition() { return NULL; }
bool IsControl() { return (AsControl() != NULL); }
virtual ControlInstruction* AsControl() { return NULL; }
virtual intptr_t InputCount() const = 0;
virtual Value* InputAt(intptr_t i) const = 0;
void SetInputAt(intptr_t i, Value* value) {
ASSERT(value != NULL);
value->set_instruction(this);
value->set_use_index(i);
RawSetInputAt(i, value);
}
// Remove all inputs (including in the environment) from their
// definition's use lists.
void UnuseAllInputs();
// Call instructions override this function and return the number of
// pushed arguments.
virtual intptr_t ArgumentCount() const = 0;
virtual PushArgumentInstr* PushArgumentAt(intptr_t index) const {
UNREACHABLE();
return NULL;
}
inline Definition* ArgumentAt(intptr_t index) const;
// Returns true, if this instruction can deoptimize.
virtual bool CanDeoptimize() const = 0;
// Returns true if the instruction may have side effects.
virtual bool HasSideEffect() const = 0;
// Visiting support.
virtual void Accept(FlowGraphVisitor* visitor) = 0;
Instruction* previous() const { return previous_; }
void set_previous(Instruction* instr) {
ASSERT(!IsBlockEntry());
previous_ = instr;
}
Instruction* next() const { return next_; }
void set_next(Instruction* instr) {
ASSERT(!IsGraphEntry());
ASSERT(!IsReturn());
ASSERT(!IsControl() || (instr == NULL));
ASSERT(!IsPhi());
ASSERT(instr == NULL || !instr->IsBlockEntry());
// TODO(fschneider): Also add Throw and ReThrow to the list of instructions
// that do not have a successor. Currently, the graph builder will continue
// to append instruction in case of a Throw inside an expression. This
// condition should be handled in the graph builder
next_ = instr;
}
// Link together two instruction.
void LinkTo(Instruction* next) {
ASSERT(this != next);
this->set_next(next);
next->set_previous(this);
}
// Removed this instruction from the graph, after use lists have been
// computed. If the instruction is a definition with uses, those uses are
// unaffected (so the instruction can be reinserted, e.g., hoisting).
Instruction* RemoveFromGraph(bool return_previous = true);
// Normal instructions can have 0 (inside a block) or 1 (last instruction in
// a block) successors. Branch instruction with >1 successors override this
// function.
virtual intptr_t SuccessorCount() const;
virtual BlockEntryInstr* SuccessorAt(intptr_t index) const;
void Goto(JoinEntryInstr* entry);
virtual const char* DebugName() const = 0;
// Printing support.
virtual void PrintTo(BufferFormatter* f) const;
virtual void PrintOperandsTo(BufferFormatter* f) const;
#define INSTRUCTION_TYPE_CHECK(type) \
bool Is##type() { return (As##type() != NULL); } \
virtual type##Instr* As##type() { return NULL; }
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
#undef INSTRUCTION_TYPE_CHECK
// Returns structure describing location constraints required
// to emit native code for this instruction.
virtual LocationSummary* locs() {
// TODO(vegorov): This should be pure virtual method.
// However we are temporary using NULL for instructions that
// were not converted to the location based code generation yet.
return NULL;
}
virtual LocationSummary* MakeLocationSummary() const = 0;
static LocationSummary* MakeCallSummary();
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
Environment* env() const { return env_; }
void SetEnvironment(Environment* deopt_env);
void RemoveEnvironment();
intptr_t lifetime_position() const { return lifetime_position_; }
void set_lifetime_position(intptr_t pos) {
lifetime_position_ = pos;
}
// Returns representation expected for the input operand at the given index.
virtual Representation RequiredInputRepresentation(intptr_t idx) const {
return kTagged;
}
// Representation of the value produced by this computation.
virtual Representation representation() const {
return kTagged;
}
bool WasEliminated() const {
return next() == NULL;
}
// Returns deoptimization id that corresponds to the deoptimization target
// that input operands conversions inserted for this instruction can jump
// to.
virtual intptr_t DeoptimizationTarget() const {
UNREACHABLE();
return Isolate::kNoDeoptId;
}
// Returns a replacement for the instruction or NULL if the instruction can
// be eliminated. By default returns the this instruction which means no
// change.
virtual Instruction* Canonicalize(FlowGraphOptimizer* optimizer);
// Insert this instruction before 'next' after use lists are computed.
// Instructions cannot be inserted before a block entry or any other
// instruction without a previous instruction.
void InsertBefore(Instruction* next) { InsertAfter(next->previous()); }
// Insert this instruction after 'prev' after use lists are computed.
void InsertAfter(Instruction* prev);
// Returns true if the instruction is affected by side effects.
// Only instructions that are not affected by side effects can participate
// in redundancy elimination or loop invariant code motion.
// TODO(fschneider): Make this abstract and implement for all instructions
// instead of returning the safe default (true).
virtual bool AffectedBySideEffect() const { return true; }
// Get the block entry for this instruction.
virtual BlockEntryInstr* GetBlock() const;
// Id for instructions used in CSE.
intptr_t expr_id() const { return expr_id_; }
void set_expr_id(intptr_t expr_id) { expr_id_ = expr_id; }
// Returns a hash code for use with hash maps.
virtual intptr_t Hashcode() const;
// Compares two instructions. Returns true, iff:
// 1. They have the same tag.
// 2. All input operands are Equals.
// 3. They satisfy AttributesEqual.
bool Equals(Instruction* other) const;
// Compare attributes of a instructions (except input operands and tag).
// All instructions that participate in CSE have to override this function.
// This function can assume that the argument has the same type as this.
virtual bool AttributesEqual(Instruction* other) const {
UNREACHABLE();
return false;
}
virtual void InheritDeoptTarget(Instruction* other);
bool NeedsEnvironment() const {
return CanDeoptimize() || CanBeDeoptimizationTarget();
}
virtual bool CanBeDeoptimizationTarget() const {
return false;
}
void InheritDeoptTargetAfter(Instruction* other);
protected:
// Fetch deopt id without checking if this computation can deoptimize.
intptr_t GetDeoptId() const {
return deopt_id_;
}
private:
friend class Definition; // Needed for InsertBefore, InsertAfter.
// Classes that set deopt_id_.
friend class UnboxIntegerInstr;
friend class UnboxDoubleInstr;
friend class UnboxFloat32x4Instr;
friend class BinaryDoubleOpInstr;
friend class BinaryFloat32x4OpInstr;
friend class Float32x4ZeroInstr;
friend class Float32x4SplatInstr;
friend class Float32x4ShuffleInstr;
friend class Float32x4ConstructorInstr;
friend class BinaryMintOpInstr;
friend class BinarySmiOpInstr;
friend class UnarySmiOpInstr;
friend class ShiftMintOpInstr;
friend class UnaryMintOpInstr;
friend class MathSqrtInstr;
friend class CheckClassInstr;
friend class GuardFieldInstr;
friend class CheckSmiInstr;
friend class CheckArrayBoundInstr;
friend class CheckEitherNonSmiInstr;
friend class LICM;
friend class DoubleToSmiInstr;
friend class DoubleToDoubleInstr;
friend class InvokeMathCFunctionInstr;
friend class FlowGraphOptimizer;
friend class LoadIndexedInstr;
friend class StoreIndexedInstr;
friend class StoreInstanceFieldInstr;
friend class ControlInstruction;
friend class ComparisonInstr;
friend class TargetEntryInstr;
friend class JoinEntryInstr;
friend class InstanceOfInstr;
virtual void RawSetInputAt(intptr_t i, Value* value) = 0;
intptr_t deopt_id_;
intptr_t lifetime_position_; // Position used by register allocator.
Instruction* previous_;
Instruction* next_;
Environment* env_;
intptr_t expr_id_;
DISALLOW_COPY_AND_ASSIGN(Instruction);
};
template<intptr_t N>
class TemplateInstruction: public Instruction {
public:
TemplateInstruction<N>() : locs_(NULL) { }
virtual intptr_t InputCount() const { return N; }
virtual Value* InputAt(intptr_t i) const { return inputs_[i]; }
virtual LocationSummary* locs() {
if (locs_ == NULL) {
locs_ = MakeLocationSummary();
}
return locs_;
}
protected:
EmbeddedArray<Value*, N> inputs_;
private:
virtual void RawSetInputAt(intptr_t i, Value* value) {
inputs_[i] = value;
}
LocationSummary* locs_;
};
class MoveOperands : public ZoneAllocated {
public:
MoveOperands(Location dest, Location src) : dest_(dest), src_(src) { }
Location src() const { return src_; }
Location dest() const { return dest_; }
Location* src_slot() { return &src_; }
Location* dest_slot() { return &dest_; }
void set_src(const Location& value) { src_ = value; }
void set_dest(const Location& value) { dest_ = value; }
// The parallel move resolver marks moves as "in-progress" by clearing the
// destination (but not the source).
Location MarkPending() {
ASSERT(!IsPending());
Location dest = dest_;
dest_ = Location::NoLocation();
return dest;
}
void ClearPending(Location dest) {
ASSERT(IsPending());
dest_ = dest;
}
bool IsPending() const {
ASSERT(!src_.IsInvalid() || dest_.IsInvalid());
return dest_.IsInvalid() && !src_.IsInvalid();
}
// True if this move a move from the given location.
bool Blocks(Location loc) const {
return !IsEliminated() && src_.Equals(loc);
}
// A move is redundant if it's been eliminated, if its source and
// destination are the same, or if its destination is unneeded.
bool IsRedundant() const {
return IsEliminated() || dest_.IsInvalid() || src_.Equals(dest_);
}
// We clear both operands to indicate move that's been eliminated.
void Eliminate() { src_ = dest_ = Location::NoLocation(); }
bool IsEliminated() const {
ASSERT(!src_.IsInvalid() || dest_.IsInvalid());
return src_.IsInvalid();
}
private:
Location dest_;
Location src_;
DISALLOW_COPY_AND_ASSIGN(MoveOperands);
};
class ParallelMoveInstr : public TemplateInstruction<0> {
public:
ParallelMoveInstr() : moves_(4) { }
DECLARE_INSTRUCTION(ParallelMove)
virtual intptr_t ArgumentCount() const { return 0; }
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
MoveOperands* AddMove(Location dest, Location src) {
MoveOperands* move = new MoveOperands(dest, src);
moves_.Add(move);
return move;
}
MoveOperands* MoveOperandsAt(intptr_t index) const { return moves_[index]; }
void SetSrcSlotAt(intptr_t index, const Location& loc);
void SetDestSlotAt(intptr_t index, const Location& loc);
intptr_t NumMoves() const { return moves_.length(); }
virtual void PrintTo(BufferFormatter* f) const;
private:
GrowableArray<MoveOperands*> moves_; // Elements cannot be null.
DISALLOW_COPY_AND_ASSIGN(ParallelMoveInstr);
};
// Basic block entries are administrative nodes. There is a distinguished
// graph entry with no predecessor. Joins are the only nodes with multiple
// predecessors. Targets are all other basic block entries. The types
// enforce edge-split form---joins are forbidden as the successors of
// branches.
class BlockEntryInstr : public Instruction {
public:
virtual BlockEntryInstr* AsBlockEntry() { return this; }
virtual intptr_t PredecessorCount() const = 0;
virtual BlockEntryInstr* PredecessorAt(intptr_t index) const = 0;
virtual void PrepareEntry(FlowGraphCompiler* compiler) = 0;
intptr_t preorder_number() const { return preorder_number_; }
void set_preorder_number(intptr_t number) { preorder_number_ = number; }
intptr_t postorder_number() const { return postorder_number_; }
void set_postorder_number(intptr_t number) { postorder_number_ = number; }
intptr_t block_id() const { return block_id_; }
void set_start_pos(intptr_t pos) { start_pos_ = pos; }
intptr_t start_pos() const { return start_pos_; }
void set_end_pos(intptr_t pos) { end_pos_ = pos; }
intptr_t end_pos() const { return end_pos_; }
BlockEntryInstr* dominator() const { return dominator_; }
void set_dominator(BlockEntryInstr* instr) { dominator_ = instr; }
const GrowableArray<BlockEntryInstr*>& dominated_blocks() {
return dominated_blocks_;
}
void AddDominatedBlock(BlockEntryInstr* block) {
dominated_blocks_.Add(block);
}
void ClearDominatedBlocks() { dominated_blocks_.Clear(); }
bool Dominates(BlockEntryInstr* other) const;
Instruction* last_instruction() const { return last_instruction_; }
void set_last_instruction(Instruction* instr) { last_instruction_ = instr; }
ParallelMoveInstr* parallel_move() const {
return parallel_move_;
}
bool HasParallelMove() const {
return parallel_move_ != NULL;
}
ParallelMoveInstr* GetParallelMove() {
if (parallel_move_ == NULL) {
parallel_move_ = new ParallelMoveInstr();
}
return parallel_move_;
}
// Discover basic-block structure by performing a recursive depth first
// traversal of the instruction graph reachable from this instruction. As
// a side effect, the block entry instructions in the graph are assigned
// numbers in both preorder and postorder. The array 'preorder' maps
// preorder block numbers to the block entry instruction with that number
// and analogously for the array 'postorder'. The depth first spanning
// tree is recorded in the array 'parent', which maps preorder block
// numbers to the preorder number of the block's spanning-tree parent.
// The array 'assigned_vars' maps preorder block numbers to the set of
// assigned frame-allocated local variables in the block. As a side
// effect of this function, the set of basic block predecessors (e.g.,
// block entry instructions of predecessor blocks) and also the last
// instruction in the block is recorded in each entry instruction.
void DiscoverBlocks(
BlockEntryInstr* predecessor,
GrowableArray<BlockEntryInstr*>* preorder,
GrowableArray<BlockEntryInstr*>* postorder,
GrowableArray<intptr_t>* parent,
intptr_t variable_count,
intptr_t fixed_parameter_count);
virtual intptr_t InputCount() const { return 0; }
virtual Value* InputAt(intptr_t i) const {
UNREACHABLE();
return NULL;
}
virtual intptr_t ArgumentCount() const { return 0; }
virtual bool CanBeDeoptimizationTarget() const {
// BlockEntry environment is copied to Goto and Branch instructions
// when we insert new blocks targeting this block.
return true;
}
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
intptr_t try_index() const { return try_index_; }
BitVector* loop_info() const { return loop_info_; }
void set_loop_info(BitVector* loop_info) {
loop_info_ = loop_info;
}
virtual BlockEntryInstr* GetBlock() const {
return const_cast<BlockEntryInstr*>(this);
}
// Helper to mutate the graph during inlining. This block should be
// replaced with new_block as a predecessor of all of this block's
// successors.
void ReplaceAsPredecessorWith(BlockEntryInstr* new_block);
void set_block_id(intptr_t block_id) { block_id_ = block_id; }
protected:
BlockEntryInstr(intptr_t block_id, intptr_t try_index)
: block_id_(block_id),
try_index_(try_index),
preorder_number_(-1),
postorder_number_(-1),
dominator_(NULL),
dominated_blocks_(1),
last_instruction_(NULL),
parallel_move_(NULL),
loop_info_(NULL) { }
private:
virtual void RawSetInputAt(intptr_t i, Value* value) { UNREACHABLE(); }
virtual void ClearPredecessors() = 0;
virtual void AddPredecessor(BlockEntryInstr* predecessor) = 0;
intptr_t block_id_;
const intptr_t try_index_;
intptr_t preorder_number_;
intptr_t postorder_number_;
// Starting and ending lifetime positions for this block. Used by
// the linear scan register allocator.
intptr_t start_pos_;
intptr_t end_pos_;
BlockEntryInstr* dominator_; // Immediate dominator, NULL for graph entry.
// TODO(fschneider): Optimize the case of one child to save space.
GrowableArray<BlockEntryInstr*> dominated_blocks_;
Instruction* last_instruction_;
// Parallel move that will be used by linear scan register allocator to
// connect live ranges at the start of the block.
ParallelMoveInstr* parallel_move_;
// Bit vector containg loop blocks for a loop header indexed by block
// preorder number.
BitVector* loop_info_;
DISALLOW_COPY_AND_ASSIGN(BlockEntryInstr);
};
class ForwardInstructionIterator : public ValueObject {
public:
explicit ForwardInstructionIterator(BlockEntryInstr* block_entry)
: current_(block_entry) {
Advance();
}
void Advance() {
ASSERT(!Done());
current_ = current_->next();
}
bool Done() const { return current_ == NULL; }
// Removes 'current_' from graph and sets 'current_' to previous instruction.
void RemoveCurrentFromGraph();
Instruction* Current() const { return current_; }
private:
Instruction* current_;
};
class BackwardInstructionIterator : public ValueObject {
public:
explicit BackwardInstructionIterator(BlockEntryInstr* block_entry)
: block_entry_(block_entry), current_(block_entry->last_instruction()) {
ASSERT(block_entry_->previous() == NULL);
}
void Advance() {
ASSERT(!Done());
current_ = current_->previous();
}
bool Done() const { return current_ == block_entry_; }
Instruction* Current() const { return current_; }
private:
BlockEntryInstr* block_entry_;
Instruction* current_;
};
class GraphEntryInstr : public BlockEntryInstr {
public:
GraphEntryInstr(const ParsedFunction& parsed_function,
TargetEntryInstr* normal_entry);
DECLARE_INSTRUCTION(GraphEntry)
virtual intptr_t PredecessorCount() const { return 0; }
virtual BlockEntryInstr* PredecessorAt(intptr_t index) const {
UNREACHABLE();
return NULL;
}
virtual intptr_t SuccessorCount() const;
virtual BlockEntryInstr* SuccessorAt(intptr_t index) const;
void AddCatchEntry(CatchBlockEntryInstr* entry) { catch_entries_.Add(entry); }
virtual void PrepareEntry(FlowGraphCompiler* compiler);
GrowableArray<Definition*>* initial_definitions() {
return &initial_definitions_;
}
ConstantInstr* constant_null();
intptr_t spill_slot_count() const { return spill_slot_count_; }
void set_spill_slot_count(intptr_t count) {
ASSERT(count >= 0);
spill_slot_count_ = count;
}
TargetEntryInstr* normal_entry() const { return normal_entry_; }
const ParsedFunction& parsed_function() const {
return parsed_function_;
}
virtual void PrintTo(BufferFormatter* f) const;
private:
virtual void ClearPredecessors() {}
virtual void AddPredecessor(BlockEntryInstr* predecessor) { UNREACHABLE(); }
const ParsedFunction& parsed_function_;
TargetEntryInstr* normal_entry_;
GrowableArray<CatchBlockEntryInstr*> catch_entries_;
GrowableArray<Definition*> initial_definitions_;
intptr_t spill_slot_count_;
DISALLOW_COPY_AND_ASSIGN(GraphEntryInstr);
};
class JoinEntryInstr : public BlockEntryInstr {
public:
JoinEntryInstr(intptr_t block_id, intptr_t try_index)
: BlockEntryInstr(block_id, try_index),
predecessors_(2), // Two is the assumed to be the common case.
phis_(NULL) { }
DECLARE_INSTRUCTION(JoinEntry)
virtual intptr_t PredecessorCount() const { return predecessors_.length(); }
virtual BlockEntryInstr* PredecessorAt(intptr_t index) const {
return predecessors_[index];
}
// Returns -1 if pred is not in the list.
intptr_t IndexOfPredecessor(BlockEntryInstr* pred) const;
ZoneGrowableArray<PhiInstr*>* phis() const { return phis_; }
virtual void PrepareEntry(FlowGraphCompiler* compiler);
void InsertPhi(intptr_t var_index, intptr_t var_count);
void RemoveDeadPhis(Definition* replacement);
void InsertPhi(PhiInstr* phi);
virtual void PrintTo(BufferFormatter* f) const;
private:
// Classes that have access to predecessors_ when inlining.
friend class BlockEntryInstr;
friend class InlineExitCollector;
// Direct access to phis_ in order to resize it due to phi elimination.
friend class ConstantPropagator;
virtual void ClearPredecessors() { predecessors_.Clear(); }
virtual void AddPredecessor(BlockEntryInstr* predecessor);
GrowableArray<BlockEntryInstr*> predecessors_;
ZoneGrowableArray<PhiInstr*>* phis_;
DISALLOW_COPY_AND_ASSIGN(JoinEntryInstr);
};
class PhiIterator : public ValueObject {
public:
explicit PhiIterator(JoinEntryInstr* join)
: phis_(join->phis()), index_(0) { }
void Advance() {
ASSERT(!Done());
index_++;
}
bool Done() const {
return (phis_ == NULL) || (index_ >= phis_->length());
}
PhiInstr* Current() const {
return (*phis_)[index_];
}
private:
ZoneGrowableArray<PhiInstr*>* phis_;
intptr_t index_;
};
class TargetEntryInstr : public BlockEntryInstr {
public:
TargetEntryInstr(intptr_t block_id, intptr_t try_index)
: BlockEntryInstr(block_id, try_index), predecessor_(NULL) { }
DECLARE_INSTRUCTION(TargetEntry)
virtual intptr_t PredecessorCount() const {
return (predecessor_ == NULL) ? 0 : 1;
}
virtual BlockEntryInstr* PredecessorAt(intptr_t index) const {
ASSERT((index == 0) && (predecessor_ != NULL));
return predecessor_;
}
virtual void PrepareEntry(FlowGraphCompiler* compiler);
virtual void PrintTo(BufferFormatter* f) const;
private:
friend class BlockEntryInstr; // Access to predecessor_ when inlining.
virtual void ClearPredecessors() { predecessor_ = NULL; }
virtual void AddPredecessor(BlockEntryInstr* predecessor) {
ASSERT(predecessor_ == NULL);
predecessor_ = predecessor;
}
BlockEntryInstr* predecessor_;
DISALLOW_COPY_AND_ASSIGN(TargetEntryInstr);
};
class CatchBlockEntryInstr : public BlockEntryInstr {
public:
CatchBlockEntryInstr(intptr_t block_id,
intptr_t try_index,
const Array& handler_types,
intptr_t catch_try_index)
: BlockEntryInstr(block_id, try_index),
predecessor_(NULL),
catch_handler_types_(Array::ZoneHandle(handler_types.raw())),
catch_try_index_(catch_try_index) { }
DECLARE_INSTRUCTION(CatchBlockEntry)
virtual intptr_t PredecessorCount() const {
return (predecessor_ == NULL) ? 0 : 1;
}
virtual BlockEntryInstr* PredecessorAt(intptr_t index) const {
ASSERT((index == 0) && (predecessor_ != NULL));
return predecessor_;
}
// Returns try index for the try block to which this catch handler
// corresponds.
intptr_t catch_try_index() const {
return catch_try_index_;
}
virtual void PrepareEntry(FlowGraphCompiler* compiler);
virtual void PrintTo(BufferFormatter* f) const;
private:
friend class BlockEntryInstr; // Access to predecessor_ when inlining.
virtual void ClearPredecessors() { predecessor_ = NULL; }
virtual void AddPredecessor(BlockEntryInstr* predecessor) {
ASSERT(predecessor_ == NULL);
predecessor_ = predecessor;
}
BlockEntryInstr* predecessor_;
const Array& catch_handler_types_;
const intptr_t catch_try_index_;
DISALLOW_COPY_AND_ASSIGN(CatchBlockEntryInstr);
};
// Abstract super-class of all instructions that define a value (Bind, Phi).
class Definition : public Instruction {
public:
enum UseKind { kEffect, kValue };
Definition();
virtual Definition* AsDefinition() { return this; }
bool IsComparison() { return (AsComparison() != NULL); }
virtual ComparisonInstr* AsComparison() { return NULL; }
// Overridden by definitions that push arguments.
virtual intptr_t ArgumentCount() const { return 0; }
intptr_t temp_index() const { return temp_index_; }
void set_temp_index(intptr_t index) { temp_index_ = index; }
void ClearTempIndex() { temp_index_ = -1; }
intptr_t ssa_temp_index() const { return ssa_temp_index_; }
void set_ssa_temp_index(intptr_t index) {
ASSERT(index >= 0);
ASSERT(is_used());
ssa_temp_index_ = index;
}
bool HasSSATemp() const { return ssa_temp_index_ >= 0; }
void ClearSSATempIndex() { ssa_temp_index_ = -1; }
bool is_used() const { return (use_kind_ != kEffect); }
void set_use_kind(UseKind kind) { use_kind_ = kind; }
// Compile time type of the definition, which may be requested before type
// propagation during graph building.
CompileType* Type() {
if (type_ == NULL) {
type_ = ComputeInitialType();
}
return type_;
}
virtual CompileType* ComputeInitialType() const {
return ZoneCompileType::Wrap(ComputeType());
}
// Compute compile type for this definition. It is safe to use this
// approximation even before type propagator was run (e.g. during graph
// building).
virtual CompileType ComputeType() const {
return CompileType::Dynamic();
}
// Update CompileType of the definition. Returns true if the type has changed.
virtual bool RecomputeType() {
return false;
}
bool UpdateType(CompileType new_type) {
if (type_ == NULL) {
type_ = ZoneCompileType::Wrap(new_type);
return true;
}
if (type_->IsNone() || !type_->IsEqualTo(&new_type)) {
*type_ = new_type;
return true;
}
return false;
}
bool HasUses() const {
return (input_use_list_ != NULL) || (env_use_list_ != NULL);
}
bool HasOnlyUse(Value* use) const;
Value* input_use_list() const { return input_use_list_; }
void set_input_use_list(Value* head) { input_use_list_ = head; }
Value* env_use_list() const { return env_use_list_; }
void set_env_use_list(Value* head) { env_use_list_ = head; }
void AddInputUse(Value* value) { Value::AddToList(value, &input_use_list_); }
void AddEnvUse(Value* value) { Value::AddToList(value, &env_use_list_); }
// Replace uses of this definition with uses of other definition or value.
// Precondition: use lists must be properly calculated.
// Postcondition: use lists and use values are still valid.
void ReplaceUsesWith(Definition* other);
// Replace this definition and all uses with another definition. If
// replacing during iteration, pass the iterator so that the instruction
// can be replaced without affecting iteration order, otherwise pass a
// NULL iterator.
void ReplaceWith(Definition* other, ForwardInstructionIterator* iterator);
// Printing support. These functions are sometimes overridden for custom
// formatting. Otherwise, it prints in the format "opcode(op1, op2, op3)".
virtual void PrintTo(BufferFormatter* f) const;
virtual void PrintOperandsTo(BufferFormatter* f) const;
// A value in the constant propagation lattice.
// - non-constant sentinel
// - a constant (any non-sentinel value)
// - unknown sentinel
Object& constant_value() const { return constant_value_; }
virtual void InferRange();
Range* range() const { return range_; }
// Definitions can be canonicalized only into definitions to ensure
// this check statically we override base Canonicalize with a Canonicalize
// returning Definition (return type is covariant).
virtual Definition* Canonicalize(FlowGraphOptimizer* optimizer);
static const intptr_t kReplacementMarker = -2;
Definition* Replacement() {
if (ssa_temp_index_ == kReplacementMarker) {
return reinterpret_cast<Definition*>(temp_index_);
}
return this;
}
void SetReplacement(Definition* other) {
ASSERT(ssa_temp_index_ >= 0);
ASSERT(WasEliminated());
ssa_temp_index_ = kReplacementMarker;
temp_index_ = reinterpret_cast<intptr_t>(other);
}
protected:
friend class RangeAnalysis;
Range* range_;
CompileType* type_;
private:
intptr_t temp_index_;
intptr_t ssa_temp_index_;
Value* input_use_list_;
Value* env_use_list_;
UseKind use_kind_;
Object& constant_value_;
DISALLOW_COPY_AND_ASSIGN(Definition);
};
// Change a value's definition after use lists have been computed.
inline void Value::BindTo(Definition* def) {
RemoveFromUseList();
set_definition(def);
def->AddInputUse(this);
}
class PhiInstr : public Definition {
public:
PhiInstr(JoinEntryInstr* block, intptr_t num_inputs)
: block_(block),
inputs_(num_inputs),
is_alive_(false),
representation_(kTagged),
reaching_defs_(NULL) {
for (intptr_t i = 0; i < num_inputs; ++i) {
inputs_.Add(NULL);
}
}
// Get the block entry for that instruction.
virtual BlockEntryInstr* GetBlock() const { return block(); }
JoinEntryInstr* block() const { return block_; }
virtual CompileType ComputeType() const;
virtual bool RecomputeType();
virtual intptr_t ArgumentCount() const { return 0; }
intptr_t InputCount() const { return inputs_.length(); }
Value* InputAt(intptr_t i) const { return inputs_[i]; }
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
// Phi is alive if it reaches a non-environment use.
bool is_alive() const { return is_alive_; }
void mark_alive() { is_alive_ = true; }
virtual Representation RequiredInputRepresentation(intptr_t i) const {
return representation_;
}
virtual Representation representation() const {
return representation_;
}
virtual void set_representation(Representation r) {
representation_ = r;
}
virtual intptr_t Hashcode() const {
UNREACHABLE();
return 0;
}
DECLARE_INSTRUCTION(Phi)
virtual void PrintTo(BufferFormatter* f) const;
virtual void InferRange();
BitVector* reaching_defs() const {
return reaching_defs_;
}
void set_reaching_defs(BitVector* reaching_defs) {
reaching_defs_ = reaching_defs;
}
private:
// Direct access to inputs_ in order to resize it due to unreachable
// predecessors.
friend class ConstantPropagator;
void RawSetInputAt(intptr_t i, Value* value) { inputs_[i] = value; }
JoinEntryInstr* block_;
GrowableArray<Value*> inputs_;
bool is_alive_;
Representation representation_;
BitVector* reaching_defs_;
DISALLOW_COPY_AND_ASSIGN(PhiInstr);
};
class ParameterInstr : public Definition {
public:
ParameterInstr(intptr_t index, GraphEntryInstr* block)
: index_(index), block_(block) { }
DECLARE_INSTRUCTION(Parameter)
intptr_t index() const { return index_; }
// Get the block entry for that instruction.
virtual BlockEntryInstr* GetBlock() const { return block_; }
virtual intptr_t ArgumentCount() const { return 0; }
intptr_t InputCount() const { return 0; }
Value* InputAt(intptr_t i) const {
UNREACHABLE();
return NULL;
}
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
virtual intptr_t Hashcode() const {
UNREACHABLE();
return 0;
}
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual CompileType ComputeType() const;
private:
virtual void RawSetInputAt(intptr_t i, Value* value) { UNREACHABLE(); }
const intptr_t index_;
GraphEntryInstr* block_;
DISALLOW_COPY_AND_ASSIGN(ParameterInstr);
};
class PushArgumentInstr : public Definition {
public:
explicit PushArgumentInstr(Value* value) : locs_(NULL) {
SetInputAt(0, value);
set_use_kind(kEffect); // Override the default.
}
DECLARE_INSTRUCTION(PushArgument)
intptr_t InputCount() const { return 1; }
Value* InputAt(intptr_t i) const {
ASSERT(i == 0);
return value_;
}
virtual intptr_t ArgumentCount() const { return 0; }
virtual CompileType ComputeType() const;
Value* value() const { return value_; }
virtual LocationSummary* locs() {
if (locs_ == NULL) {
locs_ = MakeLocationSummary();
}
return locs_;
}
virtual intptr_t Hashcode() const {
UNREACHABLE();
return 0;
}
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
virtual void PrintOperandsTo(BufferFormatter* f) const;
private:
virtual void RawSetInputAt(intptr_t i, Value* value) {
ASSERT(i == 0);
value_ = value;
}
Value* value_;
LocationSummary* locs_;
DISALLOW_COPY_AND_ASSIGN(PushArgumentInstr);
};
inline Definition* Instruction::ArgumentAt(intptr_t index) const {
return PushArgumentAt(index)->value()->definition();
}
class ReturnInstr : public TemplateInstruction<1> {
public:
ReturnInstr(intptr_t token_pos, Value* value)
: token_pos_(token_pos) {
SetInputAt(0, value);
}
DECLARE_INSTRUCTION(Return)
virtual intptr_t ArgumentCount() const { return 0; }
intptr_t token_pos() const { return token_pos_; }
Value* value() const { return inputs_[0]; }
virtual bool CanBeDeoptimizationTarget() const {
// Return instruction might turn into a Goto instruction after inlining.
// Every Goto must have an environment.
return true;
}
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
private:
const intptr_t token_pos_;
DISALLOW_COPY_AND_ASSIGN(ReturnInstr);
};
class ThrowInstr : public TemplateInstruction<0> {
public:
explicit ThrowInstr(intptr_t token_pos) : token_pos_(token_pos) { }
DECLARE_INSTRUCTION(Throw)
virtual intptr_t ArgumentCount() const { return 1; }
intptr_t token_pos() const { return token_pos_; }
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return true; }
private:
const intptr_t token_pos_;
DISALLOW_COPY_AND_ASSIGN(ThrowInstr);
};
class ReThrowInstr : public TemplateInstruction<0> {
public:
explicit ReThrowInstr(intptr_t token_pos) : token_pos_(token_pos) { }
DECLARE_INSTRUCTION(ReThrow)
virtual intptr_t ArgumentCount() const { return 2; }
intptr_t token_pos() const { return token_pos_; }
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return true; }
private:
const intptr_t token_pos_;
DISALLOW_COPY_AND_ASSIGN(ReThrowInstr);
};
class GotoInstr : public TemplateInstruction<0> {
public:
explicit GotoInstr(JoinEntryInstr* entry)
: successor_(entry),
parallel_move_(NULL) { }
DECLARE_INSTRUCTION(Goto)
virtual intptr_t ArgumentCount() const { return 0; }
JoinEntryInstr* successor() const { return successor_; }
void set_successor(JoinEntryInstr* successor) { successor_ = successor; }
virtual intptr_t SuccessorCount() const;
virtual BlockEntryInstr* SuccessorAt(intptr_t index) const;
virtual bool CanBeDeoptimizationTarget() const {
// Goto instruction can be used as a deoptimization target when LICM
// hoists instructions out of the loop.
return true;
}
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
ParallelMoveInstr* parallel_move() const {
return parallel_move_;
}
bool HasParallelMove() const {
return parallel_move_ != NULL;
}
ParallelMoveInstr* GetParallelMove() {
if (parallel_move_ == NULL) {
parallel_move_ = new ParallelMoveInstr();
}
return parallel_move_;
}
virtual void PrintTo(BufferFormatter* f) const;
private:
JoinEntryInstr* successor_;
// Parallel move that will be used by linear scan register allocator to
// connect live ranges at the end of the block and resolve phis.
ParallelMoveInstr* parallel_move_;
};
class ControlInstruction : public Instruction {
public:
ControlInstruction() : true_successor_(NULL), false_successor_(NULL) { }
virtual ControlInstruction* AsControl() { return this; }
TargetEntryInstr* true_successor() const { return true_successor_; }
TargetEntryInstr* false_successor() const { return false_successor_; }
TargetEntryInstr** true_successor_address() { return &true_successor_; }
TargetEntryInstr** false_successor_address() { return &false_successor_; }
virtual intptr_t SuccessorCount() const;
virtual BlockEntryInstr* SuccessorAt(intptr_t index) const;
void EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition);
void EmitBranchOnValue(FlowGraphCompiler* compiler, bool result);
private:
TargetEntryInstr* true_successor_;
TargetEntryInstr* false_successor_;
DISALLOW_COPY_AND_ASSIGN(ControlInstruction);
};
class BranchInstr : public ControlInstruction {
public:
explicit BranchInstr(ComparisonInstr* comparison, bool is_checked = false);
DECLARE_INSTRUCTION(Branch)
virtual intptr_t ArgumentCount() const;
intptr_t InputCount() const;
Value* InputAt(intptr_t i) const;
virtual bool CanDeoptimize() const;
virtual bool CanBeDeoptimizationTarget() const;
virtual bool HasSideEffect() const;
ComparisonInstr* comparison() const { return comparison_; }
void SetComparison(ComparisonInstr* comp);
bool is_checked() const { return is_checked_; }
virtual LocationSummary* locs();
virtual intptr_t DeoptimizationTarget() const;
virtual Representation RequiredInputRepresentation(intptr_t i) const;
// A misleadingly named function for use in template functions that also
// replace definitions. In this case, leave the branch intact and replace
// its comparison with another comparison that has been removed from the
// graph but still has uses properly linked into their definition's use
// list.
void ReplaceWith(ComparisonInstr* other,
ForwardInstructionIterator* ignored);
virtual Instruction* Canonicalize(FlowGraphOptimizer* optimizer);
virtual void PrintTo(BufferFormatter* f) const;
// Set compile type constrained by the comparison of this branch.
// FlowGraphPropagator propagates it downwards into either true or false
// successor.
void set_constrained_type(ConstrainedCompileType* type) {
constrained_type_ = type;
}
// Return compile type constrained by the comparison of this branch.
ConstrainedCompileType* constrained_type() const {
return constrained_type_;
}
void set_constant_target(TargetEntryInstr* target) {
ASSERT(target == true_successor() || target == false_successor());
constant_target_ = target;
}
TargetEntryInstr* constant_target() const {
return constant_target_;
}
virtual void InheritDeoptTarget(Instruction* other);
private:
virtual void RawSetInputAt(intptr_t i, Value* value);
ComparisonInstr* comparison_;
const bool is_checked_;
ConstrainedCompileType* constrained_type_;
TargetEntryInstr* constant_target_;
DISALLOW_COPY_AND_ASSIGN(BranchInstr);
};
class StoreContextInstr : public TemplateInstruction<1> {
public:
explicit StoreContextInstr(Value* value) {
SetInputAt(0, value);
}
DECLARE_INSTRUCTION(StoreContext);
virtual intptr_t ArgumentCount() const { return 0; }
Value* value() const { return inputs_[0]; }
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
private:
DISALLOW_COPY_AND_ASSIGN(StoreContextInstr);
};
template<intptr_t N>
class TemplateDefinition : public Definition {
public:
TemplateDefinition<N>() : locs_(NULL) { }
virtual intptr_t InputCount() const { return N; }
virtual Value* InputAt(intptr_t i) const { return inputs_[i]; }
// Returns a structure describing the location constraints required
// to emit native code for this definition.
LocationSummary* locs() {
if (locs_ == NULL) {
locs_ = MakeLocationSummary();
}
return locs_;
}
protected:
EmbeddedArray<Value*, N> inputs_;
private:
friend class BranchInstr;
virtual void RawSetInputAt(intptr_t i, Value* value) {
inputs_[i] = value;
}
LocationSummary* locs_;
};
class RangeBoundary : public ValueObject {
public:
enum Kind { kUnknown, kSymbol, kConstant };
RangeBoundary() : kind_(kUnknown), value_(0), offset_(0) { }
RangeBoundary(const RangeBoundary& other)
: ValueObject(),
kind_(other.kind_),
value_(other.value_),
offset_(other.offset_) { }
RangeBoundary& operator=(const RangeBoundary& other) {
kind_ = other.kind_;
value_ = other.value_;
offset_ = other.offset_;
return *this;
}
static RangeBoundary FromConstant(intptr_t val) {
return RangeBoundary(kConstant, val, 0);
}
static RangeBoundary FromDefinition(Definition* defn, intptr_t offs = 0);
static RangeBoundary MinSmi() {
return FromConstant(Smi::kMinValue);
}
static RangeBoundary MaxSmi() {
return FromConstant(Smi::kMaxValue);
}
static const intptr_t kMinusInfinity = Smi::kMinValue - 1;
static const intptr_t kPlusInfinity = Smi::kMaxValue + 1;
static RangeBoundary OverflowedMinSmi() {
return FromConstant(Smi::kMinValue - 1);
}
static RangeBoundary OverflowedMaxSmi() {
return FromConstant(Smi::kMaxValue + 1);
}
static RangeBoundary Min(RangeBoundary a, RangeBoundary b);
static RangeBoundary Max(RangeBoundary a, RangeBoundary b);
bool Overflowed() const {
return IsConstant() && !Smi::IsValid(value());
}
RangeBoundary Clamp() const {
if (IsConstant()) {
if (value() < Smi::kMinValue) return MinSmi();
if (value() > Smi::kMaxValue) return MaxSmi();
}
return *this;
}
bool Equals(const RangeBoundary& other) const {
return (kind_ == other.kind_) && (value_ == other.value_);
}
bool IsUnknown() const { return kind_ == kUnknown; }
bool IsConstant() const { return kind_ == kConstant; }
bool IsSymbol() const { return kind_ == kSymbol; }
intptr_t value() const {
ASSERT(IsConstant());
return value_;
}
Definition* symbol() const {
ASSERT(IsSymbol());
return reinterpret_cast<Definition*>(value_);
}
intptr_t offset() const {
return offset_;
}
RangeBoundary LowerBound() const;
RangeBoundary UpperBound() const;
void PrintTo(BufferFormatter* f) const;
const char* ToCString() const;
static RangeBoundary Add(const RangeBoundary& a,
const RangeBoundary& b,
const RangeBoundary& overflow) {
ASSERT(a.IsConstant() && b.IsConstant());
intptr_t result = a.value() + b.value();
if (!Smi::IsValid(result)) {
return overflow;
}
return RangeBoundary::FromConstant(result);
}
static RangeBoundary Sub(const RangeBoundary& a,
const RangeBoundary& b,
const RangeBoundary& overflow) {
ASSERT(a.IsConstant() && b.IsConstant());
intptr_t result = a.value() - b.value();
if (!Smi::IsValid(result)) {
return overflow;
}
return RangeBoundary::FromConstant(result);
}
private:
RangeBoundary(Kind kind, intptr_t value, intptr_t offset)
: kind_(kind), value_(value), offset_(offset) { }
Kind kind_;
intptr_t value_;
intptr_t offset_;
};
class Range : public ZoneAllocated {
public:
Range(RangeBoundary min, RangeBoundary max) : min_(min), max_(max) { }
static Range* Unknown() {
return new Range(RangeBoundary::MinSmi(), RangeBoundary::MaxSmi());
}
void PrintTo(BufferFormatter* f) const;
static const char* ToCString(Range* range);
const RangeBoundary& min() const { return min_; }
const RangeBoundary& max() const { return max_; }
bool Equals(Range* other) {
return min_.Equals(other->min_) && max_.Equals(other->max_);
}
static RangeBoundary ConstantMin(const Range* range) {
if (range == NULL) return RangeBoundary::MinSmi();
return range->min().LowerBound().Clamp();
}
static RangeBoundary ConstantMax(const Range* range) {
if (range == NULL) return RangeBoundary::MaxSmi();
return range->max().UpperBound().Clamp();
}
// Inclusive.
bool IsWithin(intptr_t min_int, intptr_t max_int) const;
bool IsUnsatisfiable() const;
private:
RangeBoundary min_;
RangeBoundary max_;
};
class ConstraintInstr : public TemplateDefinition<2> {
public:
ConstraintInstr(Value* value, Range* constraint)
: constraint_(constraint),
target_(NULL) {
SetInputAt(0, value);
}
DECLARE_INSTRUCTION(Constraint)
virtual intptr_t InputCount() const {
return (inputs_[1] == NULL) ? 1 : 2;
}
virtual CompileType ComputeType() const;
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
virtual bool AttributesEqual(Instruction* other) const {
UNREACHABLE();
return false;
}
virtual void PrintOperandsTo(BufferFormatter* f) const;
Value* value() const { return inputs_[0]; }
Range* constraint() const { return constraint_; }
virtual void InferRange();
void AddDependency(Definition* defn) {
Value* val = new Value(defn);
defn->AddInputUse(val);
SetInputAt(1, val);
}
// Constraints for branches have their target block stored in order
// to find the the comparsion that generated the constraint:
// target->predecessor->last_instruction->comparison.
void set_target(TargetEntryInstr* target) {
target_ = target;
}
TargetEntryInstr* target() const {
return target_;
}
private:
Value* dependency() {
return inputs_[1];
}
Range* constraint_;
TargetEntryInstr* target_;
DISALLOW_COPY_AND_ASSIGN(ConstraintInstr);
};
class ConstantInstr : public TemplateDefinition<0> {
public:
explicit ConstantInstr(const Object& value)
: value_(value) { }
DECLARE_INSTRUCTION(Constant)
virtual CompileType ComputeType() const;
virtual Definition* Canonicalize(FlowGraphOptimizer* optimizer);
const Object& value() const { return value_; }
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
virtual bool AttributesEqual(Instruction* other) const;
virtual bool AffectedBySideEffect() const { return false; }
virtual void InferRange();
private:
const Object& value_;
DISALLOW_COPY_AND_ASSIGN(ConstantInstr);
};
class AssertAssignableInstr : public TemplateDefinition<3> {
public:
AssertAssignableInstr(intptr_t token_pos,
Value* value,
Value* instantiator,
Value* instantiator_type_arguments,
const AbstractType& dst_type,
const String& dst_name)
: token_pos_(token_pos),
dst_type_(AbstractType::ZoneHandle(dst_type.raw())),
dst_name_(dst_name) {
ASSERT(!dst_type.IsNull());
ASSERT(!dst_name.IsNull());
SetInputAt(0, value);
SetInputAt(1, instantiator);
SetInputAt(2, instantiator_type_arguments);
}
DECLARE_INSTRUCTION(AssertAssignable)
virtual CompileType* ComputeInitialType() const;
virtual bool RecomputeType();
Value* value() const { return inputs_[0]; }
Value* instantiator() const { return inputs_[1]; }
Value* instantiator_type_arguments() const { return inputs_[2]; }
intptr_t token_pos() const { return token_pos_; }
const AbstractType& dst_type() const { return dst_type_; }
void set_dst_type(const AbstractType& dst_type) {
dst_type_ = dst_type.raw();
}
const String& dst_name() const { return dst_name_; }
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return false; }
virtual bool AffectedBySideEffect() const { return false; }
virtual bool AttributesEqual(Instruction* other) const;
virtual Definition* Canonicalize(FlowGraphOptimizer* optimizer);
private:
const intptr_t token_pos_;
AbstractType& dst_type_;
const String& dst_name_;
DISALLOW_COPY_AND_ASSIGN(AssertAssignableInstr);
};
class AssertBooleanInstr : public TemplateDefinition<1> {
public:
AssertBooleanInstr(intptr_t token_pos, Value* value)
: token_pos_(token_pos) {
SetInputAt(0, value);
}
DECLARE_INSTRUCTION(AssertBoolean)
virtual CompileType ComputeType() const;
intptr_t token_pos() const { return token_pos_; }
Value* value() const { return inputs_[0]; }
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return false; }
virtual bool AffectedBySideEffect() const { return false; }
virtual bool AttributesEqual(Instruction* other) const { return true; }
virtual Definition* Canonicalize(FlowGraphOptimizer* optimizer);
private:
const intptr_t token_pos_;
DISALLOW_COPY_AND_ASSIGN(AssertBooleanInstr);
};
class ArgumentDefinitionTestInstr : public TemplateDefinition<1> {
public:
ArgumentDefinitionTestInstr(ArgumentDefinitionTestNode* node,
Value* saved_arguments_descriptor)
: ast_node_(*node) {
SetInputAt(0, saved_arguments_descriptor);
}
DECLARE_INSTRUCTION(ArgumentDefinitionTest)
virtual CompileType ComputeType() const;
intptr_t token_pos() const { return ast_node_.token_pos(); }
intptr_t formal_parameter_index() const {
return ast_node_.formal_parameter_index();
}
const String& formal_parameter_name() const {
return ast_node_.formal_parameter_name();
}
Value* saved_arguments_descriptor() const { return inputs_[0]; }
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return true; }
private:
const ArgumentDefinitionTestNode& ast_node_;
DISALLOW_COPY_AND_ASSIGN(ArgumentDefinitionTestInstr);
};
// Denotes the current context, normally held in a register. This is
// a computation, not a value, because it's mutable.
class CurrentContextInstr : public TemplateDefinition<0> {
public:
CurrentContextInstr() { }
DECLARE_INSTRUCTION(CurrentContext)
virtual CompileType ComputeType() const;
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
virtual bool AttributesEqual(Instruction* other) const { return true; }
private:
DISALLOW_COPY_AND_ASSIGN(CurrentContextInstr);
};
class ClosureCallInstr : public TemplateDefinition<0> {
public:
ClosureCallInstr(ClosureCallNode* node,
ZoneGrowableArray<PushArgumentInstr*>* arguments)
: ast_node_(*node),
arguments_(arguments) { }
DECLARE_INSTRUCTION(ClosureCall)
const Array& argument_names() const { return ast_node_.arguments()->names(); }
intptr_t token_pos() const { return ast_node_.token_pos(); }
virtual intptr_t ArgumentCount() const { return arguments_->length(); }
virtual PushArgumentInstr* PushArgumentAt(intptr_t index) const {
return (*arguments_)[index];
}
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return true; }
private:
const ClosureCallNode& ast_node_;
ZoneGrowableArray<PushArgumentInstr*>* arguments_;
DISALLOW_COPY_AND_ASSIGN(ClosureCallInstr);
};
class InstanceCallInstr : public TemplateDefinition<0> {
public:
InstanceCallInstr(intptr_t token_pos,
const String& function_name,
Token::Kind token_kind,
ZoneGrowableArray<PushArgumentInstr*>* arguments,
const Array& argument_names,
intptr_t checked_argument_count)
: ic_data_(Isolate::Current()->GetICDataForDeoptId(deopt_id())),
token_pos_(token_pos),
function_name_(function_name),
token_kind_(token_kind),
arguments_(arguments),
argument_names_(argument_names),
checked_argument_count_(checked_argument_count) {
ASSERT(function_name.IsNotTemporaryScopedHandle());
ASSERT(!arguments->is_empty());
ASSERT(argument_names.IsZoneHandle());
ASSERT(Token::IsBinaryOperator(token_kind) ||
Token::IsPrefixOperator(token_kind) ||
Token::IsIndexOperator(token_kind) ||
Token::IsTypeTestOperator(token_kind) ||
Token::IsTypeCastOperator(token_kind) ||
token_kind == Token::kGET ||
token_kind == Token::kSET ||
token_kind == Token::kILLEGAL);
}
DECLARE_INSTRUCTION(InstanceCall)
const ICData* ic_data() const { return ic_data_; }
bool HasICData() const {
return (ic_data() != NULL) && !ic_data()->IsNull();
}
// ICData can be replaced by optimizer.
void set_ic_data(const ICData* value) { ic_data_ = value; }
intptr_t token_pos() const { return token_pos_; }
const String& function_name() const { return function_name_; }
Token::Kind token_kind() const { return token_kind_; }
virtual intptr_t ArgumentCount() const { return arguments_->length(); }
virtual PushArgumentInstr* PushArgumentAt(intptr_t index) const {
return (*arguments_)[index];
}
const Array& argument_names() const { return argument_names_; }
intptr_t checked_argument_count() const { return checked_argument_count_; }
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return true; }
protected:
friend class FlowGraphOptimizer;
void set_ic_data(ICData* value) { ic_data_ = value; }
private:
const ICData* ic_data_;
const intptr_t token_pos_;
const String& function_name_;
const Token::Kind token_kind_; // Binary op, unary op, kGET or kILLEGAL.
ZoneGrowableArray<PushArgumentInstr*>* const arguments_;
const Array& argument_names_;
const intptr_t checked_argument_count_;
DISALLOW_COPY_AND_ASSIGN(InstanceCallInstr);
};
class PolymorphicInstanceCallInstr : public TemplateDefinition<0> {
public:
PolymorphicInstanceCallInstr(InstanceCallInstr* instance_call,
const ICData& ic_data,
bool with_checks)
: instance_call_(instance_call),
ic_data_(ic_data),
with_checks_(with_checks) {
ASSERT(instance_call_ != NULL);
}
InstanceCallInstr* instance_call() const { return instance_call_; }
bool with_checks() const { return with_checks_; }
virtual intptr_t ArgumentCount() const {
return instance_call()->ArgumentCount();
}
virtual PushArgumentInstr* PushArgumentAt(intptr_t index) const {
return instance_call()->PushArgumentAt(index);
}
DECLARE_INSTRUCTION(PolymorphicInstanceCall)
const ICData& ic_data() const { return ic_data_; }
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return true; }
virtual void PrintOperandsTo(BufferFormatter* f) const;
private:
InstanceCallInstr* instance_call_;
const ICData& ic_data_;
const bool with_checks_;
DISALLOW_COPY_AND_ASSIGN(PolymorphicInstanceCallInstr);
};
class ComparisonInstr : public TemplateDefinition<2> {
public:
ComparisonInstr(Token::Kind kind, Value* left, Value* right)
: kind_(kind) {
SetInputAt(0, left);
SetInputAt(1, right);
}
Value* left() const { return inputs_[0]; }
Value* right() const { return inputs_[1]; }
virtual ComparisonInstr* AsComparison() { return this; }
Token::Kind kind() const { return kind_; }
virtual void EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) = 0;
void SetDeoptId(intptr_t deopt_id) {
deopt_id_ = deopt_id;
}
protected:
Token::Kind kind_;
};
// Inlined functions from class BranchInstr that forward to their comparison.
inline intptr_t BranchInstr::ArgumentCount() const {
return comparison()->ArgumentCount();
}
inline intptr_t BranchInstr::InputCount() const {
return comparison()->InputCount();
}
inline Value* BranchInstr::InputAt(intptr_t i) const {
return comparison()->InputAt(i);
}
inline bool BranchInstr::CanDeoptimize() const {
// Branches need a deoptimization info in checked mode if they
// can throw a type check error.
return comparison()->CanDeoptimize() || is_checked();
}
inline bool BranchInstr::CanBeDeoptimizationTarget() const {
return comparison()->CanBeDeoptimizationTarget();
}
inline bool BranchInstr::HasSideEffect() const {
return comparison()->HasSideEffect();
}
inline LocationSummary* BranchInstr::locs() {
if (comparison()->locs_ == NULL) {
LocationSummary* summary = comparison()->MakeLocationSummary();
// Branches don't produce a result.
summary->set_out(Location::NoLocation());
comparison()->locs_ = summary;
}
return comparison()->locs_;
}
inline intptr_t BranchInstr::DeoptimizationTarget() const {
return comparison()->DeoptimizationTarget();
}
inline Representation BranchInstr::RequiredInputRepresentation(
intptr_t i) const {
return comparison()->RequiredInputRepresentation(i);
}
class StrictCompareInstr : public ComparisonInstr {
public:
StrictCompareInstr(Token::Kind kind, Value* left, Value* right);
DECLARE_INSTRUCTION(StrictCompare)
virtual CompileType ComputeType() const;
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanBeDeoptimizationTarget() const {
// StrictCompare can be merged into Branch and thus needs an environment.
return true;
}
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
virtual bool AttributesEqual(Instruction* other) const;
virtual bool AffectedBySideEffect() const { return false; }
virtual Definition* Canonicalize(FlowGraphOptimizer* optimizer);
virtual void EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch);
bool needs_number_check() const { return needs_number_check_; }
void set_needs_number_check(bool value) { needs_number_check_ = value; }
void set_kind(Token::Kind value) { kind_ = value; }
private:
// True if the comparison must check for double, Mint or Bigint and
// use value comparison instead.
bool needs_number_check_;
DISALLOW_COPY_AND_ASSIGN(StrictCompareInstr);
};
class EqualityCompareInstr : public ComparisonInstr {
public:
EqualityCompareInstr(intptr_t token_pos,
Token::Kind kind,
Value* left,
Value* right)
: ComparisonInstr(kind, left, right),
token_pos_(token_pos),
receiver_class_id_(kIllegalCid) {
// deopt_id() checks receiver_class_id_ value.
ic_data_ = Isolate::Current()->GetICDataForDeoptId(deopt_id());
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
}
DECLARE_INSTRUCTION(EqualityCompare)
virtual CompileType ComputeType() const;
virtual bool RecomputeType();
const ICData* ic_data() const { return ic_data_; }
bool HasICData() const {
return (ic_data() != NULL) && !ic_data()->IsNull();
}
void set_ic_data(const ICData* value) { ic_data_ = value; }
intptr_t token_pos() const { return token_pos_; }
// Receiver class id is computed from collected ICData.
void set_receiver_class_id(intptr_t value) { receiver_class_id_ = value; }
intptr_t receiver_class_id() const { return receiver_class_id_; }
bool IsInlinedNumericComparison() const {
return (receiver_class_id() == kDoubleCid)
|| (receiver_class_id() == kMintCid)
|| (receiver_class_id() == kSmiCid);
}
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const {
return !IsInlinedNumericComparison();
}
virtual bool HasSideEffect() const {
return !IsInlinedNumericComparison();
}
virtual void EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch);
virtual intptr_t DeoptimizationTarget() const {
return GetDeoptId();
}
virtual Representation RequiredInputRepresentation(intptr_t idx) const {
ASSERT((idx == 0) || (idx == 1));
if (receiver_class_id() == kDoubleCid) return kUnboxedDouble;
if (receiver_class_id() == kMintCid) return kUnboxedMint;
return kTagged;
}
bool IsPolymorphic() const;
private:
const ICData* ic_data_;
const intptr_t token_pos_;
intptr_t receiver_class_id_; // Set by optimizer.
DISALLOW_COPY_AND_ASSIGN(EqualityCompareInstr);
};
class RelationalOpInstr : public ComparisonInstr {
public:
RelationalOpInstr(intptr_t token_pos,
Token::Kind kind,
Value* left,
Value* right)
: ComparisonInstr(kind, left, right),
token_pos_(token_pos),
operands_class_id_(kIllegalCid) {
// deopt_id() checks operands_class_id_ value.
ic_data_ = Isolate::Current()->GetICDataForDeoptId(deopt_id());
ASSERT(Token::IsRelationalOperator(kind));
}
DECLARE_INSTRUCTION(RelationalOp)
virtual CompileType ComputeType() const;
virtual bool RecomputeType();
const ICData* ic_data() const { return ic_data_; }
bool HasICData() const {
return (ic_data() != NULL) && !ic_data()->IsNull();
}
void set_ic_data(const ICData* value) { ic_data_ = value; }
intptr_t token_pos() const { return token_pos_; }
// TODO(srdjan): instead of class-id pass an enum that can differentiate
// between boxed and unboxed doubles and integers.
void set_operands_class_id(intptr_t value) {
operands_class_id_ = value;
}
intptr_t operands_class_id() const { return operands_class_id_; }
bool IsInlinedNumericComparison() const {
return (operands_class_id() == kDoubleCid)
|| (operands_class_id() == kMintCid)
|| (operands_class_id() == kSmiCid);
}
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const {
return !IsInlinedNumericComparison();
}
virtual bool HasSideEffect() const {
return !IsInlinedNumericComparison();
}
virtual void EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch);
virtual intptr_t DeoptimizationTarget() const {
return GetDeoptId();
}
virtual Representation RequiredInputRepresentation(intptr_t idx) const {
ASSERT((idx == 0) || (idx == 1));
if (operands_class_id() == kDoubleCid) return kUnboxedDouble;
if (operands_class_id() == kMintCid) return kUnboxedMint;
return kTagged;
}
private:
const ICData* ic_data_;
const intptr_t token_pos_;
intptr_t operands_class_id_; // class id of both operands.
DISALLOW_COPY_AND_ASSIGN(RelationalOpInstr);
};
// TODO(vegorov): ComparisonInstr should be switched to use IfTheElseInstr for
// materialization of true and false constants.
class IfThenElseInstr : public TemplateDefinition<2> {
public:
IfThenElseInstr(Token::Kind kind,
Value* left,
Value* right,
Value* if_true,
Value* if_false)
: kind_(kind),
if_true_(Smi::Cast(if_true->BoundConstant()).Value()),
if_false_(Smi::Cast(if_false->BoundConstant()).Value()) {
ASSERT(Token::IsEqualityOperator(kind));
SetInputAt(0, left);
SetInputAt(1, right);
}
// Returns true if this instruction is supported on the current platform.
static bool IsSupported();
// Returns true if this combination of comparison and values flowing on
// the true and false paths is supported on the current platform.
static bool Supports(ComparisonInstr* comparison, Value* v1, Value* v2);
DECLARE_INSTRUCTION(IfThenElse)
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual CompileType ComputeType() const;
virtual void InferRange();
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const { return false; }
virtual bool AttributesEqual(Instruction* other) const {
IfThenElseInstr* other_if_then_else = other->AsIfThenElse();
return (kind_ == other_if_then_else->kind_) &&
(if_true_ == other_if_then_else->if_true_) &&
(if_false_ == other_if_then_else->if_false_);
}
virtual bool AffectedBySideEffect() const {
return false;
}
Value* left() const { return inputs_[0]; }
Value* right() const { return inputs_[1]; }
intptr_t if_true() const { return if_true_; }
intptr_t if_false() const { return if_false_; }
Token::Kind kind() const { return kind_; }
private:
const Token::Kind kind_;
const intptr_t if_true_;
const intptr_t if_false_;
DISALLOW_COPY_AND_ASSIGN(IfThenElseInstr);
};
class StaticCallInstr : public TemplateDefinition<0> {
public:
StaticCallInstr(intptr_t token_pos,
const Function& function,
const Array& argument_names,
ZoneGrowableArray<PushArgumentInstr*>* arguments)
: token_pos_(token_pos),
function_(function),
argument_names_(argument_names),
arguments_(arguments),
result_cid_(kDynamicCid),
is_known_list_constructor_(false) {
ASSERT(function.IsZoneHandle());
ASSERT(argument_names.IsZoneHandle());
}
DECLARE_INSTRUCTION(StaticCall)
virtual CompileType ComputeType() const;
// Accessors forwarded to the AST node.
const Function& function() const { return function_; }
const Array& argument_names() const { return argument_names_; }
intptr_t token_pos() const { return token_pos_; }
virtual intptr_t ArgumentCount() const { return arguments_->length(); }
virtual PushArgumentInstr* PushArgumentAt(intptr_t index) const {
return (*arguments_)[index];
}
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const { return true; }
virtual bool HasSideEffect() const { return true; }
void set_result_cid(intptr_t value) { result_cid_ = value; }
bool is_known_list_constructor() const { return is_known_list_constructor_; }
void set_is_known_list_constructor(bool value) {
is_known_list_constructor_ = value;
}
private:
const intptr_t token_pos_;
const Function& function_;
const Array& argument_names_;
ZoneGrowableArray<PushArgumentInstr*>* arguments_;
intptr_t result_cid_; // For some library functions we know the result.
// 'True' for recognized list constructors.
bool is_known_list_constructor_;
DISALLOW_COPY_AND_ASSIGN(StaticCallInstr);
};
class LoadLocalInstr : public TemplateDefinition<0> {
public:
explicit LoadLocalInstr(const LocalVariable& local)
: local_(local), is_last_(false) { }
DECLARE_INSTRUCTION(LoadLocal)
virtual CompileType ComputeType() const;
const LocalVariable& local() const { return local_; }
virtual void PrintOperandsTo(BufferFormatter* f) const;
virtual bool CanDeoptimize() const { return false; }
virtual bool HasSideEffect() const {
UNREACHABLE();
return false;
}