blob: 280bd6edbabf0549747208a64a302e343aeff0e7 [file] [log] [blame]
// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/exceptions.h"
#include "vm/dart_api_impl.h"
#include "vm/dart_entry.h"
#include "vm/debugger.h"
#include "vm/flags.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_FLAG(bool, print_stacktrace_at_throw, false,
"Prints a stack trace everytime a throw occurs.");
DEFINE_FLAG(bool, heap_profile_out_of_memory, false,
"Writes a heap profile on unhandled out-of-memory exceptions.");
DEFINE_FLAG(bool, verbose_stacktrace, false,
"Stack traces will include methods marked invisible.");
const char* Exceptions::kCastErrorDstName = "type cast";
class StacktraceBuilder : public ValueObject {
public:
StacktraceBuilder() { }
virtual ~StacktraceBuilder() { }
virtual void AddFrame(const Function& func,
const Code& code,
const Smi& offset) = 0;
};
class RegularStacktraceBuilder : public StacktraceBuilder {
public:
RegularStacktraceBuilder()
: func_list_(GrowableObjectArray::Handle(GrowableObjectArray::New())),
code_list_(GrowableObjectArray::Handle(GrowableObjectArray::New())),
pc_offset_list_(
GrowableObjectArray::Handle(GrowableObjectArray::New())) { }
~RegularStacktraceBuilder() { }
const GrowableObjectArray& func_list() const { return func_list_; }
const GrowableObjectArray& code_list() const { return code_list_; }
const GrowableObjectArray& pc_offset_list() const { return pc_offset_list_; }
virtual void AddFrame(const Function& func,
const Code& code,
const Smi& offset) {
func_list_.Add(func);
code_list_.Add(code);
pc_offset_list_.Add(offset);
}
private:
const GrowableObjectArray& func_list_;
const GrowableObjectArray& code_list_;
const GrowableObjectArray& pc_offset_list_;
DISALLOW_COPY_AND_ASSIGN(RegularStacktraceBuilder);
};
class PreallocatedStacktraceBuilder : public StacktraceBuilder {
public:
explicit PreallocatedStacktraceBuilder(const Stacktrace& stacktrace)
: stacktrace_(stacktrace),
cur_index_(0) {
ASSERT(stacktrace_.raw() ==
Isolate::Current()->object_store()->preallocated_stack_trace());
}
~PreallocatedStacktraceBuilder() { }
virtual void AddFrame(const Function& func,
const Code& code,
const Smi& offset);
private:
static const int kNumTopframes = 3;
const Stacktrace& stacktrace_;
intptr_t cur_index_;
DISALLOW_COPY_AND_ASSIGN(PreallocatedStacktraceBuilder);
};
void PreallocatedStacktraceBuilder::AddFrame(const Function& func,
const Code& code,
const Smi& offset) {
if (cur_index_ >= Stacktrace::kPreallocatedStackdepth) {
// The number of frames is overflowing the preallocated stack trace object.
Function& frame_func = Function::Handle();
Code& frame_code = Code::Handle();
Smi& frame_offset = Smi::Handle();
intptr_t start = Stacktrace::kPreallocatedStackdepth - (kNumTopframes - 1);
intptr_t null_slot = start - 2;
// Add an empty slot to indicate the overflow so that the toString
// method can account for the overflow.
if (stacktrace_.FunctionAtFrame(null_slot) != Function::null()) {
stacktrace_.SetFunctionAtFrame(null_slot, frame_func);
stacktrace_.SetCodeAtFrame(null_slot, frame_code);
}
// Move frames one slot down so that we can accomadate the new frame.
for (intptr_t i = start; i < Stacktrace::kPreallocatedStackdepth; i++) {
intptr_t prev = (i - 1);
frame_func = stacktrace_.FunctionAtFrame(i);
frame_code = stacktrace_.CodeAtFrame(i);
frame_offset = stacktrace_.PcOffsetAtFrame(i);
stacktrace_.SetFunctionAtFrame(prev, frame_func);
stacktrace_.SetCodeAtFrame(prev, frame_code);
stacktrace_.SetPcOffsetAtFrame(prev, frame_offset);
}
cur_index_ = (Stacktrace::kPreallocatedStackdepth - 1);
}
stacktrace_.SetFunctionAtFrame(cur_index_, func);
stacktrace_.SetCodeAtFrame(cur_index_, code);
stacktrace_.SetPcOffsetAtFrame(cur_index_, offset);
cur_index_ += 1;
}
static bool ShouldShowFunction(const Function& function) {
if (FLAG_verbose_stacktrace) {
return true;
}
return function.is_visible();
}
// Iterate through the stack frames and try to find a frame with an
// exception handler. Once found, set the pc, sp and fp so that execution
// can continue in that frame.
static bool FindExceptionHandler(uword* handler_pc,
uword* handler_sp,
uword* handler_fp,
StacktraceBuilder* builder) {
StackFrameIterator frames(StackFrameIterator::kDontValidateFrames);
StackFrame* frame = frames.NextFrame();
ASSERT(frame != NULL); // We expect to find a dart invocation frame.
Function& func = Function::Handle();
Code& code = Code::Handle();
Smi& offset = Smi::Handle();
while (!frame->IsEntryFrame()) {
if (frame->IsDartFrame()) {
code = frame->LookupDartCode();
if (code.is_optimized()) {
// For optimized frames, extract all the inlined functions if any
// into the stack trace.
for (InlinedFunctionsIterator it(frame); !it.Done(); it.Advance()) {
func = it.function();
code = it.code();
uword pc = it.pc();
ASSERT(pc != 0);
ASSERT(code.EntryPoint() <= pc);
ASSERT(pc < (code.EntryPoint() + code.Size()));
if (ShouldShowFunction(func)) {
offset = Smi::New(pc - code.EntryPoint());
builder->AddFrame(func, code, offset);
}
}
} else {
offset = Smi::New(frame->pc() - code.EntryPoint());
func = code.function();
if (ShouldShowFunction(func)) {
builder->AddFrame(func, code, offset);
}
}
if (frame->FindExceptionHandler(handler_pc)) {
*handler_sp = frame->sp();
*handler_fp = frame->fp();
return true;
}
}
frame = frames.NextFrame();
ASSERT(frame != NULL);
}
ASSERT(frame->IsEntryFrame());
*handler_pc = frame->pc();
*handler_sp = frame->sp();
*handler_fp = frame->fp();
return false;
}
static void FindErrorHandler(uword* handler_pc,
uword* handler_sp,
uword* handler_fp) {
// TODO(turnidge): Is there a faster way to get the next entry frame?
StackFrameIterator frames(StackFrameIterator::kDontValidateFrames);
StackFrame* frame = frames.NextFrame();
ASSERT(frame != NULL);
while (!frame->IsEntryFrame()) {
frame = frames.NextFrame();
ASSERT(frame != NULL);
}
ASSERT(frame->IsEntryFrame());
*handler_pc = frame->pc();
*handler_sp = frame->sp();
*handler_fp = frame->fp();
}
static void JumpToExceptionHandler(uword program_counter,
uword stack_pointer,
uword frame_pointer,
const Object& exception_object,
const Object& stacktrace_object) {
// The no_gc StackResource is unwound through the tear down of
// stack resources below.
NoGCScope no_gc;
RawObject* raw_exception = exception_object.raw();
RawObject* raw_stacktrace = stacktrace_object.raw();
#if defined(USING_SIMULATOR)
// Unwinding of the C++ frames and destroying of their stack resources is done
// by the simulator, because the target stack_pointer is a simulated stack
// pointer and not the C++ stack pointer.
// Continue simulating at the given pc in the given frame after setting up the
// exception object in the kExceptionObjectReg register and the stacktrace
// object (may be raw null) in the kStackTraceObjectReg register.
Simulator::Current()->Longjmp(program_counter, stack_pointer, frame_pointer,
raw_exception, raw_stacktrace);
#else
// Prepare for unwinding frames by destroying all the stack resources
// in the previous frames.
Isolate* isolate = Isolate::Current();
while (isolate->top_resource() != NULL &&
(reinterpret_cast<uword>(isolate->top_resource()) < stack_pointer)) {
isolate->top_resource()->~StackResource();
}
// Call a stub to set up the exception object in kExceptionObjectReg,
// to set up the stacktrace object in kStackTraceObjectReg, and to
// continue execution at the given pc in the given frame.
typedef void (*ExcpHandler)(uword, uword, uword, RawObject*, RawObject*);
ExcpHandler func = reinterpret_cast<ExcpHandler>(
StubCode::JumpToExceptionHandlerEntryPoint());
func(program_counter, stack_pointer, frame_pointer,
raw_exception, raw_stacktrace);
#endif
UNREACHABLE();
}
static void ThrowExceptionHelper(const Instance& incoming_exception,
const Instance& existing_stacktrace) {
bool use_preallocated_stacktrace = false;
Isolate* isolate = Isolate::Current();
Instance& exception = Instance::Handle(isolate, incoming_exception.raw());
if (exception.IsNull()) {
exception ^= Exceptions::Create(Exceptions::kNullThrown,
Object::empty_array());
} else if (exception.raw() == isolate->object_store()->out_of_memory() ||
exception.raw() == isolate->object_store()->stack_overflow()) {
use_preallocated_stacktrace = true;
}
uword handler_pc = 0;
uword handler_sp = 0;
uword handler_fp = 0;
Stacktrace& stacktrace = Stacktrace::Handle(isolate);
bool handler_exists = false;
if (use_preallocated_stacktrace) {
stacktrace ^= isolate->object_store()->preallocated_stack_trace();
PreallocatedStacktraceBuilder frame_builder(stacktrace);
handler_exists = FindExceptionHandler(&handler_pc,
&handler_sp,
&handler_fp,
&frame_builder);
} else {
RegularStacktraceBuilder frame_builder;
handler_exists = FindExceptionHandler(&handler_pc,
&handler_sp,
&handler_fp,
&frame_builder);
// TODO(5411263): At some point we can optimize by figuring out if a
// stack trace is needed based on whether the catch code specifies a
// stack trace object or there is a rethrow in the catch clause.
if (frame_builder.pc_offset_list().Length() != 0) {
// Create arrays for function, code and pc_offset triplet for each frame.
const Array& func_array =
Array::Handle(isolate, Array::MakeArray(frame_builder.func_list()));
const Array& code_array =
Array::Handle(isolate, Array::MakeArray(frame_builder.code_list()));
const Array& pc_offset_array =
Array::Handle(isolate,
Array::MakeArray(frame_builder.pc_offset_list()));
if (existing_stacktrace.IsNull()) {
stacktrace = Stacktrace::New(func_array, code_array, pc_offset_array);
} else {
stacktrace ^= existing_stacktrace.raw();
stacktrace.Append(func_array, code_array, pc_offset_array);
// Since we are re throwing and appending to the existing stack trace
// we clear out the catch trace collected in the existing stack trace
// as that trace will not be valid anymore.
stacktrace.SetCatchStacktrace(Object::empty_array(),
Object::empty_array(),
Object::empty_array());
}
} else {
stacktrace ^= existing_stacktrace.raw();
// Since we are re throwing and appending to the existing stack trace
// we clear out the catch trace collected in the existing stack trace
// as that trace will not be valid anymore.
stacktrace.SetCatchStacktrace(Object::empty_array(),
Object::empty_array(),
Object::empty_array());
}
}
// We expect to find a handler_pc, if the exception is unhandled
// then we expect to at least have the dart entry frame on the
// stack as Exceptions::Throw should happen only after a dart
// invocation has been done.
ASSERT(handler_pc != 0);
if (FLAG_print_stacktrace_at_throw) {
OS::Print("Exception '%s' thrown:\n", exception.ToCString());
OS::Print("%s\n", stacktrace.ToCString());
}
if (handler_exists) {
// Found a dart handler for the exception, jump to it.
JumpToExceptionHandler(handler_pc,
handler_sp,
handler_fp,
exception,
stacktrace);
} else {
if (FLAG_heap_profile_out_of_memory) {
if (exception.raw() == isolate->object_store()->out_of_memory()) {
isolate->heap()->ProfileToFile("out-of-memory");
}
}
// No dart exception handler found in this invocation sequence,
// so we create an unhandled exception object and return to the
// invocation stub so that it returns this unhandled exception
// object. The C++ code which invoked this dart sequence can check
// and do the appropriate thing (rethrow the exception to the
// dart invocation sequence above it, print diagnostics and terminate
// the isolate etc.).
const UnhandledException& unhandled_exception = UnhandledException::Handle(
UnhandledException::New(exception, stacktrace));
stacktrace = Stacktrace::null();
JumpToExceptionHandler(handler_pc,
handler_sp,
handler_fp,
unhandled_exception,
stacktrace);
}
UNREACHABLE();
}
// Static helpers for allocating, initializing, and throwing an error instance.
// Return the script of the Dart function that called the native entry or the
// runtime entry. The frame iterator points to the callee.
RawScript* Exceptions::GetCallerScript(DartFrameIterator* iterator) {
StackFrame* caller_frame = iterator->NextFrame();
ASSERT(caller_frame != NULL && caller_frame->IsDartFrame());
const Function& caller = Function::Handle(caller_frame->LookupDartFunction());
ASSERT(!caller.IsNull());
return caller.script();
}
// Allocate a new instance of the given class name.
// TODO(hausner): Rename this NewCoreInstance to call out the fact that
// the class name is resolved in the core library implicitly?
RawInstance* Exceptions::NewInstance(const char* class_name) {
const String& cls_name = String::Handle(Symbols::New(class_name));
const Library& core_lib = Library::Handle(Library::CoreLibrary());
Class& cls = Class::Handle(core_lib.LookupClass(cls_name));
ASSERT(!cls.IsNull());
// There are no parameterized error types, so no need to set type arguments.
return Instance::New(cls);
}
// Assign the value to the field given by its name in the given instance.
void Exceptions::SetField(const Instance& instance,
const Class& cls,
const char* field_name,
const Object& value) {
const Field& field = Field::Handle(cls.LookupInstanceField(
String::Handle(Symbols::New(field_name))));
ASSERT(!field.IsNull());
instance.SetField(field, value);
}
// Initialize the fields 'url', 'line', and 'column' in the given instance
// according to the given token location in the given script.
void Exceptions::SetLocationFields(const Instance& instance,
const Class& cls,
const Script& script,
intptr_t location) {
SetField(instance, cls, "url", String::Handle(script.url()));
intptr_t line, column;
script.GetTokenLocation(location, &line, &column);
SetField(instance, cls, "line", Smi::Handle(Smi::New(line)));
SetField(instance, cls, "column", Smi::Handle(Smi::New(column)));
}
// Allocate, initialize, and throw a TypeError.
void Exceptions::CreateAndThrowTypeError(intptr_t location,
const String& src_type_name,
const String& dst_type_name,
const String& dst_name,
const String& malformed_error) {
// Allocate a new instance of TypeError or CastError.
Instance& type_error = Instance::Handle();
Class& cls = Class::Handle();
if (dst_name.Equals(kCastErrorDstName)) {
type_error = NewInstance("CastErrorImplementation");
cls = type_error.clazz();
cls = cls.SuperClass();
} else {
type_error = NewInstance("TypeErrorImplementation");
cls = type_error.clazz();
}
// Initialize 'url', 'line', and 'column' fields.
DartFrameIterator iterator;
const Script& script = Script::Handle(GetCallerScript(&iterator));
// Location fields are defined in AssertionError, the superclass of TypeError.
const Class& assertion_error_class = Class::Handle(cls.SuperClass());
SetLocationFields(type_error, assertion_error_class, script, location);
// Initialize field 'failedAssertion' in AssertionError superclass.
// Printing the src_obj value would be possible, but ToString() is expensive
// and not meaningful for all classes, so we just print '$expr instanceof...'.
// Users should look at TypeError.ToString(), which contains more useful
// information than AssertionError.failedAssertion.
String& failed_assertion = String::Handle(String::New("$expr instanceof "));
failed_assertion = String::Concat(failed_assertion, dst_type_name);
SetField(type_error,
assertion_error_class,
"failedAssertion",
failed_assertion);
// Initialize field 'srcType'.
SetField(type_error, cls, "srcType", src_type_name);
// Initialize field 'dstType'.
SetField(type_error, cls, "dstType", dst_type_name);
// Initialize field 'dstName'.
SetField(type_error, cls, "dstName", dst_name);
// Initialize field 'malformedError'.
SetField(type_error, cls, "malformedError", malformed_error);
// Type errors in the core library may be difficult to diagnose.
// Print type error information before throwing the error when debugging.
if (FLAG_print_stacktrace_at_throw) {
if (!malformed_error.IsNull()) {
OS::Print("%s\n", malformed_error.ToCString());
}
intptr_t line, column;
script.GetTokenLocation(location, &line, &column);
OS::Print("'%s': Failed type check: line %"Pd" pos %"Pd": ",
String::Handle(script.url()).ToCString(), line, column);
if (!dst_name.IsNull() && (dst_name.Length() > 0)) {
OS::Print("type '%s' is not a subtype of type '%s' of '%s'.\n",
src_type_name.ToCString(),
dst_type_name.ToCString(),
dst_name.ToCString());
} else {
OS::Print("malformed type used.\n");
}
}
// Throw TypeError instance.
Exceptions::Throw(type_error);
UNREACHABLE();
}
void Exceptions::Throw(const Instance& exception) {
Isolate* isolate = Isolate::Current();
isolate->debugger()->SignalExceptionThrown(exception);
// Null object is a valid exception object.
ThrowExceptionHelper(exception, Instance::Handle(isolate));
}
void Exceptions::ReThrow(const Instance& exception,
const Instance& stacktrace) {
// Null object is a valid exception object.
ThrowExceptionHelper(exception, stacktrace);
}
void Exceptions::PropagateError(const Error& error) {
ASSERT(Isolate::Current()->top_exit_frame_info() != 0);
if (error.IsUnhandledException()) {
// If the error object represents an unhandled exception, then
// rethrow the exception in the normal fashion.
const UnhandledException& uhe = UnhandledException::Cast(error);
const Instance& exc = Instance::Handle(uhe.exception());
const Instance& stk = Instance::Handle(uhe.stacktrace());
Exceptions::ReThrow(exc, stk);
} else {
// Return to the invocation stub and return this error object. The
// C++ code which invoked this dart sequence can check and do the
// appropriate thing.
uword handler_pc = 0;
uword handler_sp = 0;
uword handler_fp = 0;
FindErrorHandler(&handler_pc, &handler_sp, &handler_fp);
JumpToExceptionHandler(handler_pc, handler_sp, handler_fp, error,
Stacktrace::Handle()); // Null stacktrace.
}
UNREACHABLE();
}
void Exceptions::ThrowByType(ExceptionType type, const Array& arguments) {
const Object& result = Object::Handle(Create(type, arguments));
if (result.IsError()) {
// We got an error while constructing the exception object.
// Propagate the error instead of throwing the exception.
PropagateError(Error::Cast(result));
} else {
ASSERT(result.IsInstance());
Throw(Instance::Cast(result));
}
}
void Exceptions::ThrowOOM() {
Isolate* isolate = Isolate::Current();
const Instance& oom = Instance::Handle(
isolate, isolate->object_store()->out_of_memory());
Throw(oom);
}
void Exceptions::ThrowStackOverflow() {
Isolate* isolate = Isolate::Current();
const Instance& stack_overflow = Instance::Handle(
isolate, isolate->object_store()->stack_overflow());
Throw(stack_overflow);
}
RawObject* Exceptions::Create(ExceptionType type, const Array& arguments) {
Library& library = Library::Handle();
const String* class_name = NULL;
const String* constructor_name = &Symbols::Dot();
switch (type) {
case kNone:
UNREACHABLE();
break;
case kRange:
library = Library::CoreLibrary();
class_name = &Symbols::RangeError();
break;
case kArgument:
library = Library::CoreLibrary();
class_name = &Symbols::ArgumentError();
break;
case kNoSuchMethod:
library = Library::CoreLibrary();
class_name = &Symbols::NoSuchMethodError();
constructor_name = &String::Handle(Symbols::New("._withType"));
break;
case kFormat:
library = Library::CoreLibrary();
class_name = &Symbols::FormatException();
break;
case kUnsupported:
library = Library::CoreLibrary();
class_name = &Symbols::UnsupportedError();
break;
case kStackOverflow:
library = Library::CoreLibrary();
class_name = &Symbols::StackOverflowError();
break;
case kOutOfMemory:
library = Library::CoreLibrary();
class_name = &Symbols::OutOfMemoryError();
break;
case kInternalError:
library = Library::CoreLibrary();
class_name = &Symbols::InternalError();
break;
case kNullThrown:
library = Library::CoreLibrary();
class_name = &Symbols::NullThrownError();
break;
case kIsolateSpawn:
library = Library::IsolateLibrary();
class_name = &Symbols::IsolateSpawnException();
break;
case kIsolateUnhandledException:
library = Library::IsolateLibrary();
class_name = &Symbols::IsolateUnhandledException();
break;
}
return DartLibraryCalls::ExceptionCreate(library,
*class_name,
*constructor_name,
arguments);
}
} // namespace dart