blob: 9df2cab08724578a2bbf21ced01c4b13d632778d [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/code_generator.h"
#include "vm/assembler.h"
#include "vm/ast.h"
#include "vm/bigint_operations.h"
#include "vm/code_patcher.h"
#include "vm/compiler.h"
#include "vm/dart_api_impl.h"
#include "vm/dart_entry.h"
#include "vm/debugger.h"
#include "vm/deopt_instructions.h"
#include "vm/exceptions.h"
#include "vm/intermediate_language.h"
#include "vm/object_store.h"
#include "vm/message.h"
#include "vm/message_handler.h"
#include "vm/parser.h"
#include "vm/resolver.h"
#include "vm/runtime_entry.h"
#include "vm/stack_frame.h"
#include "vm/symbols.h"
#include "vm/verifier.h"
namespace dart {
DEFINE_FLAG(bool, deoptimize_alot, false,
"Deoptimizes all live frames when we are about to return to Dart code from"
" native entries.");
DEFINE_FLAG(bool, trace_deoptimization, false, "Trace deoptimization");
DEFINE_FLAG(bool, trace_deoptimization_verbose, false,
"Trace deoptimization verbose");
DEFINE_FLAG(bool, trace_ic, false, "Trace IC handling");
DEFINE_FLAG(bool, trace_ic_miss_in_optimized, false,
"Trace IC miss in optimized code");
DEFINE_FLAG(bool, trace_patching, false, "Trace patching of code.");
DEFINE_FLAG(bool, trace_runtime_calls, false, "Trace runtime calls");
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64)
DEFINE_FLAG(int, optimization_counter_threshold, 3000,
"Function's usage-counter value before it is optimized, -1 means never");
#else
// TODO(regis): Enable optimization on ARM and MIPS.
DEFINE_FLAG(int, optimization_counter_threshold, -1,
"Function's usage-counter value before it is optimized, -1 means never");
#endif
DECLARE_FLAG(bool, enable_type_checks);
DECLARE_FLAG(bool, trace_type_checks);
DECLARE_FLAG(bool, report_usage_count);
DECLARE_FLAG(int, deoptimization_counter_threshold);
DEFINE_FLAG(charp, optimization_filter, NULL, "Optimize only named function");
DEFINE_FLAG(bool, trace_failed_optimization_attempts, false,
"Traces all failed optimization attempts");
DEFINE_FLAG(bool, trace_optimized_ic_calls, false,
"Trace IC calls in optimized code.");
DEFINE_FLAG(int, reoptimization_counter_threshold, 2000,
"Counter threshold before a function gets reoptimized.");
DEFINE_FLAG(int, max_subtype_cache_entries, 100,
"Maximum number of subtype cache entries (number of checks cached).");
DEFINE_RUNTIME_ENTRY(TraceFunctionEntry, 1) {
ASSERT(arguments.ArgCount() ==
kTraceFunctionEntryRuntimeEntry.argument_count());
const Function& function = Function::CheckedHandle(arguments.ArgAt(0));
const String& function_name = String::Handle(function.name());
const String& class_name =
String::Handle(Class::Handle(function.Owner()).Name());
OS::PrintErr("> Entering '%s.%s'\n",
class_name.ToCString(), function_name.ToCString());
}
DEFINE_RUNTIME_ENTRY(TraceFunctionExit, 1) {
ASSERT(arguments.ArgCount() ==
kTraceFunctionExitRuntimeEntry.argument_count());
const Function& function = Function::CheckedHandle(arguments.ArgAt(0));
const String& function_name = String::Handle(function.name());
const String& class_name =
String::Handle(Class::Handle(function.Owner()).Name());
OS::PrintErr("< Exiting '%s.%s'\n",
class_name.ToCString(), function_name.ToCString());
}
// Allocation of a fixed length array of given element type.
// This runtime entry is never called for allocating a List of a generic type,
// because a prior run time call instantiates the element type if necessary.
// Arg0: array length.
// Arg1: array type arguments, i.e. vector of 1 type, the element type.
// Return value: newly allocated array of length arg0.
DEFINE_RUNTIME_ENTRY(AllocateArray, 2) {
ASSERT(arguments.ArgCount() == kAllocateArrayRuntimeEntry.argument_count());
const Smi& length = Smi::CheckedHandle(arguments.ArgAt(0));
const Array& array = Array::Handle(Array::New(length.Value()));
arguments.SetReturn(array);
AbstractTypeArguments& element_type =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(1));
// An Array is raw or takes one type argument. However, its type argument
// vector may be longer than 1 due to a type optimization reusing the type
// argument vector of the instantiator.
ASSERT(element_type.IsNull() ||
((element_type.Length() >= 1) && element_type.IsInstantiated()));
array.SetTypeArguments(element_type); // May be null.
}
// Allocate a new object.
// Arg0: class of the object that needs to be allocated.
// Arg1: type arguments of the object that needs to be allocated.
// Arg2: type arguments of the instantiator or kNoInstantiator.
// Return value: newly allocated object.
DEFINE_RUNTIME_ENTRY(AllocateObject, 3) {
ASSERT(arguments.ArgCount() == kAllocateObjectRuntimeEntry.argument_count());
const Class& cls = Class::CheckedHandle(arguments.ArgAt(0));
const Instance& instance = Instance::Handle(Instance::New(cls));
arguments.SetReturn(instance);
if (!cls.HasTypeArguments()) {
// No type arguments required for a non-parameterized type.
ASSERT(Instance::CheckedHandle(arguments.ArgAt(1)).IsNull());
return;
}
AbstractTypeArguments& type_arguments =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(1));
// If no instantiator is provided, set the type arguments and return.
if (Object::Handle(arguments.ArgAt(2)).IsSmi()) {
ASSERT(Smi::CheckedHandle(arguments.ArgAt(2)).Value() ==
StubCode::kNoInstantiator);
// Unless null (for a raw type), the type argument vector may be longer than
// necessary due to a type optimization reusing the type argument vector of
// the instantiator.
ASSERT(type_arguments.IsNull() ||
(type_arguments.IsInstantiated() &&
(type_arguments.Length() >= cls.NumTypeArguments())));
instance.SetTypeArguments(type_arguments); // May be null.
return;
}
// A still uninstantiated type argument vector must have the correct length.
ASSERT(!type_arguments.IsInstantiated() &&
(type_arguments.Length() == cls.NumTypeArguments()));
const AbstractTypeArguments& instantiator =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(2));
ASSERT(instantiator.IsNull() || instantiator.IsInstantiated());
// Code inlined in the caller should have optimized the case where the
// instantiator can be reused as type argument vector.
ASSERT(instantiator.IsNull() || !type_arguments.IsUninstantiatedIdentity());
type_arguments = InstantiatedTypeArguments::New(type_arguments, instantiator);
instance.SetTypeArguments(type_arguments);
}
// Helper returning the token position of the Dart caller.
static intptr_t GetCallerLocation() {
DartFrameIterator iterator;
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
return caller_frame->GetTokenPos();
}
// Allocate a new object of a generic type and check that the instantiated type
// arguments are within the declared bounds or throw a dynamic type error.
// Arg0: class of the object that needs to be allocated.
// Arg1: type arguments of the object that needs to be allocated.
// Arg2: type arguments of the instantiator or kNoInstantiator.
// Return value: newly allocated object.
DEFINE_RUNTIME_ENTRY(AllocateObjectWithBoundsCheck, 3) {
ASSERT(FLAG_enable_type_checks);
ASSERT(arguments.ArgCount() ==
kAllocateObjectWithBoundsCheckRuntimeEntry.argument_count());
const Class& cls = Class::CheckedHandle(arguments.ArgAt(0));
const Instance& instance = Instance::Handle(Instance::New(cls));
arguments.SetReturn(instance);
ASSERT(cls.HasTypeArguments());
AbstractTypeArguments& type_arguments =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(1));
if (Object::Handle(arguments.ArgAt(2)).IsSmi()) {
ASSERT(Smi::CheckedHandle(arguments.ArgAt(2)).Value() ==
StubCode::kNoInstantiator);
// Unless null (for a raw type), the type argument vector may be longer than
// necessary due to a type optimization reusing the type argument vector of
// the instantiator.
ASSERT(type_arguments.IsNull() ||
(type_arguments.IsInstantiated() &&
(type_arguments.Length() >= cls.NumTypeArguments())));
} else {
// A still uninstantiated type argument vector must have the correct length.
ASSERT(!type_arguments.IsInstantiated() &&
(type_arguments.Length() == cls.NumTypeArguments()));
const AbstractTypeArguments& instantiator =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(2));
ASSERT(instantiator.IsNull() || instantiator.IsInstantiated());
Error& malformed_error = Error::Handle();
// Code inlined in the caller should have optimized the case where the
// instantiator can be reused as type argument vector.
ASSERT(instantiator.IsNull() || !type_arguments.IsUninstantiatedIdentity());
type_arguments = type_arguments.InstantiateFrom(instantiator,
&malformed_error);
if (!malformed_error.IsNull()) {
// Throw a dynamic type error.
const intptr_t location = GetCallerLocation();
String& malformed_error_message = String::Handle(
String::New(malformed_error.ToErrorCString()));
Exceptions::CreateAndThrowTypeError(
location, Symbols::Empty(), Symbols::Empty(),
Symbols::Empty(), malformed_error_message);
UNREACHABLE();
}
}
ASSERT(type_arguments.IsNull() || type_arguments.IsInstantiated());
instance.SetTypeArguments(type_arguments);
}
// Instantiate type arguments.
// Arg0: uninstantiated type arguments.
// Arg1: instantiator type arguments.
// Return value: instantiated type arguments.
DEFINE_RUNTIME_ENTRY(InstantiateTypeArguments, 2) {
ASSERT(arguments.ArgCount() ==
kInstantiateTypeArgumentsRuntimeEntry.argument_count());
AbstractTypeArguments& type_arguments =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(0));
const AbstractTypeArguments& instantiator =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(1));
ASSERT(!type_arguments.IsNull() && !type_arguments.IsInstantiated());
ASSERT(instantiator.IsNull() || instantiator.IsInstantiated());
// Code inlined in the caller should have optimized the case where the
// instantiator can be reused as type argument vector.
ASSERT(instantiator.IsNull() || !type_arguments.IsUninstantiatedIdentity());
type_arguments = InstantiatedTypeArguments::New(type_arguments, instantiator);
ASSERT(type_arguments.IsInstantiated());
arguments.SetReturn(type_arguments);
}
// Allocate a new closure.
// The type argument vector of a closure is always the vector of type parameters
// of its signature class, i.e. an uninstantiated identity vector. Therefore,
// the instantiator type arguments can be used as the instantiated closure type
// arguments and is passed here as the type arguments.
// Arg0: local function.
// Arg1: type arguments of the closure (i.e. instantiator).
// Return value: newly allocated closure.
DEFINE_RUNTIME_ENTRY(AllocateClosure, 2) {
ASSERT(arguments.ArgCount() == kAllocateClosureRuntimeEntry.argument_count());
const Function& function = Function::CheckedHandle(arguments.ArgAt(0));
ASSERT(function.IsClosureFunction() && !function.IsImplicitClosureFunction());
const AbstractTypeArguments& type_arguments =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(1));
ASSERT(type_arguments.IsNull() || type_arguments.IsInstantiated());
// The current context was saved in the Isolate structure when entering the
// runtime.
const Context& context = Context::Handle(isolate->top_context());
ASSERT(!context.IsNull());
const Instance& closure = Instance::Handle(Closure::New(function, context));
Closure::SetTypeArguments(closure, type_arguments);
arguments.SetReturn(closure);
}
// Allocate a new implicit static closure.
// Arg0: local function.
// Return value: newly allocated closure.
DEFINE_RUNTIME_ENTRY(AllocateImplicitStaticClosure, 1) {
ASSERT(arguments.ArgCount() ==
kAllocateImplicitStaticClosureRuntimeEntry.argument_count());
ObjectStore* object_store = isolate->object_store();
ASSERT(object_store != NULL);
const Function& function = Function::CheckedHandle(arguments.ArgAt(0));
ASSERT(!function.IsNull());
ASSERT(function.IsImplicitStaticClosureFunction());
const Context& context = Context::Handle(object_store->empty_context());
arguments.SetReturn(Instance::Handle(Closure::New(function, context)));
}
// Allocate a new implicit instance closure.
// Arg0: local function.
// Arg1: receiver object.
// Arg2: type arguments of the closure.
// Return value: newly allocated closure.
DEFINE_RUNTIME_ENTRY(AllocateImplicitInstanceClosure, 3) {
ASSERT(arguments.ArgCount() ==
kAllocateImplicitInstanceClosureRuntimeEntry.argument_count());
const Function& function = Function::CheckedHandle(arguments.ArgAt(0));
ASSERT(function.IsImplicitInstanceClosureFunction());
const Instance& receiver = Instance::CheckedHandle(arguments.ArgAt(1));
const AbstractTypeArguments& type_arguments =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(2));
ASSERT(type_arguments.IsNull() || type_arguments.IsInstantiated());
Context& context = Context::Handle();
context = Context::New(1);
context.SetAt(0, receiver);
const Instance& closure = Instance::Handle(Closure::New(function, context));
Closure::SetTypeArguments(closure, type_arguments);
arguments.SetReturn(closure);
}
// Allocate a new context large enough to hold the given number of variables.
// Arg0: number of variables.
// Return value: newly allocated context.
DEFINE_RUNTIME_ENTRY(AllocateContext, 1) {
ASSERT(arguments.ArgCount() == kAllocateContextRuntimeEntry.argument_count());
const Smi& num_variables = Smi::CheckedHandle(arguments.ArgAt(0));
arguments.SetReturn(Context::Handle(Context::New(num_variables.Value())));
}
// Make a copy of the given context, including the values of the captured
// variables.
// Arg0: the context to be cloned.
// Return value: newly allocated context.
DEFINE_RUNTIME_ENTRY(CloneContext, 1) {
ASSERT(arguments.ArgCount() == kCloneContextRuntimeEntry.argument_count());
const Context& ctx = Context::CheckedHandle(arguments.ArgAt(0));
Context& cloned_ctx = Context::Handle(Context::New(ctx.num_variables()));
cloned_ctx.set_parent(Context::Handle(ctx.parent()));
for (int i = 0; i < ctx.num_variables(); i++) {
cloned_ctx.SetAt(i, Instance::Handle(ctx.At(i)));
}
arguments.SetReturn(cloned_ctx);
}
// Helper routine for tracing a type check.
static void PrintTypeCheck(
const char* message,
const Instance& instance,
const AbstractType& type,
const AbstractTypeArguments& instantiator_type_arguments,
const Bool& result) {
DartFrameIterator iterator;
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
const Type& instance_type = Type::Handle(instance.GetType());
ASSERT(instance_type.IsInstantiated());
if (type.IsInstantiated()) {
OS::PrintErr("%s: '%s' %"Pd" %s '%s' %"Pd" (pc: %#"Px").\n",
message,
String::Handle(instance_type.Name()).ToCString(),
Class::Handle(instance_type.type_class()).id(),
(result.raw() == Bool::True().raw()) ? "is" : "is !",
String::Handle(type.Name()).ToCString(),
Class::Handle(type.type_class()).id(),
caller_frame->pc());
} else {
// Instantiate type before printing.
Error& malformed_error = Error::Handle();
const AbstractType& instantiated_type = AbstractType::Handle(
type.InstantiateFrom(instantiator_type_arguments, &malformed_error));
OS::PrintErr("%s: '%s' %s '%s' instantiated from '%s' (pc: %#"Px").\n",
message,
String::Handle(instance_type.Name()).ToCString(),
(result.raw() == Bool::True().raw()) ? "is" : "is !",
String::Handle(instantiated_type.Name()).ToCString(),
String::Handle(type.Name()).ToCString(),
caller_frame->pc());
if (!malformed_error.IsNull()) {
OS::Print(" malformed error: %s\n", malformed_error.ToErrorCString());
}
}
const Function& function = Function::Handle(
caller_frame->LookupDartFunction());
OS::PrintErr(" -> Function %s\n", function.ToFullyQualifiedCString());
}
// Converts InstantiatedTypeArguments to TypeArguments and stores it
// into the instance. The assembly code can handle only type arguments of
// class TypeArguments. Because of the overhead, do it only when needed.
// Return true if type arguments have been replaced, false otherwise.
static bool OptimizeTypeArguments(const Instance& instance) {
const Class& type_class = Class::ZoneHandle(instance.clazz());
if (!type_class.HasTypeArguments()) {
return false;
}
AbstractTypeArguments& type_arguments =
AbstractTypeArguments::Handle(instance.GetTypeArguments());
if (type_arguments.IsNull()) {
return false;
}
bool replaced = false;
if (type_arguments.IsInstantiatedTypeArguments()) {
AbstractTypeArguments& uninstantiated = AbstractTypeArguments::Handle();
AbstractTypeArguments& instantiator = AbstractTypeArguments::Handle();
do {
const InstantiatedTypeArguments& instantiated_type_arguments =
InstantiatedTypeArguments::Cast(type_arguments);
uninstantiated =
instantiated_type_arguments.uninstantiated_type_arguments();
instantiator = instantiated_type_arguments.instantiator_type_arguments();
Error& malformed_error = Error::Handle();
type_arguments = uninstantiated.InstantiateFrom(instantiator,
&malformed_error);
ASSERT(malformed_error.IsNull()); // Malformed types are not optimized.
} while (type_arguments.IsInstantiatedTypeArguments());
AbstractTypeArguments& new_type_arguments = AbstractTypeArguments::Handle();
new_type_arguments = type_arguments.Canonicalize();
instance.SetTypeArguments(new_type_arguments);
replaced = true;
} else if (!type_arguments.IsCanonical()) {
AbstractTypeArguments& new_type_arguments = AbstractTypeArguments::Handle();
new_type_arguments = type_arguments.Canonicalize();
instance.SetTypeArguments(new_type_arguments);
replaced = true;
}
ASSERT(AbstractTypeArguments::Handle(
instance.GetTypeArguments()).IsTypeArguments());
return replaced;
}
// This updates the type test cache, an array containing 4-value elements
// (instance class, instance type arguments, instantiator type arguments and
// test_result). It can be applied to classes with type arguments in which
// case it contains just the result of the class subtype test, not including
// the evaluation of type arguments.
// This operation is currently very slow (lookup of code is not efficient yet).
// 'instantiator' can be null, in which case inst_targ
static void UpdateTypeTestCache(
const Instance& instance,
const AbstractType& type,
const Instance& instantiator,
const AbstractTypeArguments& incoming_instantiator_type_arguments,
const Bool& result,
const SubtypeTestCache& new_cache) {
// Since the test is expensive, don't do it unless necessary.
// The list of disallowed cases will decrease as they are implemented in
// inlined assembly.
if (new_cache.IsNull()) return;
// Instantiator type arguments may be canonicalized later.
AbstractTypeArguments& instantiator_type_arguments =
AbstractTypeArguments::Handle(incoming_instantiator_type_arguments.raw());
AbstractTypeArguments& instance_type_arguments =
AbstractTypeArguments::Handle();
const Class& instance_class = Class::Handle(instance.clazz());
// Canonicalize type arguments.
bool type_arguments_replaced = false;
if (instance_class.HasTypeArguments()) {
// Canonicalize type arguments.
type_arguments_replaced = OptimizeTypeArguments(instance);
instance_type_arguments = instance.GetTypeArguments();
}
if (!instantiator.IsNull()) {
if (OptimizeTypeArguments(instantiator)) {
type_arguments_replaced = true;
}
instantiator_type_arguments = instantiator.GetTypeArguments();
}
intptr_t last_instance_class_id = -1;
AbstractTypeArguments& last_instance_type_arguments =
AbstractTypeArguments::Handle();
AbstractTypeArguments& last_instantiator_type_arguments =
AbstractTypeArguments::Handle();
Bool& last_result = Bool::Handle();
const intptr_t len = new_cache.NumberOfChecks();
if (len >= FLAG_max_subtype_cache_entries) {
return;
}
for (intptr_t i = 0; i < len; ++i) {
new_cache.GetCheck(
i,
&last_instance_class_id,
&last_instance_type_arguments,
&last_instantiator_type_arguments,
&last_result);
if ((last_instance_class_id == instance_class.id()) &&
(last_instance_type_arguments.raw() == instance_type_arguments.raw()) &&
(last_instantiator_type_arguments.raw() ==
instantiator_type_arguments.raw())) {
if (FLAG_trace_type_checks) {
OS::PrintErr("%"Pd" ", i);
if (type_arguments_replaced) {
PrintTypeCheck("Duplicate cache entry (canonical.)", instance, type,
instantiator_type_arguments, result);
} else {
PrintTypeCheck("WARNING Duplicate cache entry", instance, type,
instantiator_type_arguments, result);
}
}
// Can occur if we have canonicalized arguments.
// TODO(srdjan): Investigate why this assert can fail.
// ASSERT(type_arguments_replaced);
return;
}
}
if (!instantiator_type_arguments.IsInstantiatedTypeArguments()) {
new_cache.AddCheck(instance_class.id(),
instance_type_arguments,
instantiator_type_arguments,
result);
}
if (FLAG_trace_type_checks) {
AbstractType& test_type = AbstractType::Handle(type.raw());
if (!test_type.IsInstantiated()) {
Error& malformed_error = Error::Handle();
test_type = type.InstantiateFrom(instantiator_type_arguments,
&malformed_error);
ASSERT(malformed_error.IsNull()); // Malformed types are not optimized.
}
OS::PrintErr(" Updated test cache %p ix: %"Pd" with (%"Pd", %p, %p, %s)\n"
" [%p %s %"Pd", %p %s]\n"
" [%p %s %"Pd", %p %s] %s\n",
new_cache.raw(),
len,
instance_class.id(),
instance_type_arguments.raw(),
instantiator_type_arguments.raw(),
result.ToCString(),
instance_class.raw(),
instance_class.ToCString(),
instance_class.id(),
instance_type_arguments.raw(),
instance_type_arguments.ToCString(),
test_type.type_class(),
Class::Handle(test_type.type_class()).ToCString(),
Class::Handle(test_type.type_class()).id(),
instantiator_type_arguments.raw(),
instantiator_type_arguments.ToCString(),
result.ToCString());
}
}
// Check that the given instance is an instance of the given type.
// Tested instance may not be null, because the null test is inlined.
// Arg0: instance being checked.
// Arg1: type.
// Arg2: instantiator (or null).
// Arg3: type arguments of the instantiator of the type.
// Arg4: SubtypeTestCache.
// Return value: true or false, or may throw a type error in checked mode.
DEFINE_RUNTIME_ENTRY(Instanceof, 5) {
ASSERT(arguments.ArgCount() == kInstanceofRuntimeEntry.argument_count());
const Instance& instance = Instance::CheckedHandle(arguments.ArgAt(0));
const AbstractType& type = AbstractType::CheckedHandle(arguments.ArgAt(1));
const Instance& instantiator = Instance::CheckedHandle(arguments.ArgAt(2));
const AbstractTypeArguments& instantiator_type_arguments =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(3));
const SubtypeTestCache& cache =
SubtypeTestCache::CheckedHandle(arguments.ArgAt(4));
ASSERT(type.IsFinalized());
Error& malformed_error = Error::Handle();
const Bool& result =
instance.IsInstanceOf(type,
instantiator_type_arguments,
&malformed_error) ? Bool::True() : Bool::False();
if (FLAG_trace_type_checks) {
PrintTypeCheck("InstanceOf",
instance, type, instantiator_type_arguments, result);
}
if (!result.value() && !malformed_error.IsNull()) {
// Throw a dynamic type error only if the instanceof test fails.
const intptr_t location = GetCallerLocation();
String& malformed_error_message = String::Handle(
String::New(malformed_error.ToErrorCString()));
Exceptions::CreateAndThrowTypeError(
location, Symbols::Empty(), Symbols::Empty(),
Symbols::Empty(), malformed_error_message);
UNREACHABLE();
}
UpdateTypeTestCache(instance, type, instantiator,
instantiator_type_arguments, result, cache);
arguments.SetReturn(result);
}
// Check that the type of the given instance is a subtype of the given type and
// can therefore be assigned.
// Arg0: instance being assigned.
// Arg1: type being assigned to.
// Arg2: instantiator (or null).
// Arg3: type arguments of the instantiator of the type being assigned to.
// Arg4: name of variable being assigned to.
// Arg5: SubtypeTestCache.
// Return value: instance if a subtype, otherwise throw a TypeError.
DEFINE_RUNTIME_ENTRY(TypeCheck, 6) {
ASSERT(arguments.ArgCount() == kTypeCheckRuntimeEntry.argument_count());
const Instance& src_instance = Instance::CheckedHandle(arguments.ArgAt(0));
const AbstractType& dst_type =
AbstractType::CheckedHandle(arguments.ArgAt(1));
const Instance& dst_instantiator =
Instance::CheckedHandle(arguments.ArgAt(2));
const AbstractTypeArguments& instantiator_type_arguments =
AbstractTypeArguments::CheckedHandle(arguments.ArgAt(3));
const String& dst_name = String::CheckedHandle(arguments.ArgAt(4));
const SubtypeTestCache& cache =
SubtypeTestCache::CheckedHandle(arguments.ArgAt(5));
ASSERT(!dst_type.IsDynamicType()); // No need to check assignment.
ASSERT(!dst_type.IsMalformed()); // Already checked in code generator.
ASSERT(!src_instance.IsNull()); // Already checked in inlined code.
Error& malformed_error = Error::Handle();
const bool is_instance_of = src_instance.IsInstanceOf(
dst_type, instantiator_type_arguments, &malformed_error);
if (FLAG_trace_type_checks) {
PrintTypeCheck("TypeCheck",
src_instance, dst_type, instantiator_type_arguments,
is_instance_of ? Bool::True() : Bool::False());
}
if (!is_instance_of) {
// Throw a dynamic type error.
const intptr_t location = GetCallerLocation();
const AbstractType& src_type = AbstractType::Handle(src_instance.GetType());
const String& src_type_name = String::Handle(src_type.UserVisibleName());
String& dst_type_name = String::Handle();
if (!dst_type.IsInstantiated()) {
// Instantiate dst_type before reporting the error.
const AbstractType& instantiated_dst_type = AbstractType::Handle(
dst_type.InstantiateFrom(instantiator_type_arguments, NULL));
// Note that instantiated_dst_type may be malformed.
dst_type_name = instantiated_dst_type.UserVisibleName();
} else {
dst_type_name = dst_type.UserVisibleName();
}
String& malformed_error_message = String::Handle();
if (!malformed_error.IsNull()) {
ASSERT(FLAG_enable_type_checks);
malformed_error_message = String::New(malformed_error.ToErrorCString());
}
Exceptions::CreateAndThrowTypeError(location, src_type_name, dst_type_name,
dst_name, malformed_error_message);
UNREACHABLE();
}
UpdateTypeTestCache(src_instance, dst_type,
dst_instantiator, instantiator_type_arguments,
Bool::True(), cache);
arguments.SetReturn(src_instance);
}
// Test whether a formal parameter was defined by a passed-in argument.
// Arg0: formal parameter index as Smi.
// Arg1: formal parameter name as Symbol.
// Arg2: arguments descriptor array.
// Return value: true or false.
DEFINE_RUNTIME_ENTRY(ArgumentDefinitionTest, 3) {
ASSERT(arguments.ArgCount() ==
kArgumentDefinitionTestRuntimeEntry.argument_count());
const Smi& param_index = Smi::CheckedHandle(arguments.ArgAt(0));
const String& param_name = String::CheckedHandle(arguments.ArgAt(1));
ASSERT(param_name.IsSymbol());
const Array& arg_desc_array = Array::CheckedHandle(arguments.ArgAt(2));
ArgumentsDescriptor arg_desc(arg_desc_array);
const intptr_t num_pos_args = arg_desc.PositionalCount();
// Check if the formal parameter is defined by a positional argument.
bool is_defined = num_pos_args > param_index.Value();
if (!is_defined) {
// Check if the formal parameter is defined by a named argument.
const intptr_t num_named_args = arg_desc.NamedCount();
for (intptr_t i = 0; i < num_named_args; i++) {
if (arg_desc.MatchesNameAt(i, param_name)) {
is_defined = true;
break;
}
}
}
arguments.SetReturn(is_defined ? Bool::True() : Bool::False());
}
// Report that the type of the given object is not bool in conditional context.
// Arg0: bad object.
// Return value: none, throws a TypeError.
DEFINE_RUNTIME_ENTRY(ConditionTypeError, 1) {
ASSERT(arguments.ArgCount() ==
kConditionTypeErrorRuntimeEntry.argument_count());
const intptr_t location = GetCallerLocation();
const Instance& src_instance = Instance::CheckedHandle(arguments.ArgAt(0));
ASSERT(src_instance.IsNull() || !src_instance.IsBool());
const Type& bool_interface = Type::Handle(Type::BoolType());
const AbstractType& src_type = AbstractType::Handle(src_instance.GetType());
const String& src_type_name = String::Handle(src_type.UserVisibleName());
const String& bool_type_name =
String::Handle(bool_interface.UserVisibleName());
const String& no_malformed_type_error = String::Handle();
Exceptions::CreateAndThrowTypeError(location, src_type_name, bool_type_name,
Symbols::BooleanExpression(),
no_malformed_type_error);
UNREACHABLE();
}
// Report that the type of the type check is malformed.
// Arg0: src value.
// Arg1: name of instance being assigned to.
// Arg2: malformed type error message.
// Return value: none, throws an exception.
DEFINE_RUNTIME_ENTRY(MalformedTypeError, 3) {
ASSERT(arguments.ArgCount() ==
kMalformedTypeErrorRuntimeEntry.argument_count());
const intptr_t location = GetCallerLocation();
const Instance& src_value = Instance::CheckedHandle(arguments.ArgAt(0));
const String& dst_name = String::CheckedHandle(arguments.ArgAt(1));
const String& malformed_error = String::CheckedHandle(arguments.ArgAt(2));
const AbstractType& src_type = AbstractType::Handle(src_value.GetType());
const String& src_type_name = String::Handle(src_type.UserVisibleName());
Exceptions::CreateAndThrowTypeError(location, src_type_name,
Symbols::Malformed(),
dst_name, malformed_error);
UNREACHABLE();
}
DEFINE_RUNTIME_ENTRY(Throw, 1) {
ASSERT(arguments.ArgCount() == kThrowRuntimeEntry.argument_count());
const Instance& exception = Instance::CheckedHandle(arguments.ArgAt(0));
Exceptions::Throw(exception);
}
DEFINE_RUNTIME_ENTRY(ReThrow, 2) {
ASSERT(arguments.ArgCount() == kReThrowRuntimeEntry.argument_count());
const Instance& exception = Instance::CheckedHandle(arguments.ArgAt(0));
const Instance& stacktrace = Instance::CheckedHandle(arguments.ArgAt(1));
Exceptions::ReThrow(exception, stacktrace);
}
// Patches static call with the target's entry point. Compiles target if
// necessary.
DEFINE_RUNTIME_ENTRY(PatchStaticCall, 0) {
ASSERT(arguments.ArgCount() == kPatchStaticCallRuntimeEntry.argument_count());
DartFrameIterator iterator;
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
const Code& caller_code = Code::Handle(caller_frame->LookupDartCode());
ASSERT(!caller_code.IsNull());
const Function& target_function = Function::Handle(
caller_code.GetStaticCallTargetFunctionAt(caller_frame->pc()));
if (!target_function.HasCode()) {
const Error& error =
Error::Handle(Compiler::CompileFunction(target_function));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
}
const Code& target_code = Code::Handle(target_function.CurrentCode());
// Before patching verify that we are not repeatedly patching to the same
// target.
ASSERT(target_code.EntryPoint() !=
CodePatcher::GetStaticCallTargetAt(caller_frame->pc(), caller_code));
CodePatcher::PatchStaticCallAt(caller_frame->pc(), caller_code,
target_code.EntryPoint());
caller_code.SetStaticCallTargetCodeAt(caller_frame->pc(), target_code);
if (FLAG_trace_patching) {
OS::PrintErr("PatchStaticCall: patching from %#"Px" to '%s' %#"Px"\n",
caller_frame->pc(),
target_function.ToFullyQualifiedCString(),
target_code.EntryPoint());
}
arguments.SetReturn(target_code);
}
// Resolves and compiles the target function of an instance call, updates
// function cache of the receiver's class and returns the compiled code or null.
// Only the number of named arguments is checked, but not the actual names.
RawCode* ResolveCompileInstanceCallTarget(
const Instance& receiver,
const ICData& ic_data,
const Array& arguments_descriptor_array) {
ArgumentsDescriptor arguments_descriptor(arguments_descriptor_array);
intptr_t num_arguments = arguments_descriptor.Count();
int num_named_arguments = arguments_descriptor.NamedCount();
String& function_name = String::Handle(ic_data.target_name());
ASSERT(function_name.IsSymbol());
Function& function = Function::Handle();
function = Resolver::ResolveDynamic(receiver,
function_name,
num_arguments,
num_named_arguments);
if (function.IsNull()) {
return Code::null();
} else {
if (!function.HasCode()) {
const Error& error = Error::Handle(Compiler::CompileFunction(function));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
}
return function.CurrentCode();
}
}
// Result of an invoke may be an unhandled exception, in which case we
// rethrow it.
static void CheckResultError(const Object& result) {
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
}
}
// Gets called from debug stub when code reaches a breakpoint.
DEFINE_RUNTIME_ENTRY(BreakpointStaticHandler, 0) {
ASSERT(arguments.ArgCount() ==
kBreakpointStaticHandlerRuntimeEntry.argument_count());
ASSERT(isolate->debugger() != NULL);
isolate->debugger()->SignalBpReached();
// Make sure the static function that is about to be called is
// compiled. The stub will jump to the entry point without any
// further tests.
DartFrameIterator iterator;
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
const Code& code = Code::Handle(caller_frame->LookupDartCode());
const Function& function =
Function::Handle(code.GetStaticCallTargetFunctionAt(caller_frame->pc()));
if (!function.HasCode()) {
const Error& error = Error::Handle(Compiler::CompileFunction(function));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
}
arguments.SetReturn(Code::ZoneHandle(function.CurrentCode()));
}
// Gets called from debug stub when code reaches a breakpoint at a return
// in Dart code.
DEFINE_RUNTIME_ENTRY(BreakpointReturnHandler, 0) {
ASSERT(arguments.ArgCount() ==
kBreakpointReturnHandlerRuntimeEntry.argument_count());
ASSERT(isolate->debugger() != NULL);
isolate->debugger()->SignalBpReached();
}
// Gets called from debug stub when code reaches a breakpoint.
DEFINE_RUNTIME_ENTRY(BreakpointDynamicHandler, 0) {
ASSERT(arguments.ArgCount() ==
kBreakpointDynamicHandlerRuntimeEntry.argument_count());
ASSERT(isolate->debugger() != NULL);
isolate->debugger()->SignalBpReached();
}
static RawFunction* InlineCacheMissHandler(
const GrowableArray<const Instance*>& args,
const ICData& ic_data,
const Array& arg_descriptor_array) {
const Instance& receiver = *args[0];
const Code& target_code =
Code::Handle(ResolveCompileInstanceCallTarget(receiver,
ic_data,
arg_descriptor_array));
if (target_code.IsNull()) {
// Let the megamorphic stub handle special cases: NoSuchMethod,
// closure calls.
if (FLAG_trace_ic) {
OS::PrintErr("InlineCacheMissHandler NULL code for receiver: %s\n",
receiver.ToCString());
}
return Function::null();
}
const Function& target_function =
Function::Handle(target_code.function());
ASSERT(!target_function.IsNull());
if (args.length() == 1) {
ic_data.AddReceiverCheck(Class::Handle(args[0]->clazz()).id(),
target_function);
} else {
GrowableArray<intptr_t> class_ids(args.length());
ASSERT(ic_data.num_args_tested() == args.length());
for (intptr_t i = 0; i < args.length(); i++) {
class_ids.Add(Class::Handle(args[i]->clazz()).id());
}
ic_data.AddCheck(class_ids, target_function);
}
if (FLAG_trace_ic_miss_in_optimized || FLAG_trace_ic) {
DartFrameIterator iterator;
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
if (FLAG_trace_ic_miss_in_optimized) {
const Code& caller = Code::Handle(Code::LookupCode(caller_frame->pc()));
if (caller.is_optimized()) {
OS::PrintErr("IC miss in optimized code; call %s -> %s\n",
Function::Handle(caller.function()).ToCString(),
target_function.ToCString());
}
}
if (FLAG_trace_ic) {
OS::PrintErr("InlineCacheMissHandler %d call at %#"Px"' "
"adding <%s> id:%"Pd" -> <%s>\n",
args.length(),
caller_frame->pc(),
Class::Handle(receiver.clazz()).ToCString(),
Class::Handle(receiver.clazz()).id(),
target_function.ToCString());
}
}
return target_function.raw();
}
// Handles inline cache misses by updating the IC data array of the call
// site.
// Arg0: Receiver object.
// Arg1: IC data object.
// Arg2: Arguments descriptor array.
// Returns: target function with compiled code or null.
// Modifies the instance call to hold the updated IC data array.
DEFINE_RUNTIME_ENTRY(InlineCacheMissHandlerOneArg, 3) {
ASSERT(arguments.ArgCount() ==
kInlineCacheMissHandlerOneArgRuntimeEntry.argument_count());
const Instance& receiver = Instance::CheckedHandle(arguments.ArgAt(0));
const ICData& ic_data = ICData::CheckedHandle(arguments.ArgAt(1));
const Array& arg_desc_array = Array::CheckedHandle(arguments.ArgAt(2));
GrowableArray<const Instance*> args(1);
args.Add(&receiver);
const Function& result =
Function::Handle(InlineCacheMissHandler(args, ic_data, arg_desc_array));
arguments.SetReturn(result);
}
// Handles inline cache misses by updating the IC data array of the call
// site.
// Arg0: Receiver object.
// Arg1: Argument after receiver.
// Arg2: IC data object.
// Arg3: Arguments descriptor array.
// Returns: target function with compiled code or null.
// Modifies the instance call to hold the updated IC data array.
DEFINE_RUNTIME_ENTRY(InlineCacheMissHandlerTwoArgs, 4) {
ASSERT(arguments.ArgCount() ==
kInlineCacheMissHandlerTwoArgsRuntimeEntry.argument_count());
const Instance& receiver = Instance::CheckedHandle(arguments.ArgAt(0));
const Instance& other = Instance::CheckedHandle(arguments.ArgAt(1));
const ICData& ic_data = ICData::CheckedHandle(arguments.ArgAt(2));
const Array& arg_desc_array = Array::CheckedHandle(arguments.ArgAt(3));
GrowableArray<const Instance*> args(2);
args.Add(&receiver);
args.Add(&other);
const Function& result =
Function::Handle(InlineCacheMissHandler(args, ic_data, arg_desc_array));
arguments.SetReturn(result);
}
// Handles inline cache misses by updating the IC data array of the call
// site.
// Arg0: Receiver object.
// Arg1: Argument after receiver.
// Arg2: Second argument after receiver.
// Arg3: IC data object.
// Arg4: Arguments descriptor array.
// Returns: target function with compiled code or null.
// Modifies the instance call to hold the updated IC data array.
DEFINE_RUNTIME_ENTRY(InlineCacheMissHandlerThreeArgs, 5) {
ASSERT(arguments.ArgCount() ==
kInlineCacheMissHandlerThreeArgsRuntimeEntry.argument_count());
const Instance& receiver = Instance::CheckedHandle(arguments.ArgAt(0));
const Instance& arg1 = Instance::CheckedHandle(arguments.ArgAt(1));
const Instance& arg2 = Instance::CheckedHandle(arguments.ArgAt(2));
const ICData& ic_data = ICData::CheckedHandle(arguments.ArgAt(3));
const Array& arg_desc_array = Array::CheckedHandle(arguments.ArgAt(4));
GrowableArray<const Instance*> args(3);
args.Add(&receiver);
args.Add(&arg1);
args.Add(&arg2);
const Function& result =
Function::Handle(InlineCacheMissHandler(args, ic_data, arg_desc_array));
arguments.SetReturn(result);
}
// Handle a miss of a megamorphic cache.
// Arg0: Receiver.
// Arg1: ICData object.
// Arg2: Arguments descriptor array.
// Returns: target instructions to call or null if the
// InstanceFunctionLookup stub should be used (e.g., to invoke no such
// method and implicit closures)..
DEFINE_RUNTIME_ENTRY(MegamorphicCacheMissHandler, 3) {
ASSERT(arguments.ArgCount() ==
kMegamorphicCacheMissHandlerRuntimeEntry.argument_count());
const Instance& receiver = Instance::CheckedHandle(arguments.ArgAt(0));
const ICData& ic_data = ICData::CheckedHandle(arguments.ArgAt(1));
const Array& descriptor = Array::CheckedHandle(arguments.ArgAt(2));
const String& name = String::Handle(ic_data.target_name());
const MegamorphicCache& cache = MegamorphicCache::Handle(
isolate->megamorphic_cache_table()->Lookup(name, descriptor));
Class& cls = Class::Handle(receiver.clazz());
const bool is_null = cls.IsNullClass();
// For lookups treat null as an instance of class Object.
if (is_null) {
cls = isolate->object_store()->object_class();
}
ASSERT(!cls.IsNull());
if (FLAG_trace_ic || FLAG_trace_ic_miss_in_optimized) {
OS::PrintErr("Megamorphic IC miss, class=%s, function=%s\n",
cls.ToCString(), name.ToCString());
}
intptr_t arg_count =
Smi::Cast(Object::Handle(descriptor.At(0))).Value();
intptr_t named_arg_count =
arg_count - Smi::Cast(Object::Handle(descriptor.At(1))).Value();
const Function& target = Function::Handle(
Resolver::ResolveDynamicForReceiverClass(cls,
name,
arg_count,
named_arg_count));
Instructions& instructions = Instructions::Handle();
if (!target.IsNull()) {
if (!target.HasCode()) {
const Error& error = Error::Handle(Compiler::CompileFunction(target));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
}
ASSERT(target.HasCode());
instructions = Code::Handle(target.CurrentCode()).instructions();
}
arguments.SetReturn(instructions);
if (instructions.IsNull()) return;
cache.EnsureCapacity();
const Smi& class_id = Smi::Handle(Smi::New(
is_null ? static_cast<intptr_t>(kNullCid) : cls.id()));
cache.Insert(class_id, target);
return;
}
// Updates IC data for two arguments. Used by the equality operation when
// the control flow bypasses regular inline cache (null arguments).
// Arg0: Receiver object.
// Arg1: Argument after receiver.
// Arg2: Target's name.
// Arg3: ICData.
DEFINE_RUNTIME_ENTRY(UpdateICDataTwoArgs, 4) {
ASSERT(arguments.ArgCount() ==
kUpdateICDataTwoArgsRuntimeEntry.argument_count());
const Instance& receiver = Instance::CheckedHandle(arguments.ArgAt(0));
const Instance& arg1 = Instance::CheckedHandle(arguments.ArgAt(1));
const String& target_name = String::CheckedHandle(arguments.ArgAt(2));
const ICData& ic_data = ICData::CheckedHandle(arguments.ArgAt(3));
GrowableArray<const Instance*> args(2);
args.Add(&receiver);
args.Add(&arg1);
const intptr_t kNumArguments = 2;
const intptr_t kNumNamedArguments = 0;
Function& target_function = Function::Handle();
target_function = Resolver::ResolveDynamic(receiver,
target_name,
kNumArguments,
kNumNamedArguments);
ASSERT(!target_function.IsNull());
GrowableArray<intptr_t> class_ids(kNumArguments);
ASSERT(ic_data.num_args_tested() == kNumArguments);
class_ids.Add(Class::Handle(receiver.clazz()).id());
class_ids.Add(Class::Handle(arg1.clazz()).id());
ic_data.AddCheck(class_ids, target_function);
}
// Invoke appropriate noSuchMethod function.
// Arg0: receiver.
// Arg1: ic-data.
// Arg2: arguments descriptor array.
// Arg3: arguments array.
DEFINE_RUNTIME_ENTRY(InvokeNoSuchMethodFunction, 4) {
ASSERT(arguments.ArgCount() ==
kInvokeNoSuchMethodFunctionRuntimeEntry.argument_count());
const Instance& receiver = Instance::CheckedHandle(arguments.ArgAt(0));
const ICData& ic_data = ICData::CheckedHandle(arguments.ArgAt(1));
const Array& orig_arguments_desc = Array::CheckedHandle(arguments.ArgAt(2));
const Array& orig_arguments = Array::CheckedHandle(arguments.ArgAt(3));
const String& original_function_name = String::Handle(ic_data.target_name());
const Object& result = Object::Handle(
DartEntry::InvokeNoSuchMethod(receiver,
original_function_name,
orig_arguments,
orig_arguments_desc));
CheckResultError(result);
arguments.SetReturn(result);
}
// A non-closure object was invoked as a closure, so call the "call" method
// on it.
// Arg0: arguments descriptor.
// Arg1: arguments array, including non-closure object.
DEFINE_RUNTIME_ENTRY(InvokeNonClosure, 2) {
ASSERT(arguments.ArgCount() ==
kInvokeNonClosureRuntimeEntry.argument_count());
const Array& args_descriptor = Array::CheckedHandle(arguments.ArgAt(0));
const Array& function_args = Array::CheckedHandle(arguments.ArgAt(1));
const Object& result = Object::Handle(
DartEntry::InvokeClosure(function_args, args_descriptor));
CheckResultError(result);
arguments.SetReturn(result);
}
// An instance call of the form o.f(...) could not be resolved. Check if
// there is a getter with the same name. If so, invoke it. If the value is
// a closure, invoke it with the given arguments. If the value is a
// non-closure, attempt to invoke "call" on it.
static bool ResolveCallThroughGetter(const Instance& receiver,
const Class& receiver_class,
const String& target_name,
const Array& arguments_descriptor,
const Array& arguments,
Object* result) {
// 1. Check if there is a getter with the same name.
const String& getter_name = String::Handle(Field::GetterName(target_name));
const int kNumArguments = 1;
const int kNumNamedArguments = 0;
const Function& getter = Function::Handle(
Resolver::ResolveDynamicForReceiverClass(receiver_class,
getter_name,
kNumArguments,
kNumNamedArguments));
if (getter.IsNull() || getter.IsMethodExtractor()) {
return false;
}
// 2. Invoke the getter.
const Array& args = Array::Handle(Array::New(kNumArguments));
args.SetAt(0, receiver);
const Object& value = Object::Handle(DartEntry::InvokeFunction(getter, args));
// 3. If the getter threw an exception, treat it as no such method.
if (value.IsUnhandledException()) return false;
// 4. If there was some other error, propagate it.
CheckResultError(value);
// 5. Invoke the value as a closure.
Instance& instance = Instance::Handle();
instance ^= value.raw();
arguments.SetAt(0, instance);
*result = DartEntry::InvokeClosure(arguments, arguments_descriptor);
CheckResultError(*result);
return true;
}
// The IC miss handler has failed to find a (cacheable) instance function to
// invoke. Handle three possibilities:
//
// 1. If the call was a getter o.f, there may be an instance function with
// the same name. If so, create an implicit closure and return it.
//
// 2. If the call was an instance call o.f(...), there may be a getter with
// the same name. If so, invoke it. If the value is a closure, invoke
// it with the given arguments. If the value is a non-closure, attempt
// to invoke "call" on it.
//
// 3. There is no such method.
DEFINE_RUNTIME_ENTRY(InstanceFunctionLookup, 4) {
ASSERT(arguments.ArgCount() ==
kInstanceFunctionLookupRuntimeEntry.argument_count());
const Instance& receiver = Instance::CheckedHandle(arguments.ArgAt(0));
const ICData& ic_data = ICData::CheckedHandle(arguments.ArgAt(1));
const Array& args_descriptor = Array::CheckedHandle(arguments.ArgAt(2));
const Array& args = Array::CheckedHandle(arguments.ArgAt(3));
Class& receiver_class = Class::Handle(receiver.clazz());
// For lookups treat null as an instance of class Object.
if (receiver_class.IsNullClass()) {
receiver_class = isolate->object_store()->object_class();
}
const String& target_name = String::Handle(ic_data.target_name());
Object& result = Object::Handle();
if (!ResolveCallThroughGetter(receiver,
receiver_class,
target_name,
args_descriptor,
args,
&result)) {
result = DartEntry::InvokeNoSuchMethod(receiver,
target_name,
args,
args_descriptor);
}
CheckResultError(result);
arguments.SetReturn(result);
}
DEFINE_RUNTIME_ENTRY(StackOverflow, 0) {
ASSERT(arguments.ArgCount() ==
kStackOverflowRuntimeEntry.argument_count());
uword stack_pos = reinterpret_cast<uword>(&arguments);
// If an interrupt happens at the same time as a stack overflow, we
// process the stack overflow first.
if (stack_pos < isolate->saved_stack_limit()) {
// Use the preallocated stack overflow exception to avoid calling
// into dart code.
const Instance& exception =
Instance::Handle(isolate->object_store()->stack_overflow());
Exceptions::Throw(exception);
UNREACHABLE();
}
uword interrupt_bits = isolate->GetAndClearInterrupts();
if (interrupt_bits & Isolate::kStoreBufferInterrupt) {
if (FLAG_verbose_gc) {
OS::PrintErr("Scavenge scheduled by store buffer overflow.\n");
}
isolate->heap()->CollectGarbage(Heap::kNew);
}
if (interrupt_bits & Isolate::kMessageInterrupt) {
isolate->message_handler()->HandleOOBMessages();
}
if (interrupt_bits & Isolate::kApiInterrupt) {
// Signal isolate interrupt event.
Debugger::SignalIsolateEvent(Debugger::kIsolateInterrupted);
Dart_IsolateInterruptCallback callback = isolate->InterruptCallback();
if (callback) {
if ((*callback)()) {
return;
} else {
// TODO(turnidge): Unwind the stack.
UNIMPLEMENTED();
}
}
}
if (interrupt_bits & Isolate::kVmStatusInterrupt) {
Dart_IsolateInterruptCallback callback = isolate->VmStatsCallback();
if (callback) {
(*callback)();
}
}
}
DEFINE_RUNTIME_ENTRY(TraceICCall, 2) {
ASSERT(arguments.ArgCount() ==
kTraceICCallRuntimeEntry.argument_count());
const ICData& ic_data = ICData::CheckedHandle(arguments.ArgAt(0));
const Function& function = Function::CheckedHandle(arguments.ArgAt(1));
DartFrameIterator iterator;
StackFrame* frame = iterator.NextFrame();
ASSERT(frame != NULL);
OS::PrintErr("IC call @%#"Px": ICData: %p cnt:%"Pd" nchecks: %"Pd" %s %s\n",
frame->pc(),
ic_data.raw(),
function.usage_counter(),
ic_data.NumberOfChecks(),
ic_data.is_closure_call() ? "closure" : "",
function.ToFullyQualifiedCString());
}
// This is called from function that needs to be optimized.
// The requesting function can be already optimized (reoptimization).
// Returns the Code object where to continue execution.
DEFINE_RUNTIME_ENTRY(OptimizeInvokedFunction, 1) {
ASSERT(arguments.ArgCount() ==
kOptimizeInvokedFunctionRuntimeEntry.argument_count());
const intptr_t kLowInvocationCount = -100000000;
const Function& function = Function::CheckedHandle(arguments.ArgAt(0));
ASSERT(!function.IsNull());
if (isolate->debugger()->HasBreakpoint(function)) {
// We cannot set breakpoints in optimized code, so do not optimize
// the function.
function.set_usage_counter(0);
arguments.SetReturn(Code::Handle(function.CurrentCode()));
return;
}
if (function.deoptimization_counter() >=
FLAG_deoptimization_counter_threshold) {
if (FLAG_trace_failed_optimization_attempts) {
OS::PrintErr("Too Many Deoptimizations: %s\n",
function.ToFullyQualifiedCString());
}
// TODO(srdjan): Investigate excessive deoptimization.
function.set_usage_counter(kLowInvocationCount);
arguments.SetReturn(Code::Handle(function.CurrentCode()));
return;
}
if ((FLAG_optimization_filter != NULL) &&
(strstr(function.ToFullyQualifiedCString(),
FLAG_optimization_filter) == NULL)) {
function.set_usage_counter(kLowInvocationCount);
arguments.SetReturn(Code::Handle(function.CurrentCode()));
return;
}
if (function.is_optimizable()) {
const Error& error =
Error::Handle(Compiler::CompileOptimizedFunction(function));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
}
const Code& optimized_code = Code::Handle(function.CurrentCode());
ASSERT(!optimized_code.IsNull());
// Set usage counter for reoptimization.
function.set_usage_counter(
function.usage_counter() - FLAG_reoptimization_counter_threshold);
} else {
if (FLAG_trace_failed_optimization_attempts) {
OS::PrintErr("Not Optimizable: %s\n", function.ToFullyQualifiedCString());
}
// TODO(5442338): Abort as this should not happen.
function.set_usage_counter(kLowInvocationCount);
}
arguments.SetReturn(Code::Handle(function.CurrentCode()));
}
// The caller must be a static call in a Dart frame, or an entry frame.
// Patch static call to point to valid code's entry point.
DEFINE_RUNTIME_ENTRY(FixCallersTarget, 0) {
ASSERT(arguments.ArgCount() ==
kFixCallersTargetRuntimeEntry.argument_count());
StackFrameIterator iterator(StackFrameIterator::kDontValidateFrames);
StackFrame* frame = iterator.NextFrame();
while (frame != NULL && (frame->IsStubFrame() || frame->IsExitFrame())) {
frame = iterator.NextFrame();
}
ASSERT(frame != NULL);
if (frame->IsEntryFrame()) {
// Since function's current code is always unpatched, the entry frame always
// calls to unpatched code.
UNREACHABLE();
}
ASSERT(frame->IsDartFrame());
const Code& caller_code = Code::Handle(frame->LookupDartCode());
const Function& target_function = Function::Handle(
caller_code.GetStaticCallTargetFunctionAt(frame->pc()));
const Code& target_code = Code::Handle(target_function.CurrentCode());
CodePatcher::PatchStaticCallAt(frame->pc(), caller_code,
target_code.EntryPoint());
caller_code.SetStaticCallTargetCodeAt(frame->pc(), target_code);
if (FLAG_trace_patching) {
OS::PrintErr("FixCallersTarget: patching from %#"Px" to '%s' %#"Px"\n",
frame->pc(),
Function::Handle(target_code.function()).ToFullyQualifiedCString(),
target_code.EntryPoint());
}
arguments.SetReturn(target_code);
}
const char* DeoptReasonToText(intptr_t deopt_id) {
switch (deopt_id) {
#define DEOPT_REASON_ID_TO_TEXT(name) case kDeopt##name: return #name;
DEOPT_REASONS(DEOPT_REASON_ID_TO_TEXT)
#undef DEOPT_REASON_ID_TO_TEXT
default:
UNREACHABLE();
return "";
}
}
void DeoptimizeAt(const Code& optimized_code, uword pc) {
ASSERT(optimized_code.is_optimized());
intptr_t deopt_reason = kDeoptUnknown;
const DeoptInfo& deopt_info =
DeoptInfo::Handle(optimized_code.GetDeoptInfoAtPc(pc, &deopt_reason));
ASSERT(!deopt_info.IsNull());
const Function& function = Function::Handle(optimized_code.function());
const Code& unoptimized_code = Code::Handle(function.unoptimized_code());
ASSERT(!unoptimized_code.IsNull());
// The switch to unoptimized code may have already occured.
if (function.HasOptimizedCode()) {
function.SwitchToUnoptimizedCode();
}
// Patch call site (lazy deoptimization is quite rare, patching it twice
// is not a performance issue).
uword lazy_deopt_jump = optimized_code.GetLazyDeoptPc();
ASSERT(lazy_deopt_jump != 0);
CodePatcher::InsertCallAt(pc, lazy_deopt_jump);
// Mark code as dead (do not GC its embedded objects).
optimized_code.set_is_alive(false);
}
// Currently checks only that all optimized frames have kDeoptIndex
// and unoptimized code has the kDeoptAfter.
void DeoptimizeAll() {
DartFrameIterator iterator;
StackFrame* frame = iterator.NextFrame();
Code& optimized_code = Code::Handle();
while (frame != NULL) {
optimized_code = frame->LookupDartCode();
if (optimized_code.is_optimized()) {
DeoptimizeAt(optimized_code, frame->pc());
}
frame = iterator.NextFrame();
}
}
// Returns true if the given array of cids contains the given cid.
static bool ContainsCid(const GrowableArray<intptr_t>& cids, intptr_t cid) {
for (intptr_t i = 0; i < cids.length(); i++) {
if (cids[i] == cid) {
return true;
}
}
return false;
}
// Deoptimize optimized code on stack if its class is in the 'classes' array.
void DeoptimizeIfOwner(const GrowableArray<intptr_t>& classes) {
DartFrameIterator iterator;
StackFrame* frame = iterator.NextFrame();
Code& optimized_code = Code::Handle();
while (frame != NULL) {
optimized_code = frame->LookupDartCode();
if (optimized_code.is_optimized()) {
const intptr_t owner_cid = Class::Handle(Function::Handle(
optimized_code.function()).Owner()).id();
if (ContainsCid(classes, owner_cid)) {
DeoptimizeAt(optimized_code, frame->pc());
}
}
}
}
// Copy saved registers into the isolate buffer.
static void CopySavedRegisters(uword saved_registers_address) {
fpu_register_t* fpu_registers_copy =
new fpu_register_t[kNumberOfFpuRegisters];
ASSERT(fpu_registers_copy != NULL);
for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) {
fpu_registers_copy[i] =
*reinterpret_cast<fpu_register_t*>(saved_registers_address);
saved_registers_address += kFpuRegisterSize;
}
Isolate::Current()->set_deopt_fpu_registers_copy(fpu_registers_copy);
intptr_t* cpu_registers_copy = new intptr_t[kNumberOfCpuRegisters];
ASSERT(cpu_registers_copy != NULL);
for (intptr_t i = 0; i < kNumberOfCpuRegisters; i++) {
cpu_registers_copy[i] =
*reinterpret_cast<intptr_t*>(saved_registers_address);
saved_registers_address += kWordSize;
}
Isolate::Current()->set_deopt_cpu_registers_copy(cpu_registers_copy);
}
// Copy optimized frame into the isolate buffer.
// The first incoming argument is stored at the last entry in the
// copied frame buffer.
static void CopyFrame(const Code& optimized_code, const StackFrame& frame) {
const Function& function = Function::Handle(optimized_code.function());
// Do not copy incoming arguments if there are optional arguments (they
// are copied into local space at method entry).
const intptr_t num_args =
function.HasOptionalParameters() ? 0 : function.num_fixed_parameters();
// FP, PC-marker and return-address will be copied as well.
const intptr_t frame_copy_size =
1 // Deoptimized function's return address: caller_frame->pc().
+ ((frame.fp() - frame.sp()) / kWordSize)
+ 1 // PC marker.
+ 1 // Caller return address.
+ num_args;
intptr_t* frame_copy = new intptr_t[frame_copy_size];
ASSERT(frame_copy != NULL);
// Include the return address of optimized code.
intptr_t* start = reinterpret_cast<intptr_t*>(frame.sp() - kWordSize);
for (intptr_t i = 0; i < frame_copy_size; i++) {
frame_copy[i] = *(start + i);
}
Isolate::Current()->SetDeoptFrameCopy(frame_copy, frame_copy_size);
}
// Copies saved registers and caller's frame into temporary buffers.
// Returns the stack size of unoptimized frame.
DEFINE_LEAF_RUNTIME_ENTRY(intptr_t, DeoptimizeCopyFrame,
uword saved_registers_address) {
Isolate* isolate = Isolate::Current();
StackZone zone(isolate);
HANDLESCOPE(isolate);
// All registers have been saved below last-fp.
const uword last_fp = saved_registers_address +
kNumberOfCpuRegisters * kWordSize +
kNumberOfFpuRegisters * kFpuRegisterSize;
CopySavedRegisters(saved_registers_address);
// Get optimized code and frame that need to be deoptimized.
DartFrameIterator iterator(last_fp);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
const Code& optimized_code = Code::Handle(caller_frame->LookupDartCode());
ASSERT(optimized_code.is_optimized());
intptr_t deopt_reason = kDeoptUnknown;
const DeoptInfo& deopt_info = DeoptInfo::Handle(
optimized_code.GetDeoptInfoAtPc(caller_frame->pc(), &deopt_reason));
ASSERT(!deopt_info.IsNull());
CopyFrame(optimized_code, *caller_frame);
if (FLAG_trace_deoptimization) {
Function& function = Function::Handle(optimized_code.function());
OS::PrintErr(
"Deoptimizing (reason %"Pd" '%s') at pc %#"Px" '%s' (count %d)\n",
deopt_reason,
DeoptReasonToText(deopt_reason),
caller_frame->pc(),
function.ToFullyQualifiedCString(),
function.deoptimization_counter());
}
// Compute the stack size of the unoptimized frame. For functions with
// optional arguments the deoptimization info does not describe the
// incoming arguments.
const Function& function = Function::Handle(optimized_code.function());
const intptr_t num_args =
function.HasOptionalParameters() ? 0 : function.num_fixed_parameters();
intptr_t unoptimized_stack_size =
+ deopt_info.TranslationLength() - num_args
- 2; // Subtract caller FP and PC.
return unoptimized_stack_size * kWordSize;
}
END_LEAF_RUNTIME_ENTRY
static intptr_t DeoptimizeWithDeoptInfo(const Code& code,
const DeoptInfo& deopt_info,
const StackFrame& caller_frame,
intptr_t deopt_reason) {
const intptr_t len = deopt_info.TranslationLength();
GrowableArray<DeoptInstr*> deopt_instructions(len);
const Array& deopt_table = Array::Handle(code.deopt_info_array());
ASSERT(!deopt_table.IsNull());
deopt_info.ToInstructions(deopt_table, &deopt_instructions);
intptr_t* start = reinterpret_cast<intptr_t*>(caller_frame.sp() - kWordSize);
const Function& function = Function::Handle(code.function());
const intptr_t num_args =
function.HasOptionalParameters() ? 0 : function.num_fixed_parameters();
intptr_t to_frame_size =
1 // Deoptimized function's return address.
+ (caller_frame.fp() - caller_frame.sp()) / kWordSize
+ 3 // caller-fp, pc, pc-marker.
+ num_args;
DeoptimizationContext deopt_context(start,
to_frame_size,
Array::Handle(code.object_table()),
num_args,
static_cast<DeoptReasonId>(deopt_reason));
for (intptr_t to_index = len - 1; to_index >= 0; to_index--) {
deopt_instructions[to_index]->Execute(&deopt_context, to_index);
}
if (FLAG_trace_deoptimization_verbose) {
for (intptr_t i = 0; i < len; i++) {
OS::PrintErr("*%"Pd". [%p] %#014"Px" [%s]\n",
i,
&start[i],
start[i],
deopt_instructions[i]->ToCString());
}
}
return deopt_context.GetCallerFp();
}
// The stack has been adjusted to fit all values for unoptimized frame.
// Fill the unoptimized frame.
DEFINE_LEAF_RUNTIME_ENTRY(intptr_t, DeoptimizeFillFrame, uword last_fp) {
Isolate* isolate = Isolate::Current();
StackZone zone(isolate);
HANDLESCOPE(isolate);
DartFrameIterator iterator(last_fp);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
const Code& optimized_code = Code::Handle(caller_frame->LookupDartCode());
const Function& function = Function::Handle(optimized_code.function());
ASSERT(!function.IsNull());
const Code& unoptimized_code = Code::Handle(function.unoptimized_code());
ASSERT(!optimized_code.IsNull() && optimized_code.is_optimized());
ASSERT(!unoptimized_code.IsNull() && !unoptimized_code.is_optimized());
intptr_t* frame_copy = isolate->deopt_frame_copy();
intptr_t* cpu_registers_copy = isolate->deopt_cpu_registers_copy();
fpu_register_t* fpu_registers_copy = isolate->deopt_fpu_registers_copy();
intptr_t deopt_reason = kDeoptUnknown;
const DeoptInfo& deopt_info = DeoptInfo::Handle(
optimized_code.GetDeoptInfoAtPc(caller_frame->pc(), &deopt_reason));
ASSERT(!deopt_info.IsNull());
const intptr_t caller_fp = DeoptimizeWithDeoptInfo(optimized_code,
deopt_info,
*caller_frame,
deopt_reason);
isolate->SetDeoptFrameCopy(NULL, 0);
isolate->set_deopt_cpu_registers_copy(NULL);
isolate->set_deopt_fpu_registers_copy(NULL);
delete[] frame_copy;
delete[] cpu_registers_copy;
delete[] fpu_registers_copy;
return caller_fp;
}
END_LEAF_RUNTIME_ENTRY
// This is the last step in the deoptimization, GC can occur.
DEFINE_RUNTIME_ENTRY(DeoptimizeMaterializeDoubles, 0) {
DeferredObject* deferred_object = Isolate::Current()->DetachDeferredObjects();
while (deferred_object != NULL) {
DeferredObject* current = deferred_object;
deferred_object = deferred_object->next();
current->Materialize();
delete current;
}
// Since this is the only step where GC can occur during deoptimization,
// use it to report the source line where deoptimization occured.
if (FLAG_trace_deoptimization) {
DartFrameIterator iterator;
StackFrame* top_frame = iterator.NextFrame();
ASSERT(top_frame != NULL);
const Code& code = Code::Handle(top_frame->LookupDartCode());
const Function& top_function = Function::Handle(code.function());
const Script& script = Script::Handle(top_function.script());
const intptr_t token_pos = code.GetTokenIndexOfPC(top_frame->pc());
intptr_t line, column;
script.GetTokenLocation(token_pos, &line, &column);
String& line_string = String::Handle(script.GetLine(line));
OS::PrintErr(" Function: %s\n", top_function.ToFullyQualifiedCString());
OS::PrintErr(" Line %"Pd": '%s'\n", line, line_string.ToCString());
}
}
DEFINE_LEAF_RUNTIME_ENTRY(intptr_t,
BigintCompare,
RawBigint* left,
RawBigint* right) {
Isolate* isolate = Isolate::Current();
StackZone zone(isolate);
HANDLESCOPE(isolate);
const Bigint& big_left = Bigint::Handle(left);
const Bigint& big_right = Bigint::Handle(right);
return BigintOperations::Compare(big_left, big_right);
}
END_LEAF_RUNTIME_ENTRY
double DartModulo(double left, double right) {
double remainder = fmod_ieee(left, right);
if (remainder == 0.0) {
// We explicitely switch to the positive 0.0 (just in case it was negative).
remainder = +0.0;
} else if (remainder < 0.0) {
if (right < 0) {
remainder -= right;
} else {
remainder += right;
}
}
return remainder;
}
// Update global type feedback recorded for a field recording the assignment
// of the given value.
// Arg0: Field object;
// Arg1: Value that is being stored.
DEFINE_RUNTIME_ENTRY(UpdateFieldCid, 2) {
ASSERT(arguments.ArgCount() == kUpdateFieldCidRuntimeEntry.argument_count());
const Field& field = Field::CheckedHandle(arguments.ArgAt(0));
const Object& value = Object::Handle(arguments.ArgAt(1));
field.UpdateCid(Class::Handle(value.clazz()).id());
}
} // namespace dart