blob: 205e54df6a51d6f292d507ed4f5ab72c0c06bfd6 [file] [log] [blame]
// This code was auto-generated, is not intended to be edited, and is subject to
// significant change. Please see the README file for more information.
library engine.scanner;
import 'dart:collection';
import 'java_core.dart';
import 'java_engine.dart';
import 'source.dart';
import 'error.dart';
import 'instrumentation.dart';
/**
* Instances of the abstract class {@code KeywordState} represent a state in a state machine used to
* scan keywords.
* @coverage dart.engine.parser
*/
class KeywordState {
/**
* An empty transition table used by leaf states.
*/
static List<KeywordState> _EMPTY_TABLE = new List<KeywordState>(26);
/**
* The initial state in the state machine.
*/
static KeywordState KEYWORD_STATE = createKeywordStateTable();
/**
* Create the next state in the state machine where we have already recognized the subset of
* strings in the given array of strings starting at the given offset and having the given length.
* All of these strings have a common prefix and the next character is at the given start index.
* @param start the index of the character in the strings used to transition to a new state
* @param strings an array containing all of the strings that will be recognized by the state
* machine
* @param offset the offset of the first string in the array that has the prefix that is assumed
* to have been recognized by the time we reach the state being built
* @param length the number of strings in the array that pass through the state being built
* @return the state that was created
*/
static KeywordState computeKeywordStateTable(int start, List<String> strings, int offset, int length2) {
List<KeywordState> result = new List<KeywordState>(26);
assert(length2 != 0);
int chunk = 0x0;
int chunkStart = -1;
bool isLeaf = false;
for (int i = offset; i < offset + length2; i++) {
if (strings[i].length == start) {
isLeaf = true;
}
if (strings[i].length > start) {
int c = strings[i].codeUnitAt(start);
if (chunk != c) {
if (chunkStart != -1) {
result[chunk - 0x61] = computeKeywordStateTable(start + 1, strings, chunkStart, i - chunkStart);
}
chunkStart = i;
chunk = c;
}
}
}
if (chunkStart != -1) {
assert(result[chunk - 0x61] == null);
result[chunk - 0x61] = computeKeywordStateTable(start + 1, strings, chunkStart, offset + length2 - chunkStart);
} else {
assert(length2 == 1);
return new KeywordState(_EMPTY_TABLE, strings[offset]);
}
if (isLeaf) {
return new KeywordState(result, strings[offset]);
} else {
return new KeywordState(result, null);
}
}
/**
* Create the initial state in the state machine.
* @return the state that was created
*/
static KeywordState createKeywordStateTable() {
List<Keyword> values2 = Keyword.values;
List<String> strings = new List<String>(values2.length);
for (int i = 0; i < values2.length; i++) {
strings[i] = values2[i].syntax;
}
strings.sort();
return computeKeywordStateTable(0, strings, 0, strings.length);
}
/**
* A table mapping characters to the states to which those characters will transition. (The index
* into the array is the offset from the character {@code 'a'} to the transitioning character.)
*/
List<KeywordState> _table;
/**
* The keyword that is recognized by this state, or {@code null} if this state is not a terminal
* state.
*/
Keyword _keyword2;
/**
* Initialize a newly created state to have the given transitions and to recognize the keyword
* with the given syntax.
* @param table a table mapping characters to the states to which those characters will transition
* @param syntax the syntax of the keyword that is recognized by the state
*/
KeywordState(List<KeywordState> table, String syntax) {
this._table = table;
this._keyword2 = (syntax == null) ? null : Keyword.keywords[syntax];
}
/**
* Return the keyword that was recognized by this state, or {@code null} if this state does not
* recognized a keyword.
* @return the keyword that was matched by reaching this state
*/
Keyword keyword() => _keyword2;
/**
* Return the state that follows this state on a transition of the given character, or{@code null} if there is no valid state reachable from this state with such a transition.
* @param c the character used to transition from this state to another state
* @return the state that follows this state on a transition of the given character
*/
KeywordState next(int c) => _table[c - 0x61];
}
/**
* The enumeration {@code ScannerErrorCode} defines the error codes used for errors detected by the
* scanner.
* @coverage dart.engine.parser
*/
class ScannerErrorCode implements Comparable<ScannerErrorCode>, ErrorCode {
static final ScannerErrorCode ILLEGAL_CHARACTER = new ScannerErrorCode('ILLEGAL_CHARACTER', 0, "Illegal character %x");
static final ScannerErrorCode MISSING_DIGIT = new ScannerErrorCode('MISSING_DIGIT', 1, "Decimal digit expected");
static final ScannerErrorCode MISSING_HEX_DIGIT = new ScannerErrorCode('MISSING_HEX_DIGIT', 2, "Hexidecimal digit expected");
static final ScannerErrorCode MISSING_QUOTE = new ScannerErrorCode('MISSING_QUOTE', 3, "Expected quote (' or \")");
static final ScannerErrorCode UNTERMINATED_MULTI_LINE_COMMENT = new ScannerErrorCode('UNTERMINATED_MULTI_LINE_COMMENT', 4, "Unterminated multi-line comment");
static final ScannerErrorCode UNTERMINATED_STRING_LITERAL = new ScannerErrorCode('UNTERMINATED_STRING_LITERAL', 5, "Unterminated string literal");
static final List<ScannerErrorCode> values = [ILLEGAL_CHARACTER, MISSING_DIGIT, MISSING_HEX_DIGIT, MISSING_QUOTE, UNTERMINATED_MULTI_LINE_COMMENT, UNTERMINATED_STRING_LITERAL];
final String __name;
final int __ordinal;
int get ordinal => __ordinal;
/**
* The message template used to create the message to be displayed for this error.
*/
String _message;
/**
* Initialize a newly created error code to have the given message.
* @param message the message template used to create the message to be displayed for this error
*/
ScannerErrorCode(this.__name, this.__ordinal, String message) {
this._message = message;
}
ErrorSeverity get errorSeverity => ErrorSeverity.ERROR;
String get message => _message;
ErrorType get type => ErrorType.SYNTACTIC_ERROR;
bool needsRecompilation() => true;
int compareTo(ScannerErrorCode other) => __ordinal - other.__ordinal;
String toString() => __name;
}
/**
* Instances of the class {@code TokenWithComment} represent a string token that is preceded by
* comments.
* @coverage dart.engine.parser
*/
class StringTokenWithComment extends StringToken {
/**
* The first comment in the list of comments that precede this token.
*/
Token _precedingComment;
/**
* Initialize a newly created token to have the given type and offset and to be preceded by the
* comments reachable from the given comment.
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
* @param precedingComment the first comment in the list of comments that precede this token
*/
StringTokenWithComment(TokenType type, String value, int offset, Token precedingComment) : super(type, value, offset) {
this._precedingComment = precedingComment;
}
Token get precedingComments => _precedingComment;
}
/**
* The enumeration {@code Keyword} defines the keywords in the Dart programming language.
* @coverage dart.engine.parser
*/
class Keyword implements Comparable<Keyword> {
static final Keyword ASSERT = new Keyword.con1('ASSERT', 0, "assert");
static final Keyword BREAK = new Keyword.con1('BREAK', 1, "break");
static final Keyword CASE = new Keyword.con1('CASE', 2, "case");
static final Keyword CATCH = new Keyword.con1('CATCH', 3, "catch");
static final Keyword CLASS = new Keyword.con1('CLASS', 4, "class");
static final Keyword CONST = new Keyword.con1('CONST', 5, "const");
static final Keyword CONTINUE = new Keyword.con1('CONTINUE', 6, "continue");
static final Keyword DEFAULT = new Keyword.con1('DEFAULT', 7, "default");
static final Keyword DO = new Keyword.con1('DO', 8, "do");
static final Keyword ELSE = new Keyword.con1('ELSE', 9, "else");
static final Keyword ENUM = new Keyword.con1('ENUM', 10, "enum");
static final Keyword EXTENDS = new Keyword.con1('EXTENDS', 11, "extends");
static final Keyword FALSE = new Keyword.con1('FALSE', 12, "false");
static final Keyword FINAL = new Keyword.con1('FINAL', 13, "final");
static final Keyword FINALLY = new Keyword.con1('FINALLY', 14, "finally");
static final Keyword FOR = new Keyword.con1('FOR', 15, "for");
static final Keyword IF = new Keyword.con1('IF', 16, "if");
static final Keyword IN = new Keyword.con1('IN', 17, "in");
static final Keyword IS = new Keyword.con1('IS', 18, "is");
static final Keyword NEW = new Keyword.con1('NEW', 19, "new");
static final Keyword NULL = new Keyword.con1('NULL', 20, "null");
static final Keyword RETHROW = new Keyword.con1('RETHROW', 21, "rethrow");
static final Keyword RETURN = new Keyword.con1('RETURN', 22, "return");
static final Keyword SUPER = new Keyword.con1('SUPER', 23, "super");
static final Keyword SWITCH = new Keyword.con1('SWITCH', 24, "switch");
static final Keyword THIS = new Keyword.con1('THIS', 25, "this");
static final Keyword THROW = new Keyword.con1('THROW', 26, "throw");
static final Keyword TRUE = new Keyword.con1('TRUE', 27, "true");
static final Keyword TRY = new Keyword.con1('TRY', 28, "try");
static final Keyword VAR = new Keyword.con1('VAR', 29, "var");
static final Keyword VOID = new Keyword.con1('VOID', 30, "void");
static final Keyword WHILE = new Keyword.con1('WHILE', 31, "while");
static final Keyword WITH = new Keyword.con1('WITH', 32, "with");
static final Keyword ABSTRACT = new Keyword.con2('ABSTRACT', 33, "abstract", true);
static final Keyword AS = new Keyword.con2('AS', 34, "as", true);
static final Keyword DYNAMIC = new Keyword.con2('DYNAMIC', 35, "dynamic", true);
static final Keyword EXPORT = new Keyword.con2('EXPORT', 36, "export", true);
static final Keyword EXTERNAL = new Keyword.con2('EXTERNAL', 37, "external", true);
static final Keyword FACTORY = new Keyword.con2('FACTORY', 38, "factory", true);
static final Keyword GET = new Keyword.con2('GET', 39, "get", true);
static final Keyword IMPLEMENTS = new Keyword.con2('IMPLEMENTS', 40, "implements", true);
static final Keyword IMPORT = new Keyword.con2('IMPORT', 41, "import", true);
static final Keyword LIBRARY = new Keyword.con2('LIBRARY', 42, "library", true);
static final Keyword OPERATOR = new Keyword.con2('OPERATOR', 43, "operator", true);
static final Keyword PART = new Keyword.con2('PART', 44, "part", true);
static final Keyword SET = new Keyword.con2('SET', 45, "set", true);
static final Keyword STATIC = new Keyword.con2('STATIC', 46, "static", true);
static final Keyword TYPEDEF = new Keyword.con2('TYPEDEF', 47, "typedef", true);
static final List<Keyword> values = [ASSERT, BREAK, CASE, CATCH, CLASS, CONST, CONTINUE, DEFAULT, DO, ELSE, ENUM, EXTENDS, FALSE, FINAL, FINALLY, FOR, IF, IN, IS, NEW, NULL, RETHROW, RETURN, SUPER, SWITCH, THIS, THROW, TRUE, TRY, VAR, VOID, WHILE, WITH, ABSTRACT, AS, DYNAMIC, EXPORT, EXTERNAL, FACTORY, GET, IMPLEMENTS, IMPORT, LIBRARY, OPERATOR, PART, SET, STATIC, TYPEDEF];
String __name;
int __ordinal = 0;
int get ordinal => __ordinal;
/**
* The lexeme for the keyword.
*/
String _syntax;
/**
* A flag indicating whether the keyword is a pseudo-keyword. Pseudo keywords can be used as
* identifiers.
*/
bool _isPseudoKeyword2 = false;
/**
* A table mapping the lexemes of keywords to the corresponding keyword.
*/
static Map<String, Keyword> keywords = createKeywordMap();
/**
* Create a table mapping the lexemes of keywords to the corresponding keyword.
* @return the table that was created
*/
static Map<String, Keyword> createKeywordMap() {
LinkedHashMap<String, Keyword> result = new LinkedHashMap<String, Keyword>();
for (Keyword keyword in values) {
result[keyword._syntax] = keyword;
}
return result;
}
/**
* Initialize a newly created keyword to have the given syntax. The keyword is not a
* pseudo-keyword.
* @param syntax the lexeme for the keyword
*/
Keyword.con1(String ___name, int ___ordinal, String syntax) {
_jtd_constructor_309_impl(___name, ___ordinal, syntax);
}
_jtd_constructor_309_impl(String ___name, int ___ordinal, String syntax) {
_jtd_constructor_310_impl(___name, ___ordinal, syntax, false);
}
/**
* Initialize a newly created keyword to have the given syntax. The keyword is a pseudo-keyword if
* the given flag is {@code true}.
* @param syntax the lexeme for the keyword
* @param isPseudoKeyword {@code true} if this keyword is a pseudo-keyword
*/
Keyword.con2(String ___name, int ___ordinal, String syntax2, bool isPseudoKeyword) {
_jtd_constructor_310_impl(___name, ___ordinal, syntax2, isPseudoKeyword);
}
_jtd_constructor_310_impl(String ___name, int ___ordinal, String syntax2, bool isPseudoKeyword) {
__name = ___name;
__ordinal = ___ordinal;
this._syntax = syntax2;
this._isPseudoKeyword2 = isPseudoKeyword;
}
/**
* Return the lexeme for the keyword.
* @return the lexeme for the keyword
*/
String get syntax => _syntax;
/**
* Return {@code true} if this keyword is a pseudo-keyword. Pseudo keywords can be used as
* identifiers.
* @return {@code true} if this keyword is a pseudo-keyword
*/
bool isPseudoKeyword() => _isPseudoKeyword2;
int compareTo(Keyword other) => __ordinal - other.__ordinal;
String toString() => __name;
}
/**
* The abstract class {@code AbstractScanner} implements a scanner for Dart code. Subclasses are
* required to implement the interface used to access the characters being scanned.
* <p>
* The lexical structure of Dart is ambiguous without knowledge of the context in which a token is
* being scanned. For example, without context we cannot determine whether source of the form "<<"
* should be scanned as a single left-shift operator or as two left angle brackets. This scanner
* does not have any context, so it always resolves such conflicts by scanning the longest possible
* token.
* @coverage dart.engine.parser
*/
abstract class AbstractScanner {
/**
* The source being scanned.
*/
Source _source;
/**
* The error listener that will be informed of any errors that are found during the scan.
*/
AnalysisErrorListener _errorListener;
/**
* The token pointing to the head of the linked list of tokens.
*/
Token _tokens;
/**
* The last token that was scanned.
*/
Token _tail;
/**
* The first token in the list of comment tokens found since the last non-comment token.
*/
Token _firstComment;
/**
* The last token in the list of comment tokens found since the last non-comment token.
*/
Token _lastComment;
/**
* The index of the first character of the current token.
*/
int _tokenStart = 0;
/**
* A list containing the offsets of the first character of each line in the source code.
*/
List<int> _lineStarts = new List<int>();
/**
* A list, treated something like a stack, of tokens representing the beginning of a matched pair.
* It is used to pair the end tokens with the begin tokens.
*/
List<BeginToken> _groupingStack = new List<BeginToken>();
/**
* A flag indicating whether any unmatched groups were found during the parse.
*/
bool _hasUnmatchedGroups2 = false;
/**
* A non-breaking space, which is allowed by this scanner as a white-space character.
*/
static int _$NBSP = 160;
/**
* Initialize a newly created scanner.
* @param source the source being scanned
* @param errorListener the error listener that will be informed of any errors that are found
*/
AbstractScanner(Source source, AnalysisErrorListener errorListener) {
this._source = source;
this._errorListener = errorListener;
_tokens = new Token(TokenType.EOF, -1);
_tokens.setNext(_tokens);
_tail = _tokens;
_tokenStart = -1;
_lineStarts.add(0);
}
/**
* Return an array containing the offsets of the first character of each line in the source code.
* @return an array containing the offsets of the first character of each line in the source code
*/
List<int> get lineStarts => _lineStarts;
/**
* Return the current offset relative to the beginning of the file. Return the initial offset if
* the scanner has not yet scanned the source code, and one (1) past the end of the source code if
* the source code has been scanned.
* @return the current offset of the scanner in the source
*/
int get offset;
/**
* Return {@code true} if any unmatched groups were found during the parse.
* @return {@code true} if any unmatched groups were found during the parse
*/
bool hasUnmatchedGroups() => _hasUnmatchedGroups2;
/**
* Scan the source code to produce a list of tokens representing the source.
* @return the first token in the list of tokens that were produced
*/
Token tokenize() {
InstrumentationBuilder instrumentation = Instrumentation.builder2("dart.engine.AbstractScanner.tokenize");
int tokenCounter = 0;
try {
int next = advance();
while (next != -1) {
tokenCounter++;
next = bigSwitch(next);
}
appendEofToken();
instrumentation.metric2("tokensCount", tokenCounter);
return firstToken();
} finally {
instrumentation.log();
}
}
/**
* Advance the current position and return the character at the new current position.
* @return the character at the new current position
*/
int advance();
/**
* Return the substring of the source code between the start offset and the modified current
* position. The current position is modified by adding the end delta.
* @param start the offset to the beginning of the string, relative to the start of the file
* @param endDelta the number of character after the current location to be included in the
* string, or the number of characters before the current location to be excluded if the
* offset is negative
* @return the specified substring of the source code
*/
String getString(int start, int endDelta);
/**
* Return the character at the current position without changing the current position.
* @return the character at the current position
*/
int peek();
/**
* Record the fact that we are at the beginning of a new line in the source.
*/
void recordStartOfLine() {
_lineStarts.add(offset);
}
void appendBeginToken(TokenType type) {
BeginToken token;
if (_firstComment == null) {
token = new BeginToken(type, _tokenStart);
} else {
token = new BeginTokenWithComment(type, _tokenStart, _firstComment);
_firstComment = null;
_lastComment = null;
}
_tail = _tail.setNext(token);
_groupingStack.add(token);
}
void appendCommentToken(TokenType type, String value) {
if (_firstComment == null) {
_firstComment = new StringToken(type, value, _tokenStart);
_lastComment = _firstComment;
} else {
_lastComment = _lastComment.setNext(new StringToken(type, value, _tokenStart));
}
}
void appendEndToken(TokenType type2, TokenType beginType) {
Token token;
if (_firstComment == null) {
token = new Token(type2, _tokenStart);
} else {
token = new TokenWithComment(type2, _tokenStart, _firstComment);
_firstComment = null;
_lastComment = null;
}
_tail = _tail.setNext(token);
int last = _groupingStack.length - 1;
if (last >= 0) {
BeginToken begin = _groupingStack[last];
if (identical(begin.type, beginType)) {
begin.endToken = token;
_groupingStack.removeAt(last);
}
}
}
void appendEofToken() {
Token eofToken;
if (_firstComment == null) {
eofToken = new Token(TokenType.EOF, offset + 1);
} else {
eofToken = new TokenWithComment(TokenType.EOF, offset + 1, _firstComment);
_firstComment = null;
_lastComment = null;
}
eofToken.setNext(eofToken);
_tail = _tail.setNext(eofToken);
if (!_groupingStack.isEmpty) {
_hasUnmatchedGroups2 = true;
}
}
void appendKeywordToken(Keyword keyword) {
if (_firstComment == null) {
_tail = _tail.setNext(new KeywordToken(keyword, _tokenStart));
} else {
_tail = _tail.setNext(new KeywordTokenWithComment(keyword, _tokenStart, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void appendStringToken(TokenType type, String value) {
if (_firstComment == null) {
_tail = _tail.setNext(new StringToken(type, value, _tokenStart));
} else {
_tail = _tail.setNext(new StringTokenWithComment(type, value, _tokenStart, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void appendStringToken2(TokenType type, String value, int offset) {
if (_firstComment == null) {
_tail = _tail.setNext(new StringToken(type, value, _tokenStart + offset));
} else {
_tail = _tail.setNext(new StringTokenWithComment(type, value, _tokenStart + offset, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void appendToken(TokenType type) {
if (_firstComment == null) {
_tail = _tail.setNext(new Token(type, _tokenStart));
} else {
_tail = _tail.setNext(new TokenWithComment(type, _tokenStart, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void appendToken2(TokenType type, int offset) {
if (_firstComment == null) {
_tail = _tail.setNext(new Token(type, offset));
} else {
_tail = _tail.setNext(new TokenWithComment(type, offset, _firstComment));
_firstComment = null;
_lastComment = null;
}
}
void beginToken() {
_tokenStart = offset;
}
int bigSwitch(int next) {
beginToken();
if (next == 0xD) {
next = advance();
if (next == 0xA) {
next = advance();
}
recordStartOfLine();
return next;
} else if (next == 0xA) {
recordStartOfLine();
return advance();
} else if (next == 0x9 || next == 0x20) {
return advance();
}
if (next == 0x72) {
int peek2 = peek();
if (peek2 == 0x22 || peek2 == 0x27) {
int start = offset;
return tokenizeString(advance(), start, true);
}
}
if (0x61 <= next && next <= 0x7A) {
return tokenizeKeywordOrIdentifier(next, true);
}
if ((0x41 <= next && next <= 0x5A) || next == 0x5F || next == 0x24) {
return tokenizeIdentifier(next, offset, true);
}
if (next == 0x3C) {
return tokenizeLessThan(next);
}
if (next == 0x3E) {
return tokenizeGreaterThan(next);
}
if (next == 0x3D) {
return tokenizeEquals(next);
}
if (next == 0x21) {
return tokenizeExclamation(next);
}
if (next == 0x2B) {
return tokenizePlus(next);
}
if (next == 0x2D) {
return tokenizeMinus(next);
}
if (next == 0x2A) {
return tokenizeMultiply(next);
}
if (next == 0x25) {
return tokenizePercent(next);
}
if (next == 0x26) {
return tokenizeAmpersand(next);
}
if (next == 0x7C) {
return tokenizeBar(next);
}
if (next == 0x5E) {
return tokenizeCaret(next);
}
if (next == 0x5B) {
return tokenizeOpenSquareBracket(next);
}
if (next == 0x7E) {
return tokenizeTilde(next);
}
if (next == 0x5C) {
appendToken(TokenType.BACKSLASH);
return advance();
}
if (next == 0x23) {
return tokenizeTag(next);
}
if (next == 0x28) {
appendBeginToken(TokenType.OPEN_PAREN);
return advance();
}
if (next == 0x29) {
appendEndToken(TokenType.CLOSE_PAREN, TokenType.OPEN_PAREN);
return advance();
}
if (next == 0x2C) {
appendToken(TokenType.COMMA);
return advance();
}
if (next == 0x3A) {
appendToken(TokenType.COLON);
return advance();
}
if (next == 0x3B) {
appendToken(TokenType.SEMICOLON);
return advance();
}
if (next == 0x3F) {
appendToken(TokenType.QUESTION);
return advance();
}
if (next == 0x5D) {
appendEndToken(TokenType.CLOSE_SQUARE_BRACKET, TokenType.OPEN_SQUARE_BRACKET);
return advance();
}
if (next == 0x60) {
appendToken(TokenType.BACKPING);
return advance();
}
if (next == 0x7B) {
appendBeginToken(TokenType.OPEN_CURLY_BRACKET);
return advance();
}
if (next == 0x7D) {
appendEndToken(TokenType.CLOSE_CURLY_BRACKET, TokenType.OPEN_CURLY_BRACKET);
return advance();
}
if (next == 0x2F) {
return tokenizeSlashOrComment(next);
}
if (next == 0x40) {
appendToken(TokenType.AT);
return advance();
}
if (next == 0x22 || next == 0x27) {
return tokenizeString(next, offset, false);
}
if (next == 0x2E) {
return tokenizeDotOrNumber(next);
}
if (next == 0x30) {
return tokenizeHexOrNumber(next);
}
if (0x31 <= next && next <= 0x39) {
return tokenizeNumber(next);
}
if (next == -1) {
return -1;
}
if (Character.isLetter(next)) {
return tokenizeIdentifier(next, offset, true);
}
if (next == _$NBSP) {
return advance();
}
reportError(ScannerErrorCode.ILLEGAL_CHARACTER, [next]);
return advance();
}
/**
* Return the beginning token corresponding to a closing brace that was found while scanning
* inside a string interpolation expression. Tokens that cannot be matched with the closing brace
* will be dropped from the stack.
* @return the token to be paired with the closing brace
*/
BeginToken findTokenMatchingClosingBraceInInterpolationExpression() {
int last = _groupingStack.length - 1;
while (last >= 0) {
BeginToken begin = _groupingStack[last];
if (identical(begin.type, TokenType.OPEN_CURLY_BRACKET) || identical(begin.type, TokenType.STRING_INTERPOLATION_EXPRESSION)) {
return begin;
}
_hasUnmatchedGroups2 = true;
_groupingStack.removeAt(last);
last--;
}
return null;
}
Token firstToken() => _tokens.next;
/**
* Return the source being scanned.
* @return the source being scanned
*/
Source get source => _source;
/**
* Report an error at the current offset.
* @param errorCode the error code indicating the nature of the error
* @param arguments any arguments needed to complete the error message
*/
void reportError(ScannerErrorCode errorCode, List<Object> arguments) {
_errorListener.onError(new AnalysisError.con2(source, offset, 1, errorCode, arguments));
}
int select(int choice, TokenType yesType, TokenType noType) {
int next = advance();
if (next == choice) {
appendToken(yesType);
return advance();
} else {
appendToken(noType);
return next;
}
}
int select2(int choice, TokenType yesType, TokenType noType, int offset) {
int next = advance();
if (next == choice) {
appendToken2(yesType, offset);
return advance();
} else {
appendToken2(noType, offset);
return next;
}
}
int tokenizeAmpersand(int next) {
next = advance();
if (next == 0x26) {
appendToken(TokenType.AMPERSAND_AMPERSAND);
return advance();
} else if (next == 0x3D) {
appendToken(TokenType.AMPERSAND_EQ);
return advance();
} else {
appendToken(TokenType.AMPERSAND);
return next;
}
}
int tokenizeBar(int next) {
next = advance();
if (next == 0x7C) {
appendToken(TokenType.BAR_BAR);
return advance();
} else if (next == 0x3D) {
appendToken(TokenType.BAR_EQ);
return advance();
} else {
appendToken(TokenType.BAR);
return next;
}
}
int tokenizeCaret(int next) => select(0x3D, TokenType.CARET_EQ, TokenType.CARET);
int tokenizeDotOrNumber(int next) {
int start = offset;
next = advance();
if ((0x30 <= next && next <= 0x39)) {
return tokenizeFractionPart(next, start);
} else if (0x2E == next) {
return select(0x2E, TokenType.PERIOD_PERIOD_PERIOD, TokenType.PERIOD_PERIOD);
} else {
appendToken(TokenType.PERIOD);
return next;
}
}
int tokenizeEquals(int next) {
next = advance();
if (next == 0x3D) {
appendToken(TokenType.EQ_EQ);
return advance();
} else if (next == 0x3E) {
appendToken(TokenType.FUNCTION);
return advance();
}
appendToken(TokenType.EQ);
return next;
}
int tokenizeExclamation(int next) {
next = advance();
if (next == 0x3D) {
appendToken(TokenType.BANG_EQ);
return advance();
}
appendToken(TokenType.BANG);
return next;
}
int tokenizeExponent(int next) {
if (next == 0x2B || next == 0x2D) {
next = advance();
}
bool hasDigits = false;
while (true) {
if (0x30 <= next && next <= 0x39) {
hasDigits = true;
} else {
if (!hasDigits) {
reportError(ScannerErrorCode.MISSING_DIGIT, []);
}
return next;
}
next = advance();
}
}
int tokenizeFractionPart(int next, int start) {
bool done = false;
bool hasDigit = false;
LOOP: while (!done) {
if (0x30 <= next && next <= 0x39) {
hasDigit = true;
} else if (0x65 == next || 0x45 == next) {
hasDigit = true;
next = tokenizeExponent(advance());
done = true;
continue LOOP;
} else {
done = true;
continue LOOP;
}
next = advance();
}
if (!hasDigit) {
appendStringToken(TokenType.INT, getString(start, -2));
if (0x2E == next) {
return select2(0x2E, TokenType.PERIOD_PERIOD_PERIOD, TokenType.PERIOD_PERIOD, offset - 1);
}
appendToken2(TokenType.PERIOD, offset - 1);
return bigSwitch(next);
}
if (next == 0x64 || next == 0x44) {
next = advance();
}
appendStringToken(TokenType.DOUBLE, getString(start, next < 0 ? 0 : -1));
return next;
}
int tokenizeGreaterThan(int next) {
next = advance();
if (0x3D == next) {
appendToken(TokenType.GT_EQ);
return advance();
} else if (0x3E == next) {
next = advance();
if (0x3D == next) {
appendToken(TokenType.GT_GT_EQ);
return advance();
} else {
appendToken(TokenType.GT_GT);
return next;
}
} else {
appendToken(TokenType.GT);
return next;
}
}
int tokenizeHex(int next) {
int start = offset - 1;
bool hasDigits = false;
while (true) {
next = advance();
if ((0x30 <= next && next <= 0x39) || (0x41 <= next && next <= 0x46) || (0x61 <= next && next <= 0x66)) {
hasDigits = true;
} else {
if (!hasDigits) {
reportError(ScannerErrorCode.MISSING_HEX_DIGIT, []);
}
appendStringToken(TokenType.HEXADECIMAL, getString(start, next < 0 ? 0 : -1));
return next;
}
}
}
int tokenizeHexOrNumber(int next) {
int x = peek();
if (x == 0x78 || x == 0x58) {
advance();
return tokenizeHex(x);
}
return tokenizeNumber(next);
}
int tokenizeIdentifier(int next, int start, bool allowDollar) {
while ((0x61 <= next && next <= 0x7A) || (0x41 <= next && next <= 0x5A) || (0x30 <= next && next <= 0x39) || next == 0x5F || (next == 0x24 && allowDollar) || Character.isLetterOrDigit(next)) {
next = advance();
}
appendStringToken(TokenType.IDENTIFIER, getString(start, next < 0 ? 0 : -1));
return next;
}
int tokenizeInterpolatedExpression(int next, int start) {
appendBeginToken(TokenType.STRING_INTERPOLATION_EXPRESSION);
next = advance();
while (next != -1) {
if (next == 0x7D) {
BeginToken begin = findTokenMatchingClosingBraceInInterpolationExpression();
if (begin == null) {
beginToken();
appendToken(TokenType.CLOSE_CURLY_BRACKET);
next = advance();
beginToken();
return next;
} else if (identical(begin.type, TokenType.OPEN_CURLY_BRACKET)) {
beginToken();
appendEndToken(TokenType.CLOSE_CURLY_BRACKET, TokenType.OPEN_CURLY_BRACKET);
next = advance();
beginToken();
} else if (identical(begin.type, TokenType.STRING_INTERPOLATION_EXPRESSION)) {
beginToken();
appendEndToken(TokenType.CLOSE_CURLY_BRACKET, TokenType.STRING_INTERPOLATION_EXPRESSION);
next = advance();
beginToken();
return next;
}
} else {
next = bigSwitch(next);
}
}
if (next == -1) {
return next;
}
next = advance();
beginToken();
return next;
}
int tokenizeInterpolatedIdentifier(int next, int start) {
appendStringToken2(TokenType.STRING_INTERPOLATION_IDENTIFIER, "\$", 0);
beginToken();
next = tokenizeKeywordOrIdentifier(next, false);
beginToken();
return next;
}
int tokenizeKeywordOrIdentifier(int next2, bool allowDollar) {
KeywordState state = KeywordState.KEYWORD_STATE;
int start = offset;
while (state != null && 0x61 <= next2 && next2 <= 0x7A) {
state = state.next((next2 as int));
next2 = advance();
}
if (state == null || state.keyword() == null) {
return tokenizeIdentifier(next2, start, allowDollar);
}
if ((0x41 <= next2 && next2 <= 0x5A) || (0x30 <= next2 && next2 <= 0x39) || next2 == 0x5F || next2 == 0x24) {
return tokenizeIdentifier(next2, start, allowDollar);
} else if (next2 < 128) {
appendKeywordToken(state.keyword());
return next2;
} else {
return tokenizeIdentifier(next2, start, allowDollar);
}
}
int tokenizeLessThan(int next) {
next = advance();
if (0x3D == next) {
appendToken(TokenType.LT_EQ);
return advance();
} else if (0x3C == next) {
return select(0x3D, TokenType.LT_LT_EQ, TokenType.LT_LT);
} else {
appendToken(TokenType.LT);
return next;
}
}
int tokenizeMinus(int next) {
next = advance();
if (next == 0x2D) {
appendToken(TokenType.MINUS_MINUS);
return advance();
} else if (next == 0x3D) {
appendToken(TokenType.MINUS_EQ);
return advance();
} else {
appendToken(TokenType.MINUS);
return next;
}
}
int tokenizeMultiLineComment(int next) {
int nesting = 1;
next = advance();
while (true) {
if (-1 == next) {
reportError(ScannerErrorCode.UNTERMINATED_MULTI_LINE_COMMENT, []);
appendCommentToken(TokenType.MULTI_LINE_COMMENT, getString(_tokenStart, 0));
return next;
} else if (0x2A == next) {
next = advance();
if (0x2F == next) {
--nesting;
if (0 == nesting) {
appendCommentToken(TokenType.MULTI_LINE_COMMENT, getString(_tokenStart, 0));
return advance();
} else {
next = advance();
}
}
} else if (0x2F == next) {
next = advance();
if (0x2A == next) {
next = advance();
++nesting;
}
} else if (next == 0xD) {
next = advance();
if (next == 0xA) {
next = advance();
}
recordStartOfLine();
} else if (next == 0xA) {
recordStartOfLine();
next = advance();
} else {
next = advance();
}
}
}
int tokenizeMultiLineRawString(int quoteChar, int start) {
int next = advance();
outer: while (next != -1) {
while (next != quoteChar) {
next = advance();
if (next == -1) {
break outer;
}
}
next = advance();
if (next == quoteChar) {
next = advance();
if (next == quoteChar) {
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
}
}
}
reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
}
int tokenizeMultiLineString(int quoteChar, int start, bool raw) {
if (raw) {
return tokenizeMultiLineRawString(quoteChar, start);
}
int next = advance();
while (next != -1) {
if (next == 0x24) {
appendStringToken(TokenType.STRING, getString(start, -1));
beginToken();
next = tokenizeStringInterpolation(start);
start = offset;
continue;
}
if (next == quoteChar) {
next = advance();
if (next == quoteChar) {
next = advance();
if (next == quoteChar) {
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
}
}
continue;
}
if (next == 0x5C) {
next = advance();
if (next == -1) {
break;
}
}
next = advance();
}
reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
}
int tokenizeMultiply(int next) => select(0x3D, TokenType.STAR_EQ, TokenType.STAR);
int tokenizeNumber(int next) {
int start = offset;
while (true) {
next = advance();
if (0x30 <= next && next <= 0x39) {
continue;
} else if (next == 0x2E) {
return tokenizeFractionPart(advance(), start);
} else if (next == 0x64 || next == 0x44) {
appendStringToken(TokenType.DOUBLE, getString(start, 0));
return advance();
} else if (next == 0x65 || next == 0x45) {
return tokenizeFractionPart(next, start);
} else {
appendStringToken(TokenType.INT, getString(start, next < 0 ? 0 : -1));
return next;
}
}
}
int tokenizeOpenSquareBracket(int next) {
next = advance();
if (next == 0x5D) {
return select(0x3D, TokenType.INDEX_EQ, TokenType.INDEX);
} else {
appendBeginToken(TokenType.OPEN_SQUARE_BRACKET);
return next;
}
}
int tokenizePercent(int next) => select(0x3D, TokenType.PERCENT_EQ, TokenType.PERCENT);
int tokenizePlus(int next) {
next = advance();
if (0x2B == next) {
appendToken(TokenType.PLUS_PLUS);
return advance();
} else if (0x3D == next) {
appendToken(TokenType.PLUS_EQ);
return advance();
} else {
appendToken(TokenType.PLUS);
return next;
}
}
int tokenizeSingleLineComment(int next) {
while (true) {
next = advance();
if (0xA == next || 0xD == next || -1 == next) {
appendCommentToken(TokenType.SINGLE_LINE_COMMENT, getString(_tokenStart, 0));
return next;
}
}
}
int tokenizeSingleLineRawString(int next, int quoteChar, int start) {
next = advance();
while (next != -1) {
if (next == quoteChar) {
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
} else if (next == 0xD || next == 0xA) {
reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
}
next = advance();
}
reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
}
int tokenizeSingleLineString(int next, int quoteChar, int start) {
while (next != quoteChar) {
if (next == 0x5C) {
next = advance();
} else if (next == 0x24) {
appendStringToken(TokenType.STRING, getString(start, -1));
beginToken();
next = tokenizeStringInterpolation(start);
start = offset;
continue;
}
if (next <= 0xD && (next == 0xA || next == 0xD || next == -1)) {
reportError(ScannerErrorCode.UNTERMINATED_STRING_LITERAL, []);
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
}
next = advance();
}
appendStringToken(TokenType.STRING, getString(start, 0));
return advance();
}
int tokenizeSlashOrComment(int next) {
next = advance();
if (0x2A == next) {
return tokenizeMultiLineComment(next);
} else if (0x2F == next) {
return tokenizeSingleLineComment(next);
} else if (0x3D == next) {
appendToken(TokenType.SLASH_EQ);
return advance();
} else {
appendToken(TokenType.SLASH);
return next;
}
}
int tokenizeString(int next, int start, bool raw) {
int quoteChar = next;
next = advance();
if (quoteChar == next) {
next = advance();
if (quoteChar == next) {
return tokenizeMultiLineString(quoteChar, start, raw);
} else {
appendStringToken(TokenType.STRING, getString(start, -1));
return next;
}
}
if (raw) {
return tokenizeSingleLineRawString(next, quoteChar, start);
} else {
return tokenizeSingleLineString(next, quoteChar, start);
}
}
int tokenizeStringInterpolation(int start) {
beginToken();
int next = advance();
if (next == 0x7B) {
return tokenizeInterpolatedExpression(next, start);
} else {
return tokenizeInterpolatedIdentifier(next, start);
}
}
int tokenizeTag(int next) {
if (offset == 0) {
if (peek() == 0x21) {
do {
next = advance();
} while (next != 0xA && next != 0xD && next > 0);
appendStringToken(TokenType.SCRIPT_TAG, getString(_tokenStart, 0));
return next;
}
}
appendToken(TokenType.HASH);
return advance();
}
int tokenizeTilde(int next) {
next = advance();
if (next == 0x2F) {
return select(0x3D, TokenType.TILDE_SLASH_EQ, TokenType.TILDE_SLASH);
} else {
appendToken(TokenType.TILDE);
return next;
}
}
}
/**
* Instances of the class {@code StringToken} represent a token whose value is independent of it's
* type.
* @coverage dart.engine.parser
*/
class StringToken extends Token {
/**
* The lexeme represented by this token.
*/
String _value2;
/**
* Initialize a newly created token to represent a token of the given type with the given value.
* @param type the type of the token
* @param value the lexeme represented by this token
* @param offset the offset from the beginning of the file to the first character in the token
*/
StringToken(TokenType type, String value, int offset) : super(type, offset) {
this._value2 = StringUtilities.intern(value);
}
String get lexeme => _value2;
String value() => _value2;
}
/**
* Instances of the class {@code CharBufferScanner} implement a scanner that reads from a character
* buffer. The scanning logic is in the superclass.
* @coverage dart.engine.parser
*/
class CharBufferScanner extends AbstractScanner {
/**
* The buffer from which characters will be read.
*/
CharBuffer _buffer;
/**
* The number of characters in the buffer.
*/
int _bufferLength = 0;
/**
* The index of the last character that was read.
*/
int _charOffset = 0;
/**
* Initialize a newly created scanner to scan the characters in the given character buffer.
* @param source the source being scanned
* @param buffer the buffer from which characters will be read
* @param errorListener the error listener that will be informed of any errors that are found
*/
CharBufferScanner(Source source, CharBuffer buffer, AnalysisErrorListener errorListener) : super(source, errorListener) {
this._buffer = buffer;
this._bufferLength = buffer.length();
this._charOffset = -1;
}
int get offset => _charOffset;
int advance() {
if (_charOffset + 1 >= _bufferLength) {
return -1;
}
return _buffer.charAt(++_charOffset);
}
String getString(int start, int endDelta) => ((_buffer as CharSequence)).subSequence(start, _charOffset + 1 + endDelta).toString();
int peek() {
if (_charOffset + 1 >= _buffer.length()) {
return -1;
}
return _buffer.charAt(_charOffset + 1);
}
}
/**
* Instances of the class {@code TokenWithComment} represent a normal token that is preceded by
* comments.
* @coverage dart.engine.parser
*/
class TokenWithComment extends Token {
/**
* The first comment in the list of comments that precede this token.
*/
Token _precedingComment;
/**
* Initialize a newly created token to have the given type and offset and to be preceded by the
* comments reachable from the given comment.
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
* @param precedingComment the first comment in the list of comments that precede this token
*/
TokenWithComment(TokenType type, int offset, Token precedingComment) : super(type, offset) {
this._precedingComment = precedingComment;
}
Token get precedingComments => _precedingComment;
}
/**
* Instances of the class {@code Token} represent a token that was scanned from the input. Each
* token knows which token follows it, acting as the head of a linked list of tokens.
* @coverage dart.engine.parser
*/
class Token {
/**
* The type of the token.
*/
TokenType _type;
/**
* The offset from the beginning of the file to the first character in the token.
*/
int _offset = 0;
/**
* The previous token in the token stream.
*/
Token _previous;
/**
* The next token in the token stream.
*/
Token _next;
/**
* Initialize a newly created token to have the given type and offset.
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
*/
Token(TokenType type, int offset) {
this._type = type;
this._offset = offset;
}
/**
* Return the offset from the beginning of the file to the character after last character of the
* token.
* @return the offset from the beginning of the file to the first character after last character
* of the token
*/
int get end => _offset + length;
/**
* Return the number of characters in the node's source range.
* @return the number of characters in the node's source range
*/
int get length => lexeme.length;
/**
* Return the lexeme that represents this token.
* @return the lexeme that represents this token
*/
String get lexeme => _type.lexeme;
/**
* Return the next token in the token stream.
* @return the next token in the token stream
*/
Token get next => _next;
/**
* Return the offset from the beginning of the file to the first character in the token.
* @return the offset from the beginning of the file to the first character in the token
*/
int get offset => _offset;
/**
* Return the first comment in the list of comments that precede this token, or {@code null} if
* there are no comments preceding this token. Additional comments can be reached by following the
* token stream using {@link #getNext()} until {@code null} is returned.
* @return the first comment in the list of comments that precede this token
*/
Token get precedingComments => null;
/**
* Return the previous token in the token stream.
* @return the previous token in the token stream
*/
Token get previous => _previous;
/**
* Return the type of the token.
* @return the type of the token
*/
TokenType get type => _type;
/**
* Return {@code true} if this token represents an operator.
* @return {@code true} if this token represents an operator
*/
bool isOperator() => _type.isOperator();
/**
* Return {@code true} if this token is a synthetic token. A synthetic token is a token that was
* introduced by the parser in order to recover from an error in the code. Synthetic tokens always
* have a length of zero ({@code 0}).
* @return {@code true} if this token is a synthetic token
*/
bool isSynthetic() => length == 0;
/**
* Return {@code true} if this token represents an operator that can be defined by users.
* @return {@code true} if this token represents an operator that can be defined by users
*/
bool isUserDefinableOperator() => _type.isUserDefinableOperator();
/**
* Set the next token in the token stream to the given token. This has the side-effect of setting
* this token to be the previous token for the given token.
* @param token the next token in the token stream
* @return the token that was passed in
*/
Token setNext(Token token) {
_next = token;
token.previous = this;
return token;
}
/**
* Set the next token in the token stream to the given token without changing which token is the
* previous token for the given token.
* @param token the next token in the token stream
* @return the token that was passed in
*/
Token setNextWithoutSettingPrevious(Token token) {
_next = token;
return token;
}
/**
* Set the offset from the beginning of the file to the first character in the token to the given
* offset.
* @param offset the offset from the beginning of the file to the first character in the token
*/
void set offset(int offset2) {
this._offset = offset2;
}
String toString() => lexeme;
/**
* Return the value of this token. For keyword tokens, this is the keyword associated with the
* token, for other tokens it is the lexeme associated with the token.
* @return the value of this token
*/
Object value() => _type.lexeme;
/**
* Set the previous token in the token stream to the given token.
* @param previous the previous token in the token stream
*/
void set previous(Token previous2) {
this._previous = previous2;
}
}
/**
* Instances of the class {@code StringScanner} implement a scanner that reads from a string. The
* scanning logic is in the superclass.
* @coverage dart.engine.parser
*/
class StringScanner extends AbstractScanner {
/**
* The offset from the beginning of the file to the beginning of the source being scanned.
*/
int _offsetDelta = 0;
/**
* The string from which characters will be read.
*/
String _string;
/**
* The number of characters in the string.
*/
int _stringLength = 0;
/**
* The index, relative to the string, of the last character that was read.
*/
int _charOffset = 0;
/**
* Initialize a newly created scanner to scan the characters in the given string.
* @param source the source being scanned
* @param string the string from which characters will be read
* @param errorListener the error listener that will be informed of any errors that are found
*/
StringScanner(Source source, String string, AnalysisErrorListener errorListener) : super(source, errorListener) {
this._offsetDelta = 0;
this._string = string;
this._stringLength = string.length;
this._charOffset = -1;
}
int get offset => _offsetDelta + _charOffset;
/**
* Record that the source begins on the given line and column at the given offset. The line starts
* for lines before the given line will not be correct.
* <p>
* This method must be invoked at most one time and must be invoked before scanning begins. The
* values provided must be sensible. The results are undefined if these conditions are violated.
* @param line the one-based index of the line containing the first character of the source
* @param column the one-based index of the column in which the first character of the source
* occurs
* @param offset the zero-based offset from the beginning of the larger context to the first
* character of the source
*/
void setSourceStart(int line, int column, int offset) {
if (line < 1 || column < 1 || offset < 0 || (line + column - 2) >= offset) {
return;
}
_offsetDelta = 1;
for (int i = 2; i < line; i++) {
recordStartOfLine();
}
_offsetDelta = offset - column + 1;
recordStartOfLine();
_offsetDelta = offset;
}
int advance() {
if (_charOffset + 1 >= _stringLength) {
return -1;
}
return _string.codeUnitAt(++_charOffset);
}
String getString(int start, int endDelta) => _string.substring(start - _offsetDelta, _charOffset + 1 + endDelta);
int peek() {
if (_charOffset + 1 >= _string.length) {
return -1;
}
return _string.codeUnitAt(_charOffset + 1);
}
}
/**
* Instances of the class {@code BeginTokenWithComment} represent a begin token that is preceded by
* comments.
* @coverage dart.engine.parser
*/
class BeginTokenWithComment extends BeginToken {
/**
* The first comment in the list of comments that precede this token.
*/
Token _precedingComment;
/**
* Initialize a newly created token to have the given type and offset and to be preceded by the
* comments reachable from the given comment.
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
* @param precedingComment the first comment in the list of comments that precede this token
*/
BeginTokenWithComment(TokenType type, int offset, Token precedingComment) : super(type, offset) {
this._precedingComment = precedingComment;
}
Token get precedingComments => _precedingComment;
}
/**
* Instances of the class {@code KeywordToken} represent a keyword in the language.
* @coverage dart.engine.parser
*/
class KeywordToken extends Token {
/**
* The keyword being represented by this token.
*/
Keyword _keyword;
/**
* Initialize a newly created token to represent the given keyword.
* @param keyword the keyword being represented by this token
* @param offset the offset from the beginning of the file to the first character in the token
*/
KeywordToken(Keyword keyword, int offset) : super(TokenType.KEYWORD, offset) {
this._keyword = keyword;
}
/**
* Return the keyword being represented by this token.
* @return the keyword being represented by this token
*/
Keyword get keyword => _keyword;
String get lexeme => _keyword.syntax;
Keyword value() => _keyword;
}
/**
* Instances of the class {@code BeginToken} represent the opening half of a grouping pair of
* tokens. This is used for curly brackets ('{'), parentheses ('('), and square brackets ('\[').
* @coverage dart.engine.parser
*/
class BeginToken extends Token {
/**
* The token that corresponds to this token.
*/
Token _endToken;
/**
* Initialize a newly created token representing the opening half of a grouping pair of tokens.
* @param type the type of the token
* @param offset the offset from the beginning of the file to the first character in the token
*/
BeginToken(TokenType type, int offset) : super(type, offset) {
assert((identical(type, TokenType.OPEN_CURLY_BRACKET) || identical(type, TokenType.OPEN_PAREN) || identical(type, TokenType.OPEN_SQUARE_BRACKET) || identical(type, TokenType.STRING_INTERPOLATION_EXPRESSION)));
}
/**
* Return the token that corresponds to this token.
* @return the token that corresponds to this token
*/
Token get endToken => _endToken;
/**
* Set the token that corresponds to this token to the given token.
* @param token the token that corresponds to this token
*/
void set endToken(Token token) {
this._endToken = token;
}
}
/**
* The enumeration {@code TokenClass} represents classes (or groups) of tokens with a similar use.
* @coverage dart.engine.parser
*/
class TokenClass implements Comparable<TokenClass> {
/**
* A value used to indicate that the token type is not part of any specific class of token.
*/
static final TokenClass NO_CLASS = new TokenClass.con1('NO_CLASS', 0);
/**
* A value used to indicate that the token type is an additive operator.
*/
static final TokenClass ADDITIVE_OPERATOR = new TokenClass.con2('ADDITIVE_OPERATOR', 1, 12);
/**
* A value used to indicate that the token type is an assignment operator.
*/
static final TokenClass ASSIGNMENT_OPERATOR = new TokenClass.con2('ASSIGNMENT_OPERATOR', 2, 1);
/**
* A value used to indicate that the token type is a bitwise-and operator.
*/
static final TokenClass BITWISE_AND_OPERATOR = new TokenClass.con2('BITWISE_AND_OPERATOR', 3, 8);
/**
* A value used to indicate that the token type is a bitwise-or operator.
*/
static final TokenClass BITWISE_OR_OPERATOR = new TokenClass.con2('BITWISE_OR_OPERATOR', 4, 6);
/**
* A value used to indicate that the token type is a bitwise-xor operator.
*/
static final TokenClass BITWISE_XOR_OPERATOR = new TokenClass.con2('BITWISE_XOR_OPERATOR', 5, 7);
/**
* A value used to indicate that the token type is a cascade operator.
*/
static final TokenClass CASCADE_OPERATOR = new TokenClass.con2('CASCADE_OPERATOR', 6, 2);
/**
* A value used to indicate that the token type is a conditional operator.
*/
static final TokenClass CONDITIONAL_OPERATOR = new TokenClass.con2('CONDITIONAL_OPERATOR', 7, 3);
/**
* A value used to indicate that the token type is an equality operator.
*/
static final TokenClass EQUALITY_OPERATOR = new TokenClass.con2('EQUALITY_OPERATOR', 8, 9);
/**
* A value used to indicate that the token type is a logical-and operator.
*/
static final TokenClass LOGICAL_AND_OPERATOR = new TokenClass.con2('LOGICAL_AND_OPERATOR', 9, 5);
/**
* A value used to indicate that the token type is a logical-or operator.
*/
static final TokenClass LOGICAL_OR_OPERATOR = new TokenClass.con2('LOGICAL_OR_OPERATOR', 10, 4);
/**
* A value used to indicate that the token type is a multiplicative operator.
*/
static final TokenClass MULTIPLICATIVE_OPERATOR = new TokenClass.con2('MULTIPLICATIVE_OPERATOR', 11, 13);
/**
* A value used to indicate that the token type is a relational operator.
*/
static final TokenClass RELATIONAL_OPERATOR = new TokenClass.con2('RELATIONAL_OPERATOR', 12, 10);
/**
* A value used to indicate that the token type is a shift operator.
*/
static final TokenClass SHIFT_OPERATOR = new TokenClass.con2('SHIFT_OPERATOR', 13, 11);
/**
* A value used to indicate that the token type is a unary operator.
*/
static final TokenClass UNARY_POSTFIX_OPERATOR = new TokenClass.con2('UNARY_POSTFIX_OPERATOR', 14, 15);
/**
* A value used to indicate that the token type is a unary operator.
*/
static final TokenClass UNARY_PREFIX_OPERATOR = new TokenClass.con2('UNARY_PREFIX_OPERATOR', 15, 14);
static final List<TokenClass> values = [NO_CLASS, ADDITIVE_OPERATOR, ASSIGNMENT_OPERATOR, BITWISE_AND_OPERATOR, BITWISE_OR_OPERATOR, BITWISE_XOR_OPERATOR, CASCADE_OPERATOR, CONDITIONAL_OPERATOR, EQUALITY_OPERATOR, LOGICAL_AND_OPERATOR, LOGICAL_OR_OPERATOR, MULTIPLICATIVE_OPERATOR, RELATIONAL_OPERATOR, SHIFT_OPERATOR, UNARY_POSTFIX_OPERATOR, UNARY_PREFIX_OPERATOR];
String __name;
int __ordinal = 0;
int get ordinal => __ordinal;
/**
* The precedence of tokens of this class, or {@code 0} if the such tokens do not represent an
* operator.
*/
int _precedence = 0;
TokenClass.con1(String ___name, int ___ordinal) {
_jtd_constructor_319_impl(___name, ___ordinal);
}
_jtd_constructor_319_impl(String ___name, int ___ordinal) {
_jtd_constructor_320_impl(___name, ___ordinal, 0);
}
TokenClass.con2(String ___name, int ___ordinal, int precedence2) {
_jtd_constructor_320_impl(___name, ___ordinal, precedence2);
}
_jtd_constructor_320_impl(String ___name, int ___ordinal, int precedence2) {
__name = ___name;
__ordinal = ___ordinal;
this._precedence = precedence2;
}
/**
* Return the precedence of tokens of this class, or {@code 0} if the such tokens do not represent
* an operator.
* @return the precedence of tokens of this class
*/
int get precedence => _precedence;
int compareTo(TokenClass other) => __ordinal - other.__ordinal;
String toString() => __name;
}
/**
* Instances of the class {@code KeywordTokenWithComment} implement a keyword token that is preceded
* by comments.
* @coverage dart.engine.parser
*/
class KeywordTokenWithComment extends KeywordToken {
/**
* The first comment in the list of comments that precede this token.
*/
Token _precedingComment;
/**
* Initialize a newly created token to to represent the given keyword and to be preceded by the
* comments reachable from the given comment.
* @param keyword the keyword being represented by this token
* @param offset the offset from the beginning of the file to the first character in the token
* @param precedingComment the first comment in the list of comments that precede this token
*/
KeywordTokenWithComment(Keyword keyword, int offset, Token precedingComment) : super(keyword, offset) {
this._precedingComment = precedingComment;
}
Token get precedingComments => _precedingComment;
}
/**
* The enumeration {@code TokenType} defines the types of tokens that can be returned by the
* scanner.
* @coverage dart.engine.parser
*/
class TokenType implements Comparable<TokenType> {
/**
* The type of the token that marks the end of the input.
*/
static final TokenType EOF = new TokenType_EOF('EOF', 0, null, "");
static final TokenType DOUBLE = new TokenType.con1('DOUBLE', 1);
static final TokenType HEXADECIMAL = new TokenType.con1('HEXADECIMAL', 2);
static final TokenType IDENTIFIER = new TokenType.con1('IDENTIFIER', 3);
static final TokenType INT = new TokenType.con1('INT', 4);
static final TokenType KEYWORD = new TokenType.con1('KEYWORD', 5);
static final TokenType MULTI_LINE_COMMENT = new TokenType.con1('MULTI_LINE_COMMENT', 6);
static final TokenType SCRIPT_TAG = new TokenType.con1('SCRIPT_TAG', 7);
static final TokenType SINGLE_LINE_COMMENT = new TokenType.con1('SINGLE_LINE_COMMENT', 8);
static final TokenType STRING = new TokenType.con1('STRING', 9);
static final TokenType AMPERSAND = new TokenType.con2('AMPERSAND', 10, TokenClass.BITWISE_AND_OPERATOR, "&");
static final TokenType AMPERSAND_AMPERSAND = new TokenType.con2('AMPERSAND_AMPERSAND', 11, TokenClass.LOGICAL_AND_OPERATOR, "&&");
static final TokenType AMPERSAND_EQ = new TokenType.con2('AMPERSAND_EQ', 12, TokenClass.ASSIGNMENT_OPERATOR, "&=");
static final TokenType AT = new TokenType.con2('AT', 13, null, "@");
static final TokenType BANG = new TokenType.con2('BANG', 14, TokenClass.UNARY_PREFIX_OPERATOR, "!");
static final TokenType BANG_EQ = new TokenType.con2('BANG_EQ', 15, TokenClass.EQUALITY_OPERATOR, "!=");
static final TokenType BAR = new TokenType.con2('BAR', 16, TokenClass.BITWISE_OR_OPERATOR, "|");
static final TokenType BAR_BAR = new TokenType.con2('BAR_BAR', 17, TokenClass.LOGICAL_OR_OPERATOR, "||");
static final TokenType BAR_EQ = new TokenType.con2('BAR_EQ', 18, TokenClass.ASSIGNMENT_OPERATOR, "|=");
static final TokenType COLON = new TokenType.con2('COLON', 19, null, ":");
static final TokenType COMMA = new TokenType.con2('COMMA', 20, null, ",");
static final TokenType CARET = new TokenType.con2('CARET', 21, TokenClass.BITWISE_XOR_OPERATOR, "^");
static final TokenType CARET_EQ = new TokenType.con2('CARET_EQ', 22, TokenClass.ASSIGNMENT_OPERATOR, "^=");
static final TokenType CLOSE_CURLY_BRACKET = new TokenType.con2('CLOSE_CURLY_BRACKET', 23, null, "}");
static final TokenType CLOSE_PAREN = new TokenType.con2('CLOSE_PAREN', 24, null, ")");
static final TokenType CLOSE_SQUARE_BRACKET = new TokenType.con2('CLOSE_SQUARE_BRACKET', 25, null, "]");
static final TokenType EQ = new TokenType.con2('EQ', 26, TokenClass.ASSIGNMENT_OPERATOR, "=");
static final TokenType EQ_EQ = new TokenType.con2('EQ_EQ', 27, TokenClass.EQUALITY_OPERATOR, "==");
static final TokenType FUNCTION = new TokenType.con2('FUNCTION', 28, null, "=>");
static final TokenType GT = new TokenType.con2('GT', 29, TokenClass.RELATIONAL_OPERATOR, ">");
static final TokenType GT_EQ = new TokenType.con2('GT_EQ', 30, TokenClass.RELATIONAL_OPERATOR, ">=");
static final TokenType GT_GT = new TokenType.con2('GT_GT', 31, TokenClass.SHIFT_OPERATOR, ">>");
static final TokenType GT_GT_EQ = new TokenType.con2('GT_GT_EQ', 32, TokenClass.ASSIGNMENT_OPERATOR, ">>=");
static final TokenType HASH = new TokenType.con2('HASH', 33, null, "#");
static final TokenType INDEX = new TokenType.con2('INDEX', 34, TokenClass.UNARY_POSTFIX_OPERATOR, "[]");
static final TokenType INDEX_EQ = new TokenType.con2('INDEX_EQ', 35, TokenClass.UNARY_POSTFIX_OPERATOR, "[]=");
static final TokenType IS = new TokenType.con2('IS', 36, TokenClass.RELATIONAL_OPERATOR, "is");
static final TokenType LT = new TokenType.con2('LT', 37, TokenClass.RELATIONAL_OPERATOR, "<");
static final TokenType LT_EQ = new TokenType.con2('LT_EQ', 38, TokenClass.RELATIONAL_OPERATOR, "<=");
static final TokenType LT_LT = new TokenType.con2('LT_LT', 39, TokenClass.SHIFT_OPERATOR, "<<");
static final TokenType LT_LT_EQ = new TokenType.con2('LT_LT_EQ', 40, TokenClass.ASSIGNMENT_OPERATOR, "<<=");
static final TokenType MINUS = new TokenType.con2('MINUS', 41, TokenClass.ADDITIVE_OPERATOR, "-");
static final TokenType MINUS_EQ = new TokenType.con2('MINUS_EQ', 42, TokenClass.ASSIGNMENT_OPERATOR, "-=");
static final TokenType MINUS_MINUS = new TokenType.con2('MINUS_MINUS', 43, TokenClass.UNARY_PREFIX_OPERATOR, "--");
static final TokenType OPEN_CURLY_BRACKET = new TokenType.con2('OPEN_CURLY_BRACKET', 44, null, "{");
static final TokenType OPEN_PAREN = new TokenType.con2('OPEN_PAREN', 45, TokenClass.UNARY_POSTFIX_OPERATOR, "(");
static final TokenType OPEN_SQUARE_BRACKET = new TokenType.con2('OPEN_SQUARE_BRACKET', 46, TokenClass.UNARY_POSTFIX_OPERATOR, "[");
static final TokenType PERCENT = new TokenType.con2('PERCENT', 47, TokenClass.MULTIPLICATIVE_OPERATOR, "%");
static final TokenType PERCENT_EQ = new TokenType.con2('PERCENT_EQ', 48, TokenClass.ASSIGNMENT_OPERATOR, "%=");
static final TokenType PERIOD = new TokenType.con2('PERIOD', 49, TokenClass.UNARY_POSTFIX_OPERATOR, ".");
static final TokenType PERIOD_PERIOD = new TokenType.con2('PERIOD_PERIOD', 50, TokenClass.CASCADE_OPERATOR, "..");
static final TokenType PLUS = new TokenType.con2('PLUS', 51, TokenClass.ADDITIVE_OPERATOR, "+");
static final TokenType PLUS_EQ = new TokenType.con2('PLUS_EQ', 52, TokenClass.ASSIGNMENT_OPERATOR, "+=");
static final TokenType PLUS_PLUS = new TokenType.con2('PLUS_PLUS', 53, TokenClass.UNARY_PREFIX_OPERATOR, "++");
static final TokenType QUESTION = new TokenType.con2('QUESTION', 54, TokenClass.CONDITIONAL_OPERATOR, "?");
static final TokenType SEMICOLON = new TokenType.con2('SEMICOLON', 55, null, ";");
static final TokenType SLASH = new TokenType.con2('SLASH', 56, TokenClass.MULTIPLICATIVE_OPERATOR, "/");
static final TokenType SLASH_EQ = new TokenType.con2('SLASH_EQ', 57, TokenClass.ASSIGNMENT_OPERATOR, "/=");
static final TokenType STAR = new TokenType.con2('STAR', 58, TokenClass.MULTIPLICATIVE_OPERATOR, "*");
static final TokenType STAR_EQ = new TokenType.con2('STAR_EQ', 59, TokenClass.ASSIGNMENT_OPERATOR, "*=");
static final TokenType STRING_INTERPOLATION_EXPRESSION = new TokenType.con2('STRING_INTERPOLATION_EXPRESSION', 60, null, "\${");
static final TokenType STRING_INTERPOLATION_IDENTIFIER = new TokenType.con2('STRING_INTERPOLATION_IDENTIFIER', 61, null, "\$");
static final TokenType TILDE = new TokenType.con2('TILDE', 62, TokenClass.UNARY_PREFIX_OPERATOR, "~");
static final TokenType TILDE_SLASH = new TokenType.con2('TILDE_SLASH', 63, TokenClass.MULTIPLICATIVE_OPERATOR, "~/");
static final TokenType TILDE_SLASH_EQ = new TokenType.con2('TILDE_SLASH_EQ', 64, TokenClass.ASSIGNMENT_OPERATOR, "~/=");
static final TokenType BACKPING = new TokenType.con2('BACKPING', 65, null, "`");
static final TokenType BACKSLASH = new TokenType.con2('BACKSLASH', 66, null, "\\");
static final TokenType PERIOD_PERIOD_PERIOD = new TokenType.con2('PERIOD_PERIOD_PERIOD', 67, null, "...");
static final List<TokenType> values = [EOF, DOUBLE, HEXADECIMAL, IDENTIFIER, INT, KEYWORD, MULTI_LINE_COMMENT, SCRIPT_TAG, SINGLE_LINE_COMMENT, STRING, AMPERSAND, AMPERSAND_AMPERSAND, AMPERSAND_EQ, AT, BANG, BANG_EQ, BAR, BAR_BAR, BAR_EQ, COLON, COMMA, CARET, CARET_EQ, CLOSE_CURLY_BRACKET, CLOSE_PAREN, CLOSE_SQUARE_BRACKET, EQ, EQ_EQ, FUNCTION, GT, GT_EQ, GT_GT, GT_GT_EQ, HASH, INDEX, INDEX_EQ, IS, LT, LT_EQ, LT_LT, LT_LT_EQ, MINUS, MINUS_EQ, MINUS_MINUS, OPEN_CURLY_BRACKET, OPEN_PAREN, OPEN_SQUARE_BRACKET, PERCENT, PERCENT_EQ, PERIOD, PERIOD_PERIOD, PLUS, PLUS_EQ, PLUS_PLUS, QUESTION, SEMICOLON, SLASH, SLASH_EQ, STAR, STAR_EQ, STRING_INTERPOLATION_EXPRESSION, STRING_INTERPOLATION_IDENTIFIER, TILDE, TILDE_SLASH, TILDE_SLASH_EQ, BACKPING, BACKSLASH, PERIOD_PERIOD_PERIOD];
String __name;
int __ordinal = 0;
int get ordinal => __ordinal;
/**
* The class of the token.
*/
TokenClass _tokenClass;
/**
* The lexeme that defines this type of token, or {@code null} if there is more than one possible
* lexeme for this type of token.
*/
String _lexeme;
TokenType.con1(String ___name, int ___ordinal) {
_jtd_constructor_321_impl(___name, ___ordinal);
}
_jtd_constructor_321_impl(String ___name, int ___ordinal) {
_jtd_constructor_322_impl(___name, ___ordinal, TokenClass.NO_CLASS, null);
}
TokenType.con2(String ___name, int ___ordinal, TokenClass tokenClass2, String lexeme2) {
_jtd_constructor_322_impl(___name, ___ordinal, tokenClass2, lexeme2);
}
_jtd_constructor_322_impl(String ___name, int ___ordinal, TokenClass tokenClass2, String lexeme2) {
__name = ___name;
__ordinal = ___ordinal;
this._tokenClass = tokenClass2 == null ? TokenClass.NO_CLASS : tokenClass2;
this._lexeme = lexeme2;
}
/**
* Return the lexeme that defines this type of token, or {@code null} if there is more than one
* possible lexeme for this type of token.
* @return the lexeme that defines this type of token
*/
String get lexeme => _lexeme;
/**
* Return the precedence of the token, or {@code 0} if the token does not represent an operator.
* @return the precedence of the token
*/
int get precedence => _tokenClass.precedence;
/**
* Return {@code true} if this type of token represents an additive operator.
* @return {@code true} if this type of token represents an additive operator
*/
bool isAdditiveOperator() => identical(_tokenClass, TokenClass.ADDITIVE_OPERATOR);
/**
* Return {@code true} if this type of token represents an assignment operator.
* @return {@code true} if this type of token represents an assignment operator
*/
bool isAssignmentOperator() => identical(_tokenClass, TokenClass.ASSIGNMENT_OPERATOR);
/**
* Return {@code true} if this type of token represents an associative operator. An associative
* operator is an operator for which the following equality is true:{@code (a * b) * c == a * (b * c)}. In other words, if the result of applying the operator to
* multiple operands does not depend on the order in which those applications occur.
* <p>
* Note: This method considers the logical-and and logical-or operators to be associative, even
* though the order in which the application of those operators can have an effect because
* evaluation of the right-hand operand is conditional.
* @return {@code true} if this type of token represents an associative operator
*/
bool isAssociativeOperator() => identical(this, AMPERSAND) || identical(this, AMPERSAND_AMPERSAND) || identical(this, BAR) || identical(this, BAR_BAR) || identical(this, CARET) || identical(this, PLUS) || identical(this, STAR);
/**
* Return {@code true} if this type of token represents an equality operator.
* @return {@code true} if this type of token represents an equality operator
*/
bool isEqualityOperator() => identical(_tokenClass, TokenClass.EQUALITY_OPERATOR);
/**
* Return {@code true} if this type of token represents an increment operator.
* @return {@code true} if this type of token represents an increment operator
*/
bool isIncrementOperator() => identical(_lexeme, "++") || identical(_lexeme, "--");
/**
* Return {@code true} if this type of token represents a multiplicative operator.
* @return {@code true} if this type of token represents a multiplicative operator
*/
bool isMultiplicativeOperator() => identical(_tokenClass, TokenClass.MULTIPLICATIVE_OPERATOR);
/**
* Return {@code true} if this token type represents an operator.
* @return {@code true} if this token type represents an operator
*/
bool isOperator() => _tokenClass != TokenClass.NO_CLASS && this != OPEN_PAREN && this != OPEN_SQUARE_BRACKET && this != PERIOD;
/**
* Return {@code true} if this type of token represents a relational operator.
* @return {@code true} if this type of token represents a relational operator
*/
bool isRelationalOperator() => identical(_tokenClass, TokenClass.RELATIONAL_OPERATOR);
/**
* Return {@code true} if this type of token represents a shift operator.
* @return {@code true} if this type of token represents a shift operator
*/
bool isShiftOperator() => identical(_tokenClass, TokenClass.SHIFT_OPERATOR);
/**
* Return {@code true} if this type of token represents a unary postfix operator.
* @return {@code true} if this type of token represents a unary postfix operator
*/
bool isUnaryPostfixOperator() => identical(_tokenClass, TokenClass.UNARY_POSTFIX_OPERATOR);
/**
* Return {@code true} if this type of token represents a unary prefix operator.
* @return {@code true} if this type of token represents a unary prefix operator
*/
bool isUnaryPrefixOperator() => identical(_tokenClass, TokenClass.UNARY_PREFIX_OPERATOR);
/**
* Return {@code true} if this token type represents an operator that can be defined by users.
* @return {@code true} if this token type represents an operator that can be defined by users
*/
bool isUserDefinableOperator() => identical(_lexeme, "==") || identical(_lexeme, "~") || identical(_lexeme, "[]") || identical(_lexeme, "[]=") || identical(_lexeme, "*") || identical(_lexeme, "/") || identical(_lexeme, "%") || identical(_lexeme, "~/") || identical(_lexeme, "+") || identical(_lexeme, "-") || identical(_lexeme, "<<") || identical(_lexeme, ">>") || identical(_lexeme, ">=") || identical(_lexeme, ">") || identical(_lexeme, "<=") || identical(_lexeme, "<") || identical(_lexeme, "&") || identical(_lexeme, "^") || identical(_lexeme, "|");
int compareTo(TokenType other) => __ordinal - other.__ordinal;
String toString() => __name;
}
class TokenType_EOF extends TokenType {
TokenType_EOF(String ___name, int ___ordinal, TokenClass arg0, String arg1) : super.con2(___name, ___ordinal, arg0, arg1);
String toString() => "-eof-";
}