blob: ea77a867cb82679ffb0f4ec6d731f5985a91270e [file] [log] [blame]
// Copyright (c) 2022, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// part of "core_patch.dart";
@pragma("wasm:entry-point")
class _BoxedDouble implements double {
// A boxed double contains an unboxed double.
@pragma("wasm:entry-point")
double value = 0.0;
static const int _signMask = 0x8000000000000000;
static const int _exponentMask = 0x7FF0000000000000;
static const int _mantissaMask = 0x000FFFFFFFFFFFFF;
int get hashCode {
int bits = doubleToIntBits(this);
if (bits == _signMask) bits = 0; // 0.0 == -0.0
return mix64(bits);
}
int get _identityHashCode => hashCode;
double operator +(num other) => this + other.toDouble(); // Intrinsic +
double operator -(num other) => this - other.toDouble(); // Intrinsic -
double operator *(num other) => this * other.toDouble(); // Intrinsic *
double operator /(num other) => this / other.toDouble(); // Intrinsic /
int operator ~/(num other) {
return _truncDiv(this, other.toDouble());
}
static int _truncDiv(double a, double b) {
return (a / b).toInt();
}
double operator %(num other) {
return _modulo(this, other.toDouble());
}
static double _modulo(double a, double b) {
double rem = a - (a / b).truncateToDouble() * b;
if (rem == 0.0) return 0.0;
if (rem < 0.0) {
if (b < 0.0) {
return rem - b;
} else {
return rem + b;
}
}
return rem;
}
double remainder(num other) {
return _remainder(this, other.toDouble());
}
static double _remainder(double a, double b) {
return a - (a / b).truncateToDouble() * b;
}
external double operator -();
bool operator ==(Object other) {
return other is double
? this == other // Intrinsic ==
: other is int
? this == other.toDouble() // Intrinsic ==
: false;
}
bool operator <(num other) => this < other.toDouble(); // Intrinsic <
bool operator >(num other) => this > other.toDouble(); // Intrinsic >
bool operator >=(num other) => this >= other.toDouble(); // Intrinsic >=
bool operator <=(num other) => this <= other.toDouble(); // Intrinsic <=
bool get isNegative {
int bits = doubleToIntBits(this);
return (bits & _signMask) != 0;
}
bool get isInfinite {
int bits = doubleToIntBits(this);
return (bits & _exponentMask) == _exponentMask &&
(bits & _mantissaMask) == 0;
}
bool get isNaN {
int bits = doubleToIntBits(this);
return (bits & _exponentMask) == _exponentMask &&
(bits & _mantissaMask) != 0;
}
bool get isFinite {
int bits = doubleToIntBits(this);
return (bits & _exponentMask) != _exponentMask;
}
double abs() {
// Handle negative 0.0.
if (this == 0.0) return 0.0;
return this < 0.0 ? -this : this;
}
double get sign {
if (this > 0.0) return 1.0;
if (this < 0.0) return -1.0;
return this; // +/-0.0 or NaN.
}
int round() => roundToDouble().toInt();
int floor() => floorToDouble().toInt();
int ceil() => ceilToDouble().toInt();
int truncate() => truncateToDouble().toInt();
external double roundToDouble();
external double floorToDouble();
external double ceilToDouble();
external double truncateToDouble();
num clamp(num lowerLimit, num upperLimit) {
if (lowerLimit.compareTo(upperLimit) > 0) {
throw new ArgumentError(lowerLimit);
}
if (lowerLimit.isNaN) return lowerLimit;
if (this.compareTo(lowerLimit) < 0) return lowerLimit;
if (this.compareTo(upperLimit) > 0) return upperLimit;
return this;
}
external int toInt();
double toDouble() {
return this;
}
static const int CACHE_SIZE_LOG2 = 3;
static const int CACHE_LENGTH = 1 << (CACHE_SIZE_LOG2 + 1);
static const int CACHE_MASK = CACHE_LENGTH - 1;
// Each key (double) followed by its toString result.
static final List _cache = new List.filled(CACHE_LENGTH, null);
static int _cacheEvictIndex = 0;
external String _toString();
String toString() {
// TODO(koda): Consider starting at most recently inserted.
for (int i = 0; i < CACHE_LENGTH; i += 2) {
// Need 'identical' to handle negative zero, etc.
if (identical(_cache[i], this)) {
return _cache[i + 1];
}
}
// TODO(koda): Consider optimizing all small integral values.
if (identical(0.0, this)) {
return "0.0";
}
String result = _toString();
// Replace the least recently inserted entry.
_cache[_cacheEvictIndex] = this;
_cache[_cacheEvictIndex + 1] = result;
_cacheEvictIndex = (_cacheEvictIndex + 2) & CACHE_MASK;
return result;
}
String toStringAsFixed(int fractionDigits) {
// See ECMAScript-262, 15.7.4.5 for details.
// Step 2.
if (fractionDigits < 0 || fractionDigits > 20) {
throw new RangeError.range(fractionDigits, 0, 20, "fractionDigits");
}
// Step 3.
double x = this;
// Step 4.
if (isNaN) return "NaN";
// Step 5 and 6 skipped. Will be dealt with by native function.
// Step 7.
if (x >= 1e21 || x <= -1e21) {
return x.toString();
}
return _toStringAsFixed(fractionDigits);
}
external String _toStringAsFixed(int fractionDigits);
String toStringAsExponential([int? fractionDigits]) {
// See ECMAScript-262, 15.7.4.6 for details.
// The EcmaScript specification checks for NaN and Infinity before looking
// at the fractionDigits. In Dart we are consistent with toStringAsFixed and
// look at the fractionDigits first.
// Step 7.
if (fractionDigits != null) {
if (fractionDigits < 0 || fractionDigits > 20) {
throw new RangeError.range(fractionDigits, 0, 20, "fractionDigits");
}
}
if (isNaN) return "NaN";
if (this == double.infinity) return "Infinity";
if (this == -double.infinity) return "-Infinity";
// The dart function prints the shortest representation when fractionDigits
// equals null. The native function wants -1 instead.
fractionDigits = (fractionDigits == null) ? -1 : fractionDigits;
return _toStringAsExponential(fractionDigits);
}
external String _toStringAsExponential(int fractionDigits);
String toStringAsPrecision(int precision) {
// See ECMAScript-262, 15.7.4.7 for details.
// The EcmaScript specification checks for NaN and Infinity before looking
// at the fractionDigits. In Dart we are consistent with toStringAsFixed and
// look at the fractionDigits first.
// Step 8.
if (precision < 1 || precision > 21) {
throw new RangeError.range(precision, 1, 21, "precision");
}
if (isNaN) return "NaN";
if (this == double.infinity) return "Infinity";
if (this == -double.infinity) return "-Infinity";
return _toStringAsPrecision(precision);
}
external String _toStringAsPrecision(int fractionDigits);
// Order is: NaN > Infinity > ... > 0.0 > -0.0 > ... > -Infinity.
int compareTo(num other) {
const int EQUAL = 0, LESS = -1, GREATER = 1;
if (this < other) {
return LESS;
} else if (this > other) {
return GREATER;
} else if (this == other) {
if (this == 0.0) {
bool thisIsNegative = isNegative;
bool otherIsNegative = other.isNegative;
if (thisIsNegative == otherIsNegative) {
return EQUAL;
}
return thisIsNegative ? LESS : GREATER;
} else if (other is int) {
// Compare as integers as it is more precise if the integer value is
// outside of MIN_EXACT_INT_TO_DOUBLE..MAX_EXACT_INT_TO_DOUBLE range.
const int MAX_EXACT_INT_TO_DOUBLE = 9007199254740992; // 2^53.
const int MIN_EXACT_INT_TO_DOUBLE = -MAX_EXACT_INT_TO_DOUBLE;
if ((MIN_EXACT_INT_TO_DOUBLE <= other) &&
(other <= MAX_EXACT_INT_TO_DOUBLE)) {
return EQUAL;
}
const bool limitIntsTo64Bits = ((1 << 64) == 0);
if (limitIntsTo64Bits) {
// With integers limited to 64 bits, double.toInt() clamps
// double value to fit into the MIN_INT64..MAX_INT64 range.
// MAX_INT64 is not precisely representable as double, so
// integers near MAX_INT64 compare as equal to (MAX_INT64 + 1) when
// represented as doubles.
// There is no similar problem with MIN_INT64 as it is precisely
// representable as double.
const double maxInt64Plus1AsDouble = 9223372036854775808.0;
if (this >= maxInt64Plus1AsDouble) {
return GREATER;
}
}
return toInt().compareTo(other);
} else {
return EQUAL;
}
} else if (isNaN) {
return other.isNaN ? EQUAL : GREATER;
} else {
// Other is NaN.
return LESS;
}
}
}